JP2010123999A - Paste material for solar battery and method for manufacturing solar battery - Google Patents
Paste material for solar battery and method for manufacturing solar battery Download PDFInfo
- Publication number
- JP2010123999A JP2010123999A JP2010049987A JP2010049987A JP2010123999A JP 2010123999 A JP2010123999 A JP 2010123999A JP 2010049987 A JP2010049987 A JP 2010049987A JP 2010049987 A JP2010049987 A JP 2010049987A JP 2010123999 A JP2010123999 A JP 2010123999A
- Authority
- JP
- Japan
- Prior art keywords
- paste material
- layer
- solar cell
- electrode
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、シリコン(Si)太陽電池、詳しくは、pn接合を有するSi太陽電池の電極やp+層の形成技術に関するものである。 The present invention relates to a technique for forming an electrode or p + layer of a silicon (Si) solar cell, specifically, a Si solar cell having a pn junction.
Si太陽電池は、通常、p型Si基板の一方の主面(表面)側にn+層および他方の主面(裏面)側にp+層を設けて、n+/p/p+接合を形成した上で、上記n+層上に透光性の受光面電極を配置し、上記p+層上に対向電極を配置した構造である。 Si solar cell, usually a p + layer provided on one main surface (front surface) side of the p-type Si substrate in the n + layer and the other main surface (back surface) side, the n + / p / p + junction on the formation, placing a light-transmitting light-receiving surface electrode on the n + layer, a structure in which the counter electrode on the p + layer.
そして、上記n+層上の受光面電極は、銀(Ag)ペーストを櫛歯状に印刷により塗付した後、乾燥させ、その後アニールをして形成し、また、上記p+層上の対向電極には、例えばAl粉末が70重量%、ガラスフリットが1重量%、有機結合剤が3重量%および有機溶剤が26重量%からなるアルミニウムペーストを塗布した後、乾燥させ、その後アニールをして形成される。 The light-receiving surface electrode on the n + layer is formed by applying silver (Ag) paste in a comb-like shape by printing, then drying, and then annealing, and facing the p + layer. For example, an aluminum paste consisting of 70% by weight of Al powder, 1% by weight of glass frit, 3% by weight of organic binder and 26% by weight of organic solvent is applied to the electrode, and then dried and then annealed. It is formed.
近年、上記アルミニウムペーストの改良型として、Al粉末と、このAl粉末100重量部に対して0.5〜50重量部のSiと、有機溶剤と、必要に応じて添加される有機結合剤とから成る太陽電池用ペースト材が提案され、これによると、アルミニウムペーストのアニール後に、Al層とSi基板との熱膨張率の違いから、Si基板が反るという現象が少なくなり、カセット収納や次工程での製造プロセスにおいて、自動搬送機のハンドリングミスなどを生じることや、素子の割れや欠けを発生して製造歩留まりを低下させることが少なくなったとする。(特許文献1) In recent years, as an improved type of the above-mentioned aluminum paste, from Al powder, 0.5 to 50 parts by weight of Si with respect to 100 parts by weight of Al powder, an organic solvent, and an organic binder added as necessary According to this, after the annealing of the aluminum paste, the phenomenon that the Si substrate warps due to the difference in the thermal expansion coefficient between the Al layer and the Si substrate is reduced, and the cassette storage and the next process are performed. In the manufacturing process in (1), it is assumed that the handling error of the automatic transfer machine or the like, or the occurrence of cracks or chipping of the elements and the decrease in the manufacturing yield are reduced. (Patent Document 1)
