JP2010281993A - 表示装置、表示装置の駆動方法および電子機器 - Google Patents
表示装置、表示装置の駆動方法および電子機器 Download PDFInfo
- Publication number
- JP2010281993A JP2010281993A JP2009134786A JP2009134786A JP2010281993A JP 2010281993 A JP2010281993 A JP 2010281993A JP 2009134786 A JP2009134786 A JP 2009134786A JP 2009134786 A JP2009134786 A JP 2009134786A JP 2010281993 A JP2010281993 A JP 2010281993A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- circuit
- signal
- pixel
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2092—Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0819—Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0861—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0861—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
- G09G2300/0866—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0283—Arrangement of drivers for different directions of scanning
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0289—Details of voltage level shifters arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0223—Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of El Displays (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
【課題】走査信号の遷移タイミングを規定するイネーブル信号を各走査信号に対して共通に与える構成を採る走査部での消費電力の低減を図る。
【解決手段】複数の走査線ごとに設けられたレベル変換回路46−1〜46−4により、走査信号WS(1)〜WS(4)の基準となるシフト信号SR OUT(1)〜SR OUT(4)を、第1の振幅(第2の電圧例IIの振幅)から第2の振幅(第3の電圧例IIIの振幅)に変換するとともに、これらシフト信号SR OUT(1)〜SR OUT(4)に対して共通伝送線SLにより垂直イネーブル信号ENを共通に与える。そして、AND回路48−1〜48−4の垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間にNchMOSトランジスタ47−1〜47−4を接続し、これら垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間を択一的に接続する。
【選択図】図10
【解決手段】複数の走査線ごとに設けられたレベル変換回路46−1〜46−4により、走査信号WS(1)〜WS(4)の基準となるシフト信号SR OUT(1)〜SR OUT(4)を、第1の振幅(第2の電圧例IIの振幅)から第2の振幅(第3の電圧例IIIの振幅)に変換するとともに、これらシフト信号SR OUT(1)〜SR OUT(4)に対して共通伝送線SLにより垂直イネーブル信号ENを共通に与える。そして、AND回路48−1〜48−4の垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間にNchMOSトランジスタ47−1〜47−4を接続し、これら垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間を択一的に接続する。
【選択図】図10
Description
本発明は、表示装置、表示装置の駆動方法および電子機器に関し、特に、電気光学素子を含む画素が行列状(マトリクス状)に2次元配置された平面型(フラットパネル型)の表示装置、当該表示装置の駆動方法および当該表示装置を有する電子機器に関する。
電気光学素子を含む画素が行列状に2次元配置された表示装置は、行列状に配置された各画素を、走査線を介して行単位で選択する行走査部を有する。行走査部は、シフトレジスタやデコーダから出力される走査信号の振幅を、電気光学素子の駆動に必要な振幅に変換するレベル変換回路(レベルシフト回路)を有している。このレベルシフト回路は、画素行ごと、即ち走査線ごとに設けられる。
このように、レベルシフト回路を走査線ごとに設けると、走査線ごとのレベルシフト回路間で回路素子の特性のばらつき等に起因して、各レベルシフト回路から出力される走査信号間でタイミングがばらつく。この走査信号のタイミングの走査線間でのばらつきは、表示画像に対して種々の悪影響を及ぼす。
そこで、従来は、走査信号の遷移タイミングを規定するイネーブル信号を各走査信号に対して共通に与え、当該イネーブル信号と各走査信号を論理演算することによって走査線間での走査信号のタイミングのばらつきを防止するようにしている(例えば、特許文献1参照)。
図30に、従来例に係る行走査部の構成の一例を示す。図30に示すように、従来例に係る行走査部300は、レベル変換回路301,302,303、シフトレジスタ部304、第1の論理回路部305、レベル変換回路部306、第2の論理回路部307およびバッファ部308を有する構成となっている。ここでは、図面の簡略化のために、1行目からの4つの画素行に対応した回路部分の構成を示している。
図30において、シフトレジスタ部304の各単位回路(シフト段/転送段)から順にシフト信号が出力され、当該シフト信号が第1の論理回路部305およびレベル変換回路部306を経て第2の論理回路部307に供給される。これらのシフト信号は、レベル変換回路部306で電気光学素子(図示せず)の駆動に必要な振幅に変換されて第2の論理回路部307のAND回路307−1〜307−4の各一方の入力となる。
AND回路307−1〜307−4は、レベル変換回路303でレベル変換され、共通伝送線SLを通して各画素行に対して共通に供給される垂直イネーブル信号VENを他方の入力とする。AND回路307−1〜307−4は、各シフト信号と垂直イネーブル信号VENとの論理積の演算を行うことで、垂直イネーブル信号VENの遷移タイミングで遷移する走査信号を順に生成する。これら走査信号は、バッファ部308を介して対応する画素行の行走査線(図示せず)に供給される。
上記構成の行走査部300において、垂直イネーブル信号VENは1H(Hは水平走査期間)ごとに立ち上がり、立ち下がりの遷移タイミングがあるパルス信号である。したがって、レベル変換回路303によるレベル変換後の垂直イネーブル信号VENによる共通伝送線SLの充放電は1Hごとに行われる。
共通伝送線SLには、AND回路307−1〜307−4の各々を構成するトランジスタの容量Ctrが付加される。これにより、共通伝送線SLの負荷容量は、走査線の本数×トランジスタの容量Ctrという計算式で求められる容量値となる。トランジスタの容量Ctrは、ゲート電極とチャネル領域との間に形成される容量である。
ここで、容量をc、充放電電圧をv、周波数をfとすると、1Hごとの電力はcv2 ×fという式で求めることができる。共通伝送線SLでの消費電力の場合はc=Ctrとなる。そして、垂直解像度が高くなるほど、即ち走査線の本数が増えるほど、共通伝送線SLの負荷容量が大きくなるため、垂直イネーブル信号VENに基づく共通伝送線SLの充放電による消費電力が増大する。
なお、ここでは、行走査部の場合を例に挙げて説明したが、この問題は行走査部に限られるものではない。すなわち、行走査部によって選択された画素行の各画素に対して画素単位で信号を書き込むいわゆる点順次方式の表示装置において、選択された画素行の各画素を画素単位で選択するために設けられる列走査部に対しても同様のことが言える。
そこで、本発明は、走査信号の遷移タイミングを規定するイネーブル信号を各走査信号に対して共通に与える構成を採る走査部での消費電力の低減を可能にした表示装置、当該表示装置の駆動方法および当該表示装置を有する電子機器を提供することを目的とする。
上記目的を達成するために、本発明は、
複数の走査線ごとに設けられたレベル変換回路により、前記複数の走査線の各々に供給される走査信号の基準となる複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部と、
前記走査信号の遷移タイミングを規定するイネーブル信号を前記複数の基準信号に対して共通に伝送する共通伝送線と、
複数の走査線ごとに設けられた論理回路により、前記複数の基準信号の各々と前記共通伝送線によって伝送される前記イネーブル信号とを論理演算することによって前記走査信号を生成する論理回路部とを有し、
行列状に2次元配置された各画素を画素行単位または画素列単位で選択する走査部
を備える表示装置において、
前記複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する前記論理回路の前記イネーブル信号用の入力端と前記共通伝送線との間を電気的に接続する。
複数の走査線ごとに設けられたレベル変換回路により、前記複数の走査線の各々に供給される走査信号の基準となる複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部と、
前記走査信号の遷移タイミングを規定するイネーブル信号を前記複数の基準信号に対して共通に伝送する共通伝送線と、
複数の走査線ごとに設けられた論理回路により、前記複数の基準信号の各々と前記共通伝送線によって伝送される前記イネーブル信号とを論理演算することによって前記走査信号を生成する論理回路部とを有し、
行列状に2次元配置された各画素を画素行単位または画素列単位で選択する走査部
を備える表示装置において、
前記複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する前記論理回路の前記イネーブル信号用の入力端と前記共通伝送線との間を電気的に接続する。
上記構成の表示装置の走査部において、複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する論理回路部の各論理回路のイネーブル信号用の入力端と共通伝送線との間を電気的に接続することで、各論理回路には複数の基準信号の各々に同期してイネーブル信号が択一的に与えられる。このとき、共通伝送線に対してイネーブル信号用の入力端が電気的に接続されるのは1つの論理回路となる。これにより、論理回路を構成するトランジスタの容量に起因する共通伝送線の負荷容量は、共通伝送線に対して全ての論理回路のイネーブル信号用の入力端が電気的に接続された状態にある場合に比べて走査線の本数分の1に減少する。その結果、イネーブル信号に基づく共通伝送線の充放電による消費電力、ひいては走査部での消費電力が減少する。
本発明によれば、走査信号の遷移タイミングを規定するイネーブル信号を、当該走査信号の各基準信号に対して共通に与える構成を採る走査部において、イネーブル信号を伝送する共通伝送線の負荷容量を低減できるために走査部での消費電力を低減できる。
以下、発明を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。なお、説明は以下の順序で行う。
1.本発明が適用される有機EL表示装置
2.本実施形態の特徴部分
2−1.実施例1(スイッチング素子がNchトランジスタの例)
2−2.実施例2(スイッチング素子がCMOSトランジスタの例)
2−3.実施例3(スイッチング素子がPchトランジスタの例)
3.変形例
4.適用例(電子機器)
1.本発明が適用される有機EL表示装置
2.本実施形態の特徴部分
2−1.実施例1(スイッチング素子がNchトランジスタの例)
2−2.実施例2(スイッチング素子がCMOSトランジスタの例)
2−3.実施例3(スイッチング素子がPchトランジスタの例)
3.変形例
4.適用例(電子機器)
<1.本発明が適用される有機EL表示装置>
[システム構成]
図1は、本発明が適用されるアクティブマトリクス型表示装置の構成の概略を示すシステム構成図である。
[システム構成]
図1は、本発明が適用されるアクティブマトリクス型表示装置の構成の概略を示すシステム構成図である。
アクティブマトリクス型表示装置は、電気光学素子に流れる電流を、当該電気光学素子と同じ画素内に設けた能動素子、例えば絶縁ゲート型電界効果トランジスタにより制御する表示装置である。絶縁ゲート型電界効果トランジスタとしては、一般には、TFT(Thin Film Transistor;薄膜トランジスタ)が用いられる。
ここでは、一例として、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子、例えば有機EL素子を画素(画素回路)の発光素子として用いたアクティブマトリクス型有機EL表示装置の場合を例に挙げて説明するものとする。
