JP2010171063A - Method of manufacturing semiconductor wiring - Google Patents
Method of manufacturing semiconductor wiring Download PDFInfo
- Publication number
- JP2010171063A JP2010171063A JP2009009971A JP2009009971A JP2010171063A JP 2010171063 A JP2010171063 A JP 2010171063A JP 2009009971 A JP2009009971 A JP 2009009971A JP 2009009971 A JP2009009971 A JP 2009009971A JP 2010171063 A JP2010171063 A JP 2010171063A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- heating
- wiring
- insulating film
- conditions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 115
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 77
- 239000000956 alloy Substances 0.000 claims abstract description 77
- 229910017945 Cu—Ti Inorganic materials 0.000 claims abstract description 74
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 31
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 31
- 238000004544 sputter deposition Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 24
- 230000000630 rising effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 69
- 239000010410 layer Substances 0.000 description 39
- 239000000523 sample Substances 0.000 description 26
- 239000010409 thin film Substances 0.000 description 20
- 230000004888 barrier function Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 229910000881 Cu alloy Inorganic materials 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53233—Copper alloys
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76882—Reflowing or applying of pressure to better fill the contact hole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本発明は、半導体配線の製造方法に関するものであり、詳細には、例えばULSI(超大規模集積回路)等に代表されるSi半導体デバイス等の半導体装置において、高性能(低電気抵抗率)かつ高信頼性(高EM耐性)を示す半導体配線(Cu系配線)の製造方法に関するものである。 The present invention relates to a method for manufacturing a semiconductor wiring, and more specifically, for example, in a semiconductor device such as a Si semiconductor device represented by ULSI (ultra-large scale integrated circuit) and the like, high performance (low electrical resistivity) and high The present invention relates to a method for manufacturing a semiconductor wiring (Cu-based wiring) exhibiting reliability (high EM resistance).
近年、LSI(大規模集積回路)の高集積化や高速信号伝播の要求を満たすため、デザインルールは縮小の一途を辿っており、配線ピッチの縮小や配線幅の減少、配線間距離の縮小が行われている。また、半導体装置の高集積化に対応するため、配線を多層構造にすることが検討されている。 In recent years, design rules have been steadily reduced to meet the demands for high integration of LSIs (Large Scale Integrated Circuits) and high-speed signal propagation, reducing the wiring pitch, the wiring width, and the distance between wirings. Has been done. Further, in order to cope with the high integration of semiconductor devices, it has been studied to make the wiring into a multilayer structure.
配線回路の微細化・高集積化に伴い配線自体の電気抵抗(以下、配線抵抗ということがある)が問題になっている。配線抵抗の増加が信号伝達の遅延を招くからである。そこで配線抵抗を低減できる配線材料として、従来のAl系配線材料にかわり、Cuをベースにした配線材料(以下、Cu系配線材料ということがある)を使用し、Cu系配線を形成することが試みられている。 With the miniaturization and high integration of wiring circuits, the electrical resistance of the wiring itself (hereinafter sometimes referred to as wiring resistance) has become a problem. This is because an increase in wiring resistance causes a delay in signal transmission. Therefore, as a wiring material capable of reducing the wiring resistance, a Cu-based wiring material (hereinafter sometimes referred to as a Cu-based wiring material) is used instead of the conventional Al-based wiring material to form a Cu-based wiring. Has been tried.
多層構造のCu系配線を形成する方法として、ダマシン配線技術が知られている。この技術は、半導体基板上に設けられた絶縁膜に、配線溝や層間接続孔(ビア・トレンチ)(以下、これらをまとめて凹部ということがある)を形成し、凹部表面を純CuやCu合金等のCu系配線材料(薄膜)で覆い、これを加熱・加圧等することでCu系配線材料を流動させて凹部に埋め込み、その後、例えば化学機械研磨(Chemical Mechanical Polishing,CMP)法により研磨を行って凹部以外の部分に堆積した不要部分の配線材料を除去し、凹部内にのみ配線材料を残してCu系配線を形成する方法である。近年では、集積度の増加とともに、上記凹部のアスペクト比(深さ/孔径の比)がより高くなる傾向にある。 A damascene wiring technique is known as a method of forming a Cu-based wiring having a multilayer structure. In this technique, wiring grooves and interlayer connection holes (via / trench) (hereinafter, these may be collectively referred to as a recess) are formed in an insulating film provided on a semiconductor substrate, and the surface of the recess is made of pure Cu or Cu. Cover with Cu-based wiring material (thin film) such as alloy, and heat and pressurize the Cu-based wiring material to flow and embed it in the recess. Then, for example, by chemical mechanical polishing (CMP) method In this method, polishing is performed to remove unnecessary portion of the wiring material deposited on the portion other than the concave portion, and the Cu-based wiring is formed while leaving the wiring material only in the concave portion. In recent years, as the degree of integration increases, the aspect ratio (depth / hole diameter ratio) of the recesses tends to be higher.
ところでCu系配線材料を用いる場合、Cu系配線材料と絶縁膜を直接接触させると、Cuが絶縁膜へ拡散し、絶縁膜の絶縁性を劣化させてしまう。こうした問題となる現象は、エレクトロマイグレーション(Electro Migration;EM)と呼ばれている。そこでCuが絶縁膜へ拡散するのを防止して上記EMに対する耐性を確保するため、Cu系配線と絶縁膜の間にバリア層が設けられている。即ち、一般的なダマシン配線の形成プロセスでは、絶縁膜に形成された凹部に前記Cu系配線を形成する前に、バリア層(TaN薄膜など)を形成することが行われている。 When a Cu-based wiring material is used, if the Cu-based wiring material and the insulating film are brought into direct contact, Cu diffuses into the insulating film and degrades the insulating properties of the insulating film. Such a problematic phenomenon is called electromigration (EM). Therefore, in order to prevent Cu from diffusing into the insulating film and to ensure the resistance to the EM, a barrier layer is provided between the Cu-based wiring and the insulating film. That is, in a general damascene wiring formation process, a barrier layer (TaN thin film or the like) is formed before the Cu-based wiring is formed in the recess formed in the insulating film.
このバリア層には、Cu系配線材料を凹部に埋め込むために500〜700℃程度の高温に加熱した場合でもバリア性を発揮することが要求されるため、TaN膜やTiN膜などの金属窒化膜が用いられている。しかしこうした金属窒化膜は、金属膜に比べて電気抵抗率が高いため、Cu系配線の電気抵抗率を実効的に高めてしまうといった問題がある。 Since this barrier layer is required to exhibit a barrier property even when heated to a high temperature of about 500 to 700 ° C. so as to embed a Cu-based wiring material in the recess, a metal nitride film such as a TaN film or a TiN film is required. Is used. However, since such a metal nitride film has a higher electrical resistivity than the metal film, there is a problem that the electrical resistivity of the Cu-based wiring is effectively increased.