ところが、Al層とSi基板との熱膨張率(Al;23.25×10−6deg−1、Si;2.5×10−6deg−1)の違いは、上記の通り約1桁に及ぶ大差である。つまり、単にAl粉末とSi粉末とを混合したペーストを用いるだけでは、実際にはSi基板の反りを解消するにはアルミニウムペースト中のAl粉末に対するSi粉末の配合割合を相当高く設定しなければならないのである。そして、Si粉末の配合割合が高くなれば、塗布したペーストのアニール後には、逆に電極材料における導電性の低下を招くことになるため、太陽電池の特性が悪化してしまう。具体的には、Si基板のそりを解消するためには、Si粉末の配合割合を10重量%乃至50重量%程度にする必要があることが予測されるところである。尚、先に述べた特許文献1における実施例では、Si粉末の配合割合が10重量%未満の場合の具体的なデータは開示されていない。また、Siの配合割合だけでなく、その混合方法についても最適化しなければ、電極層においてSiが偏在してしまうことになって変換効率が向上しないことになる。 However, the difference in thermal expansion coefficient between the Al layer and the Si substrate (Al; 23.25 × 10 −6 deg −1 , Si; 2.5 × 10 −6 deg −1 ) is about one digit as described above. It ’s a big difference. That is, simply using a paste in which Al powder and Si powder are mixed, in practice, in order to eliminate warping of the Si substrate, it is necessary to set the mixing ratio of Si powder to Al powder in the aluminum paste to be considerably high. It is. And if the compounding ratio of Si powder becomes high, after annealing of the applied paste, conversely, the conductivity of the electrode material will be reduced, and the characteristics of the solar cell will be deteriorated. Specifically, in order to eliminate warpage of the Si substrate, it is predicted that the blending ratio of the Si powder needs to be about 10 wt% to 50 wt%. In addition, in the Example in patent document 1 mentioned previously, the specific data in case the compounding ratio of Si powder is less than 10 weight% is not disclosed. If not only the mixing ratio of Si but also the mixing method is not optimized, Si will be unevenly distributed in the electrode layer, and the conversion efficiency will not be improved.
本発明の目的は、電極層に含まれるSiの配合割合を実質的に低くするとともに、Siの均一に分散させた電極を形成することにより、Si太陽電池の顕著な性能向上を実現することにある。 An object of the present invention is to realize a remarkable performance improvement of a Si solar cell by substantially lowering the mixing ratio of Si contained in the electrode layer and forming an electrode in which Si is uniformly dispersed. is there.
上記目的を達成すべく、鋭意研究を重ねた結果、発明者らは、Si粉末の配合割合が多すぎる場合のみならず、該割合が低すぎても太陽電池としてのエネルギー変換効率に悪影響があることを見出した。即ち、母材とするAl粉末中のSiの割合が低すぎれば、電極形成時にSi基板側から裏面金属電極側に対してSi原子が拡散するため、Si基板側の裏面電極との界面領域に欠陥を多く発生させ、それが変換効率の悪化を招くこととなることが明らかとなった。さらに、発明者らは、Si粉末の配合割合のみならず、AlとSiを混合する手段についても研究を進めた結果、単純にAl粉末とSi粉末をバインダー等と混ぜ合わせて電極を形成するよりも、先にAlとSiの合金を作製しておき、その合金を粉砕して形成した粉末とバインダー等と混合したペースト材を用いて電極を形成するほうが、SiがAl母材に均一に含まれた電極を形成することができ、結果として変換効率に寄与することを知見し、この発明を完成した。 As a result of earnest research to achieve the above object, the inventors have an adverse effect on the energy conversion efficiency as a solar cell not only when the proportion of Si powder is too large but also when the proportion is too low. I found out. In other words, if the proportion of Si in the Al powder used as the base material is too low, Si atoms diffuse from the Si substrate side to the back metal electrode side during electrode formation, and therefore in the interface region with the back electrode on the Si substrate side. It became clear that many defects were generated, which would lead to deterioration in conversion efficiency. Furthermore, the inventors have studied not only the blending ratio of Si powder but also means for mixing Al and Si. As a result, the inventors simply formed the electrode by mixing Al powder and Si powder with a binder. However, it is better to prepare an alloy of Al and Si first, and to form an electrode using a paste material mixed with a powder formed by pulverizing the alloy and a binder, so that Si is uniformly contained in the Al base material. As a result, it was found that the electrode can be formed, and as a result contributes to the conversion efficiency, and the present invention has been completed.