図1に示すように、本適用例に係る有機EL表示装置10は、有機EL素子を含む複数の画素20と、当該画素20が行列状に2次元配置された画素アレイ部30と、当該画素アレイ部30の周辺に配置された駆動部とを有する構成となっている。
駆動部は、書込み走査回路40、電源供給走査回路50および信号出力回路60等からなり、画素アレイ部30の各画素20を駆動する。書込み走査回路40および電源供給走査回路50は、画素20の各々を画素行単位で選択する行走査部である。
ここで、有機EL表示装置10がカラー表示対応の場合は、1つの画素は複数の副画素(サブピクセル)から構成され、この副画素が画素20に相当することになる。より具体的には、カラー表示用の表示装置では、1つの画素は、赤色光(R)を発光する副画素、緑色光(G)を発光する副画素、青色光(B)を発光する副画素の3つの副画素から構成される。
ただし、1つの画素としては、RGBの3原色の副画素の組み合わせに限られるものではなく、3原色の副画素にさらに1色あるいは複数色の副画素を加えて1つの画素を構成することも可能である。より具体的には、例えば、輝度向上のために白色光(W)を発光する副画素を加えて1つの画素を構成したり、色再現範囲を拡大するために補色光を発光する少なくとも1つの副画素を加えて1つの画素を構成したりすることも可能である。
画素アレイ部30には、m行n列の画素20の配列に対して、行方向(画素行の画素の配列方向)に沿って走査線31−1〜31−mと電源供給線32−1〜32−mとが画素行ごとに配線されている。さらに、列方向(画素列の画素の配列方向)に沿って信号線33−1〜33−nが画素列ごとに配線されている。
走査線31−1〜31−mは、書込み走査回路40の対応する行の出力端にそれぞれ接続されている。電源供給線32−1〜32−mは、電源供給走査回路50の対応する行の出力端にそれぞれ接続されている。信号線33−1〜33−nは、信号出力回路60の対応する列の出力端にそれぞれ接続されている。
画素アレイ部30は、通常、ガラス基板などの透明絶縁基板上に形成されている。これにより、有機EL表示装置10は、平面型(フラット型)のパネル構造となっている。画素アレイ部30の各画素20の駆動回路は、アモルファスシリコンTFTまたは低温ポリシリコンTFTを用いて形成することができる。低温ポリシリコンTFTを用いる場合には、図1に示すように、書込み走査回路40、電源供給走査回路50および信号出力回路60についても、画素アレイ部30を形成する表示パネル(基板)70上に実装することができる。
書込み走査回路40は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ等によって構成されている。この書込み走査回路40は、画素アレイ部30の各画素20への映像信号の書込みに際し、走査線31−1〜31−mに対して書込み走査信号WS(WS1〜WSm)を順次供給することによって画素アレイ部30の各画素20を行単位で順番に走査(線順次走査)する。書込み走査回路40は、本発明による走査部の一つである。すなわち、本発明は、書込み走査回路40の具体的な構成を特徴としている(その詳細については後述する)。
電源供給走査回路50は、クロックパルスckに同期してスタートパルスspを順にシフトするシフトレジスタ等によって構成されている。この電源供給走査回路50は、書込み走査回路40による線順次走査に同期して、第1電源電位Vccpと当該第1電源電位Vccpよりも低い第2電源電位Viniで切り替わる電源電位DS(DS1〜DSm)を電源供給線32−1〜32−mに供給する。後述するように、電源電位DSのVccp/Viniの切替えにより、画素20の発光/非発光の制御が行なわれる。
信号出力回路60は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧(以下、単に「信号電圧」と記述する場合もある)Vsigと基準電位Vofsとを選択的に出力する。ここで、基準電位Vofsは、映像信号の信号電圧Vsigの基準となる電位(例えば、映像信号の黒レベルに相当する電位)である。
信号出力回路60から出力される信号電圧Vsig/基準電位Vofsは、信号線33−1〜33−nを介して画素アレイ部30の各画素20に対して行単位で書き込まれる。すなわち、信号出力回路60は、信号電圧Vsigを行(ライン)単位で書き込む線順次書込みの駆動形態を採っている。
(画素回路)
図2は、画素(画素回路)20の具体的な回路構成を示す回路図である。
図2は、画素(画素回路)20の具体的な回路構成を示す回路図である。
図2に示すように、画素20は、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子である有機EL素子21と、当該有機EL素子21を駆動する駆動回路とによって構成されている。有機EL素子21は、全ての画素20に対して共通に配線(いわゆる、ベタ配線)された共通電源供給線34にカソード電極が接続されている。
有機EL素子21を駆動する駆動回路は、駆動トランジスタ22、書込みトランジスタ23および保持容量24を有する構成となっている。ここでは、駆動トランジスタ22および書込みトランジスタ23としてNチャネル型のTFTを用いている。ただし、駆動トランジスタ22および書込みトランジスタ23の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。
なお、駆動トランジスタ22および書込みトランジスタ23としてNチャネル型のTFTを用いると、アモルファスシリコン(a−Si)プロセスを用いることができる。a−Siプロセスを用いることで、TFTを作成する基板の低コスト化、ひいては本有機EL表示装置10の低コスト化を図ることが可能になる。また、駆動トランジスタ22および書込みトランジスタ23を同じ導電型の組み合わせにすると、両トランジスタ22,23を同じプロセスで作成することができるために低コスト化に寄与できる。
駆動トランジスタ22は、一方の電極(ソース/ドレイン電極)が有機EL素子21のアノード電極に接続され、他方の電極(ドレイン/ソース電極)が電源供給線32(32−1〜32−m)に接続されている。
書込みトランジスタ23は、一方の電極(ソース/ドレイン電極)が信号線33(33−1〜33−n)に接続され、他方の電極(ドレイン/ソース電極)が駆動トランジスタ22のゲート電極に接続されている。また、書込みトランジスタ23のゲート電極は、走査線31(31−1〜31−m)に接続されている。
駆動トランジスタ22および書込みトランジスタ23において、一方の電極とは、ソース/ドレイン領域に電気的に接続された金属配線を言い、他方の電極とは、ドレイン/ソース領域に電気的に接続された金属配線を言う。また、一方の電極と他方の電極との電位関係によって一方の電極がソース電極ともなればドレイン電極ともなり、他方の電極がドレイン電極ともなればソース電極ともなる。
保持容量24は、一方の電極が駆動トランジスタ22のゲート電極に接続され、他方の電極が駆動トランジスタ22の他方の電極および有機EL素子21のアノード電極に接続されている。
なお、有機EL素子21の駆動回路としては、駆動トランジスタ22および書込みトランジスタ23の2つのトランジスタと保持容量24の1つの容量素子とからなる回路構成のものに限られるものではない。例えば、一方の電極が有機EL素子21のアノード電極に、他方の電極が固定電位にそれぞれ接続されることで、有機EL素子21の容量不足分を補う補助容量を必要に応じて設けた回路構成を採ることも可能である。
上記構成の画素20において、書込みトランジスタ23は、書込み走査回路40から走査線31を通してゲート電極に印加されるHighアクティブの書込み走査信号WSに応答して導通状態となる。これにより、書込みトランジスタ23は、信号線33を通して信号出力回路60から供給される輝度情報に応じた映像信号の信号電圧Vsigまたは基準電位Vofsをサンプリングして画素20内に書き込む。この書き込まれた信号電圧Vsigまたは基準電位Vofsは、駆動トランジスタ22のゲート電極に印加されるとともに保持容量24に保持される。
駆動トランジスタ22は、電源供給線32(32−1〜32−m)の電位DSが第1電源電位Vccpにあるときには、一方の電極がドレイン電極、他方の電極がソース電極となって飽和領域で動作する。これにより、駆動トランジスタ22は、電源供給線32から電流の供給を受けて有機EL素子21を電流駆動にて発光駆動する。より具体的には、駆動トランジスタ22は、飽和領域で動作することにより、保持容量24に保持された信号電圧Vsigの電圧値に応じた電流値の駆動電流を有機EL素子21に供給し、当該有機EL素子21を電流駆動することによって発光させる。
駆動トランジスタ22はさらに、電源電位DSが第1電源電位Vccpから第2電源電位Viniに切り替わったときには、一方の電極がソース電極、他方の電極がドレイン電極となってスイッチングトランジスタとして動作する。これにより、駆動トランジスタ22は、有機EL素子21への駆動電流の供給を停止し、有機EL素子21を非発光状態にする。すなわち、駆動トランジスタ22は、有機EL素子21の発光/非発光を制御するトランジスタとしての機能をも併せ持っている。
この駆動トランジスタ22のスイッチング動作により、有機EL素子21が非発光状態となる期間(非発光期間)を設け、有機EL素子21の発光期間と非発光期間の割合(デューティ)を制御することができる。このデューティ制御により、1フレーム期間に亘って画素が発光することに伴う残像ボケを低減できるために、特に動画の画品位をより優れたものとすることができる。
電源供給走査回路50から電源供給線32を通して選択的に供給される第1,第2電源電位Vccp,Viniのうち、第1電源電位Vccpは有機EL素子21を発光駆動する駆動電流を駆動トランジスタ22に供給するための電源電位である。また、第2電源電位Viniは、有機EL素子21に対して逆バイアスを掛けるための電源電位である。この第2電源電位Viniは、基準電位Vofsよりも低い電位、例えば、駆動トランジスタ22の閾値電圧をVthとするときVofs−Vthよりも低い電位、好ましくはVofs−Vthよりも十分に低い電位に設定される。
(画素構造)
図3は、画素20の断面構造の一例を示す断面図である。図3に示すように、ガラス基板201上には、駆動トランジスタ22等を含む駆動回路が形成されている。そして、画素20は、ガラス基板201上に絶縁膜202、絶縁平坦化膜203およびウインド絶縁膜204がその順に形成され、当該ウインド絶縁膜204の凹部204Aに有機EL素子21が設けられた構成となっている。ここでは、駆動回路の各構成素子のうち、駆動トランジスタ22のみを図示し、他の構成素子については省略している。
図3は、画素20の断面構造の一例を示す断面図である。図3に示すように、ガラス基板201上には、駆動トランジスタ22等を含む駆動回路が形成されている。そして、画素20は、ガラス基板201上に絶縁膜202、絶縁平坦化膜203およびウインド絶縁膜204がその順に形成され、当該ウインド絶縁膜204の凹部204Aに有機EL素子21が設けられた構成となっている。ここでは、駆動回路の各構成素子のうち、駆動トランジスタ22のみを図示し、他の構成素子については省略している。
有機EL素子21は、アノード電極205と、有機層(電子輸送層、発光層、ホール輸送層/ホール注入層)206と、カソード電極207とから構成されている。アノード電極205は、ウインド絶縁膜204の凹部204Aの底部に形成された金属等からなる。有機層206は、アノード電極205上に形成されている。カソード電極207は、有機層206上に全画素共通に形成された透明導電膜等からなる。
この有機EL素子21において、有機層206は、アノード電極205上にホール輸送層/ホール注入層2061、発光層2062、電子輸送層2063および電子注入層(図示せず)が順次堆積されることによって形成される。そして、図2の駆動トランジスタ22による電流駆動の下に、駆動トランジスタ22からアノード電極205を通して有機層206に電流が流れることで、当該有機層206内の発光層2062において電子と正孔が再結合する際に発光するようになっている。
駆動トランジスタ22は、ゲート電極221と、半導体層222の両側に設けられたソース/ドレイン領域223,224と、半導体層222のゲート電極221と対向する部分のチャネル形成領域225とから構成されている。ソース/ドレイン領域223は、コンタクトホールを介して有機EL素子21のアノード電極205と電気的に接続されている。
そして、図3に示すように、ガラス基板201上に、絶縁膜202、絶縁平坦化膜203およびウインド絶縁膜204を介して有機EL素子21が画素単位で形成された後は、パッシベーション膜208を介して封止基板209が接着剤210によって接合される。この封止基板209によって有機EL素子21が封止されることにより表示パネル70が形成される。
[回路動作]
続いて、上記構成の有機EL表示装置10の基本的な回路動作について、図4のタイミング波形図を基に図5および図6の動作説明図を用いて説明する。なお、図5および図6の動作説明図では、図面の簡略化のために、書込みトランジスタ23をスイッチのシンボルで図示している。また、有機EL素子21の等価容量25についても図示している。
続いて、上記構成の有機EL表示装置10の基本的な回路動作について、図4のタイミング波形図を基に図5および図6の動作説明図を用いて説明する。なお、図5および図6の動作説明図では、図面の簡略化のために、書込みトランジスタ23をスイッチのシンボルで図示している。また、有機EL素子21の等価容量25についても図示している。
