[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009209830A - Intake noise control device - Google Patents

Intake noise control device Download PDF

Info

Publication number
JP2009209830A
JP2009209830A JP2008055007A JP2008055007A JP2009209830A JP 2009209830 A JP2009209830 A JP 2009209830A JP 2008055007 A JP2008055007 A JP 2008055007A JP 2008055007 A JP2008055007 A JP 2008055007A JP 2009209830 A JP2009209830 A JP 2009209830A
Authority
JP
Japan
Prior art keywords
elastic membrane
intake
elastic
engine
elastic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008055007A
Other languages
Japanese (ja)
Inventor
Yukihisa Okano
恭久 岡野
Tsuneji Shionome
恒二 塩野目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008055007A priority Critical patent/JP2009209830A/en
Publication of JP2009209830A publication Critical patent/JP2009209830A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake noise control device allowing generation of powerful intake noise and capable of improving flexibility of layout. <P>SOLUTION: An elastic film member 16, mounted to a peripheral surface of an intake duct which forms an intake passage to an engine for blocking a communication tube 12 communicating with the intake duct, is composed by comprising elastic film composition parts 30a-30c respectively having overlapping parts 34a-34d which overlap each other in a view from an out-of-plane direction of the elastic film member 16. By changing a contact area of the overlapping parts 34a-34d according to change of intake negative pressure generated in the intake duct, rigidity to the out-of-plane direction of the elastic film member 16 is changed. In accelerating a vehicle, the intake noise increased by vibration of the elastic film member is transmitted into a vehicle room via a dash panel to introduce the powerful intake noise into the vehicle room. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、自動車等の吸気系から発生する吸気音の音質向上を図るための装置に関する。   The present invention relates to an apparatus for improving the quality of intake sound generated from an intake system of, for example, an automobile.

従来から、車両の走行時、特に、エンジンを高負荷で作動させる加速時において、吸気ダクト内で発生する吸気音を車室内に導入することにより、迫力感のある吸気音を得ることが可能な吸気音調節装置が考案されている。なお、上記の吸気ダクトとは、外気からエンジンへの吸気通路を形成する管状部材である。
このような吸気音調節装置としては、例えば、特許文献1に記載されているものがある。
この吸気音調節装置は、互いに異なる共振周波数を持つ複数の吸気ダクトを備えている。複数の吸気ダクトは、エンジンルーム内に配置してある。
Conventionally, it is possible to obtain a powerful intake sound by introducing the intake sound generated in the intake duct when the vehicle is running, particularly when the engine is operated at a high load. An intake sound control device has been devised. The intake duct is a tubular member that forms an intake passage from outside air to the engine.
As such an intake sound adjusting device, for example, there is one described in Patent Document 1.
This intake sound adjusting device includes a plurality of intake ducts having different resonance frequencies. The plurality of intake ducts are arranged in the engine room.

そして、車両の走行時における加速時等、エンジンを高負荷で作動させる状況において、エンジン回転数の上昇に応じて複数の吸気ダクトで吸気音を発生させる。これにより、エンジン回転数の上昇に応じて音圧レベルをリニアに上昇させ、迫力感のある吸気音を車室内に導入するものである。
特許第3613665号公報
In a situation where the engine is operated with a high load, such as when the vehicle is accelerating, intake noise is generated in a plurality of intake ducts in response to an increase in engine speed. As a result, the sound pressure level is linearly increased in accordance with the increase in the engine speed, and a powerful intake sound is introduced into the vehicle interior.
Japanese Patent No. 3613665

しかしながら、特許文献1に記載されている吸気音調節装置は、エンジンの高負荷時において、エンジン回転数の上昇に応じて音圧レベルをリニアに上昇させるために、互いに異なる共振周波数を持つ複数の吸気ダクトを備えている。
このため、エンジンルーム内の空間に余裕が無い場合等、レイアウトの制限を受けてしまう場合があり、エンジンルーム内への配置が困難となるという問題が発生するおそれがある。
本発明は、上記のような問題点に着目してなされたもので、複数の吸気ダクトを必要とせずに複数の共振周波数を発生可能とすることが可能な、吸気音調節装置を提供することを課題とする。
However, the intake sound adjusting device described in Patent Document 1 has a plurality of resonance frequencies different from each other in order to linearly increase the sound pressure level in response to an increase in the engine speed at a high engine load. It has an intake duct.
For this reason, when there is no room in the engine room, the layout may be restricted, which may cause a problem that the arrangement in the engine room becomes difficult.
The present invention has been made paying attention to the above-mentioned problems, and provides an intake sound adjusting device capable of generating a plurality of resonance frequencies without requiring a plurality of intake ducts. Is an issue.

上記課題を解決するために、本発明は、エンジンへの吸気通路と連通する連通管を弾性膜部材で閉塞する吸気音調節装置であって、
前記弾性膜部材が備える複数の弾性膜構成部が、前記弾性膜部材の面外方向から見て互いに重なる重なり部を有する。
In order to solve the above problems, the present invention is an intake sound adjusting device that closes a communication pipe communicating with an intake passage to an engine with an elastic membrane member,
The plurality of elastic film constituent parts provided in the elastic film member have overlapping portions that overlap each other when viewed from the out-of-plane direction of the elastic film member.

本発明によれば、複数の吸気ダクトを必要とせずに、複数の共振周波数を強調することが可能となり、迫力感のある吸気音を発生させることが可能となるとともに、レイアウトの自由度を向上可能となる。   According to the present invention, it is possible to emphasize a plurality of resonance frequencies without the need for a plurality of intake ducts, and it is possible to generate a powerful intake sound and improve the flexibility of layout. It becomes possible.

以下、本発明の実施形態について図面を参照しつつ説明する。
(第一実施形態)
(構成)
まず、図1を参照して、吸気音調節装置1を備える車両Cの構成を説明する。
図1は、本実施形態の吸気音調節装置1を備える車両Cを示す図であり、図1(a)は車両Cを左側方から見た状態を示す図である。また、図1(b)は車両Cを上方から見た状態を示す図であり、図1(c)は車両Cを前方から見た状態を示す図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
(Constitution)
First, with reference to FIG. 1, the structure of the vehicle C provided with the intake sound adjustment apparatus 1 is demonstrated.
FIG. 1 is a diagram illustrating a vehicle C including the intake sound adjustment device 1 of the present embodiment, and FIG. 1A is a diagram illustrating a state in which the vehicle C is viewed from the left side. FIG. 1B is a diagram illustrating a state in which the vehicle C is viewed from above, and FIG. 1C is a diagram illustrating a state in which the vehicle C is viewed from the front.

図1中に示すように、本実施形態の吸気音調節装置1は、車室2の前方に設けたエンジンルーム4内に配置してあり、エンジン6と連通させる吸気ダクト8に備えてある。
エンジンルーム4は、ダッシュパネル10によって車室2と隔離した空間である。
吸気ダクト8は、円筒形状に形成した管状部材であり、内部に気体が存在する通気管である。
As shown in FIG. 1, the intake sound adjusting device 1 of the present embodiment is disposed in an engine room 4 provided in front of the passenger compartment 2 and is provided in an intake duct 8 that communicates with the engine 6.
The engine room 4 is a space separated from the vehicle compartment 2 by the dash panel 10.
The intake duct 8 is a tubular member formed in a cylindrical shape, and is a vent pipe in which gas exists.

次に、図2を参照して、吸気音調節装置1の詳細な構成を説明する。
図2は、吸気音調節装置1の構成を示す図である。
図2中に示すように、吸気音調節装置1は、連通管12と、追加管14と、弾性膜部材16とを備えている。
連通管12は、吸気ダクト8と同様、円筒形状に形成した管状部材であり、吸気ダクト8の外周面に、吸気ダクト8と連通させて取り付けてある。
Next, a detailed configuration of the intake sound adjusting device 1 will be described with reference to FIG.
FIG. 2 is a diagram illustrating a configuration of the intake sound adjustment device 1.
As shown in FIG. 2, the intake sound adjusting device 1 includes a communication pipe 12, an additional pipe 14, and an elastic film member 16.
Similar to the intake duct 8, the communication pipe 12 is a tubular member formed in a cylindrical shape, and is attached to the outer peripheral surface of the intake duct 8 so as to communicate with the intake duct 8.

追加管14は、連通管12と同様、円筒形状に形成した管状部材であり、連通管12よりも長尺の管である。
追加管14の一方の開口端は、連通管12と連結させてある。一方、追加管14の他方の開口端は、外気中へ開放させてある。
弾性膜部材16は、例えば、ゴム等の弾性体を用いて円板状に形成してあり、連通管12の内周面に取り付けて、連通管12を閉塞している。
また、弾性膜部材16は、エンジン6の吸気工程において吸気ダクト8内の気体に生じる吸気負圧の変化に応じて弾性変形することにより、その面外方向へ振動する。弾性膜部材16の詳細な構成については、後述する。
The additional pipe 14 is a tubular member formed in a cylindrical shape like the communication pipe 12, and is a pipe longer than the communication pipe 12.
One open end of the additional pipe 14 is connected to the communication pipe 12. On the other hand, the other open end of the additional pipe 14 is opened to the outside air.
The elastic membrane member 16 is formed in a disk shape using an elastic body such as rubber, for example, and is attached to the inner peripheral surface of the communication pipe 12 to close the communication pipe 12.
The elastic membrane member 16 vibrates in the out-of-plane direction by elastically deforming in accordance with a change in intake negative pressure generated in the gas in the intake duct 8 in the intake process of the engine 6. The detailed configuration of the elastic film member 16 will be described later.

以下、吸気ダクト8及び吸気ダクト8と関連する部分の構成について説明する。
吸気ダクト8は、外気からエンジン6への吸気通路を形成しており、ダストサイド側吸気ダクト18と、クリーンサイド側吸気ダクト20とを備えている。
ダストサイド側吸気ダクト18の一方の開口端は、エアクリーナ22に連結させてある。一方、ダストサイド側吸気ダクト18の他方の開口端は、外気中に開放させてある。
Hereinafter, the configuration of the intake duct 8 and portions related to the intake duct 8 will be described.
The intake duct 8 forms an intake passage from outside air to the engine 6, and includes a dust side intake duct 18 and a clean side intake duct 20.
One open end of the dust side intake duct 18 is connected to an air cleaner 22. On the other hand, the other open end of the dust side intake duct 18 is opened to the outside air.

クリーンサイド側吸気ダクト20は、スロットルチャンバ24を備えている。
クリーンサイド側吸気ダクト20の一方の開口端は、エアクリーナ22に連結させてある。一方、クリーンサイド側吸気ダクト20の他方の開口端は、後述するサージタンク26及び各インテークマニホールド28を介して、エンジン6が有する各シリンダー(図示せず)に連結させてある。
The clean side intake duct 20 includes a throttle chamber 24.
One open end of the clean side intake duct 20 is connected to an air cleaner 22. On the other hand, the other open end of the clean side intake duct 20 is connected to each cylinder (not shown) of the engine 6 via a surge tank 26 and each intake manifold 28 described later.

エアクリーナ22は、例えば、オイルフィルター等のフィルター部を有しており、吸気ダクト8の他方の開口端から流入させた気体を、フィルター部を通過させることにより清浄化する。
スロットルチャンバ24は、エアクリーナ22とサージタンク26との間における、連通管12よりもエアクリーナ22側の位置に取り付けてあり、アクセルペダル(図示せず)と連結させてある。なお、スロットルチャンバ24を取り付ける位置は、これに限定するものではなく、エアクリーナ22とサージタンク26との間における、連通管12よりもサージタンク26側の位置に取り付けてもよい。
The air cleaner 22 has a filter part such as an oil filter, for example, and cleans the gas introduced from the other opening end of the intake duct 8 by passing through the filter part.
The throttle chamber 24 is attached at a position closer to the air cleaner 22 than the communication pipe 12 between the air cleaner 22 and the surge tank 26, and is connected to an accelerator pedal (not shown). The position where the throttle chamber 24 is attached is not limited to this, and the throttle chamber 24 may be attached at a position closer to the surge tank 26 than the communication pipe 12 between the air cleaner 22 and the surge tank 26.

また、スロットルチャンバ24は、アクセルペダルの踏み込み量に応じて、エアクリーナ22からサージタンク26への通気量を増減させることにより、吸気ダクト8内の気体に生じる吸気負圧を調節する。
具体的には、アクセルペダルの踏み込み量を減少させて、エアクリーナ22からサージタンク26への通気量を減少させると、エンジン6の回転数が低下するとともに、吸気ダクト8内の気体に生じる吸気負圧が減少する。一方、アクセルペダルの踏み込み量を増加させて、エアクリーナ22からサージタンク26への通気量を増加させると、エンジン6の回転数が上昇するとともに、吸気ダクト8内の気体に生じる吸気負圧が増加する。
Further, the throttle chamber 24 adjusts the intake negative pressure generated in the gas in the intake duct 8 by increasing or decreasing the amount of air flow from the air cleaner 22 to the surge tank 26 according to the amount of depression of the accelerator pedal.
Specifically, if the amount of depression of the accelerator pedal is reduced to reduce the amount of ventilation from the air cleaner 22 to the surge tank 26, the rotational speed of the engine 6 is reduced and the intake negative generated in the gas in the intake duct 8 is reduced. Pressure decreases. On the other hand, when the amount of depression of the accelerator pedal is increased to increase the amount of ventilation from the air cleaner 22 to the surge tank 26, the rotational speed of the engine 6 increases and the intake negative pressure generated in the gas in the intake duct 8 increases. To do.

エンジン6は、吸気工程において、クリーンサイド側吸気ダクト20内に存在する気体を、サージタンク26及び各インテークマニホールド28を介して、各シリンダー内へ吸気する。なお、クリーンサイド側吸気ダクト20内に存在する気体とは、ダストサイド側吸気ダクト18の他方の開口端からクリーンサイド側吸気ダクト20内へ流入させる気体である。
また、エンジン6は、吸気動作に伴って、クリーンサイド側吸気ダクト20内に存在する気体に吸気脈動を発生させる圧力源をなしており、この吸気脈動が吸気音を構成する。
In the intake process, the engine 6 sucks the gas existing in the clean side intake duct 20 into each cylinder via the surge tank 26 and each intake manifold 28. The gas existing in the clean side intake duct 20 is a gas that flows into the clean side intake duct 20 from the other opening end of the dust side intake duct 18.
Further, the engine 6 forms a pressure source for generating an intake pulsation in the gas existing in the clean side intake duct 20 in accordance with the intake operation, and the intake pulsation constitutes an intake sound.

ここで、エンジン6の吸気動作に伴って発生する吸気脈動は、クリーンサイド側吸気ダクト20内に存在する気体に発生する圧力変動であり、この圧力変動は、複数の周波数の圧力変動から構成している。すなわち、エンジン6の吸気動作に伴って発生する吸気脈動は、複数の周波数の吸気脈動が構成している。なお、本実施形態では、エンジン6として、六つのシリンダーを有する直列六気筒エンジンを例に挙げて説明するが、エンジン6の構成は、これに限定するものではない。   Here, the intake air pulsation generated in association with the intake operation of the engine 6 is a pressure fluctuation generated in the gas existing in the clean side intake duct 20, and this pressure fluctuation is composed of pressure fluctuations of a plurality of frequencies. ing. In other words, the intake pulsation generated in association with the intake operation of the engine 6 is composed of intake pulsations having a plurality of frequencies. In the present embodiment, an in-line six-cylinder engine having six cylinders will be described as an example of the engine 6, but the configuration of the engine 6 is not limited to this.

次に、図2を参照しつつ、図3から図5を用いて、弾性膜部材16の詳細な構成を説明する。
図3は、図2のIII線矢視図であり、図4は、図2のIV線矢視図である。また、図5は、図3のV−V線断面図である。なお、図3から図5中では、説明のために、連通管12及び弾性膜部材16以外の図示を省略している。また、図3から図5中には、吸気ダクト8内で生じる吸気負圧が、所定の負圧以下である状態を示している。
Next, a detailed configuration of the elastic membrane member 16 will be described with reference to FIG. 2 and FIGS. 3 to 5.
FIG. 3 is a view taken along the line III in FIG. 2, and FIG. 4 is a view taken along the line IV in FIG. FIG. 5 is a cross-sectional view taken along line VV in FIG. 3 to 5, illustrations other than the communication pipe 12 and the elastic membrane member 16 are omitted for the sake of explanation. 3 to 5 show a state in which the intake negative pressure generated in the intake duct 8 is equal to or lower than a predetermined negative pressure.

図3から図5中に示すように、弾性膜部材16は、三つの弾性膜構成部30a〜30cを備えている。なお、図中及び以降の説明では、三つの弾性膜構成部30a〜30cを、連通管12の内周面と近い順に、弾性膜構成部30a、弾性膜構成部30b、弾性膜構成部30cと記載する。
各弾性膜構成部30a〜30cは、ゴム等の弾性を有する同一の材料を用いて形成してある。
As shown in FIGS. 3 to 5, the elastic membrane member 16 includes three elastic membrane constituting portions 30 a to 30 c. In the drawings and the following description, the three elastic membrane constituent portions 30a to 30c are arranged in the order closer to the inner peripheral surface of the communication pipe 12, the elastic membrane constituent portion 30a, the elastic membrane constituent portion 30b, and the elastic membrane constituent portion 30c. Describe.
Each elastic membrane component 30a-30c is formed using the same material which has elasticity, such as rubber.

弾性膜構成部30aは、円環状に形成してある。
弾性膜構成部30aの外周部は、接着等の固着手段を用いて、連通管12の内周面に固定してある。一方、弾性膜構成部30aの内周部は、弾性膜構成部30bの吸気ダクト8側の面に接触させてある。
弾性膜構成部30aの外周部と内周部との間には、弾性膜構成部30aの外周部における連通管12の内周面との固定面よりも吸気ダクト8側へ突出する凹部32aを形成してある。凹部32aを形成する両壁面のうち、外周部側の壁面は、内周部側の壁面よりも、弾性膜部材16の面外方向に沿った高さを低くしてある。これにより、弾性膜構成部30aのうち、凹部32aよりも内周部側の部分のみで、弾性膜構成部30aと弾性膜構成部30bとを接触させている。
The elastic membrane constituting part 30a is formed in an annular shape.
The outer peripheral part of the elastic membrane constituting part 30a is fixed to the inner peripheral surface of the communication pipe 12 by using an adhering means such as adhesion. On the other hand, the inner peripheral portion of the elastic membrane constituting portion 30a is in contact with the surface of the elastic membrane constituting portion 30b on the intake duct 8 side.
Between the outer peripheral part and the inner peripheral part of the elastic membrane constituting part 30a, there is a recess 32a that protrudes to the intake duct 8 side from the fixed surface of the outer peripheral part of the elastic film constituting part 30a with the inner peripheral surface of the communication pipe 12. It is formed. Of both wall surfaces forming the recess 32a, the wall surface on the outer peripheral portion side has a lower height along the out-of-plane direction of the elastic film member 16 than the wall surface on the inner peripheral portion side. Thereby, the elastic film constituent part 30a and the elastic film constituent part 30b are brought into contact with each other only in the inner peripheral part side of the concave part 32a in the elastic film constituent part 30a.