Cu系配線の電気抵抗率を低くするには、バリア層を極力薄く、且つ均一に形成する必要があるが、現状の成膜方法(スパッタリング法)では該バリア層を薄く、かつ均一に形成することが難しい。電気抵抗率低減の観点からはバリア層厚をできるだけ薄くする必要があるが、全体的または局部的に薄くなりすぎるとその部分でバリア性を十分に確保できないといった問題が生じうる。また近年では、配線溝の幅や接続孔の直径はますます小さく、また配線溝の深さ/幅比や、接続孔の深さ/直径比はますます大きくなっているため、バリア層の形成は一層難しくなっている。 In order to reduce the electrical resistivity of the Cu-based wiring, it is necessary to form the barrier layer as thin and uniform as possible. However, in the current film formation method (sputtering method), the barrier layer is formed thin and uniform. It is difficult. Although it is necessary to make the thickness of the barrier layer as thin as possible from the viewpoint of reducing the electrical resistivity, there is a problem that the barrier property cannot be sufficiently secured in the portion if the barrier layer is too thin as a whole or locally. In recent years, the width of wiring grooves and the diameter of connection holes have become smaller, and the depth / width ratio of wiring grooves and the depth / diameter ratio of connection holes have become larger. Is getting harder.
そこで本出願人は、バリア層(TaN薄膜など)を使用せずに、凹部にCu合金配線を直接形成し、熱処理を施すことによって、絶縁膜とCu合金配線の界面にバリア層を自立的(自己整合的)に形成するダマシン配線形成技術を提案している。例えば特許文献1では、絶縁膜の凹部に、Tiを0.5〜10原子%含有するCu合金薄膜を凹部形状に沿って10〜50nmの厚さで形成した後、Cu合金薄膜付き凹部に純Cu薄膜を形成し、350℃以上に加熱して絶縁膜とCu合金薄膜との間にTiを析出させることを提案している。この通り、Cuに対する固溶限の小さいTiを含むCu合金を凹部に沿って形成し、これを加熱することで、CuとTiが2相分離し、TiがCu系配線と絶縁膜の界面に異常拡散してTi濃化層が形成される。このTi濃化層がバリア層として作用するため、従来のダマシンCu系配線よりも実効電気抵抗を低減することができる。
Therefore, the present applicant forms a Cu alloy wiring directly in the concave portion without using a barrier layer (TaN thin film or the like), and heat-treats to make the barrier layer autonomous at the interface between the insulating film and the Cu alloy wiring ( We have proposed a damascene wiring formation technique that is formed in a self-aligning manner. For example, in
ところで、半導体装置のCu系配線には、配線抵抗のより確実かつ十分に低減されたものが求められているが、上記特許文献1等の熱処理条件では、配線抵抗を低減できるものの、より確実かつ十分に低減するには更なる検討が必要であると思われる。本発明はこの様な事情に鑑みてなされたものであって、その目的は、半導体装置(Si半導体デバイス等)のCu系配線の製造時に、該配線の熱処理条件を適切なものとすることにより、Cu−Ti合金の自己バリア形成能を存分に発揮させて、Cu系配線(特には、Cu−Ti合金配線)の配線抵抗を実効的に低減し、高信頼性と低電気抵抗率を確保した半導体配線(Cu系配線)を製造するための方法を提供するものである。
By the way, a Cu-based wiring of a semiconductor device is required to have a more reliable and sufficiently reduced wiring resistance. However, under the heat treatment conditions described in
本発明に係る半導体配線の製造方法は、半導体基板上の絶縁膜に設けられた凹部にCu−Ti合金が直接埋め込まれてなる半導体配線の製造方法であって、
前記Cu−Ti合金がTiを0.5原子%以上3.0原子%以下含むものであり、かつ、
前記Cu−Ti合金をスパッタリング法で形成後、該Cu−Ti合金を前記凹部に埋め込む時または埋め込み後に、該Cu−Ti合金を下記加熱条件で加熱する工程を含むところに特徴を有する。
(加熱条件)
加熱温度:350〜600℃
加熱時間:10〜120min.
室温から上記加熱温度までの昇温速度:10℃/min.以上
加熱雰囲気における酸素分圧:1×10−7〜1×10−4atm
A method for manufacturing a semiconductor wiring according to the present invention is a method for manufacturing a semiconductor wiring in which a Cu-Ti alloy is directly embedded in a recess provided in an insulating film on a semiconductor substrate,
The Cu-Ti alloy contains 0.5 atomic% to 3.0 atomic% of Ti, and
It is characterized in that it includes a step of heating the Cu-Ti alloy under the following heating conditions after forming the Cu-Ti alloy by a sputtering method and after or after embedding the Cu-Ti alloy in the recess.
(Heating conditions)
Heating temperature: 350-600 ° C
Heating time: 10 to 120 min.
Temperature increase rate from room temperature to the above heating temperature: 10 ° C./min. Or more Oxygen partial pressure in a heating atmosphere: 1 × 10 −7 to 1 × 10 −4 atm
また、本発明に係る半導体配線の別の製造方法は、半導体基板上の絶縁膜に設けられた凹部に沿ってCu−Ti合金からなる層を形成した後、該Cu−Ti合金からなる層付き凹部に純Cuが埋め込まれてなる半導体配線の製造方法であって、
前記Cu−Ti合金がTiを0.5原子%以上3.0原子%以下含むものであり、かつ、
前記Cu−Ti合金からなる層をスパッタリング法で形成する工程、および該Cu−Ti合金からなる層を上記加熱条件で加熱する工程を含むところに特徴を有する。
Another method of manufacturing a semiconductor wiring according to the present invention includes forming a layer made of a Cu—Ti alloy along a recess provided in an insulating film on a semiconductor substrate, and then attaching the layer made of the Cu—Ti alloy. A method of manufacturing a semiconductor wiring in which pure Cu is embedded in a recess,
The Cu-Ti alloy contains 0.5 atomic% to 3.0 atomic% of Ti, and
It is characterized in that it includes a step of forming the Cu—Ti alloy layer by a sputtering method and a step of heating the Cu—Ti alloy layer under the above heating conditions.
本発明によれば、半導体基板上の絶縁膜に設けられた凹部と直接接触するCu−Ti合金の配線抵抗を確実かつ十分に下げることができるため、例えばULSI(超大規模集積回路)等に代表されるSi半導体デバイス等の半導体装置において、高性能(低電気抵抗率)かつ高信頼性(高EM耐性)を示す半導体配線(Cu系配線)を実現できる。 According to the present invention, the wiring resistance of a Cu—Ti alloy that is in direct contact with a recess provided in an insulating film on a semiconductor substrate can be reliably and sufficiently lowered, and thus, for example, ULSI (ultra-large scale integrated circuit) or the like is representative. In a semiconductor device such as a Si semiconductor device, a semiconductor wiring (Cu-based wiring) exhibiting high performance (low electrical resistivity) and high reliability (high EM resistance) can be realized.