図4のタイミング波形図には、走査線31の電位(書込み走査信号)WS、電源供給線32の電位(電源電位)DS、信号線33の電位(Vsig/Vofs)、駆動トランジスタ22のゲート電位Vgおよびソース電位Vsのそれぞれの変化を示している。
(前フレームの発光期間)
図4のタイミング波形図において、時刻t11以前は、前のフレーム(フィールド)における有機EL素子21の発光期間となる。この前フレームの発光期間では、電源供給線32の電位DSが第1電源電位(以下、「高電位」と記述する)Vccpにあり、また、書込みトランジスタ23が非導通状態にある。
図4のタイミング波形図において、時刻t11以前は、前のフレーム(フィールド)における有機EL素子21の発光期間となる。この前フレームの発光期間では、電源供給線32の電位DSが第1電源電位(以下、「高電位」と記述する)Vccpにあり、また、書込みトランジスタ23が非導通状態にある。
このとき、駆動トランジスタ22は飽和領域で動作するように設計されている。これにより、図5(A)に示すように、駆動トランジスタ22のゲート−ソース間電圧Vgsに応じた駆動電流(ドレイン−ソース間電流)Idsが、電源供給線32から駆動トランジスタ22を通して有機EL素子21に供給される。よって、有機EL素子21が駆動電流Idsの電流値に応じた輝度で発光する。
(閾値補正準備期間)
時刻t11になると、線順次走査の新しいフレーム(現フレーム)に入る。そして、図5(B)に示すように、電源供給線32の電位DSが高電位Vccpから、信号線33の基準電位Vofsに対してVofs−Vthよりも十分に低い第2電源電位(以下、「低電位」と記述する)Viniに切り替わる。
時刻t11になると、線順次走査の新しいフレーム(現フレーム)に入る。そして、図5(B)に示すように、電源供給線32の電位DSが高電位Vccpから、信号線33の基準電位Vofsに対してVofs−Vthよりも十分に低い第2電源電位(以下、「低電位」と記述する)Viniに切り替わる。
ここで、有機EL素子21の閾値電圧をVthel、共通電源供給線34の電位(カソード電位)をVcathとする。このとき、低電位ViniをVini<Vthel+Vcathとすると、駆動トランジスタ22のソース電位Vsが低電位Viniにほぼ等しくなるために、有機EL素子21は逆バイアス状態となって消光する。
次に、時刻t12で走査線31の電位WSが低電位側から高電位側に遷移することで、図5(C)に示すように、書込みトランジスタ23が導通状態となる。このとき、信号出力回路60から信号線33に対して基準電位Vofsが供給されているために、駆動トランジスタ22のゲート電位Vgが基準電位Vofsになる。また、駆動トランジスタ22のソース電位Vsは、基準電位Vofsよりも十分に低い電位Viniにある。
このとき、駆動トランジスタ22のゲート−ソース間電圧VgsはVofs−Viniとなる。ここで、Vofs−Viniが駆動トランジスタ22の閾値電圧Vthよりも大きくないと、後述する閾値補正処理を行うことができないために、Vofs−Vini>Vthなる電位関係に設定する必要がある。
このように、駆動トランジスタ22のゲート電位Vgを基準電位Vofsに、ソース電位Vsを低電位Viniにそれぞれ固定して(確定させて)初期化する処理が、後述する閾値補正処理を行う前の準備(閾値補正準備)の処理である。したがって、基準電位Vofsおよび低電位Viniが、駆動トランジスタ22のゲート電位Vgおよびソース電位Vsの各初期化電位となる。
(閾値補正期間)
次に、時刻t13で、図5(D)に示すように、電源供給線32の電位DSが低電位Viniから高電位Vccpに切り替わると、駆動トランジスタ22のゲート電位Vgが保たれた状態で閾値補正処理が開始される。すなわち、ゲート電位Vgから駆動トランジスタ22の閾値電圧Vthを減じた電位に向けて駆動トランジスタ22のソース電位Vsが上昇を開始する。
次に、時刻t13で、図5(D)に示すように、電源供給線32の電位DSが低電位Viniから高電位Vccpに切り替わると、駆動トランジスタ22のゲート電位Vgが保たれた状態で閾値補正処理が開始される。すなわち、ゲート電位Vgから駆動トランジスタ22の閾値電圧Vthを減じた電位に向けて駆動トランジスタ22のソース電位Vsが上昇を開始する。
ここでは、便宜上、駆動トランジスタ22のゲート電極の初期化電位Vofsを基準として、当該初期化電位Vofsから駆動トランジスタ22の閾値電圧Vthを減じた電位に向けてソース電位Vsを変化させる処理を閾値補正処理と呼んでいる。この閾値補正処理が進むと、やがて、駆動トランジスタ22のゲート−ソース間電圧Vgsが駆動トランジスタ22の閾値電圧Vthに収束する。この閾値電圧Vthに相当する電圧は保持容量24に保持される。
なお、閾値補正処理を行う期間(閾値補正期間)において、電流が専ら保持容量24側に流れ、有機EL素子21側には流れないようにするために、有機EL素子21がカットオフ状態となるように共通電源供給線34の電位Vcathを設定しておくこととする。
次に、時刻t14で走査線31の電位WSが低電位側に遷移することで、図6(A)に示すように、書込みトランジスタ23が非導通状態となる。このとき、駆動トランジスタ22のゲート電極が信号線33から電気的に切り離されることによってフローティング状態になる。しかし、ゲート−ソース間電圧Vgsが駆動トランジスタ22の閾値電圧Vthに等しいために、当該駆動トランジスタ22はカットオフ状態にある。したがって、駆動トランジスタ22にドレイン−ソース間電流Idsは流れない。
(信号書込み&移動度補正期間)
次に、時刻t15で、図6(B)に示すように、信号線33の電位が基準電位Vofsから映像信号の信号電圧Vsigに切り替わる。続いて、時刻t16で、走査線31の電位WSが高電位側に遷移することで、図6(C)に示すように、書込みトランジスタ23が導通状態になって映像信号の信号電圧Vsigをサンプリングして画素20内に書き込む。
次に、時刻t15で、図6(B)に示すように、信号線33の電位が基準電位Vofsから映像信号の信号電圧Vsigに切り替わる。続いて、時刻t16で、走査線31の電位WSが高電位側に遷移することで、図6(C)に示すように、書込みトランジスタ23が導通状態になって映像信号の信号電圧Vsigをサンプリングして画素20内に書き込む。
この書込みトランジスタ23による信号電圧Vsigの書込みにより、駆動トランジスタ22のゲート電位Vgが信号電圧Vsigとなる。そして、映像信号の信号電圧Vsigによる駆動トランジスタ22の駆動の際に、当該駆動トランジスタ22の閾値電圧Vthが保持容量24に保持された閾値電圧Vthに相当する電圧と相殺される。この閾値キャンセルの原理の詳細については後述する。
このとき、有機EL素子21はカットオフ状態(ハイインピーダンス状態)にある。したがって、映像信号の信号電圧Vsigに応じて電源供給線32から駆動トランジスタ22に流れる電流(ドレイン−ソース間電流Ids)は有機EL素子21の等価容量25に流れ込み、当該等価容量25の充電が開始される。
有機EL素子21の等価容量25の充電により、駆動トランジスタ22のソース電位Vsが時間の経過と共に上昇していく。このとき既に、駆動トランジスタ22の閾値電圧Vthの画素ごとのばらつきがキャンセルされており、駆動トランジスタ22のドレイン−ソース間電流Idsは当該駆動トランジスタ22の移動度μに依存したものとなる。駆動トランジスタ22の移動度μは、当該駆動トランジスタ22のチャネルを構成する半導体薄膜の移動度μである。
ここで、映像信号の信号電圧Vsigに対する保持容量24の保持電圧Vgsの比率、即ち書込みゲインGが1(理想値)であると仮定する。すると、駆動トランジスタ22のソース電位VsがVofs−Vth+ΔVの電位まで上昇することで、駆動トランジスタ22のゲート‐ソース間電圧VgsはVsig−Vofs+Vth−ΔVとなる。
すなわち、駆動トランジスタ22のソース電位Vsの上昇分ΔVは、保持容量24に保持された電圧(Vsig−Vofs+Vth)から差し引かれるように、換言すれば、保持容量24の充電電荷を放電するように作用し、負帰還がかけられたことになる。したがって、ソース電位Vsの上昇分ΔVは負帰還の帰還量となる。
このように、駆動トランジスタ22に流れるドレイン−ソース間電流Idsに応じた帰還量ΔVでゲート‐ソース間電圧Vgsに負帰還をかけることで、駆動トランジスタ22のドレイン−ソース間電流Idsの移動度μに対する依存性を打ち消すことができる。この打ち消す処理が、駆動トランジスタ22の移動度μの画素ごとのばらつきを補正する移動度補正処理である。
より具体的には、駆動トランジスタ22のゲート電極に書き込まれる映像信号の信号振幅Vin(=Vsig−Vofs)が高いほどドレイン−ソース間電流Idsが大きくなるために、負帰還の帰還量ΔVの絶対値も大きくなる。したがって、発光輝度レベルに応じた移動度補正処理が行われる。
また、映像信号の信号振幅Vinを一定とした場合、駆動トランジスタ22の移動度μが大きいほど負帰還の帰還量ΔVの絶対値も大きくなるために、画素ごとの移動度μのばらつきを取り除くことができる。したがって、負帰還の帰還量ΔVは移動度補正の補正量とも言える。移動度補正の原理の詳細については後述する。
(発光期間)
次に、時刻t17で走査線31の電位WSが低電位側に遷移することで、図6(D)に示すように、書込みトランジスタ23が非導通状態となる。これにより、駆動トランジスタ22のゲート電極は、信号線33から電気的に切り離されるためにフローティング状態になる。
次に、時刻t17で走査線31の電位WSが低電位側に遷移することで、図6(D)に示すように、書込みトランジスタ23が非導通状態となる。これにより、駆動トランジスタ22のゲート電極は、信号線33から電気的に切り離されるためにフローティング状態になる。
ここで、駆動トランジスタ22のゲート電極がフローティング状態にあるときは、駆動トランジスタ22のゲート−ソース間に保持容量24が接続されていることにより、駆動トランジスタ22のソース電位Vsの変動に連動してゲート電位Vgも変動する。このように、駆動トランジスタ22のゲート電位Vgがソース電位Vsの変動に連動して変動する動作が、保持容量24によるブートストラップ動作である。
駆動トランジスタ22のゲート電極がフローティング状態になり、それと同時に、駆動トランジスタ22のドレイン−ソース間電流Idsが有機EL素子21に流れ始めることにより、当該電流Idsに応じて有機EL素子21のアノード電位が上昇する。
そして、有機EL素子21のアノード電位がVthel+Vcathを越えると、有機EL素子21に駆動電流が流れ始めるため有機EL素子21が発光を開始する。また、有機EL素子21のアノード電位の上昇は、即ち駆動トランジスタ22のソース電位Vsの上昇に他ならない。駆動トランジスタ22のソース電位Vsが上昇すると、保持容量24のブートストラップ動作により、駆動トランジスタ22のゲート電位Vgも連動して上昇する。
このとき、ブートストラップゲインが1(理想値)であると仮定した場合、ゲート電位Vgの上昇量はソース電位Vsの上昇量に等しくなる。故に、発光期間中駆動トランジスタ22のゲート‐ソース間電圧VgsはVsig−Vofs+Vth−ΔVで一定に保持される。そして、時刻t18で信号線33の電位が映像信号の信号電圧Vsigから基準電位Vofsに切り替わる。
以上説明した一連の回路動作において、閾値補正準備、閾値補正、信号電圧Vsigの書込み(信号書込み)および移動度補正の各処理動作は、1水平走査期間(1H)において実行される。また、信号書込みおよび移動度補正の各処理動作は、時刻t6−t7の期間において並行して実行される。
なお、ここでは、閾値補正処理を1回だけ実行する駆動法を採る場合を例に挙げて説明したが、この駆動法は一例に過ぎず、この駆動法に限られるものではない。例えば、閾値補正処理を移動度補正および信号書込み処理と共に行う1H期間に加えて、当該1H期間に先行する複数の水平走査期間に亘って分割して複数回実行する、いわゆる分割閾値補正を行う駆動法を採ることも可能である。
この分割閾値補正の駆動法を採用することにより、高精細化に伴う多画素化によって1水平走査期間に割り当てられる時間が短くなったとしても、閾値補正期間として複数の水平走査期間に亘って十分な時間を確保することができるために、閾値補正処理を確実に行うことができる。
〔閾値キャンセルの原理〕
ここで、駆動トランジスタ22の閾値キャンセル(即ち、閾値補正)の原理について説明する。駆動トランジスタ22は、飽和領域で動作するように設計されているために定電流源として動作する。これにより、有機EL素子21には駆動トランジスタ22から、次式(1)で与えられる一定のドレイン−ソース間電流(駆動電流)Idsが供給される。
Ids=(1/2)・μ(W/L)Cox(Vgs−Vth)2 ……(1)
ここで、Wは駆動トランジスタ22のチャネル幅、Lはチャネル長、Coxは単位面積当たりのゲート容量である。
ここで、駆動トランジスタ22の閾値キャンセル(即ち、閾値補正)の原理について説明する。駆動トランジスタ22は、飽和領域で動作するように設計されているために定電流源として動作する。これにより、有機EL素子21には駆動トランジスタ22から、次式(1)で与えられる一定のドレイン−ソース間電流(駆動電流)Idsが供給される。
Ids=(1/2)・μ(W/L)Cox(Vgs−Vth)2 ……(1)
ここで、Wは駆動トランジスタ22のチャネル幅、Lはチャネル長、Coxは単位面積当たりのゲート容量である。
図7に、駆動トランジスタ22のドレイン−ソース間電流Ids対ゲート−ソース間電圧Vgsの特性を示す。