また、弾性膜構成部30aの外周部と内周部との間のうち、凹部32aと、凹部32aよりも外周側の一部は、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34aを形成する。すなわち、弾性膜構成部30aは、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34aを有する。
弾性膜構成部30bは、弾性膜構成部30aと同様、円環状に形成してある。
弾性膜構成部30bの外周部は、凹部32aよりも弾性膜構成部30aの外周部側へ突出させてあり、弾性膜部材16の面外方向から見て、弾性膜構成部30aと重なる位置に配置させてある。一方、弾性膜構成部30bの内周部は、弾性膜構成部30cの吸気ダクト8側の面に接触させてある。
In addition, between the outer peripheral portion and the inner peripheral portion of the elastic membrane constituent portion 30a, the concave portion 32a and a part on the outer peripheral side of the concave portion 32a are seen from the out-of-plane direction of the elastic membrane member 16, and the elastic membrane configuration An overlapping portion 34a that overlaps the portion 30b is formed. In other words, the elastic membrane constituting portion 30a has an overlapping portion 34a that overlaps the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16.
Similar to the elastic membrane component 30a, the elastic membrane component 30b is formed in an annular shape.
The outer peripheral portion of the elastic membrane constituting portion 30b is projected to the outer peripheral portion side of the elastic membrane constituting portion 30a with respect to the concave portion 32a, and is located at a position overlapping the elastic membrane constituting portion 30a when viewed from the out-of-plane direction of the elastic membrane member 16. It is arranged. On the other hand, the inner peripheral portion of the elastic membrane constituting portion 30b is brought into contact with the surface of the elastic membrane constituting portion 30c on the intake duct 8 side.

弾性膜構成部30bの外周部と内周部との間には、弾性膜構成部30bの外周部よりも吸気ダクト8側へ突出する凹部32bを形成してある。凹部32bを形成する両壁面のうち、外周部側の壁面は、内周部側の壁面よりも、弾性膜部材16の面外方向に沿った高さを低くしてある。これにより、弾性膜構成部30bのうち、凹部32bよりも内周部側の部分のみで、弾性膜構成部30bと弾性膜構成部30cとを接触させている。
また、弾性膜構成部30bの外周部と内周部との間において、凹部32bよりも外周部側の部分であり、且つ吸気ダクト8側には、接着等の固着手段を用いて、弾性膜構成部30aと弾性膜構成部30bとを連結させる弾性膜連結部36aを形成してある。
A recess 32b is formed between the outer peripheral portion and the inner peripheral portion of the elastic membrane constituting portion 30b and protrudes toward the intake duct 8 from the outer peripheral portion of the elastic membrane constituting portion 30b. Of both wall surfaces forming the recess 32b, the wall surface on the outer peripheral portion side is lower in height along the out-of-plane direction of the elastic film member 16 than the wall surface on the inner peripheral portion side. Thereby, the elastic film component 30b and the elastic film component 30c are brought into contact with each other only in a portion of the elastic film component 30b closer to the inner periphery than the recess 32b.
Further, between the outer peripheral portion and the inner peripheral portion of the elastic membrane constituting portion 30b, a portion closer to the outer peripheral portion side than the concave portion 32b, and a fixing means such as adhesion is used on the intake duct 8 side, an elastic membrane is used. An elastic membrane connecting portion 36a that connects the constituent portion 30a and the elastic membrane constituent portion 30b is formed.

また、弾性膜構成部30bの外周部と内周部との間のうち、凹部32aよりも外周側の部分は、弾性膜部材16の面外方向から見て、弾性膜構成部30aが有する重なり部34aと互いに重なる重なり部34bを形成する。さらに、弾性膜構成部30bの外周部と内周部との間のうち、凹部32bと、凹部32bよりもの外周側の一部は、弾性膜部材16の面外方向から見て、弾性膜構成部30cと互いに重なる重なり部34cを形成する。すなわち、弾性膜構成部30bは、弾性膜部材16の面外方向から見て、弾性膜構成部30aと互いに重なる重なり部34bと、弾性膜構成部30cと互いに重なる重なり部34cとを有する。   Further, the portion on the outer peripheral side of the concave portion 32a between the outer peripheral portion and the inner peripheral portion of the elastic membrane constituting portion 30b overlaps the elastic membrane constituting portion 30a when viewed from the out-of-plane direction of the elastic membrane member 16. An overlapping portion 34b that overlaps the portion 34a is formed. Further, among the outer peripheral portion and the inner peripheral portion of the elastic membrane constituent portion 30b, the concave portion 32b and a part on the outer peripheral side of the concave portion 32b are seen from the out-of-plane direction of the elastic membrane member 16 as an elastic membrane configuration. An overlapping portion 34c overlapping with the portion 30c is formed. In other words, the elastic membrane constituting portion 30b has an overlapping portion 34b that overlaps the elastic membrane constituting portion 30a and an overlapping portion 34c that overlaps the elastic membrane constituting portion 30c when viewed from the out-of-plane direction of the elastic membrane member 16.

弾性膜構成部30cは、円板状に形成してある。
弾性膜構成部30cの外周部は、凹部32bよりも弾性膜構成部30bの外周部側へ突出させてあり、弾性膜部材16の面外方向から見て、弾性膜構成部30bと重なる位置に配置させてある。
弾性膜構成部30cの中心部には、弾性膜構成部30bの外周部よりも吸気ダクト8側へ突出する凹部32cを形成してある。
The elastic membrane constituting part 30c is formed in a disc shape.
The outer peripheral part of the elastic film constituting part 30c is projected to the outer peripheral part side of the elastic film constituting part 30b rather than the concave part 32b, and is located at a position overlapping the elastic film constituting part 30b when viewed from the out-of-plane direction of the elastic film member 16. It is arranged.
A concave portion 32c is formed in the central portion of the elastic membrane constituting portion 30c so as to protrude toward the intake duct 8 from the outer peripheral portion of the elastic membrane constituting portion 30b.

また、弾性膜構成部30bの外周部と内周部との間において、凹部32bよりも外周部側の部分であり、且つ吸気ダクト8側には、接着等の固着手段を用いて、弾性膜構成部30bと弾性膜構成部30cとを連結させる弾性膜連結部36bを形成してある。本実施形態では、弾性膜連結部36bの剛性を、弾性膜連結部36aの剛性と同一とする。
また、弾性膜構成部30cの外周部と内周部との間のうち、凹部32bよりも外周側の部分は、弾性膜部材16の面外方向から見て、弾性膜構成部30bが有する重なり部34cと互いに重なる重なり部34dを形成する。すなわち、弾性膜構成部30cは、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34dを有する。
Further, between the outer peripheral portion and the inner peripheral portion of the elastic membrane constituting portion 30b, a portion closer to the outer peripheral portion side than the concave portion 32b, and a fixing means such as adhesion is used on the intake duct 8 side, an elastic membrane is used. An elastic membrane connecting portion 36b that connects the constituent portion 30b and the elastic membrane constituent portion 30c is formed. In the present embodiment, the rigidity of the elastic membrane connecting portion 36b is the same as the rigidity of the elastic membrane connecting portion 36a.
Further, the portion of the outer peripheral side of the recess 32b between the outer peripheral portion and the inner peripheral portion of the elastic membrane constituting portion 30c is overlapped by the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16. An overlapping portion 34d that overlaps the portion 34c is formed. In other words, the elastic membrane constituting portion 30c has an overlapping portion 34d that overlaps the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16.

ここで、各弾性膜構成部30a〜30cは、吸気ダクト8側から見た面積が、互いに異なるように形成する。具体的には、弾性膜構成部30bの面積Sbが、弾性膜構成部30cの面積Scよりも広く、弾性膜構成部30cの面積Scが、弾性膜構成部30aの面積Saよりも広くなるように形成する。すなわち、各弾性膜構成部30a〜30cの面積を、それぞれ、Sb>Sc>Saの条件式が成立するように形成する。   Here, each elastic membrane component 30a-30c is formed so that the areas seen from the intake duct 8 side are different from each other. Specifically, the area Sb of the elastic membrane component 30b is larger than the area Sc of the elastic membrane component 30c, and the area Sc of the elastic membrane component 30c is larger than the area Sa of the elastic membrane component 30a. To form. That is, the areas of the elastic film constituting portions 30a to 30c are formed so that the conditional expression Sb> Sc> Sa is satisfied.

したがって、各弾性膜構成部30a〜30cは、同一の材料を用いて形成するとともに、互いの面積を異ならせてあるため、それぞれ、剛性、具体的には、弾性膜部材16の面外方向への剛性が異なる。ここで、面積の広い弾性膜構成部30は、面積の狭い弾性膜構成部30と比較して、弾性膜部材16の面外方向への剛性が低くなるため、弾性膜部材16の面外方向への振動を生じる共振周波数が低くなる。   Accordingly, the elastic film constituting portions 30a to 30c are formed using the same material and have different areas, so that each of the elastic film constituting portions 30a to 30c has rigidity, specifically, in the out-of-plane direction of the elastic film member 16. The rigidity is different. Here, since the elastic membrane component 30 with a large area has lower rigidity in the out-of-plane direction of the elastic membrane member 16 than the elastic membrane component 30 with a small area, the out-of-plane direction of the elastic membrane member 16 The resonance frequency that causes vibration to the lower is reduced.

これにより、弾性膜部材16の構成を、吸気ダクト8内で生じる吸気負圧の変化に応じて、各弾性膜構成部30a〜30cが有する重なり部34a〜34d同士の接触面積が変化する構成としている。
また、各重なり部34a〜34dは、弾性膜部材16の面外方向から見て互いに重なる部分の面積を調節することにより、各重なり部34a〜34d同士の接触面積の変化に応じて、弾性膜部材16の面外方向へ振動する共振周波数を互いに異ならせる。
Thereby, the configuration of the elastic membrane member 16 is configured such that the contact areas of the overlapping portions 34a to 34d of the elastic membrane constituting portions 30a to 30c change according to the change of the intake negative pressure generated in the intake duct 8. Yes.
The overlapping portions 34a to 34d are elastic membranes according to changes in the contact area between the overlapping portions 34a to 34d by adjusting the areas of the overlapping portions when viewed from the out-of-plane direction of the elastic membrane member 16. The resonance frequencies that vibrate in the out-of-plane direction of the member 16 are made different from each other.

以下、図1から図5を参照しつつ、図6及び図7を用いて、各重なり部34a〜34d同士の接触面積の変化と、この変化に応じた、弾性膜部材16の面外方向へ振動する共振周波数との関係について説明する。
図5中に示すように、吸気ダクト8内で生じる吸気負圧が所定の負圧以下である状態では、重なり部34aは、重なり部34bと接触していない。また、重なり部34cは、重なり部34dと接触していない。なお、以降の説明では、上記した所定の負圧を、エンジン6の回転数がR1である状態において、吸気ダクト8内で生じる吸気負圧とする。
Hereinafter, referring to FIG. 1 to FIG. 5, using FIG. 6 and FIG. 7, the contact area change between the overlapping portions 34 a to 34 d and the elastic film member 16 in the out-of-plane direction corresponding to this change. The relationship with the oscillating resonance frequency will be described.
As shown in FIG. 5, when the intake negative pressure generated in the intake duct 8 is equal to or lower than a predetermined negative pressure, the overlap portion 34a is not in contact with the overlap portion 34b. Further, the overlapping portion 34c is not in contact with the overlapping portion 34d. In the following description, the predetermined negative pressure described above is an intake negative pressure generated in the intake duct 8 in a state where the rotational speed of the engine 6 is R1.

エンジン6の回転数がR1である状態では、各重なり部34a〜34d同士の接触面積が最小値となり、各弾性膜構成部30a〜30c同士の接触面積は最小値となるため、弾性膜部材16の面外方向への剛性が最小値となる。
本実施形態では、エンジン6の回転数がR1である状態における弾性膜部材16の共振周波数が、第一共振周波数f1となるように、各弾性膜構成部30a〜30cに対し、それぞれ、吸気ダクト8側から見た面積を調節する。この第一共振周波数f1は、複数の周波数の吸気脈動のうち、選択した第一周波数の吸気脈動と一致する周波数であり、且つエンジン6の回転数がR1である場合に発生する吸気脈動を構成する周波数とする。
In the state where the rotational speed of the engine 6 is R1, the contact area between the overlapping portions 34a to 34d is the minimum value, and the contact area between the elastic film constituting portions 30a to 30c is the minimum value. The rigidity in the out-of-plane direction becomes the minimum value.
In the present embodiment, the intake ducts are respectively provided to the elastic membrane constituent portions 30a to 30c so that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R1 is the first resonance frequency f1. Adjust the area viewed from the 8th side. This first resonance frequency f1 is a frequency that matches the intake pulsation of the selected first frequency among the intake pulsations of a plurality of frequencies, and constitutes the intake pulsation that occurs when the rotational speed of the engine 6 is R1. Frequency.

なお、複数の周波数の吸気脈動は、エンジン6の吸気動作に伴って発生する吸気脈動を構成しており、エンジン6の回転数が変化すると、この変化に応じて吸気脈動の周波数も変化する。
図6は、エンジン6の回転数がR2である状態の弾性膜部材16を示す図である。なお、図6中では、説明のために、連通管12及び弾性膜部材16以外の図示を省略している。
ここで、エンジン6の回転数R2は、エンジン6の回転数R1よりも高い回転数とする。すなわち、回転数R1と回転数R2は、R1<R2の関係を満足する。
The intake pulsation having a plurality of frequencies constitutes an intake pulsation that occurs in association with the intake operation of the engine 6. When the rotational speed of the engine 6 changes, the frequency of the intake pulsation also changes in accordance with this change.
FIG. 6 is a view showing the elastic membrane member 16 in a state where the rotational speed of the engine 6 is R2. In FIG. 6, illustrations other than the communication pipe 12 and the elastic membrane member 16 are omitted for explanation.
Here, the rotational speed R2 of the engine 6 is set to be higher than the rotational speed R1 of the engine 6. That is, the rotational speed R1 and the rotational speed R2 satisfy the relationship of R1 <R2.

エンジン6の回転数が、R1よりも高いR2となると、吸気ダクト8内に生じる吸気負圧が、エンジン6の回転数がR1である状態よりも増加する。
したがって、図6中に示すように、エンジン6の回転数がR2である状態では、弾性膜構成部30b及び弾性膜構成部30cのうち、弾性膜構成部30bのみが吸気ダクト8側へ変位して弾性膜構成部30aと接触する。これは、弾性膜構成部30bの面積Sbが、弾性膜構成部30cの面積Scよりも広く、弾性膜構成部30bの弾性膜部材16の面外方向への剛性が、弾性膜構成部30cの弾性膜部材16の面外方向への剛性よりも低いためである。
When the rotational speed of the engine 6 becomes R2 higher than R1, the intake negative pressure generated in the intake duct 8 increases more than the state where the rotational speed of the engine 6 is R1.
Therefore, as shown in FIG. 6, in the state where the rotational speed of the engine 6 is R2, only the elastic membrane component 30b is displaced to the intake duct 8 side among the elastic membrane component 30b and the elastic membrane component 30c. In contact with the elastic membrane component 30a. This is because the area Sb of the elastic membrane constituting portion 30b is larger than the area Sc of the elastic membrane constituting portion 30c, and the rigidity of the elastic membrane constituting portion 30b in the out-of-plane direction of the elastic membrane member 16 is larger than that of the elastic membrane constituting portion 30c. This is because the rigidity of the elastic film member 16 is lower than the rigidity in the out-of-plane direction.

これにより、重なり部34aが、重なり部34bと接触する。また、重なり部34cは、重なり部34dと接触していない状態を維持する。
この状態では、各重なり部34a〜34d同士の接触面積が、エンジン6の回転数がR1である状態よりも広くなり、各弾性膜構成部30a〜30c同士の接触面積が、エンジン6の回転数がR1である状態よりも広くなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる。
Thereby, the overlapping part 34a contacts the overlapping part 34b. Moreover, the overlapping part 34c maintains the state which is not in contact with the overlapping part 34d.
In this state, the contact area between the overlapping portions 34a to 34d is wider than the state where the rotational speed of the engine 6 is R1, and the contact area between the elastic membrane constituent portions 30a to 30c is the rotational speed of the engine 6. Becomes wider than the state where R1 is R1. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R1.

本実施形態では、エンジン6の回転数がR2である状態における弾性膜部材16の共振周波数が、第二共振周波数f2となるように、各重なり部34a,34bに対し、弾性膜部材16の面外方向から見て互いに重なる部分の面積を調節する。この第二共振周波数f2は、複数の周波数の吸気脈動のうち、選択した第二周波数の吸気脈動と一致する周波数であり、且つエンジン6の回転数がR2である場合に発生する吸気脈動を構成する周波数とする。また、第二周波数は、第一周波数よりも高い周波数とする。すなわち、第一周波数と第二周波数は、第一周波数<第二周波数の関係を満足する。   In the present embodiment, the surface of the elastic film member 16 with respect to the overlapping portions 34a and 34b so that the resonance frequency of the elastic film member 16 in the state where the rotational speed of the engine 6 is R2 becomes the second resonance frequency f2. Adjust the area of the overlapping parts when viewed from the outside. The second resonance frequency f2 is a frequency that matches the intake pulsation of the selected second frequency among the intake pulsations of a plurality of frequencies, and constitutes the intake pulsation that occurs when the rotational speed of the engine 6 is R2. Frequency. The second frequency is higher than the first frequency. That is, the first frequency and the second frequency satisfy the relationship of the first frequency <the second frequency.

これにより、第二共振周波数f2を、第一共振周波数f1よりも高い周波数とする。すなわち、第一共振周波数f1と第二共振周波数f2は、第一共振周波数f1<第二共振周波数f2の関係を満足する。
図7は、エンジン6の回転数がR3である状態の弾性膜部材16を示す図である。なお、図7中では、説明のために、連通管12及び弾性膜部材16以外の図示を省略している。
As a result, the second resonance frequency f2 is set to be higher than the first resonance frequency f1. That is, the first resonance frequency f1 and the second resonance frequency f2 satisfy the relationship of the first resonance frequency f1 <the second resonance frequency f2.
FIG. 7 is a view showing the elastic membrane member 16 in a state where the rotational speed of the engine 6 is R3. In FIG. 7, illustrations other than the communication pipe 12 and the elastic membrane member 16 are omitted for explanation.