本発明者らは、絶縁膜とCu系配線(特には、Cu−Ti合金)の界面にバリア層を別途成膜しなくとも、電気抵抗率の低減されたCu系配線(半導体配線)を製造する方法を確立すべく、鋭意検討を重ねてきた。その結果、絶縁膜に形成された凹部にて、該絶縁膜と少なくとも直接接触する配線部分を、特定のCu−Ti合金とし、かつ該Cu−Ti合金を特定の条件で加熱すれば、上記絶縁膜とCu−Ti合金との界面に自己バリア層(絶縁膜とCu系配線の界面に濃化し、該界面に例えばTiCを形成してバリア性を発揮させる層)を確実に形成することができ、配線抵抗(電気抵抗)の確実かつ十分に低減されたCu系配線が得られることを見出した。以下、本発明について詳述する。 The present inventors manufacture a Cu-based wiring (semiconductor wiring) with reduced electrical resistivity without separately forming a barrier layer at the interface between the insulating film and the Cu-based wiring (particularly, Cu—Ti alloy). In order to establish a method to do so, we have intensively studied. As a result, if the wiring portion that is in direct contact with the insulating film in the recess formed in the insulating film is made of a specific Cu-Ti alloy and the Cu-Ti alloy is heated under specific conditions, the above insulation is achieved. A self-barrier layer (a layer that concentrates at the interface between the insulating film and the Cu-based wiring and forms TiC at the interface to exhibit barrier properties) can be reliably formed at the interface between the film and the Cu-Ti alloy. It has been found that a Cu-based wiring having a reliable and sufficiently reduced wiring resistance (electrical resistance) can be obtained. Hereinafter, the present invention will be described in detail.
まず本発明では、絶縁膜に形成された凹部にて該絶縁膜と少なくとも直接接触する配線部分に、Tiを0.5〜3.0原子%含むCu−Ti合金を用いる。Tiは、上記自己バリア層を構成するのに必要な元素であり、0.5原子%以上必要である。しかしTi量が過剰になると、絶縁膜との界面に偏析しきれなかったTiが配線中に固溶状態で残留したり、Cuと金属間化合物(Ti析出物)を形成する。こうした固溶TiやTi析出物は、Cu系配線の電気抵抗率を高める原因となる。従ってTi量は3.0原子%以下とする。 First, in the present invention, a Cu—Ti alloy containing 0.5 to 3.0 atomic% of Ti is used in a wiring portion at least in direct contact with the insulating film in the recess formed in the insulating film. Ti is an element necessary for constituting the self-barrier layer, and 0.5 atomic% or more is necessary. However, when the amount of Ti becomes excessive, Ti that has not been segregated at the interface with the insulating film remains in a solid solution state in the wiring, or forms an intermetallic compound (Ti precipitate) with Cu. Such solute Ti and Ti precipitates increase the electrical resistivity of the Cu-based wiring. Accordingly, the Ti content is 3.0 atomic% or less.
上記Cu−Ti合金の残部組成はCuおよび不可避不純物であるが、例えば、AgやMg、Siなどを含有させてもよい。 The remaining composition of the Cu—Ti alloy is Cu and inevitable impurities, but may contain, for example, Ag, Mg, Si, or the like.
絶縁膜に形成された凹部にて該絶縁膜と少なくとも直接接触する配線部分に上記成分組成のCu−Ti合金を形成したCu系配線の形態として、
(1)半導体基板上の絶縁膜に設けられた凹部に上記成分組成のCu−Ti合金が直接埋め込まれてなるCu系配線や、
(2)半導体基板上の絶縁膜に設けられた凹部に沿って上記成分組成のCu−Ti合金からなる層(Cu−Ti合金層)を形成した後、該Cu−Ti合金層付き凹部に純Cuが埋め込まれてなるCu系配線が挙げられる。
As a form of Cu-based wiring in which a Cu-Ti alloy having the above composition is formed in a wiring portion that is at least in direct contact with the insulating film in a recess formed in the insulating film,
(1) Cu-based wiring in which a Cu-Ti alloy having the above composition is directly embedded in a recess provided in an insulating film on a semiconductor substrate;
(2) After forming a layer (Cu—Ti alloy layer) made of a Cu—Ti alloy having the above composition along the recess provided in the insulating film on the semiconductor substrate, the layer is made pure into the recess with the Cu—Ti alloy layer. An example is Cu-based wiring in which Cu is embedded.
上記(1)のCu系配線を得る場合には、絶縁膜に形成された凹部の表面を、上記成分組成のCu−Ti合金からなる薄膜で覆い、これを加熱および/または加圧することでCu系配線材料を流動させて凹部に埋め込み、その後、例えば化学機械研磨法により研磨を行って凹部以外の部分に堆積した不要部分の配線材料を除去し、凹部内にのみ配線材料を残してCu系配線を形成する方法が挙げられる。 When obtaining the Cu-based wiring of (1) above, the surface of the recess formed in the insulating film is covered with a thin film made of a Cu—Ti alloy having the above component composition, and this is heated and / or pressurized to form Cu. The wiring material is made to flow and embedded in the recess, and then polishing is performed by, for example, a chemical mechanical polishing method to remove unnecessary wiring material deposited on the portion other than the recess, and the Cu material is left only in the recess. A method of forming a wiring is mentioned.
また上記(2)のCu系配線を得るには、絶縁膜に設けられた凹部に沿って、シード層として上記成分組成のCu−Ti合金層を形成した後、該Cu−Ti合金層付き凹部に純Cuをフル配線(配線本体部)として埋め込み、その後、上記(1)と同様にしてCu系配線を形成する方法が挙げられる。 Further, in order to obtain the Cu-based wiring of (2) above, a Cu—Ti alloy layer having the above component composition is formed as a seed layer along the recess provided in the insulating film, and then the recess with the Cu—Ti alloy layer is formed. In this method, pure Cu is embedded as a full wiring (wiring body portion), and then a Cu-based wiring is formed in the same manner as in the above (1).
上記(1)におけるCu−Ti合金からなる薄膜や(2)におけるCu−Ti合金層(以下、これらをCu−Ti合金と総称することがある)の形成は、スパッタリング法で行う。Cu−Tiは合金であるため、従来の電解めっき法では形成が難しく、CVD法でも形成が難しいからである。この様にCu−Ti合金をスパッタリング法で形成することにより、気相急冷による非平衡固溶現象を利用することができる。即ち、Cuに対して固溶限の小さいTiを添加したCu−Ti合金をスパッタリング法で形成することにより、As-deposited(非熱処理)状態でCu−Ti非平衡固溶状態にありTiが拡散しやすいCu−Ti合金を形成することができる。 Formation of the thin film made of the Cu—Ti alloy in (1) and the Cu—Ti alloy layer in (2) (hereinafter, these may be collectively referred to as Cu—Ti alloy) are performed by a sputtering method. Because Cu—Ti is an alloy, it is difficult to form by the conventional electrolytic plating method and difficult to form even by the CVD method. Thus, by forming a Cu—Ti alloy by a sputtering method, a non-equilibrium solid solution phenomenon caused by vapor phase quenching can be utilized. In other words, by forming a Cu-Ti alloy with Ti having a small solid solubility limit with respect to Cu formed by a sputtering method, Ti is in a non-equilibrium solid solution state in an As-deposited state, and Ti diffuses. Cu-Ti alloy which is easy to do can be formed.