この特性図に示すように、駆動トランジスタ22の閾値電圧Vthの画素ごとのばらつきに対するキャンセル処理を行わないと、閾値電圧VthがVth1のとき、ゲート−ソース間電圧Vgsに対応するドレイン−ソース間電流IdsがIds1になる。
これに対して、閾値電圧VthがVth2(Vth2>Vth1)のとき、同じゲート−ソース間電圧Vgsに対応するドレイン−ソース間電流IdsがIds2(Ids2<Ids)になる。すなわち、駆動トランジスタ22の閾値電圧Vthが変動すると、ゲート−ソース間電圧Vgsが一定であってもドレイン−ソース間電流Idsが変動する。
一方、上記構成の画素(画素回路)20では、先述したように、発光時の駆動トランジスタ22のゲート−ソース間電圧VgsはVsig−Vofs+Vth−ΔVである。したがって、これを式(1)に代入すると、ドレイン−ソース間電流Idsは、次式(2)で表される。
Ids=(1/2)・μ(W/L)Cox(Vsig−Vofs−ΔV)2
……(2)
Ids=(1/2)・μ(W/L)Cox(Vsig−Vofs−ΔV)2
……(2)
すなわち、駆動トランジスタ22の閾値電圧Vthの項がキャンセルされており、駆動トランジスタ22から有機EL素子21に供給されるドレイン−ソース間電流Idsは、駆動トランジスタ22の閾値電圧Vthに依存しない。その結果、駆動トランジスタ22の製造プロセスのばらつきや経時変化により、駆動トランジスタ22の閾値電圧Vthが画素ごとに変動したとしても、ドレイン−ソース間電流Idsが変動しないために、有機EL素子21の発光輝度を一定に保つことができる。
〔移動度補正の原理〕
次に、駆動トランジスタ22の移動度補正の原理について説明する。図8に、駆動トランジスタ22の移動度μが相対的に大きい画素Aと、駆動トランジスタ22の移動度μが相対的に小さい画素Bとを比較した状態で特性カーブを示す。駆動トランジスタ22をポリシリコン薄膜トランジスタなどで構成した場合、画素Aや画素Bのように、画素間で移動度μがばらつくことは避けられない。
次に、駆動トランジスタ22の移動度補正の原理について説明する。図8に、駆動トランジスタ22の移動度μが相対的に大きい画素Aと、駆動トランジスタ22の移動度μが相対的に小さい画素Bとを比較した状態で特性カーブを示す。駆動トランジスタ22をポリシリコン薄膜トランジスタなどで構成した場合、画素Aや画素Bのように、画素間で移動度μがばらつくことは避けられない。
画素Aと画素Bで移動度μにばらつきがある状態で、駆動トランジスタ22のゲート電極に例えば両画素A,Bに同レベルの信号振幅Vin(=Vsig−Vofs)を書き込んだ場合を考える。この場合、何ら移動度μの補正を行わないと、移動度μの大きい画素Aに流れるドレイン−ソース間電流Ids1′と移動度μの小さい画素Bに流れるドレイン−ソース間電流Ids2′との間には大きな差が生じてしまう。このように、移動度μの画素ごとのばらつきに起因してドレイン−ソース間電流Idsに画素間で大きな差が生じると、画面のユニフォーミティが損なわれる。
ここで、先述した式(1)のトランジスタ特性式から明らかなように、移動度μが大きいとドレイン−ソース間電流Idsが大きくなる。したがって、負帰還における帰還量ΔVは移動度μが大きくなるほど大きくなる。図8に示すように、移動度μの大きな画素Aの帰還量ΔV1は、移動度の小さな画素Bの帰還量ΔV2に比べて大きい。
そこで、移動度補正処理によって駆動トランジスタ22のドレイン−ソース間電流Idsに応じた帰還量ΔVでゲート−ソース間電圧Vgsに負帰還をかけることにより、移動度μが大きいほど負帰還が大きくかかることになる。その結果、移動度μの画素ごとのばらつきを抑制することができる。
具体的には、移動度μの大きな画素Aで帰還量ΔV1の補正をかけると、ドレイン−ソース間電流IdsはIds1′からIds1まで大きく下降する。一方、移動度μの小さな画素Bの帰還量ΔV2は小さいために、ドレイン−ソース間電流IdsはIds2′からIds2までの下降となり、それ程大きく下降しない。結果的に、画素Aのドレイン−ソース間電流Ids1と画素Bのドレイン−ソース間電流Ids2とはほぼ等しくなるために、移動度μの画素ごとのばらつきが補正される。
以上をまとめると、移動度μの異なる画素Aと画素Bがあった場合、移動度μの大きい画素Aの帰還量ΔV1は移動度μの小さい画素Bの帰還量ΔV2に比べて大きくなる。つまり、移動度μが大きい画素ほど帰還量ΔVが大きく、ドレイン−ソース間電流Idsの減少量が大きくなる。
したがって、駆動トランジスタ22のドレイン−ソース間電流Idsに応じた帰還量ΔVで、ゲート−ソース間電圧Vgsに負帰還をかけることで、移動度μの異なる画素のドレイン−ソース間電流Idsの電流値が均一化される。その結果、移動度μの画素ごとのばらつきを補正することができる。すなわち、駆動トランジスタ22に流れる電流(ドレイン−ソース間電流Ids)に応じた帰還量ΔVで、駆動トランジスタ22のゲート−ソース間電圧Vgsに負帰還をかける処理が移動度補正処理となる。
ここで、図2に示した画素(画素回路)20において、閾値補正、移動度補正の有無による映像信号の信号電圧Vsigと駆動トランジスタ22のドレイン・ソース間電流Idsとの関係について図9を用いて説明する。
図9において、(A)は閾値補正および移動度補正を共に行わない場合、(B)は移動度補正を行わず、閾値補正のみを行った場合、(C)は閾値補正および移動度補正を共に行った場合をそれぞれ示している。図9(A)に示すように、閾値補正および移動度補正を共に行わない場合には、閾値電圧Vthおよび移動度μの画素A,Bごとのばらつきに起因してドレイン−ソース間電流Idsに画素A,B間で大きな差が生じることになる。
これに対し、閾値補正のみを行った場合は、図9(B)に示すように、ドレイン−ソース間電流Idsのばらつきをある程度低減できるものの、移動度μの画素A,Bごとのばらつきに起因する画素A,B間でのドレイン−ソース間電流Idsの差は残る。そして、閾値補正および移動度補正を共に行うことで、図9(C)に示すように、閾値電圧Vthおよび移動度μの画素A,Bごとのばらつきに起因する画素A,B間でのドレイン−ソース間電流Idsの差をほぼ無くすことができる。したがって、どの階調においても有機EL素子21の輝度ばらつきは発生せず、良好な画質の表示画像を得ることができる。
また、図2に示した画素20は、閾値補正および移動度補正の各補正機能に加えて、先述した保持容量24によるブートストラップ動作の機能を備えていることで、次のような作用効果を得ることができる。
すなわち、有機EL素子21のI−V特性の経時変化に伴って駆動トランジスタ22のソース電位Vsが変化したとしても、保持容量24によるブートストラップ動作により、駆動トランジスタ22のゲート−ソース間電位Vgsを一定に維持することができる。したがって、有機EL素子21に流れる電流は変化せず一定となる。その結果、有機EL素子21の発光輝度も一定に保たれるために、有機EL素子21のI−V特性が経時変化したとしても、それに伴う輝度劣化のない画像表示を実現できる。
<2.本実施形態の特徴部分>
上記構成のアクティブマトリクス型有機EL表示装置10において、本実施形態では、書込み走査回路40や電源供給走査回路50の行走査部として、走査信号の遷移タイミングを規定するイネーブル信号を各走査信号の基準信号に対して共通に与える構成を採る。かかる構成を採る行走査部は、複数の走査線ごとに設けられたレベル変換回路により、当該複数の走査線の各々に供給される複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部を有する。
上記構成のアクティブマトリクス型有機EL表示装置10において、本実施形態では、書込み走査回路40や電源供給走査回路50の行走査部として、走査信号の遷移タイミングを規定するイネーブル信号を各走査信号の基準信号に対して共通に与える構成を採る。かかる構成を採る行走査部は、複数の走査線ごとに設けられたレベル変換回路により、当該複数の走査線の各々に供給される複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部を有する。
レベル変換後の複数の基準信号は、複数の走査線ごとに設けられた論理回路からなる論理演算部において、共通伝送線によって伝送されるイネーブル信号と論理演算が行われることで、当該イネーブル信号で規定される遷移タイミングとなる。そして、この論理演算のときに、複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する論理回路のイネーブル信号用の入力端と共通伝送線との間を電気的に接続することを特徴としている。
このように、複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する論理回路部の各論理回路のイネーブル信号用の入力端と共通伝送線との間を電気的に接続することで、各論理回路には複数の基準信号の各々に同期してイネーブル信号が択一的に与えられる。このとき、共通伝送線に対してイネーブル信号用の入力端が電気的に接続されるのは1つの論理回路となる。
これにより、論理回路を構成するトランジスタの容量に起因する共通伝送線の負荷容量は、共通伝送線に対して全ての論理回路のイネーブル信号用の入力端が電気的に接続された状態にある場合に比べて走査線(本実施形態では、垂直方向の走査線)の本数分の1に減少する。その結果、イネーブル信号に基づく共通伝送線の充放電による消費電力、ひいては走査部での消費電力が減少する。
続いて、本実施形態に係る行走査部の具体的な実施例について説明する。以下に説明する実施例では、本実施形態に係る行走査部が書込み走査回路40の場合を例に挙げて説明するものとする。なお、本実施形態に係る行走査部が電源供給走査回路50の場合にも、書込み走査回路40の場合と同様の構成を採ることができる。
[2−1.実施例1]
図10は、実施例1に係る書込み走査回路40Aの構成例を示すブロック図である。図10に示すように、実施例1に係る書込み走査回路40Aは、レベル変換回路(レベルシフト回路;L/S)41,42,43、シフトレジスタ部44、第1の論理回路部45、レベル変換回路部46、スイッチ部47、第2の論理回路部48およびバッファ部49を有する。ここでは、図面の簡略化のために、1行目からの4つの画素行に対応した回路部分の構成を示している。
図10は、実施例1に係る書込み走査回路40Aの構成例を示すブロック図である。図10に示すように、実施例1に係る書込み走査回路40Aは、レベル変換回路(レベルシフト回路;L/S)41,42,43、シフトレジスタ部44、第1の論理回路部45、レベル変換回路部46、スイッチ部47、第2の論理回路部48およびバッファ部49を有する。ここでは、図面の簡略化のために、1行目からの4つの画素行に対応した回路部分の構成を示している。
実施例1に係る書込み走査回路40Aは、例えば、Highレベルが3[V]、Lowレベルが0[V]の振幅の垂直スタートパルスVST、垂直クロックVCKおよび垂直イネーブル信号VENを入力とする。なお、垂直スタートパルスVSTおよび垂直クロックVCKは、図1のスタートパルスspおよびクロックパルスckに相当する。以下では、書込み走査回路40Aの入力信号の振幅を第1の電圧系Iの振幅と呼ぶ。また、Highレベルを単にHレベル、Lowレベルを単にLレベルと記す。
図10において、レベル変換回路41,42,43は、第1の電圧系Iの振幅の垂直クロックVCKおよび垂直イネーブル信号VENを、例えば、Hレベルが10[V]、Lレベルが0[V]の振幅の信号にレベル変換する。ここで、特にポリシリコンを用いて書込み走査回路40を表示パネル70上に実装する場合、Hレベルが10[V]、Lレベルが0[V]の振幅は、ポリシリコンの回路の駆動に適し、かつ、有機EL素子21の駆動に適した振幅よりも小さい。以下では、このポリシリコンの回路の駆動に適し、かつ、有機EL素子21の駆動に適した振幅よりも小さい振幅を第2の電圧系IIの振幅と呼ぶ。
シフトレジスタ部44は、画素アレイ部30の走査線(31−1〜31−4)に対応する、単位回路であるシフト段(S/R)44−1〜44−4が従属接続された構成となっている。このシフトレジスタ部44は、レベル変換回路41から出力される垂直スタートパルスVSTを、レベル変換回路42から出力される垂直クロックVCKに同期して順次シフトする。
これにより、シフト段44−1〜44−4の各々からは順に、第2の電圧系IIの振幅のシフト信号SR OUT(1)〜SR OUT(4)が出力される。これらシフト信号SR OUT(1)〜SR OUT(4)は、時間軸上において画素アレイ部30の各画素20を行単位で選択走査する走査信号(図1の書込み走査信号WS1〜WSmに相当)の基準となる信号、即ち走査信号の時間軸上の基準信号である。
第1の論理演算回路部45は、走査線(31−1〜31−4)に対応して設けられ、それぞれ第2の電圧系IIで動作する論理回路45−1〜45−4から構成されている。論理回路45−1〜45−4は、シフトレジスタ部44の各シフト段44−1〜44−4から出力されるシフト信号SR OUT(1)〜SR OUT(4)に対してあらかじめ定められた論理演算を行う。
なお、走査信号には、近接する走査線に出力する走査信号等に応じて波形を切り換える場合や、インターレース方式により奇数フィールドと偶数フィールドとで波形を切り換える場合などがある。このような場合に対応する際には、論理回路45−1〜45−4は、シフトレジスタ部44の各シフト段44−1〜44−4から出力されるシフト信号SR OUT(1)〜SR OUT(4)に対してより複雑な論理演算を実行することになる。