ここで、エンジン6の回転数R3は、エンジン6の回転数R2よりも高い回転数とする。すなわち、回転数R1、回転数R2及び回転数R3は、R1<R2<R3の関係を満足する。
エンジン6の回転数が、R2よりも高いR3となると、吸気ダクト8内に生じる吸気負圧が、エンジン6の回転数がR2である状態よりも増加する。
Here, the rotational speed R3 of the engine 6 is set to be higher than the rotational speed R2 of the engine 6. That is, the rotational speed R1, the rotational speed R2, and the rotational speed R3 satisfy the relationship of R1 <R2 <R3.
When the rotational speed of the engine 6 becomes R3 higher than R2, the intake negative pressure generated in the intake duct 8 increases more than in the state where the rotational speed of the engine 6 is R2.

したがって、図7中に示すように、エンジン6の回転数がR3である状態では、既に吸気ダクト8側へ変位している弾性膜構成部30bに加え、弾性膜構成部30cも吸気ダクト8側へ変位し、弾性膜構成部30bと接触する。
これにより、既に重なり部34aと接触している重なり部34bに加え、重なり部34cが、重なり部34dと接触する。
Therefore, as shown in FIG. 7, in the state where the rotational speed of the engine 6 is R3, in addition to the elastic membrane component 30b that has already been displaced toward the intake duct 8, the elastic membrane component 30c is also on the intake duct 8 side. To contact with the elastic membrane component 30b.
Thereby, in addition to the overlap part 34b which has already contacted the overlap part 34a, the overlap part 34c contacts the overlap part 34d.

この状態では、各重なり部34a〜34d同士の接触面積が、エンジン6の回転数がR2である状態よりも広くなり、各弾性膜構成部30a〜30c同士の接触面積が、エンジン6の回転数がR2である状態よりも広くなる。これにより、各弾性膜構成部30a〜30c同士の接触面積が最大値となり、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなる。このため、弾性膜部材16の面外方向への剛性が最大値となる。   In this state, the contact area between the overlapping portions 34a to 34d is wider than the state where the rotational speed of the engine 6 is R2, and the contact area between the elastic membrane constituent portions 30a to 30c is the rotational speed of the engine 6. Becomes wider than the state in which R2 is R2. Thereby, the contact area of each elastic film | membrane structure part 30a-30c becomes the maximum value, and the rigidity to the out-of-plane direction of the elastic film member 16 becomes higher than the state whose rotation speed of the engine 6 is R2. For this reason, the rigidity in the out-of-plane direction of the elastic film member 16 becomes the maximum value.

本実施形態では、エンジン6の回転数がR3である状態における弾性膜部材16の共振周波数が、第三共振周波数f3となるように、各重なり部34a〜34dに対し、弾性膜部材16の面外方向から見て互いに重なる部分の面積を調節する。この第三共振周波数f3は、複数の周波数の吸気脈動のうち、選択した第三周波数の吸気脈動と一致する周波数であり、且つエンジン6の回転数がR3である場合に発生する吸気脈動を構成する周波数とする。また、第三周波数は、第二周波数よりも高い周波数とする。すなわち、第一周波数、第二周波数及び第三周波数は、第一周波数<第二周波数<第三周波数の関係を満足する。   In the present embodiment, the surface of the elastic membrane member 16 with respect to each of the overlapping portions 34a to 34d so that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R3 becomes the third resonance frequency f3. Adjust the area of the overlapping parts when viewed from the outside. This third resonance frequency f3 is a frequency that matches the intake pulsation of the selected third frequency among the intake pulsations of a plurality of frequencies, and constitutes the intake pulsation that occurs when the rotational speed of the engine 6 is R3. Frequency. The third frequency is higher than the second frequency. That is, the first frequency, the second frequency, and the third frequency satisfy the relationship of the first frequency <the second frequency <the third frequency.

これにより、第三共振周波数f3を、第二共振周波数f2よりも高い周波数とする。すなわち、第一共振周波数f1、第二共振周波数f2及び第三共振周波数f3は、第一共振周波数f1<第二共振周波数f2<第三共振周波数f3の関係を満足する。
以上により、上述した各弾性膜構成部30a〜30cは、吸気ダクト8内で生じる吸気負圧の変化に応じて、重なり部34a〜34d同士の接触面積を変化させる。
As a result, the third resonance frequency f3 is set to be higher than the second resonance frequency f2. That is, the first resonance frequency f1, the second resonance frequency f2, and the third resonance frequency f3 satisfy the relationship of the first resonance frequency f1 <the second resonance frequency f2 <the third resonance frequency f3.
As described above, each of the elastic film constituting portions 30 a to 30 c described above changes the contact area between the overlapping portions 34 a to 34 d according to the change of the intake negative pressure generated in the intake duct 8.

(動作)
次に、図1から図7を参照しつつ、吸気音調節装置1の動作について説明する。
エンジン6を駆動させると、エンジン6の吸気動作に伴って発生する吸気脈動が、各インテークマニホールド28及びサージタンク26を介して、クリーンサイド側吸気ダクト20内に存在する気体に伝播する(図2参照)。
(Operation)
Next, the operation of the intake sound adjusting device 1 will be described with reference to FIGS.
When the engine 6 is driven, the intake pulsation generated by the intake operation of the engine 6 is propagated to the gas existing in the clean side intake duct 20 via each intake manifold 28 and the surge tank 26 (FIG. 2). reference).

エンジン6を駆動させた状態で、アクセルペダルの踏み込み量を増加させて、エアクリーナ22からサージタンク26への通気量を増加させる(以下、加速時と記載する)と、エンジン6の回転数が上昇する。これにより、吸気ダクト8内の気体に発生する吸気負圧が増加する(図2参照)。
エンジン6の回転数が上昇する過程において、エンジン6の回転数がR1である状態では、第一周波数の吸気脈動が、連通管12を介して弾性膜部材16へ伝播する。
When the engine 6 is driven and the amount of depression of the accelerator pedal is increased to increase the air flow from the air cleaner 22 to the surge tank 26 (hereinafter referred to as acceleration), the engine 6 speed increases. To do. Thereby, the negative intake pressure generated in the gas in the intake duct 8 increases (see FIG. 2).
In the process of increasing the rotational speed of the engine 6, in the state where the rotational speed of the engine 6 is R <b> 1, the intake pulsation of the first frequency propagates to the elastic membrane member 16 through the communication pipe 12.

このとき、各重なり部34a〜34dが、全て接触しない状態となるため、各重なり部34a〜34d同士の接触面積が最小値となる。このため、各弾性膜構成部30a〜30c同士の接触面積が最小値となり、弾性膜部材16の面外方向への剛性が最小値となる(図5参照)。
また、第一周波数の吸気脈動の周波数は、第一共振周波数f1と一致している。
この状態で、弾性膜部材16が、弾性膜部材16の面外方向に振動すると、この振動により、第一周波数及び第一周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
At this time, since the overlapping portions 34a to 34d are not in contact with each other, the contact area between the overlapping portions 34a to 34d becomes the minimum value. For this reason, the contact area between the elastic film constituent portions 30a to 30c is the minimum value, and the rigidity of the elastic film member 16 in the out-of-plane direction is the minimum value (see FIG. 5).
The frequency of the intake pulsation of the first frequency matches the first resonance frequency f1.
In this state, when the elastic membrane member 16 vibrates in the out-of-plane direction of the elastic membrane member 16, the vibration amplifies the intake air pulsation near the first frequency and the first frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.

エンジン6の回転数がR1である状態から、アクセルペダルの踏み込み量を更に増加させて、エンジン6の回転数がR2である状態へ移行させると、第二周波数の吸気脈動が、連通管12を介して弾性膜部材16へ伝播する。
このとき、各重なり部34a〜34dのうち、重なり部34aと重なり部34bが接触する状態となるとともに、重なり部34cと重なり部34dが接触しない状態となる。このため、各重なり部34a〜34d同士の接触面積が、エンジン6の回転数がR1である状態よりも広くなり、各弾性膜構成部30a〜30c同士の接触面積が、エンジン6の回転数がR1である状態よりも広くなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる(図6参照)。
If the amount of depression of the accelerator pedal is further increased from the state where the rotational speed of the engine 6 is R1 to shift to the state where the rotational speed of the engine 6 is R2, the intake pulsation of the second frequency causes the communication pipe 12 to It propagates to the elastic membrane member 16 via
At this time, among the overlapping portions 34a to 34d, the overlapping portion 34a and the overlapping portion 34b are in contact with each other, and the overlapping portion 34c and the overlapping portion 34d are not in contact with each other. For this reason, the contact area between the overlapping portions 34a to 34d is wider than the state where the rotational speed of the engine 6 is R1, and the contact area between the elastic membrane constituent portions 30a to 30c is the rotational speed of the engine 6. It becomes wider than the state of R1. Thereby, the rigidity in the out-of-plane direction of the elastic membrane member 16 becomes higher than the state where the rotational speed of the engine 6 is R1 (see FIG. 6).

また、第二周波数の吸気脈動の周波数は、第二共振周波数f2と一致している。
この状態で、弾性膜部材16が、弾性膜部材16の面外方向に振動すると、この振動により、第二周波数及び第二周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
エンジン6の回転数がR2である状態から、アクセルペダルの踏み込み量を更に増加させて、エンジン6の回転数がR3である状態へ移行させると、第三周波数の吸気脈動が、連通管12を介して弾性膜部材16へ伝播する。
The frequency of the intake pulsation of the second frequency matches the second resonance frequency f2.
In this state, when the elastic membrane member 16 vibrates in the out-of-plane direction of the elastic membrane member 16, the vibration amplifies the intake air pulsation near the second frequency and the second frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
If the amount of depression of the accelerator pedal is further increased from the state where the rotational speed of the engine 6 is R2 to shift to the state where the rotational speed of the engine 6 is R3, the intake pulsation of the third frequency causes the communication pipe 12 to It propagates to the elastic membrane member 16 via

このとき、各重なり部34a〜34dのうち、重なり部34aと重なり部34bが接触する状態となるとともに、重なり部34cと重なり部34dが接触する状態となる。このため、各重なり部34a〜34d同士の接触面積が、エンジン6の回転数がR2である状態よりも広くなり、各弾性膜構成部30a〜30c同士の接触面積が、エンジン6の回転数がR2である状態よりも広くなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなり、弾性膜部材16の面外方向への剛性が最大値となる(図7参照)。
また、第三周波数の吸気脈動の周波数は、第三共振周波数f3と一致している。
この状態で、弾性膜部材16が、弾性膜部材16の面外方向に振動すると、この振動により、第三周波数及び第三周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
At this time, among the overlapping portions 34a to 34d, the overlapping portion 34a and the overlapping portion 34b are in contact with each other, and the overlapping portion 34c and the overlapping portion 34d are in contact with each other. For this reason, the contact area between the overlapping portions 34a to 34d is wider than the state where the rotational speed of the engine 6 is R2, and the contact area between the elastic membrane constituent portions 30a to 30c is the rotational speed of the engine 6. It becomes wider than the state of R2. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than the state in which the rotational speed of the engine 6 is R2, and the rigidity in the out-of-plane direction of the elastic film member 16 becomes the maximum value (FIG. 7). reference).
Further, the frequency of the third pulsation of intake pulsation coincides with the third resonance frequency f3.
When the elastic membrane member 16 vibrates in the out-of-plane direction of the elastic membrane member 16 in this state, the intake pulsation near the third frequency and the third frequency is amplified by this vibration. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.

以上により、加速時においては、エンジン6回転数の増加に伴い、各弾性膜構成部30a〜30c同士の接触面積が増加し、弾性膜部材16の面外方向への剛性が増加する。このため、エンジン回転数の増加に伴い、第一周波数の吸気脈動、第二周波数の吸気脈動及び第三周波数の吸気脈動を順に増幅することが可能となり、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる(図2参照)。
増音させた吸気音を、追加管14の他方の開口端から外気側へ放射すると、この放射した吸気音が、ダッシュパネル10を介して車室2内に伝播するため、迫力感のある吸気音を車室2内へ導入することが可能となる(図1参照)。
As described above, at the time of acceleration, as the number of rotations of the engine 6 increases, the contact area between the elastic film constituting portions 30a to 30c increases, and the rigidity of the elastic film member 16 in the out-of-plane direction increases. For this reason, it is possible to sequentially amplify the intake pulsation of the first frequency, the intake pulsation of the second frequency, and the intake pulsation of the third frequency as the engine speed increases. It becomes possible to radiate from the other open end of 14 to the outside air side (see FIG. 2).
When the increased intake sound is radiated from the other opening end of the additional pipe 14 to the outside air side, the radiated intake sound is propagated into the vehicle compartment 2 via the dash panel 10, so that the intake air has a powerful feeling. Sound can be introduced into the passenger compartment 2 (see FIG. 1).

(第一実施形態の効果)
(1)本実施形態の吸気音調節装置では、弾性膜部材が、弾性膜部材の面外方向から見て互いに重なる重なり部を有する、三つの弾性膜構成部を備える。また、吸気ダクト内で生じる吸気負圧の変化に応じて、弾性膜部材の面外方向への剛性を変化させる。
このため、エンジンの回転数の増加に応じて、弾性膜部材の剛性を増加させることが可能となり、弾性膜部材の共振周波数を変化させることが可能となるため、選択した周波数の吸気脈動を増幅させることが可能となる。これにより、加速時において、弾性膜部材の振動により増音させ、追加管の他方の開口端から外気側へ放射した吸気音を、ダッシュパネルを介して車室内へ伝播させることが可能となるため、迫力感のある吸気音を車室内へ導入することが可能となる。
(Effects of the first embodiment)
(1) In the intake sound adjustment device of the present embodiment, the elastic film member includes three elastic film components having overlapping portions that overlap each other when viewed from the out-of-plane direction of the elastic film member. Further, the rigidity of the elastic membrane member in the out-of-plane direction is changed according to the change in the intake negative pressure generated in the intake duct.
For this reason, the rigidity of the elastic membrane member can be increased as the engine speed increases, and the resonance frequency of the elastic membrane member can be changed, thereby amplifying the intake pulsation at the selected frequency. It becomes possible to make it. As a result, during acceleration, it is possible to increase the sound due to the vibration of the elastic membrane member and propagate the intake sound radiated from the other opening end of the additional pipe to the outside through the dash panel into the vehicle interior. This makes it possible to introduce a powerful intake sound into the passenger compartment.

その結果、一つの弾性膜部材によって、複数の共振周波数の吸気音を強調させることが可能となり、複数の吸気ダクトを必要とせずに、迫力感のある吸気音を発生させることが可能となる。
また、複数の吸気ダクトを必要としない構成となるため、レイアウトの自由度を向上させることが可能となり、車体の大きさが異なる車両等、構成の異なる多種類の車両に適用可能となる。
As a result, it is possible to emphasize the intake sound having a plurality of resonance frequencies with one elastic film member, and it is possible to generate a powerful intake sound without requiring a plurality of intake ducts.
In addition, since the configuration does not require a plurality of intake ducts, it is possible to improve the degree of freedom of layout, and it can be applied to many types of vehicles having different configurations such as vehicles having different body sizes.

(2)また、本実施形態の吸気音調節装置では、吸気ダクト内で生じる吸気負圧の変化に応じて、三つの弾性膜構成部が有する重なり部同士の接触面積を変化させることにより、弾性膜部材の面外方向への剛性を変化させる。
このため、エンジンの回転数に応じて、吸気負圧の変化に応じた各重なり部同士の接触面積を調節することにより、エンジンの回転数に応じて、弾性膜部材の面外方向への剛性を調節することが可能となる。
その結果、エンジンの回転数に応じた弾性膜部材の面外方向への剛性を、所望の剛性に設定することが可能となり、吸気音を強調させることが可能な周波数を、所望の周波数に設定することが可能となる。これにより、車室内へ導入する吸気音の音質を調節することが可能となり、吸気音の音質を向上させることが可能となる。
(2) Further, in the intake sound adjusting device of the present embodiment, the elastic area is changed by changing the contact areas of the overlapping portions of the three elastic film constituents according to the change of the intake negative pressure generated in the intake duct. The rigidity of the membrane member in the out-of-plane direction is changed.
For this reason, the rigidity of the elastic membrane member in the out-of-plane direction is adjusted according to the engine speed by adjusting the contact area between the overlapping portions according to the change in the intake negative pressure according to the engine speed. Can be adjusted.
As a result, it is possible to set the rigidity in the out-of-plane direction of the elastic membrane member according to the engine speed to a desired rigidity, and set the frequency at which the intake sound can be emphasized to the desired frequency. It becomes possible to do. As a result, the sound quality of the intake sound introduced into the vehicle interior can be adjusted, and the sound quality of the intake sound can be improved.

(3)また、本実施形態の吸気音調節装置では、三つの弾性膜構成部を、それぞれ、剛性が互いに異なるように形成する。
このため、各弾性膜構成部の剛性を調節することにより、吸気負圧の変化に応じた各重なり部同士の接触面積を調節することが可能となる。これにより、吸気負圧の変化に応じた各弾性膜構成部同士の接触面積を調節することが可能となるため、エンジンの回転数に応じた弾性膜部材の共振周波数を、所望の共振周波数に設定することが可能となる。
その結果、弾性膜部材が面外方向へ振動する共振周波数を、三種類の周波数に設定することが可能となり、吸気音を強調可能な周波数帯域の範囲を拡げることが可能となるため、車室内へ導入する吸気音の音質を向上させることが可能となる。
(3) Further, in the intake sound adjusting device of the present embodiment, the three elastic film constituent parts are formed so as to have different rigidity from each other.
For this reason, it becomes possible to adjust the contact area of each overlapping part according to the change of intake negative pressure by adjusting the rigidity of each elastic membrane constituent part. This makes it possible to adjust the contact area between the elastic membrane components according to the change in the intake negative pressure, so that the resonance frequency of the elastic membrane member according to the engine speed is set to a desired resonance frequency. It becomes possible to set.
As a result, the resonance frequency at which the elastic membrane member vibrates in the out-of-plane direction can be set to three types of frequencies, and the range of the frequency band in which the intake sound can be emphasized can be expanded. It is possible to improve the sound quality of the intake sound introduced into the.

(応用例)
(1)なお、本実施形態の吸気音調節装置では、三つの弾性膜構成部による、三種類の接触状態の変化、すなわち、三種類の接触面積の変化に応じて、弾性膜部材の面外方向へ振動する共振周波数が互いに異なる構成としているが、これに限定するものではない。すなわち、三つの弾性膜構成部による、二種類の接触面積の変化に応じて、弾性膜部材の面外方向へ振動する共振周波数が互いに異なる構成としてもよい。
(Application example)
(1) In addition, in the inspiratory sound adjusting device of the present embodiment, the elastic film member is out of the plane according to three kinds of contact state changes by the three elastic film constituent parts, that is, according to three kinds of contact area changes. Although the resonance frequencies oscillating in the directions are different from each other, the present invention is not limited to this. That is, it is good also as a structure from which the resonant frequency which vibrates to the out-of-plane direction of an elastic film member differs mutually according to the change of two types of contact areas by three elastic film structural parts.