すなわち、本発明に係る太陽電池は、受光面電極と対向電極との間に、p型シリコン(Si)層の一方の表面上にn+層を設け、かつ該シリコン(Si)層の他方の表面上にp+層を設けた構造を有し、該p+層表面に配置された電極は、Al−Si合金の粒状焼結体を含むことを特徴とする。ここで、該p+層がAl−Si合金層を介して前記粒状焼結体に接していることがエネルギー変換効率上好ましい。これは、p+層がAl−Si合金層を介してAl−Si合金の粒状焼結体に接することにより、p+層表面のSiが電極中へ拡散しにくくなる点で有利だからである。尚、ここで粒状とは、粒が1個1個に分かれて合金中に存在している場合はもとより、複数の粒が合金中で結合又は凝集して一体となって存在している場合も含むものとする。 That is, in the solar cell according to the present invention, an n + layer is provided on one surface of the p-type silicon (Si) layer between the light-receiving surface electrode and the counter electrode, and the other of the silicon (Si) layer is provided. The electrode has a structure in which a p + layer is provided on the surface, and the electrode disposed on the surface of the p + layer includes a granular sintered body of an Al—Si alloy. Here, it is preferable in terms of energy conversion efficiency that the p + layer is in contact with the granular sintered body via an Al—Si alloy layer. This is because the p + layer is in contact with the granular sintered body of the Al—Si alloy through the Al—Si alloy layer, which is advantageous in that Si on the surface of the p + layer hardly diffuses into the electrode. Here, the term “granular” refers to not only the case where the grains are divided into one piece but also present in the alloy, as well as the case where a plurality of grains are combined or agglomerated in the alloy. Shall be included.
本発明に係る太陽電池用ペースト材は、シリコン(Si)基板の一方の表面側にp+層または電極を形成する際に用いるペースト材において、主成分として、アルミニウム(Al)に対するシリコン(Si)の重量比が5%以上50%以下であるAl−Si合金の粉末を含むことを特徴とする。この材質の粉末を用いることにより、ペースト材全体としての融点の低下をもたらし、結果としてAl―Si合金の均一性を高めることができる。また、最終的なペースト材における、アルミニウム(Al)に対するシリコン(Si)の重量比は、1%以上10%以下が好ましい。1%未満であれば、アルミニウム(Al)に対するシリコン(Si)の固溶限界値から大きく下回り、特に、太陽電池の製造工程におけるアニール処理の際に、p+層や電極層に対するSi基板側からのSi原子の拡散が促進されてしまい、太陽電池のエネルギー変換効率が悪化する。他方、10%を越えると、電極の抵抗が高くなるため、太陽電池特性、特に、曲線因子(F.F.)を悪化させることとなり、太陽電池のエネルギー変換効率が低下してしまう。これらの弊害をより少なくする意味で、最終的なペースト材における、アルミニウム(Al)に対するシリコン(Si)の重量比は、1.5%以上3%以下が好ましい。また、該ペースト材の粘度調整が容易になるため、該残余成分中には、ガラスフリット、有機結合剤及び有機溶剤等を含むことが好ましい。更に、該ペースト材は、Al−Si合金の粉末を50重量%以上含むことが好ましい。これは、50重量%未満では、粉末間の結合が不十分となり、最終成形物の電気抵抗が大きくなるという問題が生じるためである。 The paste material for solar cell according to the present invention is a paste material used when forming a p + layer or an electrode on one surface side of a silicon (Si) substrate, and silicon (Si) with respect to aluminum (Al) as a main component. The Al—Si alloy powder having a weight ratio of 5% to 50% is included. By using the powder of this material, the melting point of the entire paste material is lowered, and as a result, the uniformity of the Al—Si alloy can be improved. The weight ratio of silicon (Si) to aluminum (Al) in the final paste material is preferably 1% or more and 10% or less. If it is less than 1%, it is far below the solid solution limit value of silicon (Si) with respect to aluminum (Al), and in particular, from the Si substrate side with respect to the p + layer and the electrode layer during the annealing process in the manufacturing process of the solar cell. The diffusion of Si atoms is promoted, and the energy conversion efficiency of the solar cell is deteriorated. On the other hand, if it exceeds 10%, the resistance of the electrode becomes high, so that the solar cell characteristics, particularly the fill factor (FF), is deteriorated, and the energy conversion efficiency of the solar cell is lowered. In order to reduce these adverse effects, the weight ratio of silicon (Si) to aluminum (Al) in the final paste material is preferably 1.5% or more and 3% or less. Moreover, since it is easy to adjust the viscosity of the paste material, it is preferable that the remaining components contain glass frit, an organic binder, an organic solvent, and the like. Further, the paste material preferably contains 50% by weight or more of Al—Si alloy powder. This is because if it is less than 50% by weight, the bonding between the powders becomes insufficient, and the electric resistance of the final molded product increases.