レベル変換回路部46は、走査線(31−1〜31−4)に対応して設けられたレベル変換回路46−1〜46−4を有する構成となっている。レベル変換回路46−1〜46−4は、論理回路45−1〜45−4から出力される第2の電圧系IIの振幅の信号を、有機EL素子21の駆動に適した振幅、例えば、Hレベルが15[V]、Lレベルが−5[5]の振幅の信号にレベル変換する。以下では、有機EL素子21の駆動に適した振幅を第3の電圧系IIIの振幅と呼ぶ。
スイッチ部47は、走査線(31−1〜31−4)に対応して設けられたスイッチ素子、例えばNchMOSトランジスタ47−1〜47−4から構成されている。NchMOSトランジスタ47−1〜47−4は、共通伝送線SLと第2の論理回路部48の各論理回路の垂直イネーブル信号VEN用の入力端との間に接続されている。
ここで、共通伝送線SLは、レベルシフト回路43から出力される第2の電圧系IIの振幅の垂直イネーブル信号VENを、レベル変換回路46−1〜46−4から出力される4行分の信号に対して共通に伝送する。NchMOSトランジスタ47−1〜47−4は、レベル変換回路46−1〜46−4から出力される信号を各ゲート電極の入力とし、当該信号がHレベルのときに導通状態となる。これにより、NchMOSトランジスタ47−1〜47−4は、複数の基準信号(シフト信号SR OUT(1)〜SR OUT(4))の各々の発生期間に、当該発生した基準信号に対応する論理回路の垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間を電気的に接続する。
第2の論理回路部48は、論理回路として例えば2入力のAND回路48−1〜48−4を用いた構成となっている。AND回路48−1〜48−4は、レベル変換回路46−1〜46−4でレベルシフト後のシフト信号SR OUT(1)〜SR OUT(4)を一方の入力とし、NchMOSトランジスタ47−1〜47−4によって択一的に供給される垂直イネーブル信号VENを他方の入力とする。
そして、AND回路48−1〜48−4は、シフト信号SR OUT(1)〜SR OUT(4)の各々と垂直イネーブル信号VENとの論理積の演算を行うことで、垂直イネーブル信号VENの遷移タイミングで遷移する信号を生成する。これらAND回路48−1〜48−4で生成された信号は、バッファ部49の各バッファ49−1〜49−4を介して書込み走査信号WS(1)〜WS(4)として、画素アレイ部30の走査線31−1〜31−4に供給される。
図11に、第1の電圧系Iの振幅の垂直スタートパルスVST、垂直クロックVCK、垂直イネーブル信号VEN、第2の電圧系IIの振幅のシフト信号SR OUT(1)〜SR OUT(4)および第3の電圧系IIIの書込み走査信号WS(1)〜WS(4)のタイミング関係を示す。このタイミング波形図から明らかなように、垂直イネーブル信号VENは、1H(Hは水平走査期間)ごとに立ち上がり、立ち下がりの遷移タイミングがあるパルス信号である。そして、この垂直イネーブル信号VENの遷移タイミングにより、書込み走査信号WS(1)〜WS(4)の遷移タイミングが規定される。
(電圧系I→電圧系IIのレベル変換回路の回路例1)
図12は、第1の電圧系Iの振幅から第2の電圧系IIの振幅に変換するレベル変換回路41(42,43)の回路例1を示す回路図である。
図12は、第1の電圧系Iの振幅から第2の電圧系IIの振幅に変換するレベル変換回路41(42,43)の回路例1を示す回路図である。
回路例1に係るレベル変換回路41(42,43)は、いわゆるカレントミラー型のレベル変換回路であり、第2の電圧系IIのHレベルに対応する正側電源VDDIIにそれぞれソース電極が接続されてカレントミラー回路を構成するPchトランジスタQ11,Q12を有する。PchトランジスタQ12は、ゲート電極とドレイン電極とが共通に接続されている。
PchトランジスタQ11,Q12のドレイン電極には、NchトランジスタQ13,Q14のドレイン電極がそれぞれ接続されている。これらNchトランジスタQ13,Q14は、各ゲート電極が正側電源VDDIIに接続されている。トランジスタQ13,Q14の各ソース電極には、第1の電圧系Iの振幅の入力信号INと当該入力信号INの反転信号xINとが入力される。
なお、トランジスタQ14のソース電極には、反転信号xINに代えて一定電圧の基準電圧REFが入力される場合もある。この場合、基準電圧REFは、入力信号INのHレベルおよびLレベルの略平均の電圧に設定される。
上記構成の回路例1に係るレベル変換回路41(42,43)は、第1の電圧系Iの振幅の垂直スタートパルスVST、垂直クロックVCK、又は垂直イネーブル信号VENを入力信号INとする。そして、この入力信号INに応じてトランジスタQ13,Q14が相補的にオン/オフ動作することで、トランジスタQ13,Q14のドレイン電圧を第2の電圧系IIの振幅で変化させる。
レベル変換回路レベル変換回路41(42,43)は、トランジスタQ13のドレイン電圧を、第2の電圧系IIを動作電源とするバッファ回路B11を介して出力信号OUTとして導出する。これにより、第1の電圧系Iの振幅の入力信号INが、第2の電圧系IIの振幅の出力信号OUTにレベル変換される。
図13に、回路例1に係るレベル変換回路における入力信号IN,xINおよび出力信号OUT,xOUTの各波形を示す。図13において、電圧VSSIIは、第2の電圧系IIのLレベルに対応する負側電源の電圧であり、図12に示す回路例1ではグランド(GND)レベルである。
(電圧系I→電圧系IIのレベル変換回路の回路例2)
図14は、第1の電圧系Iの振幅から第2の電圧系IIの振幅に変換するレベル変換回路41(42,43)の回路例2を示す回路図である。
図14は、第1の電圧系Iの振幅から第2の電圧系IIの振幅に変換するレベル変換回路41(42,43)の回路例2を示す回路図である。
回路例2に係るレベル変換回路41(42,43)は、回路例1に係るレベル変換回路と同様のカレントミラー型のレベル変換回路であり、正側電源VDDIIにそれぞれソース電極が接続されてカレントミラー回路を構成するPchトランジスタQ21,Q22を有する。PchトランジスタQ22は、ゲート電極とドレイン電極とが共通に接続されている。
PchトランジスタQ21,Q22のドレイン電極には、NchトランジスタQ23,Q24のドレイン電極がそれぞれ接続されている。これらNchトランジスタQ23,Q24は、各ゲート電極が正側電源VDDIIに接続されており、各ソース電極には第1の電圧系Iの振幅の入力信号INと当該入力信号INの反転信号xINとが入力される。NchトランジスタQ23のドレイン電圧は、バッファ回路B21を介して出力信号OUTとして導出される。
レベル変換回路41(42,43)はさらに、反転信号xINおよび入力信号INをそれぞれゲート入力とするソース接地型のPchトランジスタQ25,Q26を有する。PchトランジスタQ25,Q26のドレイン電極は、NchトランジスタQ23,Q24のゲート電極に接続されるとともに、ゲート電極が接地されたPchトランジスタQ27,Q28を介して正側電源VDDIIに接続されている。
また、PchトランジスタQ26,Q25のドレイン電極には、NchトランジスタQ29,Q30のドレイン電極が接続されている。NchトランジスタQ29,Q30は、ゲート電極がPchトランジスタQ25,Q26のドレイン電極にそれぞれ接続されており、ソース電極には入力信号INおよび反転信号xINがそれぞれ入力される。
なお、トランジスタQ24のソース電極、トランジスタ25のゲート電極およびトランジスタQ30のソース電極には、反転信号XINに代えて一定電圧の基準電圧REFが入力される場合もある。この場合、基準電圧REFは、入力信号INのHレベルおよびLレベルの略平均の電圧に設定される。
上記構成の回路例2に係るレベル変換回路41(42,43)は、十分な帰還利得によりトランジスタQ23,Q24をオン/オフ動作させることで、第1の電圧系Iの振幅の入力信号INを第2の電圧系IIの振幅の出力信号OUTにレベル変換する。
図15に、回路例2に係るレベル変換回路における入力信号IN,xINおよび出力信号OUT,xOUTの各波形を示す。図15において、電圧VSSIIは、第2の電圧系IIのLレベルに対応する負側電源の電圧であり、図14に示す回路例2ではグランド(GND)レベルである。
なお、第1の電圧系Iの振幅から第2の電圧系IIの振幅に変換するレベル変換回路として2つの回路例1,2を示したが、これらに限られるものではなく、種々の回路構成のレベル変換回路を用いることができる。
(電圧系II→電圧系IIIのレベル変換回路の回路例)
図16は、第2の電圧系IIの振幅から第3の電圧系IIIの振幅に変換するレベル変換回路46−1〜46−4の回路例を示す回路図である。
図16は、第2の電圧系IIの振幅から第3の電圧系IIIの振幅に変換するレベル変換回路46−1〜46−4の回路例を示す回路図である。
本回路例に係るレベル変換回路46−1〜46−4は、いわゆるラッチ型のレベル変換回路であり、第2の電圧系IIのHレベルに対応する正側電源VDDIIにソース電極がそれぞれ接続されたPchトランジスタQ31,Q32を有している。これらトランジスタQ31,Q32のゲート電極には、第2の電圧系IIの振幅の入力信号INおよび当該入力信号INの反転信号XINが入力される。
PchトランジスタQ31,Q32は各ドレイン電極が、NchトランジスタQ33,Q34を介して第3の電圧系IIIのLレベルに対応する負側電源VSSIIIにそれぞれ接続されている。NchトランジスタQ33,Q34は相互に、ゲート電極およびドレイン電極が接続されている。これにより、レベル変換回路46−1〜46−4は、第2の電圧系IIの振幅の入力信号IN,xINに応じて相補的にオン/オフ動作し、第2の電圧系IIのHレベルと第3の電圧系IIIのLレベルとの間でトランジスタQ33,Q34のドレイン電圧を切り換える。
トランジスタQ34,Q33のドレイン電圧は、出力信号OUT,xOUTとして次段のNchトランジスタQ35,Q36のゲート電極に入力される。NchトランジスタQ35,Q36は各ソース電極が、第3の電圧系IIIの負側電源VSSIIIに接続されている。これらNchトランジスタQ35,Q36は各ドレイン電極が、PchトランジスタQ37,Q38を介して第3の電圧系IIIのHレベルに対応する正側電源VDDIIIに接続されている。
PchトランジスタQ37,Q38は相互に、ゲート電極およびドレイン電極が接続されている。これにより、レベル変換回路46−1〜46−4は、第2の電圧系IIの振幅の入力信号IN,xINに応じて、第3の電圧系IIIのHレベルとLレベルとの間でトランジスタQ35,Q36のドレイン電圧を切り換える。トランジスタQ35,Q36のドレイン電圧は、出力信号OUT2,xOUT2として導出される。
このラッチ型のレベル変換回路は、先述した回路例1,2に係るカレントミラー型のレベル変換回路に比べて消費電力が少ないことが知られている。特に、第2の電圧系IIの振幅から第3の電圧系IIIの振幅に変換するレベル変換回路(46−1〜46−4)は、走査線31−1〜31−mごとに設けられることから、書込み走査回路40を構成するに当たってその数が多くならざるを得ない。したがって、レベル変換回路部46を構成するレベル変換回路としてラッチ型のレベル変換回路を用いることで、カレントミラー型のレベル変換回路を用いる場合に比べて書込み走査回路40、ひいては有機EL表示装置10の消費電力を大幅に低減できる利点がある。
図17に、本回路例に係るレベル変換回路における入力信号IN,xIN、出力信号OUT1,xOUT1および出力信号OUT1,xOUT1の各波形を示す。
(第2の論理回路部の各論理回路)
図18は、第2の論理回路部48の各論理回路であるAND回路48−1〜48−4のシンボル図である。AND回路48−1〜48−4は、2つの入力信号IN1,IN2を論理積演算することによって出力信号OUTを導出する。図19に、2入力AND回路48−1〜48−4の真理値表を示す。
図18は、第2の論理回路部48の各論理回路であるAND回路48−1〜48−4のシンボル図である。AND回路48−1〜48−4は、2つの入力信号IN1,IN2を論理積演算することによって出力信号OUTを導出する。図19に、2入力AND回路48−1〜48−4の真理値表を示す。
図20は、2入力AND回路48−1〜48−4の具体的な回路構成の一例を示す回路図である。2入力AND回路48−1〜48−4は、第3の電圧系IIIの正側電源VDDIIIと負側電源VSSIIIとの間に直列に接続されたPchトランジスタQ41およびNchトランジスタQ42,Q43を有する。PchトランジスタQ41には、PchトランジスタQ44が並列に接続されている。
NchトランジスタQ42,Q43の各ゲート電極は、AND回路の2つの入力端となる。これらゲート電極には、2つの入力信号IN1,IN2が入力される。また、2つの入力端の一方が垂直イネーブル信号VEV用の入力端となり、スイッチ部47によって共通伝送線SLと選択的に接続される。そして、NchトランジスタQ43のドレイン電圧がインバータ回路INV41を介して出力信号OUTとして導出される。
(実施例1に係る書込み走査回路の作用効果)
上述した実施例1に係る書込み走査回路40Aは、複数の走査線ごとに設けられたレベル変換回路46−1〜46−4により、走査信号WSの基準となるシフト信号SR OUT(1)〜SR OUT(4)を、第1の振幅(本例では、第2の電圧例IIの振幅)から第2の振幅(本例では、第3の電圧例IIIの振幅)に変換する。