(2)また、本実施形態の吸気音調節装置では、三つの弾性膜構成部を、それぞれ、吸気ダクト側から見た面積を調節することにより、互いの接触面積の変化に応じて、弾性膜部材の面外方向へ振動する共振周波数を互いに異ならせる構成としている。しかしながら、各弾性膜構成部の構成は、これに限定するものではない。すなわち、例えば、三つの弾性膜構成部を、同一面積に形成するとともに、それぞれ、剛性及び質量のうち少なくとも一方が互いに異なる構成とする。これにより、互いの接触面積の変化に応じて、弾性膜部材の面外方向へ振動する共振周波数を互いに異ならせる構成としてもよい。また、各弾性膜構成部に形成した凹部の形状を調節することにより、弾性膜部材の面外方向へ振動する共振周波数を互いに異ならせる構成としてもよい。
この場合、剛性及び質量のうち少なくとも一方を、その他の弾性膜構成部よりも増加させる弾性膜構成部には、例えば、内部への芯材の配置等により、その他の弾性膜構成部と同一面積であっても、剛性及び質量のうち少なくとも一方を増加させる。
(2) Further, in the intake sound adjusting device of the present embodiment, the elastic membrane components are adjusted according to the change in the contact area with each other by adjusting the area viewed from the intake duct side. The resonance frequencies that vibrate in the out-of-plane direction of the member are different from each other. However, the configuration of each elastic membrane component is not limited to this. That is, for example, the three elastic membrane constituent parts are formed in the same area, and at least one of rigidity and mass is different from each other. Thereby, it is good also as a structure which makes mutually different the resonant frequency which vibrates to the out-of-plane direction of an elastic film member according to the change of a mutual contact area. Moreover, it is good also as a structure which mutually changes the resonant frequency which vibrates to the out-of-plane direction of an elastic film member by adjusting the shape of the recessed part formed in each elastic film structural part.
In this case, the elastic membrane component that increases at least one of rigidity and mass as compared to the other elastic membrane components may have the same area as the other elastic membrane components due to, for example, the arrangement of the core material therein. Even so, at least one of rigidity and mass is increased.

(3)また、本実施形態の吸気音調節装置では、三つの弾性膜構成部を、二つの弾性膜連結部で連結し、二つの弾性膜連結部を、それぞれ、同一の剛性としたが、これに限定するものではない。すなわち、例えば、結合部分に別部材を配置する等の手段を用いて、二つの弾性膜連結部を、それぞれ、異なる剛性としてもよい。この場合、弾性膜連結部の剛性を調節することにより、弾性膜部材が面外方向へ振動する共振周波数を、三種類以上とすることが可能となる。 (3) Further, in the inspiratory sound adjusting device of the present embodiment, the three elastic film constituent parts are connected by two elastic film connecting parts, and the two elastic film connecting parts have the same rigidity, respectively. However, the present invention is not limited to this. That is, for example, the two elastic membrane connecting portions may have different stiffnesses by using means such as disposing another member at the coupling portion. In this case, by adjusting the rigidity of the elastic membrane connecting portion, it is possible to set three or more resonance frequencies at which the elastic membrane member vibrates in the out-of-plane direction.

(4)また、本実施形態の吸気音調節装置では、弾性膜部材を、三つの弾性膜構成部を備える構成としたが、これに限定するものではない。すなわち、弾性膜部材を、二つの弾性膜構成部を備える構成としてもよく、四つ以上の弾性膜構成部を備える構成としてもよい。要は、弾性膜部材を、二つ以上の弾性膜構成部を備える構成とすればよい。ここで、弾性膜部材を、四つ以上の弾性膜構成部を備える構成とした場合、弾性膜部材が面外方向へ振動する共振周波数を、四種類の周波数に設定することが可能となる。また、四つ以上の弾性膜構成部を備える構成とした場合、これらの弾性膜構成部を、三つ以上の弾性膜連結部で連結する。 (4) Further, in the intake sound adjusting device of the present embodiment, the elastic film member is configured to include the three elastic film components, but is not limited thereto. That is, the elastic film member may be configured to include two elastic film components, or may be configured to include four or more elastic film components. In short, the elastic membrane member may be configured to include two or more elastic membrane components. Here, when the elastic membrane member is configured to include four or more elastic membrane components, the resonance frequency at which the elastic membrane member vibrates in the out-of-plane direction can be set to four types of frequencies. Moreover, when it is set as the structure provided with four or more elastic film structure parts, these elastic film structure parts are connected by three or more elastic film connection parts.

(5)また、本実施形態の吸気音調節装置では、吸気音調節装置を、車室よりも前方に設けたエンジンルーム内に配置したが、吸気音調節装置を配置する場所は、これに限定するものではない。すなわち、例えば、車両の構成が、エンジンルームを車室よりも後方に設けている構成である場合、吸気音調節装置を配置する場所を、車室よりも後方に設けたエンジンルーム内に配置してもよい。また、例えば、車両の構成が、エンジンルームを車室よりも下方に設けた構成である場合、吸気音調節装置を配置する場所を、車室よりも下方に設けたエンジンルーム内に配置してもよい。要は、吸気音調節装置を配置する場所は、車両の構成、具体的には、エンジンルームの位置に応じて、適宜変更することが可能である。
(6)また、本実施形態の吸気音調節装置では、各弾性膜構成部に、吸気ダクト側へ突出する凹部を形成したが、これに限定するものではなく、弾性膜構成部に、凹部を形成していない構成としてもよい。
(5) Further, in the intake sound adjusting device of the present embodiment, the intake sound adjusting device is arranged in the engine room provided in front of the passenger compartment, but the place where the intake sound adjusting device is arranged is limited to this. Not what you want. That is, for example, when the configuration of the vehicle is a configuration in which the engine room is provided behind the vehicle compartment, the place where the intake sound adjusting device is arranged is arranged in the engine room provided behind the vehicle compartment. May be. Further, for example, when the configuration of the vehicle is a configuration in which the engine room is provided below the vehicle compartment, the place where the intake sound adjusting device is arranged is arranged in the engine room provided below the vehicle compartment. Also good. In short, the place where the intake sound adjusting device is arranged can be changed as appropriate according to the configuration of the vehicle, specifically the position of the engine room.
(6) In addition, in the intake sound adjusting device of the present embodiment, each elastic membrane component is formed with a recess protruding toward the intake duct. However, the present invention is not limited to this, and the elastic membrane component is provided with a recess. It is good also as a structure which is not formed.

(第二実施形態)
次に、本発明の第二実施形態について説明する。
(構成)
まず、図2を参照しつつ、図8から図11を用いて、本実施形態の吸気音調節装置の構成を説明する。なお、本実施形態の吸気音調節装置の構成は、弾性膜部材16の構成を除き、上述した第一実施形態と同様の構成であるため、以下の説明は、弾性膜部材16を中心に記載する。
(Second embodiment)
Next, a second embodiment of the present invention will be described.
(Constitution)
First, the configuration of the intake sound adjusting device of the present embodiment will be described using FIGS. 8 to 11 with reference to FIG. In addition, since the structure of the intake sound adjusting device of this embodiment is the same structure as 1st Embodiment mentioned above except the structure of the elastic film member 16, the following description is described centering on the elastic film member 16. To do.

図8は、弾性膜部材16を追加管側から見た図であり、図9は、図8のIX−IX線断面図である。なお、図8及び図9中には、吸気ダクト8内で生じる吸気負圧が、エンジンの回転数がR1である状態の吸気負圧である状態を示している。
図8及び図9中に示すように、弾性膜部材16は、四つの弾性膜構成部30a〜30dを備えており、弾性膜固定部材38を介して、連通管12の内周面に連結してある。なお、図中及び以降の説明では、四つの弾性膜構成部30a〜30dを、追加管14と近い順に、弾性膜構成部30a、弾性膜構成部30b、弾性膜構成部30c、弾性膜構成部30dと記載する。
8 is a view of the elastic membrane member 16 as viewed from the additional tube side, and FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8 and 9 show a state in which the intake negative pressure generated in the intake duct 8 is the intake negative pressure in a state where the engine speed is R1.
As shown in FIGS. 8 and 9, the elastic membrane member 16 includes four elastic membrane constituent portions 30 a to 30 d and is connected to the inner peripheral surface of the communication pipe 12 via the elastic membrane fixing member 38. It is. In the drawings and the following description, the four elastic membrane constituent portions 30a to 30d are arranged in the order close to the additional tube 14, the elastic membrane constituent portion 30a, the elastic membrane constituent portion 30b, the elastic membrane constituent portion 30c, and the elastic membrane constituent portion. It is described as 30d.

弾性膜構成部30aは、ゴム等の弾性を有する材料を用いて、円板状に形成してある。
また、弾性膜構成部30aは、その面外方向が、連通管12の軸方向と平行をなすように、連通管12内に配置してある。
各弾性膜構成部30b〜30dは、弾性膜構成部30aと同様、ゴム等の弾性を有する同一の材料を用いて、伸縮方向を弾性膜部材16の面外方向へ向けた蛇腹状に形成してある。
The elastic membrane component 30a is formed in a disk shape using a material having elasticity such as rubber.
Further, the elastic membrane constituting part 30 a is arranged in the communication pipe 12 so that the out-of-plane direction is parallel to the axial direction of the communication pipe 12.
Each elastic membrane component 30b-30d is formed in the bellows shape with the elastic direction facing the out-of-plane direction of the elastic membrane member 16, using the same material having elasticity as rubber, like the elastic membrane component 30a. It is.

弾性膜構成部30bの追加管14側の開口端は、弾性膜構成部30aで閉塞してある。一方、弾性膜構成部30bの吸気ダクト8側の開口端は、接着等の固着手段を用いて、弾性膜構成部30cに固定してある。
また、弾性膜構成部30bは、追加管14側の開口面積が、弾性膜構成部30aの面積と同一となり、吸気ダクト8側の開口面積が、弾性膜構成部30aの面積よりも小さくなるように形成してある。これにより、弾性膜構成部30bは、弾性膜部材16の面外方向から見て、弾性膜構成部30aと互いに重なる重なり部34aを有する。
The opening end of the elastic membrane constituting portion 30b on the side of the additional tube 14 is closed with the elastic membrane constituting portion 30a. On the other hand, the opening end of the elastic membrane constituting portion 30b on the intake duct 8 side is fixed to the elastic membrane constituting portion 30c using an adhering means such as adhesion.
In addition, the opening area on the additional pipe 14 side of the elastic membrane constituent part 30b is the same as the area of the elastic membrane constituent part 30a, and the opening area on the intake duct 8 side is smaller than the area of the elastic membrane constituent part 30a. Is formed. As a result, the elastic membrane constituting portion 30b has an overlapping portion 34a that overlaps the elastic membrane constituting portion 30a when viewed from the out-of-plane direction of the elastic membrane member 16.

弾性膜構成部30cの追加管14側の開口端には、接着等の固着手段を用いて、軸を弾性膜部材16の面外方向へ向けた円筒部材40aを固定してある。一方、弾性膜構成部30cの吸気ダクト8側の開口端は、接着等の固着手段を用いて、弾性膜構成部30dに固定してある。
また、弾性膜構成部30cは、追加管14側の開口面積が、弾性膜構成部30bの吸気ダクト8側の開口面積と同一となり、吸気ダクト8側の開口面積が、弾性膜構成部30cの追加管14側の開口面積よりも小さくなるように形成してある。これにより、弾性膜構成部30cは、弾性膜部材16の面外方向から見て、弾性膜構成部30a,30bと互いに重なる重なり部34bを有する。
A cylindrical member 40a having an axis directed in an out-of-plane direction of the elastic membrane member 16 is fixed to the opening end of the elastic membrane constituting portion 30c on the additional tube 14 side by using an adhering means such as adhesion. On the other hand, the opening end of the elastic membrane constituting portion 30c on the intake duct 8 side is fixed to the elastic membrane constituting portion 30d by using an adhering means such as adhesion.
Further, the elastic membrane component 30c has the same opening area on the additional pipe 14 side as the opening area on the intake duct 8 side of the elastic membrane component 30b, and the opening area on the intake duct 8 side is equal to that of the elastic membrane component 30c. It is formed to be smaller than the opening area on the additional tube 14 side. As a result, the elastic membrane constituting portion 30c has an overlapping portion 34b that overlaps the elastic membrane constituting portions 30a and 30b when viewed from the out-of-plane direction of the elastic membrane member 16.

円筒部材40aは、弾性膜構成部30bの内周側に形成した空間内に配置してある。また、円筒部材40aは、樹脂等、弾性膜構成部30aよりも剛性の高い材料で形成してあり、その開口面積を、弾性膜構成部30aの面積よりも小さくしてある。
弾性膜構成部30dの追加管14側の開口端には、接着等の固着手段を用いて、軸を弾性膜部材16の面外方向へ向けた円筒部材40bを固定してある。一方、弾性膜構成部30dの吸気ダクト8側の開口端は、接着等の固着手段を用いて、弾性膜固定部材38の内周側に固定してある。
The cylindrical member 40a is disposed in a space formed on the inner peripheral side of the elastic film constituting portion 30b. The cylindrical member 40a is formed of a material having higher rigidity than the elastic membrane constituting portion 30a, such as resin, and has an opening area smaller than the area of the elastic membrane constituting portion 30a.
A cylindrical member 40b whose axis is directed in the out-of-plane direction of the elastic membrane member 16 is fixed to the opening end of the elastic membrane constituting portion 30d on the side of the additional tube 14 by using a fixing means such as adhesion. On the other hand, the opening end of the elastic membrane constituting part 30d on the intake duct 8 side is fixed to the inner peripheral side of the elastic membrane fixing member 38 by using a fixing means such as adhesion.

また、弾性膜構成部30dは、追加管14側の開口面積が、弾性膜構成部30cの吸気ダクト8側の開口面積と同一となり、吸気ダクト8側の開口面積が、弾性膜構成部30dの追加管14側の開口面積よりも大きくなるように形成してある。これにより、弾性膜構成部30dは、弾性膜部材16の面外方向から見て、弾性膜構成部30a〜30cと互いに重なる重なり部34cを有する。   The elastic membrane component 30d has the same opening area on the additional pipe 14 side as the opening area on the intake duct 8 side of the elastic membrane component 30c, and the opening area on the intake duct 8 side is equal to that of the elastic membrane component 30d. It is formed to be larger than the opening area on the additional pipe 14 side. Thereby, the elastic film constituting part 30d has an overlapping part 34c overlapping with the elastic film constituting parts 30a to 30c when viewed from the out-of-plane direction of the elastic film member 16.

円筒部材40bは、弾性膜構成部30c及び円筒部材40aの内周側に形成した空間内に配置してある。また、円筒部材40bは、円筒部材40aと同様、樹脂等、弾性膜部材16よりも剛性の高い材料で形成してある。円筒部材40bの開口面積は、円筒部材40aの開口面積よりも小さくしてある。
弾性膜固定部材38は、弾性膜構成部30aよりも剛性の高い材料を用いて、円環状に形成してある。弾性膜固定部材38の外周側は、接着等の固着手段を用いて、連通管12の内周面に固定してある。
The cylindrical member 40b is disposed in a space formed on the inner peripheral side of the elastic film constituting portion 30c and the cylindrical member 40a. The cylindrical member 40b is formed of a material having higher rigidity than the elastic film member 16, such as resin, like the cylindrical member 40a. The opening area of the cylindrical member 40b is smaller than the opening area of the cylindrical member 40a.
The elastic membrane fixing member 38 is formed in an annular shape using a material having higher rigidity than the elastic membrane constituting portion 30a. The outer peripheral side of the elastic membrane fixing member 38 is fixed to the inner peripheral surface of the communication pipe 12 by using an adhering means such as adhesion.

ここで、各弾性膜構成部30b〜30dは、その厚さが、互いに異なるように形成する。具体的には、弾性膜構成部30bの厚さTaが、弾性膜構成部30cの厚さTbよりも小さく、弾性膜構成部30cの厚さTbが、弾性膜構成部30dの厚さTcよりも小さくなるように形成する。すなわち、各弾性膜構成部30b〜30dの厚さを、それぞれ、Tc>Tb>Taの条件式が成立するように形成する。
したがって、各弾性膜構成部30b〜30dは、同一の材料を用いて形成するとともに、互いの厚さを異ならせてあるため、それぞれ、剛性、具体的には、弾性膜部材16の面外方向への剛性が異なる。ここで、厚さの小さい弾性膜構成部30は、厚さの大きい弾性膜構成部30と比較して、弾性膜部材16の面外方向への剛性が低くなる。
Here, each elastic film | membrane structure part 30b-30d is formed so that the thickness may mutually differ. Specifically, the thickness Ta of the elastic film constituting part 30b is smaller than the thickness Tb of the elastic film constituting part 30c, and the thickness Tb of the elastic film constituting part 30c is smaller than the thickness Tc of the elastic film constituting part 30d. Is also formed to be small. That is, the thicknesses of the elastic film constituting portions 30b to 30d are formed so that the conditional expression Tc>Tb> Ta is satisfied.
Accordingly, the elastic film constituting portions 30b to 30d are formed using the same material and have different thicknesses. Accordingly, the rigidity, specifically, the out-of-plane direction of the elastic film member 16, respectively. Rigidity is different. Here, the elastic film constituting part 30 with a small thickness has a lower rigidity in the out-of-plane direction of the elastic film member 16 than the elastic film constituting part 30 with a large thickness.

また、本実施形態では、各弾性膜構成部30b〜30dの厚さと、各円筒部材40a,40bの開口面積を調節することにより、吸気音を強調させることが可能な周波数を、所望の周波数に設定している。
具体的には、弾性膜構成部30aと各円筒部材40a,40bとの接触状態を変化させることにより、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積を変化させて、吸気音を強調させることが可能な周波数を変化させる。
Further, in the present embodiment, by adjusting the thicknesses of the elastic film constituting portions 30b to 30d and the opening areas of the cylindrical members 40a and 40b, the frequency at which the intake sound can be emphasized is set to a desired frequency. It is set.
Specifically, by changing the contact state between the elastic membrane component 30a and each of the cylindrical members 40a and 40b, the area of the vibrating portion where the elastic membrane component 30a vibrates in the out-of-plane direction of the elastic membrane member 16 is changed. The frequency at which the intake sound can be emphasized is changed.