上記(1)の場合、スパッタリング法により、Cu−Ti合金を薄膜として、膜厚100nm以上500nm以下の範囲内で成膜することが好ましい。 In the case of the above (1), it is preferable to form a film with a Cu—Ti alloy as a thin film within a range of 100 nm to 500 nm in thickness by sputtering.
また上記(2)の場合、スパッタリング法により、Cu−Ti合金からなる層(Cu−Ti合金層)を膜厚10nm以上50nm以下の範囲内で、凹部に沿って成膜することが好ましい。膜厚が10nm未満では、加熱しても充分な厚さのTi濃化層が生成せず、バリア性が低下するからである。より好ましい膜厚は15nm以上であり、更に好ましくは20nm以上である。一方、上記膜厚が50nmを超えると、過剰なCu−Ti合金層が凹部の開口部を覆うようにブリッジングを生じやすく、凹部内に空隙を形成してしまい、Cu系配線の品質の劣化を招くため好ましくない。より好ましい膜厚は45nm以下であり、更に好ましくは40nm以下である。 In the case of (2), it is preferable that a layer made of a Cu—Ti alloy (Cu—Ti alloy layer) is formed along the recesses within a range of 10 nm to 50 nm in thickness by a sputtering method. When the film thickness is less than 10 nm, a Ti-concentrated layer having a sufficient thickness is not generated even when heated, and the barrier property is lowered. A more preferable film thickness is 15 nm or more, and further preferably 20 nm or more. On the other hand, if the film thickness exceeds 50 nm, bridging is likely to occur so that an excessive Cu—Ti alloy layer covers the opening of the recess, and voids are formed in the recess, resulting in deterioration of the quality of the Cu-based wiring. This is not preferable. A more preferable film thickness is 45 nm or less, and still more preferably 40 nm or less.
上記の通りスパッタリング法でCu−Ti合金を形成するには、スパッタリングターゲットとして、Tiを含有するCu合金ターゲットを用いるか、純Cuターゲットの表面にTiチップを貼付したチップオンターゲットを用いればよい。該ターゲットを用い不活性ガス雰囲気下でスパッタリングすることが挙げられる。不活性ガスとして、例えば、ヘリウムやネオン、アルゴン、クリプトン、キセノン、ラドンなどを用いることができる。好ましくはアルゴンやキセノンを用いるのがよく、特にアルゴンは比較的安価であり、好適に用いることができる。なお、上記不活性ガスはN2ガスやH2ガスを含有していてもよい。 In order to form a Cu—Ti alloy by sputtering as described above, a Cu alloy target containing Ti may be used as a sputtering target, or a chip-on target having a Ti chip attached to the surface of a pure Cu target may be used. Sputtering in an inert gas atmosphere using the target can be mentioned. As the inert gas, for example, helium, neon, argon, krypton, xenon, radon, or the like can be used. Argon or xenon is preferably used, and argon is particularly inexpensive and can be suitably used. The inert gas may contain N 2 gas or H 2 gas.
その他のスパッタリング条件(例えば、到達真空度、スパッタガス圧、放電パワー密度、基板温度、極間距離など)は、通常の範囲で適宜調整できる。 Other sputtering conditions (for example, ultimate vacuum, sputtering gas pressure, discharge power density, substrate temperature, interelectrode distance, etc.) can be appropriately adjusted within a normal range.
本発明では、この様にして形成されたCu−Ti合金に対して、下記の加熱条件を全て満たすように加熱することが大変重要である。最適化された条件で加熱することによって、Cu−Ti合金の自己バリア形成能を十分に発揮させて、絶縁膜とCu−Ti合金との界面に上述した自己バリア層を確実に形成することができる。具体的には、Cu−Ti合金中のTiが2相分離を起こし、Cu−Ti合金/絶縁膜界面にTiが異常拡散し濃化する。界面濃化したTiは絶縁膜と反応し、TiSi、TiCなどの化合物からなる層が形成される。この化合物層は界面で極薄で均一に形成される。また、下記の条件で加熱することによって、Cu系配線(Cu−Ti合金)の絶縁膜と接触していない表面にも、Tiを十分に異常拡散、濃化させることができる。その結果、Cuが絶縁膜へ拡散するのを防止できると共に、Cu系配線内部に存在する固溶TiやTiの金属間化合物を排除して、従来のダマシンCu系配線よりも配線抵抗を確実に低減でき、高性能(低電気抵抗率)かつ高信頼性(高EM耐性)を示すCu系配線を実現できる。
(加熱条件)
加熱温度:350〜600℃
加熱時間:10〜120min.
室温から上記加熱温度までの昇温速度:10℃/min.以上
加熱雰囲気における酸素分圧:1×10−7〜1×10−4atm
以下、各条件を規定した理由について詳述する。
In the present invention, it is very important to heat the Cu—Ti alloy thus formed so as to satisfy all the following heating conditions. By heating under optimized conditions, the self-barrier forming ability of the Cu-Ti alloy can be sufficiently exerted, and the above-described self-barrier layer can be reliably formed at the interface between the insulating film and the Cu-Ti alloy. it can. Specifically, Ti in the Cu—Ti alloy undergoes two-phase separation, and Ti abnormally diffuses and concentrates at the Cu—Ti alloy / insulating film interface. The interface-enriched Ti reacts with the insulating film to form a layer made of a compound such as TiSi or TiC. This compound layer is extremely thin and uniformly formed at the interface. Further, by heating under the following conditions, Ti can be sufficiently abnormally diffused and concentrated on the surface of the Cu-based wiring (Cu—Ti alloy) that is not in contact with the insulating film. As a result, Cu can be prevented from diffusing into the insulating film, and solid solution Ti or an intermetallic compound of Ti existing in the Cu-based wiring can be eliminated, so that the wiring resistance is more reliably than that of the conventional damascene Cu-based wiring. A Cu-based wiring that can be reduced, has high performance (low electrical resistivity) and high reliability (high EM resistance) can be realized.
(Heating conditions)
Heating temperature: 350-600 ° C
Heating time: 10 to 120 min.
Rate of temperature increase from room temperature to the above heating temperature: 10 ° C./min. Or more Oxygen partial pressure in a heated atmosphere: 1 × 10 −7 to 1 × 10 −4 atm
Hereinafter, the reason for defining each condition will be described in detail.