上述した実施例1に係る書込み走査回路40Aは、複数の走査線ごとに設けられたレベル変換回路46−1〜46−4により、走査信号WSの基準となるシフト信号SR OUT(1)〜SR OUT(4)を、第1の振幅(本例では、第2の電圧例IIの振幅)から第2の振幅(本例では、第3の電圧例IIIの振幅)に変換する。
ここで、レベル変換回路46−1〜46−4としてラッチ型のレベル変換回路を用いると、先述したように、カレントミラー型のレベル変換回路を用いた場合に比べて低消費電力化を図れる。その反面、特にポリシリコンによって形成した場合に、回路素子の特性のばらつき等に起因してレベル変換回路46−1〜46−4間で遅延時間がばらつく。すると、シフト信号SR OUT(1)〜SR OUT(4)のタイミング関係がレベル変換回路46−1〜46−4間でばらつく。
先述したように、これらシフト信号SR OUT(1)〜SR OUT(4)は、時間軸上で書込み走査信号WS(1)〜WS(4)の基準となる信号である。したがって、シフト信号SR OUT(1)〜SR OUT(4)のタイミング関係がレベル変換回路46−1〜46−4間でばらつくと、書込み走査信号WS(1)〜WS(4)のタイミング関係にはらつきが生じる。この書込み走査信号WS(1)〜WS(4)の走査線間でのタイミング関係のばらつきは、表示画像に対して種々の悪影響を及ぼす。
そこで、実施例1に係る書込み走査回路40Aは、書込み走査信号WS(1)〜WS(4)の基準となるシフト信号SR OUT(1)〜SR OUT(4)に対して共通伝送線SLにより垂直イネーブル信号ENを共通に与える構成を採っている。これにより、書込み走査信号WS(1)〜WS(4)の遷移タイミングは、各走査線に共通の垂直イネーブル信号ENの遷移タイミングによって規定される。したがって、走査線ごとにレベル変換回路46−1〜46−4を設ける場合の当該レベル変換回路間の遅延時間のばらつきに起因する書込み走査信号WS(1)〜WS(4)のタイミング関係のばらつきの発生を防止することができる。
また、本発明が適用される有機EL表示装置10は、図4のタイミング波形図に基づく基本的な回路動作の説明からも明らかなように、閾値補正機能および移動度補正機能を有している。前にも述べたように、閾値補正機能は、駆動トランジスタ22の閾値電圧Vthの変動に対する補正機能である。移動度補正機能は、駆動トランジスタ22の移動度μの変動に対する補正機能である。
図4のタイミング波形図から明らかなように、閾値補正期間および移動度補正期間は、図1の書込み走査回路40から出力される書込み走査信号WSのアクティブ期間、即ちパルス幅で決まる。そして、書込み走査回路40は、閾値補正期間および移動度補正期間を設定するために書込み走査信号WSを1H期間に2つ出力する。また、先述した分割閾値補正を行う駆動法を採る場合は、信号書込みと共に移動度補正を行う1Hに加えて、当該1Hに先行する複数の水平走査期間に亘って書込み走査信号WSを複数出力する。
このように、書込み走査回路40から出力される書込み走査信号WSは、信号書込みを行うことに加えて、閾値補正期間および移動度補正期間を決めるための信号である。したがって、レベル変換回路46−1〜46−4間の遅延時間のばらつきに起因する書込み走査信号WSのタイミング関係のばらつきを防止できることで、閾値補正期間および移動度補正期間の画素行ごとのばらつきを抑制できる。その結果、所望の閾値補正および移動度補正を確実に実行できるために、有機EL表示装置10の表示品質を向上できる。
特に、移動度補正処理は、前にも述べたように、駆動トランジスタ22のソース電圧Vsを上昇させながら行われる。このため、移動度補正期間にばらつきが生じると、駆動トランジスタ22のソース電圧Vsの上昇がばらつく。例えば、移動度補正時間が長くなると、駆動トランジスタ22のソース電圧Vsの上昇が大きくなる。すると、駆動トランジスタ22のゲート−ソース間電圧Vgsが低下し、その低下分だけ有機EL素子21に流れる電流が減少するために、発光輝度が時間の経過とともに減少したり、スジや輝度ムラといった画質不良が発生したりする。
これに対して、上述したように、書込み走査信号WSのパルス幅(または、波形)で決まる移動度補正期間のばらつき(変動)が小さくなることで、当該ばらつきに起因する駆動トランジスタ22のソース電圧Vsの上昇分のばらつきを抑えることができる。これにより、有機EL素子21に流れる電流のばらつきが抑えられるために、発光輝度の時間に対するばらつきや、スジや輝度ムラといった画質不良の発生を抑えることができる。
ところで、前にも述べたように、垂直イネーブル信号VENは1Hごとに立ち上がり、立ち下がりの遷移タイミングがあるパルス信号である(図11参照)。したがって、レベル変換回路43によるレベル変換後の垂直イネーブル信号VENによる共通伝送線SLの充放電は1Hごとに行われる。この共通伝送線SLには、第2の論理回路部48のAND回路48−1〜48−4の各々を構成するトランジスタ(図20のNchトランジスタQ42/Q43に相当)の容量Ctrが付加される。
ここで、トランジスタの容量Ctrは、図21に示すように、ゲート電極401と当該ゲート電極401にゲート絶縁膜402を介して対向するチャネル領域403との間に形成される容量である。そして、全ての走査線に対応するAND回路48−1〜48−4のトランジスタの容量Ctrが共通伝送線SLに付加されると、当該共通伝送線SLの負荷容量が大きくなるため、垂直イネーブル信号VENに基づく共通伝送線SLの充放電による消費電力が増大する。
これに対して、実施例1に係る書込み走査回路40Aは、AND回路48(48−1〜48−4)の垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間にスイッチ素子、即ちNchMOSトランジスタ47−1〜47−4を接続した構成を採っている。これらトランジスタ47−1〜47−4は、シフト信号SR OUT(1)〜SR OUT(4)の各々の発生期間に導通常態になることで、当該発生したシフト信号に対応するAND回路48(48−1〜48−4)のVEN用の入力端と共通伝送線SLとの間を電気的に接続する。
このように、シフト信号SR OUT(1)〜SR OUT(4)の各々の発生期間に、AND回路48−1〜48−4のいずれか1つのVEN用入力端と共通伝送線SLとの間を接続することで、AND回路48−1〜48−4の各々には垂直イネーブル信号VENが択一的に与えられる。このとき、共通伝送線SLに対してVEN用入力端が電気的に接続されるのは1つのAND回路48(48−1〜48−4)となる。すなわち、共通伝送線SLに対してNchMOSトランジスタ47−1〜47−4によって電気的に接続されるのは、1つのAND回路48(48−1〜48−4)のトランジスタの容量Ctrのみである。
前にも述べたように、容量をc、充放電電圧をv、周波数をfとするとき、1Hごとの電力はcv2 ×fという式で求めることができる。このことから、共通伝送線SLに電気的に接続されるトランジスタの容量Ctrの数が減ることで、本書込み走査回路40Aでの消費電力を低減できる。具体的には、共通伝送線SLの配線容量をline_Cとすると、本書込み走査回路40Aでの消費電力は、line_C+(1×Ctr)となる。因みに、画素アレイ部30の行数(走査線31の本数)をmとすると、全てのAND回路48のVEN用入力端を共通伝送線SLに対して電気的に接続した構成を採る場合の消費電力は、line_C+(m×Ctr)となる。
すなわち、本実施例1に係る書込み走査回路40Aによれば、全てのAND回路48のVEN用入力端を共通伝送線SLに対して電気的に接続した構成を採る場合に比べて、共通伝送線SLの負荷容量を走査線の本数m分の1に低減できる。その結果、垂直イネーブル信号VENに基づく共通伝送線SLの充放電による消費電力、ひいては書込み走査回路40Aでの消費電力を、共通伝送線SLに全走査線分のトランジスタの容量Ctrが付く場合に比べて、(m−1)×Ctr×cv2 ×fだけ低減できる。
[2−2.実施例2]
図22は、実施例2に係る書込み走査回路40Bの構成例を示すブロック図である。図22において、図10と同等部分(対応する部分)には同一符号を付して示し、重複説明は省略する。ここでは、図面の簡略化のために、1行目からの3つの画素行に対応した回路部分の構成を示している。
図22は、実施例2に係る書込み走査回路40Bの構成例を示すブロック図である。図22において、図10と同等部分(対応する部分)には同一符号を付して示し、重複説明は省略する。ここでは、図面の簡略化のために、1行目からの3つの画素行に対応した回路部分の構成を示している。
図10と図22の対比から明らかなように、実施例2に係る書込み走査回路40Bは、実施例1に係る書込み走査回路40Aとはスイッチ部47の構成の点で相違するのみであり、それ以外の構成要素については同じである。
具体的には、スイッチ部47は、AND回路48−1〜48−3の垂直イネーブル信号VEN用の入力端と共通伝送線SLとの間を択一的に接続するスイッチ素子として、CMOSトランジスタ51−1〜51−3を用いた構成を採っている。スイッチ部47はさらに、CMOSトランジスタ51−1〜51−3を用いることで、Pchトランジスタの駆動のためにインバータ52−1〜52−3を有している。
このように、Nchトランジスタに代えてCMOSトランジスタをスイッチ素子として用いた実施例2に係る書込み走査回路40Bの場合にも、基本的に、実施例1に係る書込み走査回路40Aと同様の作用効果を得ることができる。ただし、スイッチ部47を構成する回路素子数の観点からすると、実施例1に係る書込み走査回路40Aの方が有利であり、書込み走査回路40の回路構成の簡略化を図ることができる。
[2−3.実施例3]
図23は、実施例3に係る書込み走査回路40Cの構成例を示すブロック図である。図23において、図10と同等部分には同一符号を付して示し、重複説明は省略する。ここでは、図面の簡略化のために、1行目からの3つの画素行に対応した回路部分の構成を示している。
図23は、実施例3に係る書込み走査回路40Cの構成例を示すブロック図である。図23において、図10と同等部分には同一符号を付して示し、重複説明は省略する。ここでは、図面の簡略化のために、1行目からの3つの画素行に対応した回路部分の構成を示している。
図10と図23の対比から明らかなように、実施例3に係る書込み走査回路40Cは、実施例1,2に係る書込み走査回路40A,40Bとはスイッチ部47の構成の点で相違するのみであり、それ以外の構成要素については同じである。具体的には、スイッチ部47は、スイッチ部47の各スイッチ素子としてPchトランジスタ53−1〜53−3を用いた構成を採っている。スイッチ部47はさらに、Pchトランジスタ53−1〜53−3の駆動のためにインバータ54−1〜54−3を有している。
このように、スイッチ素子としてPchトランジスタ53−1〜53−3を用いた実施例3に係る書込み走査回路40Cの場合にも、基本的に、実施例1に係る書込み走査回路40Aと同様の作用効果を得ることができる。ただし、スイッチ部47を構成する回路素子数の観点からすると、実施例1に係る書込み走査回路40Aの方がインバータ54−1〜54−3が無い分だけ有利であり、書込み走査回路40の回路構成の簡略化を図ることができる。
なお、以上説明した書込み走査回路40についての実施例1乃至実施例3は一例に過ぎず、以上説明した書込み走査回路40としてはこれらの実施例に限られるものではない。例えば、シフトレジスタ部44に代えてデコーダを用いて書込み走査信号WSを順次またはランダムに出力する構成を採ることも可能である。
<3.変形例>
上記実施形態では、本発明が適用される走査部として、画素アレイ部30の各画素20を画素行単位で選択する行走査部を例に挙げて説明したが、画素列単位で選択する列走査部に対しても同様に適用することができる。
上記実施形態では、本発明が適用される走査部として、画素アレイ部30の各画素20を画素行単位で選択する行走査部を例に挙げて説明したが、画素列単位で選択する列走査部に対しても同様に適用することができる。
先述した有機EL表示装置10の場合は、信号出力回路60が信号電圧Vsigを画素行単位で書き込む線順次書込みの駆動形態を採っているため列走査部が不要な構成となっている。これに対して、行走査部によって選択走査した画素行の各画素に対して画素単位で信号電圧Vsigを書き込む点順次書込みの駆動形態を採る場合には、画素アレイ部30の各画素20を画素列単位で選択する列走査部が必要となる。そして、この列走査部に対しても本発明を適用することができる。
また、上記実施形態では、有機EL素子21の駆動回路が、基本的に、駆動トランジスタ22および書込みトランジスタ23の2つのトランジスタからなる画素構成の場合を例に挙げて説明したが、本発明はこの画素構成への適用に限られるものではない。
一例として、図24に示すように、駆動トランジスタ22、書込みトランジスタ23に加えて、発光制御トランジスタ26および2つのスイッチングトランジスタ27,28を有する5つのトランジスタからなる5Trの回路構成を基本構成とする画素20′が知られている(例えば、特開2005−345722号公報参照)。ここでは、発光制御トランジスタ26としてPchトランジスタ、スイッチングトランジスタ27,28としてNchを用いているが、これらの導電型の組み合わせは任意である。