以下、図1、図2、図8及び図9を参照しつつ、図10及び図11を用いて、弾性膜構成部30aと各円筒部材40a,40bとの接触状態の変化について説明する。また、弾性膜構成部30aと各円筒部材40a,40bとの接触状態の変化に応じた、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する共振周波数との関係について説明する。なお、以下の説明で用いる、エンジンの回転数R1〜R3、共振周波数f1〜f3及び選択した第一周波数〜第三周波数は、上述した第一実施形態と同様であるため、詳細な説明は省略する。   Hereinafter, changes in the contact state between the elastic membrane constituting portion 30a and the cylindrical members 40a and 40b will be described with reference to FIGS. 1, 2, 8, and 9, and FIGS. In addition, the relationship between the resonance frequency at which the elastic membrane component 30a vibrates in the out-of-plane direction of the elastic membrane member 16 according to the change in the contact state between the elastic membrane component 30a and the cylindrical members 40a and 40b will be described. The engine speeds R1 to R3, the resonance frequencies f1 to f3, and the selected first frequency to third frequency used in the following description are the same as those in the first embodiment described above, and detailed description thereof is omitted. To do.

図9中に示すように、吸気ダクト8内で生じる吸気負圧が、エンジンの回転数がR1である状態の吸気負圧である状態では、弾性膜構成部30bは当初の状態から収縮しないため、弾性膜構成部30aと円筒部材40aは接触していない。
したがって、エンジン6の回転数がR1である状態では、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が最大値となるため、弾性膜部材16の面外方向への剛性が最小値となる。
As shown in FIG. 9, when the intake negative pressure generated in the intake duct 8 is the intake negative pressure in a state where the engine speed is R1, the elastic membrane constituting portion 30b does not contract from the initial state. The elastic membrane component 30a and the cylindrical member 40a are not in contact with each other.
Therefore, in the state in which the rotational speed of the engine 6 is R1, the area of the vibration part in which the elastic film component 30a vibrates in the out-of-plane direction of the elastic film member 16 becomes the maximum value. The rigidity is minimum.

これに基づき、本実施形態では、エンジン6の回転数がR1である状態における弾性膜部材16の共振周波数が、第一共振周波数f1となるように、各弾性膜構成部30b〜30dの厚さを調節する。
図10は、エンジン6の回転数がR2である状態の弾性膜部材16を示す図である。
エンジン6の回転数が、R1よりも高いR2となると、吸気ダクト8内に生じる吸気負圧が、エンジン6の回転数がR1である状態よりも増加する。
Based on this, in the present embodiment, the thickness of each elastic membrane component 30b-30d is such that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R1 is the first resonance frequency f1. Adjust.
FIG. 10 is a view showing the elastic membrane member 16 in a state where the rotational speed of the engine 6 is R2.
When the rotational speed of the engine 6 becomes R2 higher than R1, the intake negative pressure generated in the intake duct 8 increases more than the state where the rotational speed of the engine 6 is R1.

したがって、図10中に示すように、エンジン6の回転数がR2である状態では、弾性膜構成部30bが収縮して、弾性膜構成部30aが吸気ダクト8側へ変位し、弾性膜構成部30aと円筒部材40aが接触する。
ここで、円筒部材40aは、弾性膜構成部30aより剛性が高く、その開口面積が、弾性膜構成部30aの面積よりも小さい。このため、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、円筒部材40aの開口面積となる。
Therefore, as shown in FIG. 10, in the state where the rotational speed of the engine 6 is R2, the elastic membrane component 30b contracts and the elastic membrane component 30a is displaced toward the intake duct 8 side, and the elastic membrane component 30a contacts the cylindrical member 40a.
Here, the cylindrical member 40a has higher rigidity than the elastic membrane constituting portion 30a, and the opening area thereof is smaller than the area of the elastic membrane constituting portion 30a. For this reason, the area of the vibration part in which the elastic film constituting part 30a vibrates in the out-of-plane direction of the elastic film member 16 becomes the opening area of the cylindrical member 40a.

この状態では、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、エンジン6の回転数がR1である状態よりも小さくなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる。
これに基づき、本実施形態では、エンジン6の回転数がR2である状態における弾性膜部材16の共振周波数が、第二共振周波数f2となるように、各弾性膜構成部30b〜30dの厚さと、円筒部材40aの開口面積を調節する。
In this state, the area of the vibration part in which the elastic film constituting portion 30a vibrates in the out-of-plane direction of the elastic film member 16 is smaller than in the state where the rotational speed of the engine 6 is R1. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R1.
Based on this, in the present embodiment, the thickness of each elastic membrane component 30b-30d is set so that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R2 is the second resonance frequency f2. The opening area of the cylindrical member 40a is adjusted.

図11は、エンジン6の回転数がR3である状態の弾性膜部材16を示す図である。
エンジン6の回転数が、R2よりも高いR3となると、吸気ダクト8内に生じる吸気負圧が、エンジン6の回転数がR2である状態よりも増加する。
したがって、図11中に示すように、エンジン6の回転数がR3である状態では、既に収縮している弾性膜構成部30bに加え、弾性膜構成部30cが収縮する。これにより、エンジン6の回転数がR2である状態よりも、弾性膜構成部30aが吸気ダクト側へ変位し、円筒部材40aの内周側において、弾性膜構成部30aと円筒部材40bが接触する。
FIG. 11 is a view showing the elastic film member 16 in a state where the rotational speed of the engine 6 is R3.
When the rotational speed of the engine 6 becomes R3 higher than R2, the intake negative pressure generated in the intake duct 8 increases more than in the state where the rotational speed of the engine 6 is R2.
Therefore, as shown in FIG. 11, in the state where the rotational speed of the engine 6 is R3, in addition to the already contracted elastic membrane constituting portion 30b, the elastic membrane constituting portion 30c contracts. Thereby, the elastic membrane constituting part 30a is displaced toward the intake duct side than the state where the rotational speed of the engine 6 is R2, and the elastic membrane constituting part 30a and the cylindrical member 40b are in contact with each other on the inner peripheral side of the cylindrical member 40a. .

ここで、円筒部材40bは、弾性膜構成部30aより剛性が高く、その開口面積が、円筒部材40aの開口面積よりも小さい。このため、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、円筒部材40bの開口面積となる。
この状態では、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、エンジン6の回転数がR2である状態よりも小さくなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなる。
Here, the cylindrical member 40b has higher rigidity than the elastic membrane constituting portion 30a, and the opening area thereof is smaller than the opening area of the cylindrical member 40a. For this reason, the area of the vibration part in which the elastic film constituent part 30a vibrates in the out-of-plane direction of the elastic film member 16 becomes the opening area of the cylindrical member 40b.
In this state, the area of the vibration part in which the elastic membrane constituting portion 30a vibrates in the out-of-plane direction of the elastic membrane member 16 is smaller than in the state where the rotational speed of the engine 6 is R2. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R2.

これに基づき、本実施形態では、エンジン6の回転数がR3である状態における弾性膜部材16の共振周波数が、第三共振周波数f3となるように、各弾性膜構成部30b〜30dの厚さと、円筒部材40bの開口面積を調節する。
以上により、上述した各弾性膜構成部30b〜30dと、各円筒部材40a,40bは、吸気ダクト8内で生じる吸気負圧の変化に応じて、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積を変化させる。
その他の構成は、上述した第一実施形態と同様である。
Based on this, in the present embodiment, the thickness of each elastic membrane component 30b-30d is set so that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R3 becomes the third resonance frequency f3. The opening area of the cylindrical member 40b is adjusted.
As described above, each of the elastic membrane constituting portions 30b to 30d and the cylindrical members 40a and 40b described above are arranged so that the elastic membrane constituting portion 30a is a surface of the elastic membrane member 16 in accordance with the change of the intake negative pressure generated in the intake duct 8. The area of the vibration part that vibrates outward is changed.
Other configurations are the same as those of the first embodiment described above.

(動作)
次に、図1、図2、図8から図11を参照しつつ、吸気音調節装置の動作について説明する。なお、以下の説明では、弾性膜部材16以外の構成については、上述した第一実施形態と同様であるため、異なる部分の動作を中心に説明する。
エンジン6を駆動させると、エンジン6の吸気動作に伴って発生する吸気脈動が、各インテークマニホールド28及びサージタンク26を介して、クリーンサイド側吸気ダクト20内に存在する気体に伝播する(図2参照)。
(Operation)
Next, the operation of the intake sound adjusting device will be described with reference to FIGS. 1, 2, and 8 to 11. In the following description, since the configuration other than the elastic film member 16 is the same as that of the first embodiment described above, the operation of different parts will be mainly described.
When the engine 6 is driven, the intake pulsation generated by the intake operation of the engine 6 is propagated to the gas existing in the clean side intake duct 20 via each intake manifold 28 and the surge tank 26 (FIG. 2). reference).

エンジン6を駆動させた状態における加速時では、エンジン6の回転数が上昇する。これにより、吸気ダクト8内の気体に発生する吸気負圧が増加する(図2参照)。
エンジン6の回転数が上昇する過程において、エンジン6の回転数がR1である状態では、第一周波数の吸気脈動が、連通管12を介して弾性膜部材16、具体的には弾性膜構成部30aへ伝播する。
このとき、各弾性膜構成部30b〜30dは、当初の状態から収縮しないため、弾性膜構成部30aと円筒部材40aは接触しない。このため、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が最大値となり、弾性膜部材16の面外方向への剛性が最小値となる(図8参照)。
During acceleration in a state where the engine 6 is driven, the rotational speed of the engine 6 increases. Thereby, the negative intake pressure generated in the gas in the intake duct 8 increases (see FIG. 2).
In the process of increasing the rotational speed of the engine 6, when the rotational speed of the engine 6 is R 1, the intake pulsation of the first frequency is caused by the elastic membrane member 16, specifically, the elastic membrane constituent part via the communication pipe 12. Propagate to 30a.
At this time, since each elastic film | membrane structure part 30b-30d does not shrink | contract from the original state, the elastic film | membrane structure part 30a and the cylindrical member 40a do not contact. For this reason, the area of the vibration part in which the elastic membrane component 30a vibrates in the out-of-plane direction of the elastic membrane member 16 becomes the maximum value, and the rigidity in the out-of-plane direction of the elastic membrane member 16 becomes the minimum value (see FIG. 8). .

また、第一周波数の吸気脈動の周波数は、第一共振周波数f1と一致している。
この状態で、弾性膜構成部30aが、弾性膜部材16の面外方向に振動すると、この振動により、第一周波数及び第一周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
エンジン6の回転数がR1である状態から、アクセルペダルの踏み込み量を更に増加させて、エンジン6の回転数がR2である状態へ移行させると、第二周波数の吸気脈動が、連通管12を介して弾性膜構成部30aへ伝播する。
The frequency of the intake pulsation of the first frequency matches the first resonance frequency f1.
In this state, when the elastic membrane component 30a vibrates in the out-of-plane direction of the elastic membrane member 16, this vibration amplifies the intake air pulsation near the first frequency and the first frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
If the amount of depression of the accelerator pedal is further increased from the state where the rotational speed of the engine 6 is R1 to shift to the state where the rotational speed of the engine 6 is R2, the intake pulsation of the second frequency causes the communication pipe 12 to And propagates to the elastic membrane constituting part 30a.

このとき、弾性膜構成部30bが収縮して、弾性膜構成部30aが吸気ダクト側へ変位し、弾性膜構成部30aと円筒部材40aが接触するため、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、円筒部材40aの開口面積となる。これにより、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、エンジン6の回転数がR1である状態よりも小さくなる。このため、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる(図10参照)。   At this time, the elastic membrane component 30b contracts, the elastic membrane component 30a is displaced toward the intake duct, and the elastic membrane component 30a and the cylindrical member 40a come into contact with each other. The area of the vibrating portion that vibrates in the out-of-plane direction is the opening area of the cylindrical member 40a. Thereby, the area of the vibration part in which the elastic film constituent part 30a vibrates in the out-of-plane direction of the elastic film member 16 becomes smaller than the state where the rotational speed of the engine 6 is R1. For this reason, the rigidity of the elastic membrane member 16 in the out-of-plane direction is higher than that in the state where the rotational speed of the engine 6 is R1 (see FIG. 10).

また、第二周波数の吸気脈動の周波数は、第二共振周波数f2と一致している。
この状態で、弾性膜構成部30aが、弾性膜部材16の面外方向に振動すると、この振動により、第二周波数及び第二周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
エンジン6の回転数がR2である状態から、アクセルペダルの踏み込み量を更に増加させて、エンジン6の回転数がR3である状態へ移行させると、第三周波数の吸気脈動が、連通管12を介して弾性膜構成部30aへ伝播する。
The frequency of the intake pulsation of the second frequency matches the second resonance frequency f2.
In this state, if the elastic membrane component 30a vibrates in the out-of-plane direction of the elastic membrane member 16, the vibration amplifies the intake air pulsation near the second frequency and the second frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
If the amount of depression of the accelerator pedal is further increased from the state where the rotational speed of the engine 6 is R2 to shift to the state where the rotational speed of the engine 6 is R3, the intake pulsation of the third frequency causes the communication pipe 12 to And propagates to the elastic membrane constituting part 30a.

このとき、既に収縮している弾性膜構成部30bに加え、弾性膜構成部30cが収縮して、エンジン6の回転数がR2である状態よりも、弾性膜構成部30aが吸気ダクト側へ変位する。そして、円筒部材40aの内周側において、弾性膜構成部30aと円筒部材40bが接触する。
これにより、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、円筒部材40bの開口面積となる。そして、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が、エンジン6の回転数がR2である状態よりも小さくなる。このため、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなる(図11参照)。
At this time, in addition to the already contracted elastic membrane component 30b, the elastic membrane component 30c contracts, and the elastic membrane component 30a is displaced to the intake duct side as compared with the state where the rotational speed of the engine 6 is R2. To do. The elastic film constituting portion 30a and the cylindrical member 40b are in contact with each other on the inner peripheral side of the cylindrical member 40a.
Thereby, the area of the vibration part in which the elastic film constituting part 30a vibrates in the out-of-plane direction of the elastic film member 16 becomes the opening area of the cylindrical member 40b. Then, the area of the vibration part where the elastic film constituent part 30a vibrates in the out-of-plane direction of the elastic film member 16 is smaller than the state where the rotational speed of the engine 6 is R2. For this reason, the rigidity of the elastic membrane member 16 in the out-of-plane direction is higher than that in the state where the rotational speed of the engine 6 is R2 (see FIG. 11).

また、第三周波数の吸気脈動の周波数は、第三共振周波数f3と一致している。
この状態で、弾性膜構成部30aが、弾性膜部材16の面外方向に振動すると、この振動により、第三周波数及び第三周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
以上により、加速時においては、エンジン6回転数の増加に伴い、弾性膜構成部30aが弾性膜部材16の面外方向へ振動する振動部分の面積が減少し、弾性膜部材16の面外方向への剛性が増加する。このため、エンジン回転数の増加に伴い、第一周波数の吸気脈動、第二周波数の吸気脈動及び第三周波数の吸気脈動を順に増幅することが可能となり、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる(図2参照)。
増音させた吸気音を、追加管14の他方の開口端から外気側へ放射すると、この放射した吸気音が、ダッシュパネル10を介して車室2内に伝播するため、迫力感のある吸気音を車室2内へ導入することが可能となる(図1参照)。
Further, the frequency of the third pulsation of intake pulsation coincides with the third resonance frequency f3.
In this state, when the elastic membrane component 30a vibrates in the out-of-plane direction of the elastic membrane member 16, this vibration amplifies the intake pulsation near the third frequency and the third frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
As described above, at the time of acceleration, the area of the vibration part in which the elastic membrane constituting portion 30a vibrates in the out-of-plane direction of the elastic membrane member 16 is reduced with the increase in the number of rotations of the engine 6, Increased rigidity. For this reason, it is possible to sequentially amplify the intake pulsation of the first frequency, the intake pulsation of the second frequency, and the intake pulsation of the third frequency as the engine speed increases. It becomes possible to radiate from the other open end of 14 to the outside air side (see FIG. 2).
When the increased intake sound is radiated from the other opening end of the additional pipe 14 to the outside air side, the radiated intake sound is propagated into the vehicle compartment 2 via the dash panel 10, so that the intake air has a powerful feeling. Sound can be introduced into the passenger compartment 2 (see FIG. 1).

(第二実施形態の効果)
(1)本実施形態の吸気音調節装置では、吸気ダクト内で生じる吸気負圧の変化に応じて、弾性膜部材の面外方向へ振動する振動部分の面積を変化させることにより、弾性膜部材の面外方向への剛性を変化させる。
このため、エンジンの回転数の増加に応じて、弾性膜部材の剛性を増加させることが可能となり、弾性膜部材の共振周波数を変化させることが可能となる。これにより、選択した周波数の吸気脈動を増幅させることが可能となるため、迫力感のある吸気音を車室内へ導入することが可能となる。
その結果、一つの弾性膜部材によって、複数の共振周波数の吸気音を強調させることが可能となり、複数の吸気ダクトを必要とせずに、迫力感のある吸気音を発生させることが可能となる。また、レイアウトの自由度を向上させることが可能となり、車体の大きさが異なる車両等、構成の異なる多種類の車両に適用可能となる。
(Effect of the second embodiment)
(1) In the intake sound adjusting device of the present embodiment, the elastic membrane member is changed by changing the area of the vibrating portion that vibrates in the out-of-plane direction of the elastic membrane member in accordance with the change of the intake negative pressure generated in the intake duct. The stiffness in the out-of-plane direction is changed.
For this reason, the rigidity of the elastic membrane member can be increased in accordance with the increase in the engine speed, and the resonance frequency of the elastic membrane member can be changed. As a result, it is possible to amplify the intake pulsation of the selected frequency, so that it is possible to introduce a powerful intake sound into the vehicle interior.
As a result, it is possible to emphasize the intake sound having a plurality of resonance frequencies with one elastic film member, and it is possible to generate a powerful intake sound without requiring a plurality of intake ducts. In addition, the degree of freedom in layout can be improved, and the invention can be applied to many types of vehicles having different configurations such as vehicles having different body sizes.

(応用例)
(1)なお、本実施形態の吸気音調節装置では、弾性膜構成部と二つの円筒部材との接触による、三種類の弾性膜部材の面外方向へ振動する振動部分の面積の変化に応じて、弾性膜部材の面外方向へ振動する共振周波数が互いに異なる構成としている。しかしながら、これに限定するものではない。すなわち、弾性膜構成部と一つの円筒部材との接触による、二種類の接触面積の変化に応じて、弾性膜部材の面外方向へ振動する共振周波数が互いに異なる構成としてもよい。
(Application example)
(1) In addition, in the intake sound adjusting device of this embodiment, according to the change of the area of the vibration part which vibrates to the out-of-plane direction of three types of elastic film members by contact with an elastic film structural part and two cylindrical members. Thus, the resonance frequencies that vibrate in the out-of-plane direction of the elastic film member are different from each other. However, the present invention is not limited to this. That is, the resonance frequencies that vibrate in the out-of-plane direction of the elastic film member may be different from each other according to changes in two types of contact areas due to the contact between the elastic film component and one cylindrical member.