〈加熱温度:350〜600℃〉
Cu−Ti合金配線に含まれるTiを異常拡散させて、絶縁膜とCu−Ti合金との界面に偏析・濃化させるには、準安定状態で合金元素(Ti)を、Cu−Ti合金/絶縁膜界面やCu系配線(Cu−Ti合金)の絶縁膜と接触していない面に移動・反応させる必要がある。この準安定状態でのTiを移動・反応させるには、350℃以上に加熱する必要がある。加熱温度が350℃よりも低いと、TiがCu中に固溶状態で残留したり、Cuと金属間化合物を形成する。どちらの場合も十分に電気抵抗率を低下させることができず、配線の実効的電気抵抗率が高くなるため好ましくない。加熱温度は、好ましくは400℃以上である。一方、加熱温度が高すぎても上記準安定状態でのTiの移動・反応が生じにくくなることから、加熱温度の上限は600℃とする。好ましくは500℃以下である。
<Heating temperature: 350-600 ° C.>
In order to cause abnormal diffusion of Ti contained in the Cu-Ti alloy wiring and segregate and concentrate at the interface between the insulating film and the Cu-Ti alloy, the alloy element (Ti) is added to the Cu-Ti alloy / It is necessary to move and react to a surface not in contact with the insulating film interface or the insulating film of the Cu-based wiring (Cu-Ti alloy). In order to move and react Ti in this metastable state, it is necessary to heat to 350 ° C. or higher. When the heating temperature is lower than 350 ° C., Ti remains in a solid solution state in Cu or forms an intermetallic compound with Cu. In either case, the electrical resistivity cannot be sufficiently lowered, and the effective electrical resistivity of the wiring is increased, which is not preferable. The heating temperature is preferably 400 ° C. or higher. On the other hand, even if the heating temperature is too high, Ti does not easily move or react in the metastable state, so the upper limit of the heating temperature is 600 ° C. Preferably it is 500 degrees C or less.
〈加熱時間:10〜120min.〉
上記加熱温度での準安定状態での合金元素(Ti)の移動・反応は、10min.(分)以内にほぼ完了するが、本発明では、上記Tiの移動・反応を十分促進させるため、上記加熱温度での保持時間(加熱時間)を10min.以上とする。一方、加熱時間を長くしすぎても、電気抵抗率の低減効果は飽和し、生産性の低下を招くことから、加熱時間は120min.以下とする。
<Heating time: 10 to 120 min.>
Although the movement / reaction of the alloy element (Ti) in the metastable state at the heating temperature is almost completed within 10 min. (Min), in the present invention, in order to sufficiently promote the movement / reaction of the Ti, The holding time (heating time) at the heating temperature is 10 min. On the other hand, even if the heating time is too long, the effect of reducing the electrical resistivity is saturated and the productivity is lowered, so the heating time is 120 min. Or less.
〈室温から上記加熱温度までの昇温速度:10℃/min.以上〉
Cu−Ti合金中の合金元素(Ti)を移動(拡散)させるには、多数の拡散路(高速拡散路)が必要であり、高速拡散路として貫通粒界を形成させる必要がある。この貫通粒界は、上記加熱温度域(350〜600℃)での加熱により形成されるが、昇温速度が速いほど、柱状晶の多結晶組織が形成されやすく貫通粒界が多く形成される。よって、室温から上記加熱温度までの昇温速度は10℃/min.以上とする。
<Temperature increase rate from room temperature to the above heating temperature: 10 ° C./min. Or more>
In order to move (diffuse) the alloying element (Ti) in the Cu—Ti alloy, a large number of diffusion paths (high-speed diffusion paths) are required, and it is necessary to form through grain boundaries as high-speed diffusion paths. This through grain boundary is formed by heating in the heating temperature range (350 to 600 ° C.). As the rate of temperature increase is faster, a columnar crystal structure is more likely to be formed, and more through grain boundaries are formed. . Therefore, the rate of temperature increase from room temperature to the heating temperature is set to 10 ° C./min.
〈加熱雰囲気における酸素分圧:1×10−7〜1×10−4atm〉
Cu−Ti合金中の合金元素(Ti)をCu系配線(Cu−Ti合金)の絶縁膜と接触していない面に移動(拡散)させるには、上記面で反応を促進させる物質が必要であり、この場合酸素が有効である。十分にTiを移動(拡散)させて、電気抵抗率を低減すべく、加熱雰囲気における酸素分圧を1×10−7atm以上とする。一方、加熱雰囲気における酸素分圧が高すぎると、加熱の初期段階においてTiの酸化物が表面や結晶粒界に強固に形成されて、Tiの高速拡散経路がふさがれてしまうため、電気抵抗率の低減を図ることができない。よって本発明では、加熱雰囲気における酸素分圧を1×10−4atm以下とする。
<Oxygen partial pressure in a heated atmosphere: 1 × 10 −7 to 1 × 10 −4 atm>
In order to move (diffuse) the alloy element (Ti) in the Cu-Ti alloy to a surface not in contact with the insulating film of the Cu-based wiring (Cu-Ti alloy), a substance that promotes the reaction on the surface is required. Yes, oxygen is effective in this case. In order to sufficiently move (diffuse) Ti and reduce electric resistivity, the oxygen partial pressure in the heating atmosphere is set to 1 × 10 −7 atm or more. On the other hand, if the oxygen partial pressure in the heating atmosphere is too high, Ti oxide is firmly formed on the surface and grain boundaries in the initial stage of heating, and the high-speed diffusion path of Ti is blocked. Cannot be reduced. Therefore, in this invention, the oxygen partial pressure in a heating atmosphere shall be 1 * 10 < -4 > atm or less.
上記条件での加熱は、以下の時期に行うことが挙げられる。 Heating under the above conditions can be performed at the following times.
上記(1)の場合には、(1−1)Cu−Ti合金(薄膜)を、凹部を覆うようにスパッタリングで形成後、Cu−Ti合金を前記凹部に埋め込むための加熱時、または加熱および加圧時に、上記条件で加熱することが挙げられる。また、(1−2)Cu−Ti合金(薄膜)を、凹部を覆うようにスパッタリングで形成し、該Cu−Ti合金(薄膜)を前記凹部に埋め込んで配線を形成した後、上記条件で加熱することが挙げられる。尚、前記埋め込みのための加圧の条件や、(1−2)の場合の埋め込みのための加熱の条件は、通常行われている条件を採用することができる。 In the case of (1) above, (1-1) a Cu—Ti alloy (thin film) is formed by sputtering so as to cover the recess, and then heated to embed the Cu—Ti alloy in the recess, or Heating under the above conditions at the time of pressurization can be mentioned. Further, (1-2) a Cu—Ti alloy (thin film) is formed by sputtering so as to cover the recess, and the Cu—Ti alloy (thin film) is embedded in the recess to form a wiring, and then heated under the above conditions. To do. In addition, the conditions currently performed can be employ | adopted for the pressurization conditions for the said embedding, and the heating conditions for the embedding in the case of (1-2).
上記(2)の場合には、凹部に沿ってCu−Ti合金層をスパッタリングで形成した後、純Cuからなる配線本体部を形成(電解めっき法やスパッタリング法等で形成)する前にまたは後に、上記条件で加熱することが挙げられる。 In the case of (2) above, after forming the Cu—Ti alloy layer by sputtering along the recess, before or after forming the wiring main body portion made of pure Cu (formed by electrolytic plating, sputtering, etc.) And heating under the above conditions.
尚、本発明の製造方法は、特定のCu−Ti合金をスパッタリング法で形成後、上記条件で該Cu−Ti合金を加熱する工程を設けるところに特徴があり、その他の製造工程・条件については特に問わず、例えば、下記の条件を採用することができる。 In addition, the manufacturing method of the present invention is characterized in that after a specific Cu—Ti alloy is formed by a sputtering method, a step of heating the Cu—Ti alloy under the above conditions is provided. For other manufacturing steps and conditions, For example, the following conditions can be employed regardless of the particular conditions.