本発明に係る太陽電池の製造方法は、シリコン(Si)基板の表面にp+層または電極を形成する工程において、Al−Si合金の粉末含有ペースト材を塗布した後、乾燥させ、その後アニールして前記p+層または電極を形成する工程を含むことを特徴とする。尚、該Al−Si合金は、アルミニウム(Al)に対するシリコン(Si)の重量比を1%以上10%以下とすることが好ましい。これは、少ないSi含有量でSiのp+層表面から裏面金属電極へのSi拡散を抑え、p+層表面の欠陥発生を無くして最終製造物である太陽電池のエネルギー変換効率をより向上させることができるからである。 In the method of manufacturing a solar cell according to the present invention, in the step of forming a p + layer or an electrode on the surface of a silicon (Si) substrate, an Al—Si alloy powder-containing paste material is applied, dried, and then annealed. And forming the p + layer or electrode. The Al—Si alloy preferably has a weight ratio of silicon (Si) to aluminum (Al) of 1% to 10%. This suppresses Si diffusion from the surface of the p + layer of Si to the back metal electrode with a small Si content, eliminates the occurrence of defects on the surface of the p + layer, and further improves the energy conversion efficiency of the solar cell as the final product Because it can.
本発明のいずれの発明によっても、単にAl粉末とSi粉末とを混合したペースト材を用いた場合に比べて、Al−Si合金粉末を含むペースト材を用いて作製した太陽電池の方が、Si基板から電極であるAl母材への拡散を最小限にすることが可能となり、その結果としてSi基板における最表面層の欠陥の発生を効果的に抑制することができ、変換効率が上がるという効果が見られた。勿論、Siを含有しない場合に比べても、太陽電池のエネルギー変換効率を、一段と高めることができる。 According to any invention of the present invention, the solar cell produced using the paste material containing the Al-Si alloy powder is more Si than the case where the paste material obtained by simply mixing the Al powder and the Si powder is used. It is possible to minimize the diffusion from the substrate to the Al base material that is an electrode, and as a result, it is possible to effectively suppress the occurrence of defects in the outermost surface layer of the Si substrate and to increase the conversion efficiency. It was observed. Of course, the energy conversion efficiency of the solar cell can be further increased compared to the case where Si is not contained.
以下、本発明の具体的な実施形態を、添付する図面に基づいて詳しく説明する。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の実施例におけるSi太陽電池の断面構造図である。このSi太陽電池を形成するために、まず、比抵抗がおよそ10Ωcmの(100)面p型シリコン基板1を用いて、その表面側にはリン(P)含有コート層の形成および900℃の熱処理でn+層2を形成した。次に、この基板1の裏面に、アルミニウム(Al)単体と、シリコン含有アルミニウム合金(以下、Al−Si合金という。)の粉末を主成分に用いたアルミニウム合金ペースト(以下、Al−Si合金ペーストという。)をスクリーン印刷法によって塗布し、150℃で10分間の乾燥処理の後、700℃で1分間のアニール処理を行って、対向電極3を形成した。このとき、基板1の裏面にはAl−Si合金ペースト中のAlの拡散導入によりp+層4が形成される。次に、上記n+層2上には、銀(Ag)ペーストをくし歯状にスクリーン印刷法で塗布成した後、乾燥150℃で10分間、さらに、アニール550℃で1乃至10分間の各加熱処理で受光面電極5を形成した。尚、上記工程を経て製造した対向電極3は、Alに対するSiの重量比が固溶限界値以上、即ち1.60%であって50%以下の粒状焼結体を含んでいた。対向電極全体に含まれるAlに対するSiの重量比は、1%以上10%以下であった。 FIG. 1 is a cross-sectional structure diagram of a Si solar cell in an example of the present invention. In order to form this Si solar cell, first, a (100) plane p-type silicon substrate 1 having a specific resistance of about 10 Ωcm is used, and a phosphorous (P) -containing coat layer is formed on the surface side and heat treatment at 900 ° C. N + layer 2 was formed. Next, on the back surface of the substrate 1, an aluminum alloy paste (hereinafter referred to as an Al-Si alloy paste) in which aluminum (Al) alone and a powder of a silicon-containing aluminum alloy (hereinafter referred to as an Al-Si alloy) are used as main components. Was applied by screen printing, followed by drying at 150 ° C. for 10 minutes, followed by annealing at 700 ° C. for 1 minute to form the counter electrode 3. At this time, the p + layer 4 is formed on the back surface of the substrate 1 by diffusion introduction of Al in the Al—Si alloy paste. Next, a silver (Ag) paste is applied onto the n + layer 2 in a comb-like shape by screen printing, and then dried at 150 ° C. for 10 minutes, and further annealed at 550 ° C. for 1 to 10 minutes. The light-receiving surface electrode 5 was formed by heat treatment. The counter electrode 3 manufactured through the above steps contained a granular sintered body in which the weight ratio of Si to Al was not less than the solid solution limit value, that is, 1.60% and not more than 50%. The weight ratio of Si to Al contained in the entire counter electrode was 1% or more and 10% or less.