(第三実施形態)
次に、本発明の第三実施形態について説明する。
(構成)
まず、図2を参照しつつ、図12から図15を用いて、本実施形態の吸気音調節装置の構成を説明する。なお、本実施形態の吸気音調節装置の構成は、弾性膜部材16の構成を除き、上述した第一実施形態と同様の構成であるため、以下の説明は、弾性膜部材16を中心に記載する。
(Third embodiment)
Next, a third embodiment of the present invention will be described.
(Constitution)
First, the configuration of the intake sound adjusting device of the present embodiment will be described using FIGS. 12 to 15 with reference to FIG. In addition, since the structure of the intake sound adjusting device of this embodiment is the same structure as 1st Embodiment mentioned above except the structure of the elastic film member 16, the following description is described centering on the elastic film member 16. To do.

図12は、弾性膜部材16を追加管側から見た図であり、図13は、図12のX−X線断面図である。なお、図12及び図13中には、吸気ダクト8内で生じる吸気負圧が、エンジンの回転数がR1である状態の吸気負圧である状態を示している。
図12及び図13中に示すように、弾性膜部材16は、三つの弾性膜構成部30a〜30cと、二つの弾性膜連結部36a,36bを備えている。なお、図中及び以降の説明では、三つの弾性膜構成部30a〜30cを、吸気ダクト8と近い順に、弾性膜構成部30a、弾性膜構成部30b、弾性膜構成部30cと記載する。また、図中及び以降の説明では、二つの弾性膜連結部36を、吸気ダクト8と近い順に、弾性膜連結部36a、弾性膜連結部36bと記載する。
12 is a view of the elastic membrane member 16 as viewed from the additional tube side, and FIG. 13 is a sectional view taken along line XX of FIG. 12 and 13 show a state in which the intake negative pressure generated in the intake duct 8 is the intake negative pressure in a state where the engine speed is R1.
As shown in FIGS. 12 and 13, the elastic membrane member 16 includes three elastic membrane constituting portions 30 a to 30 c and two elastic membrane connecting portions 36 a and 36 b. In the drawings and the following description, the three elastic membrane constituent portions 30a to 30c are described as an elastic membrane constituent portion 30a, an elastic membrane constituent portion 30b, and an elastic membrane constituent portion 30c in the order closest to the intake duct 8. Further, in the drawings and the following description, the two elastic membrane connecting portions 36 are referred to as an elastic membrane connecting portion 36a and an elastic membrane connecting portion 36b in the order closer to the intake duct 8.

各弾性膜構成部30a〜30cは、ゴム等、弾性を有する同一の材料を用いて形成してある。
弾性膜構成部30aは、両端部の開口面積が異なる円筒状に形成してある。具体的には、弾性膜構成部30aは、吸気ダクト8側の開口面積が、追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜構成部30aは、吸気ダクト8側の開口端から追加管14側の開口端へ向うにつれて、連続的に断面積が減少する形状に形成することにより、追加管14側の開口面積を、弾性膜構成部30bの吸気ダクト8側の開口面積よりも小さくしている。
Each elastic film | membrane structure part 30a-30c is formed using the same material which has elasticity, such as rubber | gum.
The elastic membrane constituting part 30a is formed in a cylindrical shape having different opening areas at both ends. Specifically, the elastic membrane component 30a is formed so that the opening area on the intake duct 8 side is larger than the opening area on the additional pipe 14 side. The elastic membrane component 30a is formed in a shape in which the cross-sectional area continuously decreases from the opening end on the intake duct 8 side to the opening end on the additional tube 14 side, thereby opening the opening area on the additional tube 14 side. Is made smaller than the opening area on the intake duct 8 side of the elastic membrane constituting portion 30b.

これにより、弾性膜構成部30aの吸気ダクト8側の一部は、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34aを形成する。すなわち、弾性膜構成部30aは、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34aを有する。
弾性膜構成部30aの吸気ダクト8側の開口端は、接着等の固着手段を用いて、連通管12の内周面に固定してある。一方、弾性膜構成部30aの追加管14側の開口端は、弾性膜連結部36aを介して、弾性膜構成部30bの吸気ダクト8側の開口端に連結させてある。
Thereby, a part of the elastic membrane constituting portion 30a on the intake duct 8 side forms an overlapping portion 34a that overlaps the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16. In other words, the elastic membrane constituting portion 30a has an overlapping portion 34a that overlaps the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16.
The opening end of the elastic membrane component 30a on the side of the intake duct 8 is fixed to the inner peripheral surface of the communication pipe 12 using a fixing means such as adhesion. On the other hand, the opening end on the additional pipe 14 side of the elastic membrane constituting portion 30a is connected to the opening end on the intake duct 8 side of the elastic membrane constituting portion 30b via the elastic membrane connecting portion 36a.

弾性膜構成部30bは、弾性膜構成部30aと同様、両端部の開口面積が異なる円筒状に形成してある。具体的には、弾性膜構成部30bは、吸気ダクト8側の開口面積が、追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜構成部30bは、吸気ダクト8側の開口端から追加管14側の開口端へ向うにつれて、連続的に断面積が減少する形状に形成することにより、追加管14側の開口面積を、弾性膜構成部30cの吸気ダクト8側の開口面積よりも小さくしている。   Similar to the elastic membrane component 30a, the elastic membrane component 30b is formed in a cylindrical shape having different opening areas at both ends. Specifically, the elastic membrane component 30b is formed so that the opening area on the intake duct 8 side is larger than the opening area on the additional pipe 14 side. Further, the elastic membrane component 30b is formed in a shape in which the cross-sectional area continuously decreases from the opening end on the intake duct 8 side to the opening end on the additional tube 14 side, thereby opening the opening area on the additional tube 14 side. Is made smaller than the opening area on the intake duct 8 side of the elastic membrane constituting part 30c.

これにより、弾性膜構成部30bの吸気ダクト8側の一部は、弾性膜部材16の面外方向から見て、弾性膜構成部30aと互いに重なる重なり部34bを形成する。さらに、弾性膜構成部30bの追加管14側の一部は、弾性膜部材16の面外方向から見て、弾性膜構成部30cと互いに重なる重なり部34cを形成する。すなわち、弾性膜構成部30bは、弾性膜部材16の面外方向から見て、弾性膜構成部30aと互いに重なる重なり部34bと、弾性膜構成部30cと互いに重なる重なり部34cとを有する。   Accordingly, a part of the elastic membrane constituting portion 30b on the side of the intake duct 8 forms an overlapping portion 34b overlapping with the elastic membrane constituting portion 30a when viewed from the out-of-plane direction of the elastic membrane member 16. Furthermore, a part of the elastic membrane component 30b on the side of the additional tube 14 forms an overlapping portion 34c that overlaps the elastic membrane component 30c when viewed from the out-of-plane direction of the elastic membrane member 16. In other words, the elastic membrane constituting portion 30b has an overlapping portion 34b that overlaps the elastic membrane constituting portion 30a and an overlapping portion 34c that overlaps the elastic membrane constituting portion 30c when viewed from the out-of-plane direction of the elastic membrane member 16.

また、弾性膜連結部36bは、吸気ダクト8側の開口面積が、弾性膜構成部30aの吸気ダクト8側の開口面積よりも小さく、且つ弾性膜構成部30aの追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜連結部36bは、追加管14側の開口面積が、弾性膜構成部30aの追加管14側の開口面積よりも小さくなるように形成してある。   The elastic membrane connecting portion 36b has an opening area on the intake duct 8 side that is smaller than an opening area on the intake duct 8 side of the elastic membrane constituting portion 30a and an opening area on the additional pipe 14 side of the elastic membrane constituting portion 30a. Is also formed to be larger. The elastic membrane connecting portion 36b is formed such that the opening area on the additional tube 14 side is smaller than the opening area on the additional tube 14 side of the elastic membrane constituting portion 30a.

弾性膜構成部30bの吸気ダクト8側の開口端は、弾性膜連結部36aを介して、弾性膜構成部30aの追加管14側の開口端に連結させてある。一方、弾性膜構成部30bの追加管14側の開口端は、弾性膜連結部36bを介して、弾性膜構成部30cの吸気ダクト8側の開口端に連結させてある。
弾性膜構成部30cは、円錐状に形成してある。
The opening end on the intake duct 8 side of the elastic membrane constituting portion 30b is connected to the opening end on the additional pipe 14 side of the elastic membrane constituting portion 30a via the elastic membrane connecting portion 36a. On the other hand, the opening end on the additional pipe 14 side of the elastic membrane constituting portion 30b is connected to the opening end on the intake duct 8 side of the elastic membrane constituting portion 30c via the elastic membrane connecting portion 36b.
The elastic membrane constituting part 30c is formed in a conical shape.

また、弾性膜連結部36cは、その開口面積が、弾性膜構成部30bの吸気ダクト8側の開口面積よりも小さく、且つ弾性膜構成部30bの追加管14側の開口面積よりも大きくなるように形成してある。
これにより、弾性膜構成部30cの吸気ダクト8側の一部は、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34dを形成する。すなわち、弾性膜構成部30cは、弾性膜部材16の面外方向から見て、弾性膜構成部30bと互いに重なる重なり部34dを有する。
Further, the opening area of the elastic membrane connecting portion 36c is smaller than the opening area on the intake duct 8 side of the elastic membrane constituting portion 30b and larger than the opening area on the additional pipe 14 side of the elastic membrane constituting portion 30b. Is formed.
Thereby, a part of the elastic membrane constituting portion 30c on the intake duct 8 side forms an overlapping portion 34d overlapping with the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16. In other words, the elastic membrane constituting portion 30c has an overlapping portion 34d that overlaps the elastic membrane constituting portion 30b when viewed from the out-of-plane direction of the elastic membrane member 16.

弾性膜構成部30cの開口端は、弾性膜連結部36bを介して、弾性膜構成部30bの追加管側の開口端に連結させてある。
各弾性膜連結部36a、36bは、ゴム等の弾性を有する同一の材料を用いて形成してある。
弾性膜連結部36aは、弾性膜構成部30aと同様、両端部の開口面積が異なる円筒状に形成してある。具体的には、弾性膜連結部36aは、吸気ダクト8側の開口面積が、追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜連結部36aは、吸気ダクト8側の開口端から追加管14側の開口端へ向うにつれて、連続的に断面積が減少する形状に形成する。
The opening end of the elastic membrane constituting portion 30c is connected to the opening end of the elastic membrane constituting portion 30b on the additional tube side via the elastic membrane connecting portion 36b.
Each elastic membrane coupling part 36a, 36b is formed using the same material having elasticity such as rubber.
The elastic membrane connecting portion 36a is formed in a cylindrical shape having different opening areas at both ends, similarly to the elastic membrane constituting portion 30a. Specifically, the elastic membrane coupling part 36a is formed such that the opening area on the intake duct 8 side is larger than the opening area on the additional pipe 14 side. Further, the elastic membrane coupling part 36a is formed in a shape in which the cross-sectional area continuously decreases from the opening end on the intake duct 8 side toward the opening end on the additional pipe 14 side.

また、弾性膜連結部36aは、吸気ダクト8側の開口面積が、弾性膜構成部30aの吸気ダクト8側の開口面積よりも小さく、且つ弾性膜構成部30aの追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜連結部36aは、追加管14側の開口面積が、弾性膜構成部30aの追加管14側の開口面積と同一となるように形成してある。
弾性膜連結部36aの吸気ダクト8側の開口端は、接着等の固着手段を用いて、弾性膜構成部30bの吸気ダクト8側の開口端に連結させてある。一方、弾性膜連結部36aの追加管14側の開口端は、接着等の固着手段を用いて、弾性膜構成部30aの追加管14側の開口端に連結させてある。
The elastic membrane connecting portion 36a has an opening area on the intake duct 8 side that is smaller than an opening area on the intake duct 8 side of the elastic membrane constituting portion 30a and an opening area on the additional pipe 14 side of the elastic membrane constituting portion 30a. Is also formed to be large. The elastic membrane connecting portion 36a is formed such that the opening area on the additional tube 14 side is the same as the opening area on the additional tube 14 side of the elastic membrane constituting portion 30a.
The opening end on the intake duct 8 side of the elastic membrane connecting portion 36a is connected to the opening end on the intake duct 8 side of the elastic membrane constituting portion 30b using an adhering means such as adhesion. On the other hand, the opening end on the additional tube 14 side of the elastic membrane connecting portion 36a is connected to the opening end on the additional tube 14 side of the elastic membrane constituting portion 30a by using a fixing means such as adhesion.

弾性膜連結部36bは、弾性膜構成部30aと同様、両端部の開口面積が異なる円筒状に形成してある。具体的には、弾性膜連結部36bは、吸気ダクト8側の開口面積が、追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜連結部36bは、吸気ダクト8側の開口端から追加管14側の開口端へ向うにつれて、連続的に断面積が減少する形状に形成する。
また、弾性膜連結部36bは、吸気ダクト8側の開口面積が、弾性膜構成部30bの吸気ダクト8側の開口面積よりも小さく、且つ弾性膜構成部30bの追加管14側の開口面積よりも大きくなるように形成してある。また、弾性膜連結部36bは、追加管14側の開口面積が、弾性膜構成部30bの追加管14側の開口面積と同一となるように形成してある。
The elastic membrane connecting portion 36b is formed in a cylindrical shape having different opening areas at both ends, similarly to the elastic membrane constituting portion 30a. Specifically, the elastic membrane coupling part 36b is formed such that the opening area on the intake duct 8 side is larger than the opening area on the additional pipe 14 side. Further, the elastic membrane coupling part 36b is formed in a shape in which the cross-sectional area continuously decreases from the opening end on the intake duct 8 side toward the opening end on the additional pipe 14 side.
The elastic membrane connecting portion 36b has an opening area on the intake duct 8 side smaller than an opening area on the intake duct 8 side of the elastic membrane constituting portion 30b and an opening area on the additional pipe 14 side of the elastic membrane constituting portion 30b. Is also formed to be large. The elastic membrane connecting portion 36b is formed such that the opening area on the additional tube 14 side is the same as the opening area on the additional tube 14 side of the elastic membrane constituting portion 30b.

弾性膜連結部36bの吸気ダクト8側の開口端は、接着等の固着手段を用いて、弾性膜構成部30cの開口端に連結させてある。一方、弾性膜連結部36bの追加管14側の開口端は、接着等の固着手段を用いて、弾性膜構成部30bの追加管14側の開口端に連結させてある。
以上により、各弾性膜構成部30a〜30cと各弾性膜連結部36a、36bは、互いに連結して、連通管12を閉塞させている。
The opening end of the elastic membrane connecting portion 36b on the intake duct 8 side is connected to the opening end of the elastic membrane constituting portion 30c by using a fixing means such as adhesion. On the other hand, the opening end on the additional tube 14 side of the elastic membrane connecting portion 36b is connected to the opening end on the additional tube 14 side of the elastic membrane constituting portion 30b by using a fixing means such as adhesion.
As described above, the elastic membrane constituting portions 30a to 30c and the elastic membrane connecting portions 36a and 36b are connected to each other to close the communication pipe 12.

ここで、各弾性膜連結部36a、36bは、その厚さが、互いに異なるように形成する。具体的には、弾性膜連結部36aの厚さTaが、弾性膜連結部36bの厚さTbよりも小さくなるように形成する。すなわち、各弾性膜連結部36a、36bの厚さを、それぞれ、Tb>Taの条件式が成立するように形成する。
したがって、各弾性膜連結部36a、36bは、同一の材料を用いて形成するとともに、互いの厚さを異ならせてあるため、それぞれ、剛性、具体的には、弾性膜部材16の面外方向への剛性が異なる。ここで、厚さの小さい弾性膜連結部36は、厚さの大きい弾性膜連結部36と比較して、弾性膜部材16の面外方向への剛性が低くなる。
Here, the elastic membrane connecting portions 36a and 36b are formed so as to have different thicknesses. Specifically, the elastic film coupling part 36a is formed so that the thickness Ta is smaller than the thickness Tb of the elastic film coupling part 36b. That is, the thicknesses of the elastic film coupling portions 36a and 36b are formed so that the conditional expression Tb> Ta is satisfied.
Accordingly, the elastic membrane connecting portions 36a and 36b are formed using the same material and have different thicknesses from each other. Therefore, each of the elastic membrane connecting portions 36a and 36b has rigidity, specifically, an out-of-plane direction of the elastic membrane member 16. Rigidity is different. Here, the elastic membrane connecting portion 36 having a small thickness has a lower rigidity in the out-of-plane direction of the elastic membrane member 16 than the elastic membrane connecting portion 36 having a large thickness.

これにより、弾性膜部材16の構成を、吸気ダクト8内で生じる吸気負圧の変化に応じて、重なり部34a〜34d同士の接触面積を変化させて、各弾性膜構成部30a〜30c同士の接触面積を変化させる構成としている。
また、本実施形態では、各弾性膜連結部36a、36bの厚さを調節することにより、重なり部34a〜34d同士の接触面積を調節する。これにより、各弾性膜構成部30a〜30c同士の接触面積を調節して、吸気音を強調させることが可能な周波数を、所望の周波数に設定している。
Thereby, the structure of the elastic membrane member 16 is changed between the elastic membrane constituting portions 30a to 30c by changing the contact area between the overlapping portions 34a to 34d according to the change of the intake negative pressure generated in the intake duct 8. The contact area is changed.
Moreover, in this embodiment, the contact area of overlap part 34a-34d is adjusted by adjusting the thickness of each elastic film connection part 36a, 36b. Thereby, the frequency which can emphasize an intake sound is adjusted to the desired frequency by adjusting the contact area of each elastic film structural part 30a-30c.

以下、図1、図2、図12及び図13を参照しつつ、図14及び図15を用いて、各弾性膜構成部30a〜30c同士の接触面積の変化と、この変化に応じた、弾性膜部材16の面外方向へ振動する共振周波数との関係について説明する。なお、以下の説明で用いる、エンジンの回転数R1〜R3、共振周波数f1〜f3及び選択した第一周波数〜第三周波数は、上述した第一実施形態と同様であるため、詳細な説明は省略する。   Hereinafter, referring to FIG. 1, FIG. 2, FIG. 12 and FIG. 13, using FIG. 14 and FIG. 15, the change in the contact area between the elastic film constituent parts 30a to 30c and the elasticity corresponding to this change. The relationship with the resonance frequency that vibrates in the out-of-plane direction of the membrane member 16 will be described. The engine speeds R1 to R3, the resonance frequencies f1 to f3, and the selected first frequency to third frequency used in the following description are the same as those in the first embodiment described above, and detailed description thereof is omitted. To do.