前記絶縁膜としては、シリコン酸化膜(SiO2)や、このシリコン酸化膜(SiO2)にCを含有させたSiCOやSiCNなどを用いることができる。 As the insulating film, a silicon oxide film (SiO 2 ), SiCO containing SiC in the silicon oxide film (SiO 2 ), SiCN, or the like can be used.
上記(2)のCu系配線を形成する場合の純Cuをフル配線(配線本体部)として埋め込む方法についても特に限定されず、例えば、電解めっき法や化学気相法(CVD法)、スパッタリング法、(アーク)イオンプレーティング法などを採用できる。特に電解めっき法を採用すれば、純Cuを、Cu−Ti合金層付き凹部の底から徐々に埋め込みながら充填することができるため、凹部の最小幅が狭く、深い場合でも純Cuを凹部の隅々に亘って埋め込むことができる。尚、スパッタリング法の場合は、まず純Cu薄膜を、Cu−Ti合金層付き凹部を覆うように形成した後、この純Cu薄膜を該Cu−Ti合金からなる層付き凹部に埋め込むのがよい。この場合、スパッタリング法の条件や埋め込み時の条件(埋め込み時に上記条件で加熱する場合の加熱条件を除く)として、上記特許文献1に記載の条件を採用することができる。
The method of embedding pure Cu as a full wiring (wiring body part) in the case of forming the Cu-based wiring of (2) is not particularly limited. For example, an electrolytic plating method, a chemical vapor deposition method (CVD method), a sputtering method is used. , (Arc) ion plating method and the like can be employed. In particular, if electrolytic plating is employed, pure Cu can be filled while gradually filling from the bottom of the recess with the Cu-Ti alloy layer, so that even if the minimum width of the recess is narrow and deep, pure Cu is filled in the corners of the recess. It can be embedded throughout. In the case of the sputtering method, first, a pure Cu thin film is preferably formed so as to cover the concave portion with the Cu—Ti alloy layer, and then this pure Cu thin film is embedded in the concave portion with the layer made of the Cu—Ti alloy. In this case, the conditions described in
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
[実施例1]
シリコンウェハー表面に、絶縁膜としてSiCO膜を厚みが100nmとなるように形成した基板を用意し、該絶縁膜の表面に、Cu−1.0原子%(at%)Ti合金薄膜を、DCマグネトロンスパッタリング法で膜厚が300nmとなるように成膜した。スパッタリング条件(成膜条件)は下記の通りとし、ターゲットとしてチップオンターゲットを用いてCu合金薄膜の組成を調整した。尚、上記チップオンターゲットとして、ベースとなる純Cuターゲット(80mmφ)の表面に、Tiチップ(厚みが1mmの長方形板材)を3〜6枚放射状に貼り付けたものを用いた。
[Example 1]
A substrate on which a SiCO film as an insulating film is formed to a thickness of 100 nm is prepared on the surface of a silicon wafer, and a Cu-1.0 atomic% (at%) Ti alloy thin film is formed on the surface of the insulating film by a DC magnetron. A film was formed by a sputtering method so as to have a film thickness of 300 nm. The sputtering conditions (film formation conditions) were as follows, and the composition of the Cu alloy thin film was adjusted using a chip-on target as a target. As the chip-on target, a chip in which 3 to 6 Ti chips (rectangular plates having a thickness of 1 mm) were radially attached to the surface of a pure Cu target (80 mmφ) serving as a base was used.
(成膜条件)
到達真空度:1×10−8Torr以下
スパッタリング時の雰囲気ガス:Ar
スパッタガス圧:8×10−3Torr
放電パワー: 300W
ターゲットサイズ:φ80mm
基板温度(Ts):RT(水冷)
極間距離:100mm
(Deposition conditions)
Ultimate vacuum: 1 × 10 −8 Torr or less Atmospheric gas during sputtering: Ar
Sputtering gas pressure: 8 × 10 -3 Torr
Discharge power: 300W
Target size: φ80mm
Substrate temperature (Ts): RT (water cooling)
Distance between electrodes: 100mm
成膜して得られた試料(Cu合金薄膜)を、石英管を使用した横型管状炉に入れて熱処理した。熱処理は、熱処理雰囲気を、真空度を変化させた真空雰囲気または純度(残留酸素濃度)の異なるArガスをフローさせた雰囲気(Ar流量:20mL/min.)とすることにより横型管状炉内の酸素分圧を変化させた。昇温速度:200℃/min.で室温から400℃まで加熱し、2時間保持する熱処理を行って、熱処理を施した試料(Cu合金薄膜)を得た。 A sample (Cu alloy thin film) obtained by film formation was placed in a horizontal tubular furnace using a quartz tube and heat-treated. The heat treatment is performed by changing the heat treatment atmosphere to a vacuum atmosphere in which the degree of vacuum is changed or an atmosphere (Ar flow rate: 20 mL / min.) In which Ar gas having a different purity (residual oxygen concentration) is flowed. The partial pressure was changed. Heating rate: Heated from room temperature to 400 ° C. at 200 ° C./min. And subjected to heat treatment for 2 hours to obtain a heat-treated sample (Cu alloy thin film).
次に、As−deposited(非熱処理)状態の試料および前記熱処理を施した試料について、4探針法によりCu合金薄膜のシート抵抗を測定し、膜厚を乗じてCu合金薄膜の電気抵抗率(μΩ・cm)を算出した。 Next, the sheet resistance of the Cu alloy thin film was measured by a four-probe method for the sample in the As-deposited (non-heat treated) state and the sample subjected to the heat treatment, and the electrical resistivity ( μΩ · cm) was calculated.
熱処理雰囲気中の酸素分圧と試料の電気抵抗率の関係を整理した結果を図1に示す。図1より、電気抵抗率は、熱処理時の酸素分圧によって異なり、電気抵抗率が最小となる最適酸素分圧域が存在することが分かる。具体的には、熱処理雰囲気において、酸素分圧を本発明で規定した1×10−7〜1×10−4atmとすることによって、4μΩ・cm以下の低電気抵抗率を達成できることが分かる。尚、As−deposited(非熱処理)状態の試料の電気抵抗率は16〜20μΩ・cmであった。 FIG. 1 shows the result of organizing the relationship between the oxygen partial pressure in the heat treatment atmosphere and the electrical resistivity of the sample. As can be seen from FIG. 1, the electrical resistivity varies depending on the oxygen partial pressure during the heat treatment, and there exists an optimum oxygen partial pressure region in which the electrical resistivity is minimized. Specifically, it can be seen that a low electrical resistivity of 4 μΩ · cm or less can be achieved by setting the oxygen partial pressure in the heat treatment atmosphere to 1 × 10 −7 to 1 × 10 −4 atm defined in the present invention. In addition, the electrical resistivity of the sample in an As-deposited (non-heat treated) state was 16 to 20 μΩ · cm.