ここで、上記Al−Si合金ペーストは、Alに対する重量比が5%以上50%以下のAl−Si合金を粉砕して作製した粉末を用いることが、ペースト材のAlとSiの重量比調整をより容易にする意味で好ましい。また、最終的なペースト材における、アルミニウム(Al)に対するシリコン(Si)の重量比は、1%以上10%以下が好ましい。これは、Si基板からAlを母材とする電極層への拡散を効果的に抑制することができるためである。この最終的なペースト材における重量比については、固溶最大限に近い、重量比1.5%以上3%以下のAl−Si合金ペーストを用いることが上記効果を更に発揮させることができるためにより好ましい。特に、この重量比の下限値は、固溶限界値である1.59が最も好ましい。最終的なペースト材における重量比を予め調整したペースト材を用いて形成したAl−Si合金であれば、Al中でSiが最大固溶でかつ均一分布しているのでAl中のSi分布が均一である。従って、ペースト材の加熱処理過程(例えば、電極形成のアニール処理など)で、SiがAl中に固溶する量は無視できる程度に小さくなる。 Here, the Al-Si alloy paste uses a powder prepared by pulverizing an Al-Si alloy having a weight ratio of 5% to 50% with respect to Al. It is preferable in terms of making it easier. The weight ratio of silicon (Si) to aluminum (Al) in the final paste material is preferably 1% or more and 10% or less. This is because diffusion from the Si substrate to the electrode layer using Al as a base material can be effectively suppressed. As for the weight ratio in the final paste material, the use of an Al—Si alloy paste having a weight ratio of 1.5% or more and 3% or less, which is close to the maximum of the solid solution, can further exert the above effect. preferable. In particular, the lower limit of the weight ratio is most preferably 1.59 which is the solid solution limit value. In the case of an Al-Si alloy formed using a paste material whose weight ratio in the final paste material is adjusted in advance, since Si is the maximum solid solution and uniformly distributed in Al, the Si distribution in Al is uniform. It is. Therefore, in the heat treatment process of the paste material (for example, annealing for electrode formation), the amount of Si dissolved in Al is negligibly small.
尚、比較のため、主成分がSiを含まない、Al粉末のみのアルミニウムペースト材を用いたSi太陽電池も製作した。 For comparison, an Si solar cell using an aluminum paste material containing only Al powder and containing no Si as a main component was also manufactured.
図2は、上記実施例の工程に基づいて製造したSi太陽電池の起電力(電流―電圧)特性図である。但し、一部の工程を変更している。具体的には、特性曲線(a)はペースト中にSiを含まずAl粉末のみで対向電極を形成したもの、特性曲線(c)はペースト中に2重量%のAl−Si合金の粉末を混ぜたものを用いて対向電極を形成したものの場合である。尚、特性曲線(b)は2重量%のSi含有Al−Si合金粉末を混ぜたペーストで対向電極を形成する際に600℃の処理を4分間実施した場合のものである。 FIG. 2 is an electromotive force (current-voltage) characteristic diagram of a Si solar cell manufactured based on the steps of the above embodiment. However, some processes are changed. Specifically, the characteristic curve (a) is obtained by forming the counter electrode with only Al powder without containing Si in the paste, and the characteristic curve (c) is obtained by mixing 2% by weight of Al—Si alloy powder in the paste. This is a case in which the counter electrode is formed using a thin film. The characteristic curve (b) is obtained when a treatment at 600 ° C. is performed for 4 minutes when forming the counter electrode with a paste mixed with 2 wt% Si-containing Al—Si alloy powder.