図13中に示すように、吸気ダクト8内で生じる吸気負圧が、エンジンの回転数がR1である状態の吸気負圧である状態では、弾性膜連結部36aが当初の状態から変形しないため、各重なり部34a〜34d同士は接触していない。
したがって、エンジン6の回転数がR1である状態では、各弾性膜構成部30a〜30c同士の接触面積は最小値となるため、弾性膜部材16の面外方向への剛性が最小値となる。
As shown in FIG. 13, when the intake negative pressure generated in the intake duct 8 is an intake negative pressure in a state where the engine speed is R1, the elastic membrane connecting portion 36a is not deformed from the initial state. The overlapping portions 34a to 34d are not in contact with each other.
Therefore, in the state where the rotational speed of the engine 6 is R1, the contact area between the elastic film constituent portions 30a to 30c is the minimum value, and therefore the rigidity of the elastic film member 16 in the out-of-plane direction is the minimum value.

これに基づき、本実施形態では、エンジン6の回転数がR1である状態における弾性膜部材16の共振周波数が、第一共振周波数f1となるように、各弾性膜連結部36a、36bの厚さを調節する。
図14は、エンジン6の回転数がR2である状態の弾性膜部材16を示す図である。
エンジン6の回転数が、R1よりも高いR2となると、吸気ダクト8内に生じる吸気負圧が、エンジン6の回転数がR1である状態よりも増加する。
Based on this, in the present embodiment, the thickness of each elastic membrane coupling portion 36a, 36b is such that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R1 is the first resonance frequency f1. Adjust.
FIG. 14 is a view showing the elastic membrane member 16 in a state where the rotational speed of the engine 6 is R2.
When the rotational speed of the engine 6 becomes R2 higher than R1, the intake negative pressure generated in the intake duct 8 increases more than the state where the rotational speed of the engine 6 is R1.

したがって、図14中に示すように、エンジン6の回転数がR2である状態では、弾性膜構成部30b及び弾性膜構成部30cのうち、弾性膜構成部30bが吸気ダクト側へ変位する。これは、弾性膜連結部36aの厚さTaが、弾性膜連結部36bの厚さTbよりも小さく、弾性膜連結部36aの弾性膜部材16の面外方向への剛性が、弾性膜連結部36bの弾性膜部材16の面外方向への剛性よりも低いためである。   Therefore, as shown in FIG. 14, in the state where the rotational speed of the engine 6 is R2, the elastic membrane constituting portion 30b of the elastic membrane constituting portion 30b and the elastic membrane constituting portion 30c is displaced toward the intake duct. This is because the thickness Ta of the elastic membrane connecting portion 36a is smaller than the thickness Tb of the elastic membrane connecting portion 36b, and the rigidity of the elastic membrane connecting portion 36a in the out-of-plane direction of the elastic membrane member 16 is This is because the rigidity in the out-of-plane direction of the elastic film member 16 of 36b is lower.

これにより、重なり部34aと重なり部34bが、弾性膜連結部36aを介して接触する。また、重なり部34cは、重なり部34dと接触していない状態を維持する。
この状態では、各重なり部34a〜34d同士の接触面積が、エンジン6の回転数がR1である状態よりも広くなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる。
Thereby, the overlap part 34a and the overlap part 34b contact via the elastic film connection part 36a. Moreover, the overlapping part 34c maintains the state which is not in contact with the overlapping part 34d.
In this state, the contact area between the overlapping portions 34a to 34d is wider than in the state where the rotational speed of the engine 6 is R1. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R1.

また、この状態では、弾性膜部材16が面外方向へ振動する振動部分の面積が、エンジン6の回転数がR1である状態よりも小さくなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる。
これに基づき、本実施形態では、エンジン6の回転数がR2である状態における弾性膜部材16の共振周波数が、第二共振周波数f2となるように、各弾性膜連結部36a、36bの厚さを調節する。
In this state, the area of the vibrating portion where the elastic film member 16 vibrates in the out-of-plane direction is smaller than in the state where the rotational speed of the engine 6 is R1. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R1.
Based on this, in the present embodiment, the thickness of each elastic membrane coupling portion 36a, 36b is set so that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R2 is the second resonance frequency f2. Adjust.

図15は、エンジン6の回転数がR3である状態の弾性膜部材16を示す図である。
エンジン6の回転数が、R2よりも高いR3となると、吸気ダクト8内に生じる吸気負圧が、エンジン6の回転数がR2である状態よりも増加する。
したがって、図15中に示すように、エンジン6の回転数がR3である状態では、既に吸気ダクト側へ変位している弾性膜構成部30bに加え、弾性膜構成部30cが吸気ダクト側へ変位する。
FIG. 15 is a view showing the elastic membrane member 16 in a state where the rotational speed of the engine 6 is R3.
When the rotational speed of the engine 6 becomes R3 higher than R2, the intake negative pressure generated in the intake duct 8 increases more than in the state where the rotational speed of the engine 6 is R2.
Therefore, as shown in FIG. 15, in the state where the rotational speed of the engine 6 is R3, in addition to the elastic membrane component 30b already displaced toward the intake duct, the elastic membrane component 30c is displaced toward the intake duct. To do.

これにより、既に弾性膜連結部36aを介して接触している、重なり部34aと重なり部34bに加え、重なり部34cが、弾性膜連結部36bを介して重なり部34dと接触する。
この状態では、各重なり部34a〜34d同士の接触面積が、エンジン6の回転数がR2である状態よりも広くなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなる。
Thereby, in addition to the overlap part 34a and the overlap part 34b which are already in contact via the elastic membrane connection part 36a, the overlap part 34c contacts the overlap part 34d via the elastic film connection part 36b.
In this state, the contact area between the overlapping portions 34a to 34d is wider than in the state where the rotational speed of the engine 6 is R2. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R2.

また、この状態では、弾性膜部材16が面外方向へ振動する振動部分の面積が、エンジン6の回転数がR2である状態よりも小さくなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなる。
これに基づき、本実施形態では、エンジン6の回転数がR3である状態における弾性膜部材16の共振周波数が、第三共振周波数f3となるように、各弾性膜連結部36a、36bの厚さを調節する。
Further, in this state, the area of the vibrating portion where the elastic membrane member 16 vibrates in the out-of-plane direction is smaller than in the state where the rotational speed of the engine 6 is R2. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than in the state where the rotational speed of the engine 6 is R2.
Based on this, in the present embodiment, the thickness of each elastic membrane coupling portion 36a, 36b is set such that the resonance frequency of the elastic membrane member 16 in the state where the rotational speed of the engine 6 is R3 becomes the third resonance frequency f3. Adjust.

以上により、上述した各弾性膜連結部36a、36bと、重なり部34a〜34dは、吸気ダクト8内で生じる吸気負圧の変化に応じて、弾性膜部材16の面外方向へ振動する振動部分の面積を変化させる。また、各弾性膜連結部36a、36bは、吸気ダクト8内で生じる吸気負圧の変化に応じて、重なり部34a〜34d同士の接触面積を変化させる。
その他の構成は、上述した第一実施形態と同様である。
As described above, the elastic membrane coupling portions 36 a and 36 b and the overlapping portions 34 a to 34 d described above are vibration portions that vibrate in the out-of-plane direction of the elastic membrane member 16 in accordance with the change in the intake negative pressure generated in the intake duct 8. Change the area. In addition, the elastic membrane coupling portions 36 a and 36 b change the contact area between the overlapping portions 34 a to 34 d in accordance with the change in the intake negative pressure generated in the intake duct 8.
Other configurations are the same as those of the first embodiment described above.

(動作)
次に、図1、図2、図12から図15を参照しつつ、吸気音調節装置の動作について説明する。なお、以下の説明では、弾性膜部材16以外の構成については、上述した第一実施形態と同様であるため、異なる部分の動作を中心に説明する。
エンジン6を駆動させると、エンジン6の吸気動作に伴って発生する吸気脈動が、各インテークマニホールド28及びサージタンク26を介して、クリーンサイド側吸気ダクト20内に存在する気体に伝播する(図2参照)。
(Operation)
Next, the operation of the intake sound adjusting device will be described with reference to FIGS. 1, 2, and 12 to 15. In the following description, since the configuration other than the elastic film member 16 is the same as that of the first embodiment described above, the operation of different parts will be mainly described.
When the engine 6 is driven, the intake pulsation generated by the intake operation of the engine 6 is propagated to the gas existing in the clean side intake duct 20 via each intake manifold 28 and the surge tank 26 (FIG. 2). reference).

エンジン6を駆動させた状態における加速時では、エンジン6の回転数が上昇する。これにより、吸気ダクト8内の気体に発生する吸気負圧が増加する(図2参照)。
エンジン6の回転数が上昇する過程において、エンジン6の回転数がR1である状態では、第一周波数の吸気脈動が、連通管12を介して弾性膜部材16へ伝播する。
このとき、各重なり部34a〜34dは、全て接触しておらず、各重なり部34a〜34d同士の接触面積が最小値となり、各弾性膜構成部30a〜30c同士の接触面積が最小値となる。また、弾性膜部材16が面外方向へ振動する振動部分の面積が最大値となる。このため、弾性膜部材16の面外方向への剛性が最小値となる(図13参照)。
During acceleration in a state where the engine 6 is driven, the rotational speed of the engine 6 increases. Thereby, the negative intake pressure generated in the gas in the intake duct 8 increases (see FIG. 2).
In the process of increasing the rotational speed of the engine 6, in the state where the rotational speed of the engine 6 is R <b> 1, the intake pulsation of the first frequency propagates to the elastic membrane member 16 through the communication pipe 12.
At this time, all the overlapping portions 34a to 34d are not in contact with each other, the contact area between the overlapping portions 34a to 34d is the minimum value, and the contact area between the elastic film constituting portions 30a to 30c is the minimum value. . Further, the area of the vibrating portion where the elastic film member 16 vibrates in the out-of-plane direction becomes the maximum value. For this reason, the rigidity in the out-of-plane direction of the elastic film member 16 becomes the minimum value (see FIG. 13).

また、第一周波数の吸気脈動の周波数は、第一共振周波数f1と一致している。
この状態で、弾性膜部材16が、弾性膜部材16の面外方向に振動すると、この振動により、第一周波数及び第一周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
エンジン6の回転数がR1である状態から、アクセルペダルの踏み込み量を更に増加させて、エンジン6の回転数がR2である状態へ移行させると、第二周波数の吸気脈動が、連通管12を介して弾性膜部材16へ伝播する。
The frequency of the intake pulsation of the first frequency matches the first resonance frequency f1.
In this state, when the elastic membrane member 16 vibrates in the out-of-plane direction of the elastic membrane member 16, the vibration amplifies the intake air pulsation near the first frequency and the first frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
If the amount of depression of the accelerator pedal is further increased from the state where the rotational speed of the engine 6 is R1 to shift to the state where the rotational speed of the engine 6 is R2, the intake pulsation of the second frequency causes the communication pipe 12 to It propagates to the elastic membrane member 16 via

このとき、各重なり部34a〜34dのうち、重なり部34aと重なり部34bが、弾性膜連結部36aを介して接触する状態となるとともに、重なり部34cと重なり部34dが接触しない状態となる。このため、各弾性膜構成部30a〜30c同士の接触面積が、エンジン6の回転数がR1である状態よりも広くなる。また、弾性膜部材16が面外方向へ振動する振動部分の面積が、エンジン6の回転数がR1である状態よりも小さくなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR1である状態よりも高くなる(図14参照)。   At this time, among the overlapping portions 34a to 34d, the overlapping portion 34a and the overlapping portion 34b are in contact with each other via the elastic membrane coupling portion 36a, and the overlapping portion 34c and the overlapping portion 34d are not in contact with each other. For this reason, the contact area between the elastic membrane constituent portions 30a to 30c is wider than the state where the rotational speed of the engine 6 is R1. In addition, the area of the vibration part where the elastic membrane member 16 vibrates in the out-of-plane direction is smaller than in the state where the rotational speed of the engine 6 is R1. Thereby, the rigidity in the out-of-plane direction of the elastic membrane member 16 becomes higher than the state where the rotational speed of the engine 6 is R1 (see FIG. 14).

また、第二周波数の吸気脈動の周波数は、第二共振周波数f2と一致している。
この状態で、弾性膜部材16が、弾性膜部材16の面外方向に振動すると、この振動により、第二周波数及び第二周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
エンジン6の回転数がR2である状態から、アクセルペダルの踏み込み量を更に増加させて、エンジン6の回転数がR3である状態へ移行させると、第三周波数の吸気脈動が、連通管12を介して弾性膜部材16へ伝播する。
The frequency of the intake pulsation of the second frequency matches the second resonance frequency f2.
In this state, when the elastic membrane member 16 vibrates in the out-of-plane direction of the elastic membrane member 16, the vibration amplifies the intake air pulsation near the second frequency and the second frequency. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
If the amount of depression of the accelerator pedal is further increased from the state where the rotational speed of the engine 6 is R2 to shift to the state where the rotational speed of the engine 6 is R3, the intake pulsation of the third frequency causes the communication pipe 12 to It propagates to the elastic membrane member 16 via

このとき、各重なり部34a〜34dのうち、重なり部34aと重なり部34bが、弾性膜連結部36aを介して接触する状態となるとともに、重なり部34cと重なり部34dが、弾性膜連結部36bを介して接触する状態となる。このため、各弾性膜構成部30a〜30c同士の接触面積が、エンジン6の回転数がR2である状態よりも広くなり、各弾性膜構成部30a〜30c同士の接触面積が最大値となる。また、弾性膜部材16が面外方向へ振動する振動部分の面積が、エンジン6の回転数がR2である状態よりも小さくなる。これにより、弾性膜部材16の面外方向への剛性が、エンジン6の回転数がR2である状態よりも高くなり、弾性膜部材16の面外方向への剛性が最大値となる(図15参照)。   At this time, among the overlapping portions 34a to 34d, the overlapping portion 34a and the overlapping portion 34b are brought into contact with each other via the elastic membrane connecting portion 36a, and the overlapping portion 34c and the overlapping portion 34d are connected to the elastic membrane connecting portion 36b. It will be in the state which contacts via. For this reason, the contact area between the elastic membrane constituent portions 30a to 30c becomes wider than the state where the rotational speed of the engine 6 is R2, and the contact area between the elastic membrane constituent portions 30a to 30c becomes the maximum value. Moreover, the area of the vibration part where the elastic membrane member 16 vibrates in the out-of-plane direction is smaller than the state where the rotational speed of the engine 6 is R2. Thereby, the rigidity in the out-of-plane direction of the elastic film member 16 becomes higher than that in the state where the rotational speed of the engine 6 is R2, and the rigidity in the out-of-plane direction of the elastic film member 16 becomes the maximum value (FIG. 15). reference).

また、第三周波数の吸気脈動の周波数は、第三共振周波数f3と一致している。
この状態で、弾性膜部材16が、弾性膜部材16の面外方向に振動すると、この振動により、第三周波数及び第三周波数付近の吸気脈動が増幅するため、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる。
以上により、加速時においては、エンジン6回転数の増加に伴い、各重なり部34a〜34d同士の接触面積が増加するため、各弾性膜構成部30a〜30c同士の接触面積が増加し、弾性膜部材16の面外方向への剛性が増加する。また、エンジン6回転数の増加に伴い、弾性膜部材16が面外方向へ振動する振動部分の面積が減少し、弾性膜部材16の面外方向への剛性が増加する。このため、エンジン回転数の増加に伴い、第一周波数の吸気脈動、第二周波数の吸気脈動及び第三周波数の吸気脈動を順に増幅することが可能となり、増音させた吸気音を、追加管14の他方の開口端から外気側へ放射することが可能となる(図2参照)。
増音させた吸気音を、追加管14の他方の開口端から外気側へ放射すると、この放射した吸気音が、ダッシュパネル10を介して車室2内に伝播するため、迫力感のある吸気音を車室2内へ導入することが可能となる(図1参照)。
Further, the frequency of the third pulsation of intake pulsation coincides with the third resonance frequency f3.
When the elastic membrane member 16 vibrates in the out-of-plane direction of the elastic membrane member 16 in this state, the intake pulsation near the third frequency and the third frequency is amplified by this vibration. It becomes possible to radiate from the other open end of the additional pipe 14 to the outside air side.
As described above, at the time of acceleration, the contact area between the overlapping portions 34a to 34d increases with the increase in the number of rotations of the engine 6, so that the contact area between the elastic film constituting portions 30a to 30c increases. The rigidity of the member 16 in the out-of-plane direction increases. Further, as the number of revolutions of the engine 6 increases, the area of the vibrating portion where the elastic film member 16 vibrates in the out-of-plane direction decreases, and the rigidity of the elastic film member 16 in the out-of-plane direction increases. For this reason, it is possible to sequentially amplify the intake pulsation of the first frequency, the intake pulsation of the second frequency, and the intake pulsation of the third frequency as the engine speed increases. It becomes possible to radiate from the other open end of 14 to the outside air side (see FIG. 2).
When the increased intake sound is radiated from the other opening end of the additional pipe 14 to the outside air side, the radiated intake sound is propagated into the vehicle compartment 2 via the dash panel 10, so that the intake air has a powerful feeling. Sound can be introduced into the passenger compartment 2 (see FIG. 1).

(第三実施形態の効果)
(1)本実施形態の吸気音調節装置では、吸気ダクト内で生じる吸気負圧の変化に応じて、弾性膜部材の面外方向へ振動する振動部分の面積を変化させる。これに加え、吸気ダクト内で生じる吸気負圧の変化に応じて、弾性膜部材の面外方向への剛性を変化させる。
このため、エンジンの回転数の増加に応じて、弾性膜部材の剛性を増加させることが可能となり、弾性膜部材の共振周波数を変化させることが可能となる。これにより、選択した周波数の吸気脈動を増幅させることが可能となるため、迫力感のある吸気音を車室内へ導入することが可能となる。
その結果、一つの弾性膜部材によって、複数の共振周波数の吸気音を強調させることが可能となり、複数の吸気ダクトを必要とせずに、迫力感のある吸気音を発生させることが可能となる。また、レイアウトの自由度を向上させることが可能となり、車体の大きさが異なる車両等、構成の異なる多種類の車両に適用可能となる。
(Effect of the third embodiment)
(1) In the intake sound adjusting device of the present embodiment, the area of the vibration portion that vibrates in the out-of-plane direction of the elastic film member is changed according to the change in the intake negative pressure generated in the intake duct. In addition to this, the rigidity of the elastic membrane member in the out-of-plane direction is changed in accordance with the change in the intake negative pressure generated in the intake duct.
For this reason, the rigidity of the elastic membrane member can be increased in accordance with the increase in the engine speed, and the resonance frequency of the elastic membrane member can be changed. As a result, it is possible to amplify the intake pulsation of the selected frequency, so that it is possible to introduce a powerful intake sound into the vehicle interior.
As a result, it is possible to emphasize the intake sound having a plurality of resonance frequencies with one elastic film member, and it is possible to generate a powerful intake sound without requiring a plurality of intake ducts. In addition, the degree of freedom in layout can be improved, and the invention can be applied to many types of vehicles having different configurations such as vehicles having different body sizes.