発光制御トランジスタ26は、駆動トランジスタ22に対して直列に接続され、駆動トランジスタ22への高電位Vccpの供給を選択的に行うことで、有機EL素子21の発光/非発光の制御を行なう。スイッチングトランジスタ27は、駆動トランジスタ22のゲート電極に基準電位Vofsを選択的に与えることで、そのゲート電位Vgを基準電位Vofsに初期化する。スイッチングトランジスタ28は、駆動トランジスタ22のソース電極に低電位iniを選択的に与えることで、そのソース電位Vsを低電位iniに初期化する。
ここでは、他の画素構成として、5Trの回路構成を例に挙げたが、例えば、信号線33を通して基準電位Vofsを供給し、当該基準電位Vofsを書込みトランジスタ23によって書き込むようにすることでスイッチングトランジスタ27を省略するなど、種々の画素構成のものが考えられる。
また、上記実施形態では、画素20の電気光学素子として、有機EL素子を用いた有機EL表示装置に適用した場合を例に挙げて説明したが、本発明はこの適用例に限られるものではない。具体的には、本発明は、無機EL素子、LED素子、半導体レーザー素子など、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子(発光素子)を用いた表示装置全般に対して適用可能である。
<4.適用例>
以上説明した本発明による表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器の表示装置に適用することが可能である。一例として、図25〜図29に示す様々な電子機器、例えば、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置、ビデオカメラなどの表示装置に適用することが可能である。
以上説明した本発明による表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器の表示装置に適用することが可能である。一例として、図25〜図29に示す様々な電子機器、例えば、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置、ビデオカメラなどの表示装置に適用することが可能である。
このように、あらゆる分野の電子機器の表示装置として本発明による表示装置を用いることにより、各種の電子機器における表示画像の画質を改善できるとともに、低消費電力化を図ることができる。すなわち、先述した実施形態の説明から明らかなように、本発明による表示装置は、複数の走査信号間の遷移タイミングのばらつきを防止できるために高品質な表示画像を得ることができるとともに、走査部での消費電力を低減できるために電子機器の低消費電力化を図ることができる。
本発明による表示装置は、封止された構成のモジュール形状のものをも含む。例えば、画素アレイ部30に透明なガラス等の対向部が貼り付けられて形成された表示モジュールが該当する。この透明な対向部には、カラーフィルタ、保護膜等、更には、上記した遮光膜が設けられてもよい。なお、表示モジュールには、外部から画素アレイ部への信号等を入出力するための回路部やFPC(フレキシブルプリントサーキット)等が設けられていてもよい。
以下に、本発明が適用される電子機器の具体例について説明する。
図25は、本発明が適用されるテレビジョンセットの外観を示す斜視図である。本適用例に係るテレビジョンセットは、フロントパネル102やフィルターガラス103等から構成される映像表示画面部101を含み、その映像表示画面部101として本発明による表示装置を用いることにより作成される。
図26は、本発明が適用されるデジタルカメラの外観を示す斜視図であり、(A)は表側から見た斜視図、(B)は裏側から見た斜視図である。本適用例に係るデジタルカメラは、フラッシュ用の発光部111、表示部112、メニュースイッチ113、シャッターボタン114等を含み、その表示部112として本発明による表示装置を用いることにより作製される。
図27は、本発明が適用されるノート型パーソナルコンピュータの外観を示す斜視図である。本適用例に係るノート型パーソナルコンピュータは、本体121に、文字等を入力するとき操作されるキーボード122、画像を表示する表示部123等を含み、その表示部123として本発明による表示装置を用いることにより作製される。
図28は、本発明が適用されるビデオカメラの外観を示す斜視図である。本適用例に係るビデオカメラは、本体部131、前方を向いた側面に被写体撮影用のレンズ132、撮影時のスタート/ストップスイッチ133、表示部134等を含み、その表示部134として本発明による表示装置を用いることにより作製される。
図29は、本発明が適用される携帯端末装置、例えば携帯電話機を示す外観図であり、(A)は開いた状態での正面図、(B)はその側面図、(C)は閉じた状態での正面図、(D)は左側面図、(E)は右側面図、(F)は上面図、(G)は下面図である。本適用例に係る携帯電話機は、上側筐体141、下側筐体142、連結部(ここではヒンジ部)143、ディスプレイ144、サブディスプレイ145、ピクチャーライト146、カメラ147等を含んでいる。そして、ディスプレイ144やサブディスプレイ145として本発明による表示装置を用いることにより本適用例に係る携帯電話機が作製される。
10…有機EL表示装置、20,20´…画素、21…有機EL素子、22…駆動トランジスタ、23…書込みトランジスタ、24…保持容量、30…画素アレイ部、31(31−1〜31−m)…走査線、32(32−1〜32−m)…電源供給線、33(33−1〜33−n)…信号線、34…共通電源供給線、40(40A,40B,40C)…書込み走査回路、41,42,43…レベルシフト回路、44…シフトレジスタ部、45…第1の論理回路部、46…レベル変換回路部、47…スイッチ部、48…第2の論理回路部、49…バッファ部、50…電源供給走査回路、60…信号出力回路、70…表示パネル
Claims (7)
- 行列状に2次元配置された各画素を画素行単位または画素列単位で選択する走査部を備え、
前記走査部は、
複数の走査線ごとに設けられたレベル変換回路により、前記複数の走査線の各々に供給される走査信号の基準となる複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部と、
前記走査信号の遷移タイミングを規定するイネーブル信号を前記複数の基準信号に対して共通に伝送する共通伝送線と、
複数の走査線ごとに設けられた論理回路により、前記複数の基準信号の各々と前記共通伝送線によって伝送される前記イネーブル信号とを論理演算することによって前記走査信号を生成する論理回路部と、
前記複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する前記論理回路の前記イネーブル信号が与えられる入力端と前記共通伝送線との間を電気的に接続するスイッチ部とを有する
表示装置。 - 前記論理回路部の各論理回路は、当該論理回路を構成するトランジスタのゲート電極を前記入力端とし、当該入力端が前記スイッチ部によって前記共通伝送線と選択的に接続される
請求項1記載の表示装置。 - 前記レベル変換回路は、ポリシリコンによって形成されたラッチ型のレベル変換回路である
請求項1記載の表示装置。 - 前記第2の振幅は、前記画素の電気光学素子の駆動に適した電圧系の振幅であり、
前記第1の振幅は、前記第2の振幅よりも小さく、かつ、ポリシリコンによって形成された回路の駆動に適した電圧系の振幅である
請求項3記載の表示装置。 - 前記画素は、電気光学素子を駆動する駆動トランジスタに流れる電流に応じた補正量で当該駆動トランジスタのゲート−ソース間の電位差に負帰還をかけることによって前記駆動トランジスタの移動度を補正する移動度補正の機能を有し、
前記移動度補正の期間は、前記走査部から出力される前記走査信号のパルス幅によって決定される
請求項1記載の表示装置。 - 複数の走査線ごとに設けられたレベル変換回路により、前記複数の走査線の各々に供給される走査信号の基準となる複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部と、
前記走査信号の遷移タイミングを規定するイネーブル信号を前記複数の基準信号に対して共通に伝送する共通伝送線と、
複数の走査線ごとに設けられた論理回路により、前記複数の基準信号の各々と前記共通伝送線によって伝送される前記イネーブル信号とを論理演算することによって前記走査信号を生成する論理回路部とを有し、
行列状に2次元配置された各画素を画素行単位または画素列単位で選択する走査部
を備える表示装置の駆動に当たって、
前記複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する前記論理回路の前記イネーブル信号が与えられる入力端と前記共通伝送線との間を電気的に接続する
表示装置の駆動方法。 - 行列状に2次元配置された各画素を画素行単位または画素列単位で選択する走査部を備え、
前記走査部は、
複数の走査線ごとに設けられたレベル変換回路により、前記複数の走査線の各々に供給される走査信号の基準となる複数の基準信号を第1の振幅から第2の振幅に変換するレベル変換回路部と、
前記走査信号の遷移タイミングを規定するイネーブル信号を前記複数の基準信号に対して共通に伝送する共通伝送線と、
複数の走査線ごとに設けられた論理回路により、前記複数の基準信号の各々と前記共通伝送線によって伝送される前記イネーブル信号とを論理演算することによって前記走査信号を生成する論理回路部と、
前記複数の基準信号の各々の発生期間に、当該発生した基準信号に対応する前記論理回路の前記イネーブル信号が与えられる入力端と前記共通伝送線との間を電気的に接続するスイッチ部とを有する
表示装置を具備する電子機器。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009134786A JP2010281993A (ja) | 2009-06-04 | 2009-06-04 | 表示装置、表示装置の駆動方法および電子機器 |
US12/785,546 US8922462B2 (en) | 2009-06-04 | 2010-05-24 | Pixel selection control method, driving circuit, display apparatus, and electronic instrument |
CN2010101943673A CN101908310B (zh) | 2009-06-04 | 2010-05-28 | 像素选择控制方法、驱动电路、显示装置以及电子设备 |
US14/541,358 US9305490B2 (en) | 2009-06-04 | 2014-11-14 | Pixel selection control method, driving circuit, display apparatus and electronic instrument |
US14/541,374 US9171502B2 (en) | 2009-06-04 | 2014-11-14 | Pixel selection control method, driving circuit, display apparatus and electronic instrument |
US15/009,879 US9576534B2 (en) | 2009-06-04 | 2016-01-29 | Pixel selection control method, driving circuit, display apparatus and electronic instrument |
US15/381,240 US9990884B2 (en) | 2009-06-04 | 2016-12-16 | Pixel selection control method, driving circuit, display apparatus and electronic instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009134786A JP2010281993A (ja) | 2009-06-04 | 2009-06-04 | 表示装置、表示装置の駆動方法および電子機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010281993A true JP2010281993A (ja) | 2010-12-16 |
Family
ID=43263757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009134786A Pending JP2010281993A (ja) | 2009-06-04 | 2009-06-04 | 表示装置、表示装置の駆動方法および電子機器 |
Country Status (3)
Country | Link |
---|---|
US (5) | US8922462B2 (ja) |
JP (1) | JP2010281993A (ja) |
CN (1) | CN101908310B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9412289B2 (en) | 2012-07-31 | 2016-08-09 | Sony Corporation | Display unit, drive circuit, drive method, and electronic apparatus |
US10043431B2 (en) | 2012-07-31 | 2018-08-07 | Sony Corporation | Display device and electronic apparatus |