図2の特性曲線(a),(c)の対比から、ペースト中に2重量%のSi含有Al−Si合金の粉末を有するアルミニウム合金ペーストにより対向電極を形成したものは、電流密度が高くかつ出力特性に優れ、この実施例によっても変換効率が13.4%になり、Siを含まない場合の12.0%より、増加率として10%以上向上した。これは、700℃程度の処理においてもSiのAl中へ均一に拡散されているからである。この結果、Al−Si合金の粉末を混ぜたペースト材を用いたことで、裏面シリコン基板に欠陥が生じることを防止する、いわゆる欠陥抑制作用のあることが明らかとなった。また、1重量%未満のAl−Si合金粉末により対向電極を形成した場合は、図2における(a)とほぼ同様の結果となり、Al−Si合金粉末を用いた効果が有意なものとして確認できなかった。尚、特性曲線(b)に見られるように、アニール処理が過剰になると、Alの酸化が進み、出力特性の曲線因子(F.F.;Fill Factor)の低下が著しくなることが分かった。 From the comparison of the characteristic curves (a) and (c) of FIG. 2, the one in which the counter electrode is formed of an aluminum alloy paste having 2 wt% Si-containing Al—Si alloy powder in the paste has a high current density and The output characteristics were excellent, and the conversion efficiency was 13.4% also according to this example, which was an increase of 10% or more as an increase rate from 12.0% when Si was not included. This is because even in the treatment at about 700 ° C., the silicon is uniformly diffused into Al. As a result, it has been clarified that the use of a paste material mixed with powder of Al—Si alloy has a so-called defect suppressing action that prevents defects on the backside silicon substrate. In addition, when the counter electrode is formed with less than 1% by weight of Al—Si alloy powder, the result is almost the same as (a) in FIG. 2, and the effect of using the Al—Si alloy powder can be confirmed as significant. There wasn't. As can be seen from the characteristic curve (b), it was found that when the annealing treatment is excessive, the oxidation of Al progresses and the output characteristic fill factor (FF) is significantly reduced.
図3は、この実施例の太陽電池に関して、変換効率(η)、曲線因子(F.F.)、開放電圧(Voc)および短絡電流密度(Jsc)の諸特性をそのアニール処理温度の依存性により示す。これらの特性から、Al中にSiを混在させたAl−Si合金粉末を用いることで、より高い変換効率が得られるように、アニール条件を調整できることも分かる。具体的には、アニール条件としては、処理時間を1分間としたときに、650℃以上750℃以下で処理することが適当であった。 FIG. 3 shows the dependence of the annealing temperature on the characteristics of the conversion efficiency (η), fill factor (FF), open circuit voltage (Voc), and short circuit current density (Jsc) for the solar cell of this example. Indicated by From these characteristics, it can also be seen that the annealing conditions can be adjusted so that higher conversion efficiency can be obtained by using Al—Si alloy powder in which Si is mixed in Al. Specifically, as the annealing conditions, it was appropriate to perform the treatment at 650 ° C. or more and 750 ° C. or less when the treatment time was 1 minute.
以上に、本発明を、実施例のSi太陽電池およびその製造方法により詳細に述べたが、本発明は、単結晶Si太陽電池に限らず、同様の構成を持った多結晶Si太陽電池にも適用可能である。また、本実施例では、図1に示すように、受光面電極がn+層表面に配置され、対向電極がp+層表面に配置されているが、この構成に限らず、受光面電極がp+層表面に配置され、対向電極がn+層表面に配置されていても本発明の実質的な効果が生じる。 As described above, the present invention has been described in detail with reference to the Si solar cell of the embodiment and the manufacturing method thereof. However, the present invention is not limited to the single crystal Si solar cell but also to a polycrystalline Si solar cell having the same configuration. Applicable. Further, in this embodiment, as shown in FIG. 1, the light receiving surface electrode is arranged on the surface of the n + layer and the counter electrode is arranged on the surface of the p + layer. Even if it is arranged on the surface of the p + layer and the counter electrode is arranged on the surface of the n + layer, the substantial effect of the present invention occurs.