(2)また、本実施形態の吸気音調節装置では、三つの弾性膜構成部のうち、弾性膜部材の面外方向に沿って隣り合う二つの弾性膜構成部同士を連結する、二つの弾性膜連結部を、それぞれ、剛性が互いに異なるように形成する。
このため、各弾性膜連結部の剛性を調節することにより、吸気負圧の変化に応じた各重なり部同士の接触面積を調節することが可能となる。これにより、吸気負圧の変化に応じた各弾性膜構成部同士の接触面積を調節することが可能となるため、エンジンの回転数に応じた弾性膜部材の共振周波数を、所望の共振周波数に設定することが可能となる。
その結果、弾性膜部材が面外方向へ振動する共振周波数を、三種類の周波数に設定することが可能となり、吸気音を強調可能な周波数帯域の範囲を拡げることが可能となるため、車室内へ導入する吸気音の音質を向上させることが可能となる。
(2) In addition, in the intake sound adjusting device of the present embodiment, of the three elastic film constituent parts, two elastic film connecting two elastic film constituent parts that are adjacent to each other along the out-of-plane direction of the elastic film member. The membrane connecting portions are formed so as to have different rigidity from each other.
For this reason, it becomes possible to adjust the contact area of each overlapping part according to the change of intake negative pressure by adjusting the rigidity of each elastic membrane connection part. This makes it possible to adjust the contact area between the elastic membrane components according to the change in the intake negative pressure, so that the resonance frequency of the elastic membrane member according to the engine speed is set to a desired resonance frequency. It becomes possible to set.
As a result, the resonance frequency at which the elastic membrane member vibrates in the out-of-plane direction can be set to three types of frequencies, and the range of the frequency band in which the intake sound can be emphasized can be expanded. It is possible to improve the sound quality of the intake sound introduced into the.

(応用例)
(1)なお、本実施形態の吸気音調節装置では、弾性膜部材の構成を、弾性膜構成部と弾性膜連結部を備える構成としたが、弾性膜部材の構成は、これに限定するものではなく、弾性膜連結部を備えていない構成としてもよい。この場合、例えば、弾性膜構成部を、弾性膜連結部としての機能を有する部分を一体に成形した形状とし、弾性膜連結部としての機能を有する部分を介して、弾性膜部材同士を連結する。そして、各弾性膜部材の厚さを、互いに異なるように形成して、吸気ダクト内で生じる吸気負圧の変化に応じて、各弾性膜構成部同士の接触面積が変化する構成とする。
(Application example)
(1) In the intake sound adjusting device of the present embodiment, the configuration of the elastic membrane member is configured to include the elastic membrane constituent portion and the elastic membrane connecting portion, but the configuration of the elastic membrane member is limited to this. Instead, the elastic membrane connecting portion may not be provided. In this case, for example, the elastic membrane component is formed into a shape integrally formed with a portion having a function as an elastic membrane connecting portion, and the elastic membrane members are connected to each other via the portion having a function as an elastic membrane connecting portion. . And the thickness of each elastic membrane member is formed so that it may mutually differ, and it is set as the structure from which the contact area of each elastic membrane structure part changes according to the change of the intake negative pressure which arises in an intake duct.

(実施例)
図16に、本発明例の吸気音調節装置及び従来例の吸気音調節装置を用い、加速時において、車室内へ導入する吸気音の音圧レベルを測定した結果を示す。なお、図16の縦軸は、車室内へ導入する吸気音の音圧レベル(図中では、「発音量レベル[db]」と記載している)を示す。また、図16の横軸は、加速時における、エンジン回転数の変化に伴って発生する周波数(図中では、「周波数[Hz]」と記載している)を示す。
(Example)
FIG. 16 shows the results of measuring the sound pressure level of the intake sound introduced into the vehicle compartment during acceleration using the intake sound adjustment device of the present invention example and the conventional intake sound adjustment device. Note that the vertical axis of FIG. 16 indicates the sound pressure level of the intake sound introduced into the vehicle interior (indicated as “sound production level [db]” in the figure). In addition, the horizontal axis of FIG. 16 indicates a frequency (denoted as “frequency [Hz]” in the figure) that occurs with a change in engine speed during acceleration.

本発明例の吸気音調節装置としては、図3から図7に示すような、本発明の第一実施形態で説明したものと同様の構成を有する弾性膜部材を備える、吸気音調節装置を用いる。
従来例の吸気音調節装置としては、単板で形成した弾性膜部材を備える、吸気音調節装置を用いる。この弾性膜部材は、本発明の第一実施形態で説明したものと異なり、複数の弾性膜構成部を有していない構成とするため、弾性膜部材の面外方向へ振動する共振周波数が全体として同一となる。
As the intake sound adjusting device of the present invention example, an intake sound adjusting device including an elastic film member having the same configuration as that described in the first embodiment of the present invention as shown in FIGS. 3 to 7 is used. .
As the conventional intake sound adjustment device, an intake sound adjustment device including an elastic film member formed of a single plate is used. Unlike the one described in the first embodiment of the present invention, this elastic membrane member does not have a plurality of elastic membrane components, so that the resonance frequency that vibrates in the out-of-plane direction of the elastic membrane member as a whole. As the same.

次に、図16を参照して、加速時において、車室内へ導入する吸気音の音圧レベルを測定した結果について説明する。なお、図16中では、従来例の吸気音調節装置を用いて音圧レベルを測定した結果を、破線によって示し、本発明例の吸気音調節装置を用いて音圧レベルを測定した結果を、実線によって示す。
図16中に示すように、従来例の吸気音調節装置は、共振周波数が全体として同一であるため、設定した一種類の周波数及びその付近において、車室内へ導入する吸気音の音圧レベルを特に強調している。また、その他の周波数では、設定した一種類の周波数及びその付近と比較して、吸気音の強調効果が低下している。
Next, the result of measuring the sound pressure level of the intake sound introduced into the vehicle compartment during acceleration will be described with reference to FIG. In FIG. 16, the result of measuring the sound pressure level using the conventional intake sound adjusting device is shown by a broken line, and the result of measuring the sound pressure level using the intake sound adjusting device of the present invention example is Indicated by a solid line.
As shown in FIG. 16, in the conventional intake sound adjusting device, since the resonance frequency is the same as a whole, the sound pressure level of the intake sound introduced into the passenger compartment is set at one set frequency and in the vicinity thereof. Especially emphasized. Further, at other frequencies, the effect of enhancing the intake sound is reduced as compared with one set frequency and the vicinity thereof.

これに対し、本発明例の吸気音調節装置では、設定した三種類の周波数及びその付近において、車室内へ導入する吸気音の音圧レベルを特に強調することが可能である。また、その他の周波数においても、従来例の吸気音調節装置と比較して、吸気音の強調効果を向上させることが可能である。具体的には、本発明例の吸気音調節装置では、従来例の吸気音調節装置と比較して、全体的に平均5dB程度、車室内へ導入する吸気音の音圧レベルを強調させることが可能である。   On the other hand, in the intake sound adjusting device of the present invention example, the sound pressure level of the intake sound introduced into the vehicle interior can be particularly emphasized at the three set frequencies and in the vicinity thereof. Also, at other frequencies, it is possible to improve the enhancement effect of the intake sound as compared with the conventional intake sound adjustment device. Specifically, in the intake sound adjusting device of the present invention example, the sound pressure level of the intake sound introduced into the passenger compartment is emphasized on the whole by about 5 dB on average as compared with the intake sound adjusting device of the conventional example. Is possible.

その結果、本発明例の吸気音調節装置は、加速時における周波数帯域の全体に亘って、吸気音を強調することが可能であり、従来例の吸気音調節装置と比較して、広い周波数帯域で吸気音の強調効果を向上させることが可能である。なお、図16中では、本発明例の吸気音調節装置によって増音した吸気音の強調効果が、従来例の吸気音調節装置と比較して向上した範囲(図中において、「増音効果」と示す範囲)を、斜線で示している。
以上の測定結果から、本発明例の吸気音調節装置は、従来例の吸気音調節装置と比較して、吸気音の強調効果が高いことを確認した。
As a result, the intake sound adjustment device of the present invention example can emphasize the intake sound over the entire frequency band during acceleration, and has a wider frequency band than the conventional intake sound adjustment device. It is possible to improve the enhancement effect of the intake sound. In FIG. 16, the range in which the enhancement effect of the intake sound increased by the intake sound adjustment device of the present invention is improved as compared to the conventional intake sound adjustment device (in the drawing, “sound increase effect”). Are indicated by diagonal lines.
From the above measurement results, it was confirmed that the intake sound adjustment device of the present invention example has a higher effect of enhancing the intake sound than the conventional intake sound adjustment device.

本発明の吸気音調節装置1を搭載した車両Cを示す図であり、図1(a)は車両Cを左側方から見た状態を示す図、図1(b)は車両Cを上方から見た状態を示す図、図1(c)は車両Cを前方から見た状態を示す図である。1A and 1B are diagrams showing a vehicle C equipped with an intake sound adjusting device 1 according to the present invention. FIG. 1A is a diagram showing a state of the vehicle C viewed from the left side, and FIG. FIG. 1C is a diagram illustrating a state in which the vehicle C is viewed from the front. 本発明の第一実施形態に係る吸気音調節装置1の構成を示す図である。It is a figure which shows the structure of the intake sound adjustment apparatus 1 which concerns on 1st embodiment of this invention. 図2のIII線矢視図である。FIG. 3 is a view taken along line III in FIG. 2. 図2のIV線矢視図である。FIG. 4 is a view taken along the line IV in FIG. 2. 図3のV−V線断面図である。It is the VV sectional view taken on the line of FIG. エンジン6の回転数がR2である状態の弾性膜部材16を示す図である。It is a figure which shows the elastic film member 16 in the state whose rotation speed of the engine 6 is R2. エンジン6の回転数がR3である状態の弾性膜部材16を示す図である。It is a figure which shows the elastic film member 16 in the state whose rotation speed of the engine 6 is R3. 本発明の第二実施形態に係る吸気音調節装置が備える弾性膜部材16を追加管側から見た図である。It is the figure which looked at the elastic membrane member 16 with which the inspiratory sound control apparatus which concerns on 2nd embodiment of this invention is provided from the additional pipe side. 図8のIX−IX線断面図である。It is the IX-IX sectional view taken on the line of FIG. エンジン6の回転数がR2である状態の弾性膜部材16を示す図である。It is a figure which shows the elastic film member 16 in the state whose rotation speed of the engine 6 is R2. エンジン6の回転数がR3である状態の弾性膜部材16を示す図である。It is a figure which shows the elastic film member 16 in the state whose rotation speed of the engine 6 is R3. 本発明の第三実施形態に係る吸気音調節装置が備える弾性膜部材16を追加管側から見た図である。It is the figure which looked at the elastic membrane member 16 with which the inspiratory sound adjusting device which concerns on 3rd embodiment of this invention is provided from the additional pipe side. 図12のX−X線断面図である。It is the XX sectional view taken on the line of FIG. エンジン6の回転数がR2である状態の弾性膜部材16を示す図である。It is a figure which shows the elastic film member 16 in the state whose rotation speed of the engine 6 is R2. エンジン6の回転数がR3である状態の弾性膜部材16を示す図である。It is a figure which shows the elastic film member 16 in the state whose rotation speed of the engine 6 is R3. 本発明例の吸気音調節装置及び従来例の吸気音調節装置を用い、車両の加速時において、車室内へ導入する吸気音の音圧レベルを測定した結果を示す図である。It is a figure which shows the result of having measured the sound pressure level of the intake sound introduce | transduced into a vehicle interior at the time of acceleration of a vehicle using the intake sound adjustment apparatus of the example of this invention, and the conventional intake sound adjustment apparatus.

符号の説明Explanation of symbols

1 吸気音調節装置
2 車室
4 エンジンルーム
6 エンジン
8 吸気ダクト
10 ダッシュパネル
12 連通管
14 追加管
16 弾性膜部材
18 ダストサイド側吸気ダクト
20 クリーンサイド側吸気ダクト
22 エアクリーナ
24 スロットルチャンバ
26 サージタンク
28 インテークマニホールド
30 弾性膜構成部
32 凹部
34 重なり部
36 弾性膜連結部
38 弾性膜固定部材
40 円筒部材
C 車両
DESCRIPTION OF SYMBOLS 1 Intake sound adjustment device 2 Car compartment 4 Engine room 6 Engine 8 Intake duct 10 Dash panel 12 Communication pipe 14 Additional pipe 16 Elastic film member 18 Dust side air intake duct 20 Clean side air intake duct 22 Air cleaner 24 Throttle chamber 26 Surge tank 28 Intake Manifold 30 Elastic Membrane Component 32 Recessed Part 34 Overlapping Part 36 Elastic Membrane Connecting Part 38 Elastic Membrane Fixed Member 40 Cylindrical Member C

Claims (5)

エンジンへの吸気通路と連通する連通管と、当該連通管を閉塞する弾性膜部材と、を備える吸気音調節装置であって、
前記弾性膜部材は、当該弾性膜部材の面外方向から見て互いに重なる重なり部を有する複数の弾性膜構成部を備えることを特徴とする吸気音調節装置。
An intake sound adjusting device comprising a communication pipe communicating with an intake passage to an engine, and an elastic membrane member closing the communication pipe,
The said elastic film member is provided with the some elastic film structure part which has an overlapping part which mutually overlaps seeing from the out-of-plane direction of the said elastic film member, The intake sound adjusting device characterized by the above-mentioned.
前記吸気負圧の変化に応じて、前記複数の弾性膜構成部のうち、少なくとも二つの弾性膜構成部が有する前記重なり部同士の接触面積を変化させることにより、前記弾性膜部材の面外方向への剛性を変化させることを特徴とする請求項1に記載した吸気音調節装置。   An out-of-plane direction of the elastic film member is obtained by changing a contact area between the overlapping portions of at least two elastic film constituent parts among the plurality of elastic film constituent parts in accordance with a change in the intake negative pressure. The intake sound adjusting device according to claim 1, wherein the rigidity of the intake air is changed. 前記吸気負圧の変化に応じて、前記弾性膜部材の面外方向へ振動する振動部分の面積を変化させることにより、前記弾性膜部材の面外方向への剛性を変化させることを特徴とする請求項1または2に記載した吸気音調節装置。   The rigidity of the elastic membrane member in the out-of-plane direction is changed by changing the area of the vibrating portion that vibrates in the out-of-plane direction of the elastic membrane member in accordance with the change in the intake negative pressure. The intake sound adjusting device according to claim 1 or 2. 前記複数の弾性膜構成部のうち少なくとも二つの弾性膜構成部は、剛性が互いに異なることを特徴とする請求項1から3のうちいずれか1項に記載した吸気音調節装置。   4. The intake sound adjusting device according to claim 1, wherein at least two elastic film constituent parts among the plurality of elastic film constituent parts have different rigidity from each other. 5. 三つ以上の前記弾性膜構成部と、当該三つ以上の弾性膜構成部のうち、前記弾性膜部材の面外方向に沿って隣り合う二つの弾性膜構成部同士を連結する少なくとも二つの弾性膜連結部と、を備え、
前記少なくとも二つの弾性膜連結部は、剛性が互いに異なることを特徴とする請求項1から4のうちいずれか1項に記載した吸気音調節装置。
Among the three or more elastic film constituent parts and at least two elastic film constituent parts connecting the two elastic film constituent parts adjacent to each other along the out-of-plane direction of the elastic film member. A membrane connecting part,
The intake sound adjusting device according to any one of claims 1 to 4, wherein the at least two elastic membrane connecting portions have different rigidity from each other.
JP2008055007A 2008-03-05 2008-03-05 Intake noise control device Pending JP2009209830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055007A JP2009209830A (en) 2008-03-05 2008-03-05 Intake noise control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055007A JP2009209830A (en) 2008-03-05 2008-03-05 Intake noise control device

Publications (1)

Publication Number Publication Date
JP2009209830A true JP2009209830A (en) 2009-09-17

Family

ID=41183225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055007A Pending JP2009209830A (en) 2008-03-05 2008-03-05 Intake noise control device

Country Status (1)

Country Link
JP (1) JP2009209830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222011A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Intake sound generating device
JP2011069290A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Acoustic device of vehicle
JP2014224500A (en) * 2013-05-16 2014-12-04 マツダ株式会社 Intake sound transmission device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222011A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Intake sound generating device
JP2011069290A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Acoustic device of vehicle
JP2014224500A (en) * 2013-05-16 2014-12-04 マツダ株式会社 Intake sound transmission device for vehicle

Similar Documents

Publication Publication Date Title
JP4661695B2 (en) Inspiratory sound enhancement device
JP4661694B2 (en) Intake sound increaser
US7448353B2 (en) Intake device of internal combustion engine
JP5639794B2 (en) Intake sound generator for internal combustion engine
US8259958B2 (en) Engine sound control apparatus and control method
JP2008025473A (en) Noise reducing device
JP2008025472A (en) Noise reducing device
JP2006348915A (en) Sound increasing device
JP4661698B2 (en) Variable sound pressure adding device
KR20170007139A (en) Sound transmitting system for a motor vehicle and method for a sound transmitting system
JP2008291775A (en) Intake sound transmission device for vehicle
JP5284805B2 (en) Intake device for internal combustion engine
JP2009209830A (en) Intake noise control device
JP5051850B2 (en) Intake sound adjustment device
JP2012107581A (en) Intake device for vehicle
US11781510B2 (en) Engine intake system
JP4713326B2 (en) Sound quality transmission structure
JP2007231931A (en) Intake sound transmission device and intake sound transmission method
JP2009030505A (en) Intake sound amplifying device
JP4618122B2 (en) Inspiratory sound amplifying device
JP2007231882A (en) Venting device having sound-absorbing function
US20220381210A1 (en) Engine intake system
JP5083013B2 (en) Intake sound adjustment device
JP2007231930A (en) Air cleaner box, intake sound controller, and intake sound control method
JP2006266233A (en) Structure of propagating sound generated in intake system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917