JP2021507274A (ja) * | 2017-12-14 | 2021-02-22 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | 画素回路、表示パネル及び表示装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010281914A (ja) * | 2009-06-03 | 2010-12-16 | Sony Corp | 表示装置、表示装置の駆動方法および電子機器 |
JP2010281993A (ja) | 2009-06-04 | 2010-12-16 | Sony Corp | 表示装置、表示装置の駆動方法および電子機器 |
JP2012163651A (ja) * | 2011-02-04 | 2012-08-30 | Sony Corp | 有機el表示装置及び電子機器 |
JP2014109703A (ja) * | 2012-12-03 | 2014-06-12 | Samsung Display Co Ltd | 表示装置および駆動方法 |
CN103985354B (zh) * | 2014-05-15 | 2016-08-17 | 深圳市华星光电技术有限公司 | 一种阵列基板及显示面板 |
CN106448552B (zh) * | 2016-11-29 | 2018-11-23 | 京东方科技集团股份有限公司 | 显示基板、显示装置及显示控制方法 |
KR102473216B1 (ko) | 2017-07-17 | 2022-12-01 | 엘지디스플레이 주식회사 | 전계 발광 표시장치 및 이의 구동방법 |
KR102542980B1 (ko) * | 2017-11-21 | 2023-06-15 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 및 그의 구동방법 |
CN108538240B (zh) * | 2018-05-29 | 2020-03-10 | 京东方科技集团股份有限公司 | 一种像素驱动电路及其驱动方法、显示装置 |
CN109767716B (zh) * | 2019-03-12 | 2022-09-06 | 京东方科技集团股份有限公司 | 一种阵列基板、显示装置及驱动方法 |
US11574004B2 (en) * | 2019-11-26 | 2023-02-07 | Dash Hudson | Visual image search using text-based search engines |
CN111243649B (zh) * | 2020-01-22 | 2022-04-26 | 京东方科技集团股份有限公司 | 移位寄存器单元、显示面板 |
TWI806565B (zh) * | 2022-04-20 | 2023-06-21 | 超炫科技股份有限公司 | 像素電路、其驅動方法和顯示裝置及其背板 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6476785B1 (en) * | 1999-11-08 | 2002-11-05 | Atmel Corporation | Drive circuit for liquid crystal display cell |
KR20020057768A (ko) * | 2001-01-06 | 2002-07-12 | 윤종용 | 소비 전류의 감소가 가능한 박막 트랜지스터형 액정 표시장치 드라이버 |
JP4076963B2 (ja) * | 2004-02-06 | 2008-04-16 | シャープ株式会社 | シフトレジスタ及び表示装置 |
JP2006133542A (ja) | 2004-11-08 | 2006-05-25 | Sony Corp | 画素回路及び表示装置 |
JP4899327B2 (ja) * | 2005-03-15 | 2012-03-21 | カシオ計算機株式会社 | シフトレジスタ回路及びその駆動制御方法並びに駆動制御装置 |
KR20070017600A (ko) * | 2005-08-08 | 2007-02-13 | 삼성전자주식회사 | 쉬프트 레지스터 및 이를 갖는 표시장치 |
JP2007071943A (ja) * | 2005-09-05 | 2007-03-22 | Seiko Epson Corp | 電気光学装置、及びこれを備えた電子機器 |
JP4887977B2 (ja) * | 2005-11-21 | 2012-02-29 | セイコーエプソン株式会社 | 電気光学装置、電気光学装置の駆動方法、電圧モニタ方法および電子機器 |
JP4912121B2 (ja) * | 2006-02-23 | 2012-04-11 | 三菱電機株式会社 | シフトレジスタ回路 |
JP2008102223A (ja) | 2006-10-17 | 2008-05-01 | Sony Corp | 発光期間制御装置、自発光表示装置、電子機器及びコンピュータプログラム |
KR20080090789A (ko) * | 2007-04-06 | 2008-10-09 | 삼성에스디아이 주식회사 | 유기전계발광 표시장치 및 그 구동방법 |
CN100582903C (zh) * | 2007-05-11 | 2010-01-20 | 群康科技(深圳)有限公司 | 液晶显示装置及其驱动电路与驱动方法 |
JP2008286963A (ja) | 2007-05-17 | 2008-11-27 | Sony Corp | 表示装置及び表示装置の駆動方法 |
CN101359511B (zh) * | 2007-08-03 | 2011-04-27 | 群康科技(深圳)有限公司 | 移位寄存器和采用该移位寄存器的液晶显示装置 |
JP2009276744A (ja) * | 2008-02-13 | 2009-11-26 | Toshiba Mobile Display Co Ltd | El表示装置 |
JP5211732B2 (ja) * | 2008-02-14 | 2013-06-12 | ソニー株式会社 | 点灯期間設定方法、表示パネルの駆動方法、点灯条件設定装置、半導体デバイス、表示パネル及び電子機器 |
JP4760840B2 (ja) | 2008-02-28 | 2011-08-31 | ソニー株式会社 | El表示パネル、電子機器及びel表示パネルの駆動方法 |
JP2010281914A (ja) * | 2009-06-03 | 2010-12-16 | Sony Corp | 表示装置、表示装置の駆動方法および電子機器 |
JP2010281993A (ja) | 2009-06-04 | 2010-12-16 | Sony Corp | 表示装置、表示装置の駆動方法および電子機器 |
-
2009
- 2009-06-04 JP JP2009134786A patent/JP2010281993A/ja active Pending
-
2010
- 2010-05-24 US US12/785,546 patent/US8922462B2/en active Active
- 2010-05-28 CN CN2010101943673A patent/CN101908310B/zh active Active
-
2014
- 2014-11-14 US US14/541,374 patent/US9171502B2/en active Active
- 2014-11-14 US US14/541,358 patent/US9305490B2/en active Active
-
2016
- 2016-01-29 US US15/009,879 patent/US9576534B2/en active Active
- 2016-12-16 US US15/381,240 patent/US9990884B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9412289B2 (en) | 2012-07-31 | 2016-08-09 | Sony Corporation | Display unit, drive circuit, drive method, and electronic apparatus |
US10043431B2 (en) | 2012-07-31 | 2018-08-07 | Sony Corporation | Display device and electronic apparatus |
US10504396B2 (en) | 2012-07-31 | 2019-12-10 | Sony Corporation | Display device and electronic apparatus |
JP2021507274A (ja) * | 2017-12-14 | 2021-02-22 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | 画素回路、表示パネル及び表示装置 |
JP7186725B2 (ja) | 2017-12-14 | 2022-12-09 | 京東方科技集團股▲ふん▼有限公司 | 画素回路、表示パネル及び表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US9576534B2 (en) | 2017-02-21 |
US9990884B2 (en) | 2018-06-05 |
US9171502B2 (en) | 2015-10-27 |
US8922462B2 (en) | 2014-12-30 |
CN101908310B (zh) | 2013-05-15 |
US20150070334A1 (en) | 2015-03-12 |
US9305490B2 (en) | 2016-04-05 |
US20100309178A1 (en) | 2010-12-09 |
US20170098411A1 (en) | 2017-04-06 |
CN101908310A (zh) | 2010-12-08 |
US20160148567A1 (en) | 2016-05-26 |
US20150070335A1 (en) | 2015-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010281993A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP4640443B2 (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2009294635A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
US8199081B2 (en) | Display apparatus, display-apparatus driving method and electronic instrument | |
JP2010281914A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP4640442B2 (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
KR20080057144A (ko) | 표시장치, 표시장치의 구동방법 및 전자기기 | |
JP2012022168A (ja) | 有機el表示装置、有機el表示装置の製造方法、及び、電子機器 | |
JP2010145446A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2008310127A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2009104013A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2009128404A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP5494032B2 (ja) | 表示装置、表示装置の駆動方法、及び、電子機器 | |
JP5256691B2 (ja) | 表示装置および電子機器 | |
JP2014160203A (ja) | 表示装置およびその駆動方法、並びに電子機器 | |
JP2009237426A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2009251545A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2012243971A (ja) | ブートストラップ回路、インバータ回路、走査回路、表示装置、及び、電子機器 | |
JP2012168358A (ja) | 表示装置、表示装置の駆動方法、及び、電子機器 | |
JP2010145580A (ja) | 表示装置、表示装置の駆動方法および電子機器 | |
JP2012208318A (ja) | パルス生成回路、パルス生成方法、走査回路、表示装置、及び、電子機器 | |
JP2011209614A (ja) | 表示装置、表示装置の駆動方法、及び、電子機器 | |
JP4998538B2 (ja) | 表示装置および電子機器 | |
JP2011209615A (ja) | 表示装置、表示装置の駆動方法、及び、電子機器 | |
JP2012168359A (ja) | 走査回路、表示装置、表示装置の駆動方法、及び、電子機器 |