[実施例2]
上記熱処理において、室温から500℃まで加熱し、加熱温度:500℃で保持する以外は、実施例1と同様にして、試料を作製し電気抵抗率を測定した。
[Example 2]
In the heat treatment, a sample was prepared and the electrical resistivity was measured in the same manner as in Example 1 except that the sample was heated from room temperature to 500 ° C. and kept at a heating temperature of 500 ° C.
熱処理雰囲気中の酸素分圧と試料の電気抵抗率の関係を整理した結果を図2に示す。図2より、400℃で熱処理した場合と比較して、電気抵抗率は全体的にやや低下しており、電気抵抗率の酸素分圧依存性は前記図1(熱処理時の加熱温度:400℃)の場合と同様の傾向を示している。即ち、電気抵抗率が最小となる最適酸素分圧域が存在すると推察され、電気抵抗率が最小となる最適酸素分圧域は、熱処理時の加熱温度が400℃の場合と同様と考えられる。 FIG. 2 shows the results of organizing the relationship between the oxygen partial pressure in the heat treatment atmosphere and the electrical resistivity of the sample. From FIG. 2, the electrical resistivity is slightly lowered as compared with the case of heat treatment at 400 ° C., and the oxygen partial pressure dependency of the electrical resistivity is the same as that shown in FIG. 1 (heating temperature during heat treatment: 400 ° C. ) Shows the same trend. That is, it is presumed that there exists an optimum oxygen partial pressure region where the electric resistivity is minimized, and the optimum oxygen partial pressure region where the electric resistivity is minimized is considered to be the same as when the heating temperature during the heat treatment is 400 ° C.
[実施例3]
上記熱処理において、室温から600℃まで加熱し、加熱温度:600℃で保持する以外は、実施例1と同様にして、試料を作製し電気抵抗率を測定した。
[Example 3]
In the above heat treatment, a sample was prepared and the electrical resistivity was measured in the same manner as in Example 1 except that the sample was heated from room temperature to 600 ° C. and held at a heating temperature of 600 ° C.
熱処理雰囲気中の酸素分圧と試料の電気抵抗率の関係を整理した結果を図3に示す。図3より、400℃で熱処理した場合と比較して、電気抵抗率は全体的に低下しており、電気抵抗率の酸素分圧依存性は前記図1(熱処理時の加熱温度:400℃)の場合と同様の傾向を示している。即ち、電気抵抗率が最小となる最適酸素分圧域が存在すると推察され、電気抵抗率が最小となる最適酸素分圧域は、熱処理時の加熱温度が400℃の場合と同様と考えられる。 FIG. 3 shows the result of organizing the relationship between the oxygen partial pressure in the heat treatment atmosphere and the electrical resistivity of the sample. From FIG. 3, the electrical resistivity is generally reduced as compared with the case where the heat treatment is performed at 400 ° C., and the oxygen partial pressure dependency of the electrical resistivity is as shown in FIG. 1 (heating temperature during heat treatment: 400 ° C.). The same tendency as in the case of. That is, it is presumed that there exists an optimum oxygen partial pressure region where the electric resistivity is minimized, and the optimum oxygen partial pressure region where the electric resistivity is minimized is considered to be the same as when the heating temperature during the heat treatment is 400 ° C.
[実施例4]
絶縁膜として、SiO2膜、SiCO膜またはSiCN膜を形成した以外は、実施例1と同様にして、試料を作製し電気抵抗率を測定した。
[Example 4]
A sample was prepared and the electrical resistivity was measured in the same manner as in Example 1 except that a SiO 2 film, a SiCO film, or a SiCN film was formed as an insulating film.
熱処理雰囲気(加熱雰囲気)中の酸素分圧と試料の電気抵抗率の関係を、絶縁膜の種類別に図4に示す。図4より、電気抵抗率は熱処理時の酸素分圧によって異なるが、絶縁膜の種類によってはほとんど変化しないことが分かる。 FIG. 4 shows the relationship between the oxygen partial pressure in the heat treatment atmosphere (heating atmosphere) and the electrical resistivity of the sample for each type of insulating film. FIG. 4 shows that the electrical resistivity varies depending on the oxygen partial pressure during the heat treatment, but hardly changes depending on the type of the insulating film.
[実施例5]
絶縁膜としてSiO2膜を形成したこと、および熱処理において、熱処理雰囲気(加熱雰囲気)中の酸素分圧を2×10−6atmとし、加熱温度(室温からの到達温度)を350℃から600℃の間で変化させた以外は、実施例1と同様にして、試料を作製し電気抵抗率を測定した。
[Example 5]
To the formation of the SiO 2 film as the insulating film, and in the heat treatment, the oxygen partial pressure in the heat treatment atmosphere (heating atmosphere) and 2 × 10 -6 atm, 600 ℃ heating temperature (temperature reached room temperature) from 350 ° C. A sample was prepared and the electrical resistivity was measured in the same manner as in Example 1 except that the electric resistance was changed.
熱処理時の加熱温度と試料の電気抵抗率の関係を整理した結果を図5に示す。図5より、電気抵抗率は熱処理時の加熱温度が高くなるにつれて低下していくことが分かる。 The result of arranging the relationship between the heating temperature during the heat treatment and the electrical resistivity of the sample is shown in FIG. FIG. 5 shows that the electrical resistivity decreases as the heating temperature during the heat treatment increases.
[実施例6]
絶縁膜としてSiO2膜を形成したこと、および熱処理において、熱処理雰囲気中の酸素分圧を2×10−6atmとし、加熱温度:400℃での加熱時間を0〜120min.の間で変化させた以外は、実施例1と同様にして、試料を作製し電気抵抗率を測定した。
[Example 6]
In forming the SiO 2 film as the insulating film and in the heat treatment, the oxygen partial pressure in the heat treatment atmosphere is set to 2 × 10 −6 atm, and the heating time at 400 ° C. is changed between 0 to 120 min. Except for the above, a sample was prepared and the electrical resistivity was measured in the same manner as in Example 1.
熱処理時の加熱時間(加熱温度で保持する時間)と試料の電気抵抗率の関係を整理した結果を図6に示す。図6より、試料の電気抵抗率は熱処理することで急激に低下し、電気抵抗率:4μΩ・cm以下を達成するには、加熱時間を10min.以上とすればよいこと、および長時間の熱処理を行っても電気抵抗率低下の効果は飽和することが分かる。 FIG. 6 shows the results of arranging the relationship between the heating time during heat treatment (the time for holding at the heating temperature) and the electrical resistivity of the sample. From FIG. 6, the electrical resistivity of the sample rapidly decreases by heat treatment, and in order to achieve an electrical resistivity of 4 μΩ · cm or less, it is necessary to set the heating time to 10 min. It can be seen that the effect of lowering the electrical resistivity is saturated even if the process is performed.
Claims (2)
前記Cu−Ti合金がTiを0.5原子%以上3.0原子%以下含むものであり、かつ、
前記Cu−Ti合金をスパッタリング法で形成し、該Cu−Ti合金を前記凹部に埋め込む時または埋め込み後に、該Cu−Ti合金を下記加熱条件で加熱する工程を含むことを特徴とする半導体配線の製造方法。
(加熱条件)
加熱温度:350〜600℃
加熱時間:10〜120min.