本発明は、単結晶および多結晶のSi太陽電池に利用することを初めとして、本技術のAl−Si合金粉末含有ペーストをSi半導体装置の電極構成体に用いる各種の半導体装置に利用して、その特性改善に寄与することができる。 The present invention is applied to various semiconductor devices that use the Al-Si alloy powder-containing paste of the present technology for an electrode structure of a Si semiconductor device, including the use for single crystal and polycrystalline Si solar cells. This can contribute to improving the characteristics.
1 p型シリコン基板
2 n+層
3 対向電極
4 p+層
5 受光面電極
1 p-type silicon substrate 2 n + layer 3 counter electrode 4 p + layer 5 light-receiving surface electrode
Claims (10)
主成分として、アルミニウム(Al)と、アルミニウム(Al)に対するシリコン(Si)の重量比が5%以上50%以下であるAl−Si合金の粉末とを含み、
残余成分として有機溶剤を含む
太陽電池用ペースト材。 In a paste material used when forming a p + layer or an electrode on one surface side of a silicon (Si) substrate,
As a main component, including aluminum (Al) and Al—Si alloy powder in which the weight ratio of silicon (Si) to aluminum (Al) is 5% or more and 50% or less,
A solar cell paste material containing an organic solvent as a remaining component.
請求項1に記載の太陽電池用ペースト材。 The solar cell paste material according to claim 1, wherein a weight ratio of silicon (Si) to aluminum (Al) is 1% or more and 10% or less.
請求項1に記載の太陽電池用ペースト材。 The solar cell paste material according to claim 1, wherein a weight ratio of silicon (Si) to aluminum (Al) is 1.5% or more and 3% or less.
請求項1に記載の太陽電池用ペースト材。 The solar cell paste material according to claim 1, wherein the residual component includes an organic binder.
請求項1に記載の太陽電池用ペースト材。 The paste material for a solar cell according to claim 1, comprising 50% by weight or more of the Al—Si alloy powder.
Al−Si合金の粉末含有ペースト材料を塗布した後、乾燥させ、その後アニールして前記p+層または電極を形成する工程を含む
太陽電池の製造方法。 In the step of forming the p + layer or electrode on a silicon (Si) surface of the substrate,
A method of manufacturing a solar cell, comprising: applying a powder-containing paste material of an Al—Si alloy, drying, and then annealing to form the p + layer or electrode.
請求項6に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6, wherein the Al—Si alloy powder has a weight ratio of silicon (Si) to aluminum (Al) of 5% or more and 50% or less.
請求項6に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6, wherein the paste material has a weight ratio of silicon (Si) to aluminum (Al) of 1% to 10%.
請求項6に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6, wherein the paste material has a weight ratio of silicon (Si) to aluminum (Al) of 1.5% to 3%.
請求項6に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 6, wherein the paste material contains 50 wt% or more of the powder of the Al—Si alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010049987A JP5241758B2 (en) | 2005-02-21 | 2010-03-08 | Solar cell paste material and solar cell manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005044764 | 2005-02-21 | ||
JP2005044764 | 2005-02-21 | ||
JP2010049987A JP5241758B2 (en) | 2005-02-21 | 2010-03-08 | Solar cell paste material and solar cell manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005139326A Division JP2006261621A (en) | 2005-02-21 | 2005-05-12 | Solar battery and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010123999A true JP2010123999A (en) | 2010-06-03 |
JP5241758B2 JP5241758B2 (en) | 2013-07-17 |
Family
ID=42324980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010049987A Expired - Fee Related JP5241758B2 (en) | 2005-02-21 | 2010-03-08 | Solar cell paste material and solar cell manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5241758B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013126865A1 (en) * | 2012-02-24 | 2013-08-29 | Applied Nanotech Holdings, Inc. | Metallization paste for solar cells |
CN103617820A (en) * | 2013-11-20 | 2014-03-05 | 东莞市精微新材料有限公司 | Alloy powder for silicon solar cell aluminum paste |
WO2016052643A1 (en) * | 2014-10-02 | 2016-04-07 | 山陽特殊製鋼株式会社 | Powder for conductive fillers |
JP2016072192A (en) * | 2014-10-02 | 2016-05-09 | 山陽特殊製鋼株式会社 | Powder for electrical conductive filler |