室温から上記加熱温度までの昇温速度:10℃/min.以上
加熱雰囲気における酸素分圧:1×10−7〜1×10−4atm A method for manufacturing a semiconductor wiring, in which a Cu-Ti alloy is directly embedded in a recess provided in an insulating film on a semiconductor substrate,
The Cu-Ti alloy contains 0.5 atomic% to 3.0 atomic% of Ti, and
Forming a Cu-Ti alloy by sputtering and heating the Cu-Ti alloy under the following heating conditions when or after the Cu-Ti alloy is embedded in the recess. Production method.
(Heating conditions)
Heating temperature: 350-600 ° C
Heating time: 10 to 120 min.
Temperature increase rate from room temperature to the above heating temperature: 10 ° C./min. Or more Oxygen partial pressure in a heating atmosphere: 1 × 10 −7 to 1 × 10 −4 atm
前記Cu−Ti合金がTiを0.5原子%以上3.0原子%以下含むものであり、かつ、
前記Cu−Ti合金からなる層をスパッタリング法で形成する工程、および該Cu−Ti合金からなる層を下記加熱条件で加熱する工程を含むことを特徴とする半導体配線の製造方法。
(加熱条件)
加熱温度:350〜600℃
加熱時間:10〜120min.
室温から上記加熱温度までの昇温速度:10℃/min.以上
加熱雰囲気における酸素分圧:1×10−7〜1×10−4atm A semiconductor wiring manufacturing method in which a layer made of a Cu-Ti alloy is formed along a recess provided in an insulating film on a semiconductor substrate, and then pure Cu is embedded in the recess with the layer made of the Cu-Ti alloy. There,
The Cu-Ti alloy contains 0.5 atomic% to 3.0 atomic% of Ti, and
A method of manufacturing a semiconductor wiring, comprising: a step of forming a layer made of the Cu-Ti alloy by a sputtering method; and a step of heating the layer made of the Cu-Ti alloy under the following heating conditions.
(Heating conditions)
Heating temperature: 350-600 ° C
Heating time: 10 to 120 min.
Temperature increase rate from room temperature to the above heating temperature: 10 ° C./min. Or more Oxygen partial pressure in a heating atmosphere: 1 × 10 −7 to 1 × 10 −4 atm
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009009971A JP2010171063A (en) | 2009-01-20 | 2009-01-20 | Method of manufacturing semiconductor wiring |
PCT/JP2010/050514 WO2010084844A1 (en) | 2009-01-20 | 2010-01-18 | Method for producing semiconductor wiring line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009009971A JP2010171063A (en) | 2009-01-20 | 2009-01-20 | Method of manufacturing semiconductor wiring |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010171063A true JP2010171063A (en) | 2010-08-05 |
Family
ID=42355898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009009971A Pending JP2010171063A (en) | 2009-01-20 | 2009-01-20 | Method of manufacturing semiconductor wiring |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010171063A (en) |
WO (1) | WO2010084844A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9240485B2 (en) | 2013-03-21 | 2016-01-19 | Boe Technology Group Co., Ltd. | Thin film transistor and method for manufacturing the same, array substrate and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007157959A (en) * | 2005-12-05 | 2007-06-21 | Sony Corp | Method of manufacturing semiconductor device, and semiconductor device |
JP2007258256A (en) * | 2006-03-20 | 2007-10-04 | Kobe Steel Ltd | Manufacturing method of semiconductor wiring |
JP2008021807A (en) * | 2006-07-12 | 2008-01-31 | Kobe Steel Ltd | Manufacturing method of semiconductor wiring |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4478038B2 (en) * | 2004-02-27 | 2010-06-09 | 株式会社半導体理工学研究センター | Semiconductor device and manufacturing method thereof |
JP5076482B2 (en) * | 2006-01-20 | 2012-11-21 | 富士通セミコンダクター株式会社 | Manufacturing method of semiconductor device |
-
2009
- 2009-01-20 JP JP2009009971A patent/JP2010171063A/en active Pending
-
2010
- 2010-01-18 WO PCT/JP2010/050514 patent/WO2010084844A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007157959A (en) * | 2005-12-05 | 2007-06-21 | Sony Corp | Method of manufacturing semiconductor device, and semiconductor device |
JP2007258256A (en) * | 2006-03-20 | 2007-10-04 | Kobe Steel Ltd | Manufacturing method of semiconductor wiring |
JP2008021807A (en) * | 2006-07-12 | 2008-01-31 | Kobe Steel Ltd | Manufacturing method of semiconductor wiring |
Non-Patent Citations (1)
Title |
---|
JPN6013020249; K.Ito et al: 'Self-Formation of Ti-rich Interfacial Layers in Cu(Ti) Alloy Films' Japanese Journal of Applied Physics Vol.46, No.4B, 20070424, p.1942-1946 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9240485B2 (en) | 2013-03-21 | 2016-01-19 | Boe Technology Group Co., Ltd. | Thin film transistor and method for manufacturing the same, array substrate and display device |
Also Published As
Publication number | Publication date |
---|---|
WO2010084844A1 (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5939788A (en) | Copper diffusion barrier, aluminum wetting layer and improved methods for filling openings in silicon substrates with cooper | |
CN109844930B (en) | Doped selective metal coverage with ruthenium liner to improve copper electromigration | |
JP5501586B2 (en) | Manufacturing method of semiconductor device | |
US6554914B1 (en) | Passivation of copper in dual damascene metalization | |
US6607982B1 (en) | High magnesium content copper magnesium alloys as diffusion barriers | |
TWI518843B (en) | Interconnect structure and method for forming interconnect structure | |
TWI374482B (en) | ||
JP4152202B2 (en) | Manufacturing method of semiconductor device | |
JP4740004B2 (en) | Method for manufacturing Cu alloy wiring in semiconductor device | |
US7939421B2 (en) | Method for fabricating integrated circuit structures | |
US20120273948A1 (en) | Integrated circuit structure including a copper-aluminum interconnect and method for fabricating the same | |
JP2008021807A (en) | Manufacturing method of semiconductor wiring | |
WO2010073433A1 (en) | Semiconductor device and method for manufacturing same | |
WO2010084844A1 (en) | Method for producing semiconductor wiring line | |
JP2002526926A (en) | Improved method for barrier layer formation | |
WO2010007951A1 (en) | Semiconductor wiring | |
JP2004079835A (en) | Method for manufacturing semiconductor device | |
JP3488586B2 (en) | Method for manufacturing semiconductor device | |
JP2004531900A (en) | Method of selectively alloying interconnect areas by deposition process | |
JP4173393B2 (en) | Manufacturing method of semiconductor device | |
JP2004342977A (en) | Method for manufacturing semiconductor device | |
JPH11283981A (en) | Semiconductor device and manufacture thereof | |
JP2003309082A (en) | Structure of semiconductor device | |
JP2007194566A (en) | Semiconductor device, and its process for fabrication | |
JP2004289008A (en) | Semiconductor integrated circuit device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130430 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130910 |