JP2016110773A (en) * | 2014-12-04 | 2016-06-20 | 山陽特殊製鋼株式会社 | Powder for conductive filler |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629680A (en) * | 1985-07-08 | 1987-01-17 | Hitachi Ltd | Manufacture of solar cell |
JP2001313402A (en) * | 2000-04-28 | 2001-11-09 | Kyocera Corp | Paste material for solar battery |
-
2010
- 2010-03-08 JP JP2010049987A patent/JP5241758B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629680A (en) * | 1985-07-08 | 1987-01-17 | Hitachi Ltd | Manufacture of solar cell |
JP2001313402A (en) * | 2000-04-28 | 2001-11-09 | Kyocera Corp | Paste material for solar battery |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013126865A1 (en) * | 2012-02-24 | 2013-08-29 | Applied Nanotech Holdings, Inc. | Metallization paste for solar cells |
US9431552B2 (en) | 2012-02-24 | 2016-08-30 | Starsource Scientific Llc | Metallization paste for solar cells |
CN103617820A (en) * | 2013-11-20 | 2014-03-05 | 东莞市精微新材料有限公司 | Alloy powder for silicon solar cell aluminum paste |
CN103617820B (en) * | 2013-11-20 | 2016-04-13 | 东莞市精研粉体科技有限公司 | A kind of alloyed powder for aluminum paste of silicon solar cells |
WO2016052643A1 (en) * | 2014-10-02 | 2016-04-07 | 山陽特殊製鋼株式会社 | Powder for conductive fillers |
JP2016072192A (en) * | 2014-10-02 | 2016-05-09 | 山陽特殊製鋼株式会社 | Powder for electrical conductive filler |
JP2016110773A (en) * | 2014-12-04 | 2016-06-20 | 山陽特殊製鋼株式会社 | Powder for conductive filler |
Also Published As
Publication number | Publication date |
---|---|
JP5241758B2 (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI398005B (en) | Formation of high quality back contact with screen-printed local back surface field | |
JP3789474B2 (en) | Solar cell having back surface field and method for manufacturing the same | |
Kephart et al. | Optimization of CdTe thin‐film solar cell efficiency using a sputtered, oxygenated CdS window layer | |
TWI408816B (en) | A solar cell manufacturing method, a solar cell, and a method of manufacturing a semiconductor device | |
US4947219A (en) | Particulate semiconductor devices and methods | |
KR102319080B1 (en) | Solar cell contact structures formed from metal paste | |
JP2002511190A (en) | Method and apparatus for self-doping cathode and anode for silicon solar cells and other devices | |
TWI401808B (en) | Paste composition, electrode and solar cell including the same | |
JP5241758B2 (en) | Solar cell paste material and solar cell manufacturing method | |
US20120279563A1 (en) | Solderable interconnect apparatus for interconnecting solar cells | |
WO2006008896A1 (en) | Electrode material, solar cell and process for producing solar cell | |
WO2013044611A1 (en) | Solar cell sheet and heat treatment process thereof | |
Schüttauf et al. | Improving the performance of amorphous and crystalline silicon heterojunction solar cells by monitoring surface passivation | |
US20160190364A1 (en) | Seed layer for solar cell conductive contact | |
JP5991945B2 (en) | Solar cell and solar cell module | |
US20100126580A1 (en) | CdTe deposition process for solar cells | |
JP2006261621A (en) | Solar battery and its manufacturing method | |
JP2008166344A (en) | Conductive paste for photoelectric converting element, photoelectric converting element, and method for manufacturing photoelectric converting element | |
JPH0697070A (en) | Manufacture of polycrystalline silicon film | |
TW201137895A (en) | Aluminum paste for solar cell | |
JPH11312813A (en) | Manufacture of solar cell device | |
JP4272405B2 (en) | Method for manufacturing solar cell element | |
JP2006066748A (en) | Semiconductor device, solar battery, and manufacturing methods thereof | |
JP2004281569A (en) | Method for producing solar cell element | |
JP2000174306A (en) | Manufacture of compound semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120918 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160412 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |