[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008004783A - High withstand voltage semiconductor device and its manufacturing method - Google Patents

High withstand voltage semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2008004783A
JP2008004783A JP2006173309A JP2006173309A JP2008004783A JP 2008004783 A JP2008004783 A JP 2008004783A JP 2006173309 A JP2006173309 A JP 2006173309A JP 2006173309 A JP2006173309 A JP 2006173309A JP 2008004783 A JP2008004783 A JP 2008004783A
Authority
JP
Japan
Prior art keywords
region
concentration
type
semiconductor device
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006173309A
Other languages
Japanese (ja)
Inventor
Toru Terashita
徹 寺下
Yoshinobu Sato
嘉展 佐藤
Hiroyoshi Ogura
弘義 小倉
Akihisa Ikuta
晃久 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006173309A priority Critical patent/JP2008004783A/en
Publication of JP2008004783A publication Critical patent/JP2008004783A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high withstand voltage MOS semiconductor device capable of raising a withstand voltage in an off-state, and suppressing the deterioration of electric current ability. <P>SOLUTION: A MOS transistor includes: a first conductivity-type well region 4 to be formed on a semiconductor layer 3; a second conductivity-type high concentration source region 6 to be selectively formed on the well region 4; a second conductivity-type high concentration drain region 5 which is formed on the semiconductor layer 3, so as to be separated from the well region 4; a second conductivity-type middle concentration deep well region 11 to be formed in a region including the drain region 5; a second conductivity-type low concentration drift region 10 which is formed from the end of the well region 4 to the side of the drain region 5 in the semiconductor layer 3, and does not reach an embedded insulating film 2; and a gate electrode 9 via a gate insulating film 8 between the end of the source region 6 and the end of the low concentration drift region 10. The surface concentration of the deep well region 11 is made to be not more than that of the low concentration drift region 10 in the MOS transistor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、SOI基板上に形成された高耐圧半導体装置およびその製造方法に関する。   The present invention relates to a high voltage semiconductor device formed on an SOI substrate and a method for manufacturing the same.

半導体装置の素子間分離としては、以前からPN接合を利用した接合分離技術が多く使用されてきた。しかし、近年では、埋め込み絶縁膜を有するSOI(silicon on insulator)基板に、SOI基板表面から埋め込み絶縁膜まで届くトレンチを形成し、トレンチ内部に絶縁膜を形成する誘電体分離が用いられるようになってきている。特に一般的に分離を深く形成する必要のある高耐圧パワー分野の半導体装置においては、PN接合分離を用いると分離領域の面積が大きくなってしまう欠点があったが、SOI−トレンチ分離を用いることで分離領域の面積縮小が可能となり、チップの小型化を図ることができるという利点がある。   As isolation between elements of a semiconductor device, a junction isolation technique using a PN junction has been used for many years. However, in recent years, an SOI (silicon on insulator) substrate having a buried insulating film is formed with dielectric isolation in which a trench reaching from the surface of the SOI substrate to the buried insulating film is formed, and an insulating film is formed inside the trench. It is coming. In particular, semiconductor devices in the field of high withstand voltage power, which generally require deep isolation, have the disadvantage that the area of the isolation region becomes large when PN junction isolation is used, but using SOI-trench isolation. Thus, the area of the separation region can be reduced, and there is an advantage that the chip can be miniaturized.

上記のことから、SOI基板上に形成する高耐圧パワー素子が注目されている。一般的に高耐圧パワー素子の性能は、その耐圧(降伏耐圧)とオン抵抗で示されるが、これらはトレードオフの関係にあり、高い耐圧と低オン抵抗の両方をいかにして実現するかという点に着目して、長年、開発が行われている。特に近年は、SOI基板を用いた高耐圧パワー半導体製品も量産化され、SOI基板上に形成した高耐圧かつ低オン抵抗の高耐圧パワー素子について、その開発が活発になってきている。   From the above, high withstand voltage power elements formed on an SOI substrate have attracted attention. Generally, the performance of a high voltage power device is indicated by its breakdown voltage (breakdown breakdown voltage) and on-resistance, but these are in a trade-off relationship, and how to achieve both high breakdown voltage and low on-resistance. Focusing on this point, it has been developed for many years. Particularly in recent years, high withstand voltage power semiconductor products using an SOI substrate have also been mass-produced, and development of high withstand voltage and low on-resistance high withstand voltage power elements formed on the SOI substrate has become active.

従来の高耐圧NMOSトランジスタの一例としては、図2に示すものが知られている(例えば、特許文献1参照)。なお、寸法については実際と異なることに留意されたい。   As an example of a conventional high voltage NMOS transistor, the one shown in FIG. 2 is known (for example, refer to Patent Document 1). It should be noted that the dimensions are different from the actual ones.

図2(a)に示すように、支持基板1上に埋め込み絶縁膜2を介して低濃度P型半導体層3が張り合わせされている。P型半導体層3内には、P型ウェル領域4、N型ドリフト領域10が間隔をおいて拡散されている。更に、N型ソース領域6、P型コンタクト拡散領域7がPウェル領域4内表面に拡散されて、また、N型ドレイン領域5が、N型ドリフト領域10内表面に拡散されている。N型ドレイン領域5を含む領域に、それよりも深く拡散したN型ディープウェル中濃度拡散層11が拡散されている。ここで、N型ディープウェル中濃度拡散層11の不純物濃度は、N型ドレイン領域5とN型ドリフト領域10の各不純物濃度の中間レベルに設定される。また、N型ドリフト領域10の濃度は3.7×1016[cm−3]前後、N型ドレイン領域5は濃度が1×1019[cm−3]以上に設定され、N型ディープウェル中濃度拡散層11の表面濃度は1.5×1017[cm−3]前後であり、N型ドリフト領域10の不純物濃度より高く設定されている。 As shown in FIG. 2A, a low-concentration P-type semiconductor layer 3 is bonded on a support substrate 1 with a buried insulating film 2 interposed therebetween. In the P-type semiconductor layer 3, a P-type well region 4 and an N-type drift region 10 are diffused at intervals. Further, the N + type source region 6 and the P + type contact diffusion region 7 are diffused on the inner surface of the P well region 4, and the N + type drain region 5 is diffused on the inner surface of the N type drift region 10. . In the region including the N + -type drain region 5, the N-type deep well concentration diffusion layer 11 diffused deeper than that is diffused. Here, the impurity concentration of the N-type deep well concentration diffusion layer 11 is set to an intermediate level between the impurity concentrations of the N + -type drain region 5 and the N-type drift region 10. The concentration of the N-type drift region 10 is set to around 3.7 × 10 16 [cm −3 ], and the concentration of the N + -type drain region 5 is set to 1 × 10 19 [cm −3 ] or more. The surface concentration of the intermediate concentration layer 11 is about 1.5 × 10 17 [cm −3 ], which is set higher than the impurity concentration of the N-type drift region 10.

N型ドリフト領域10表面には、フィールド酸化膜14が形成されている。N型ソース領域6端からN型ドリフト領域10端までの間は、ゲート絶縁膜8を介してN型Poly−Si膜のゲート電極9が形成されている。N型ソース領域6、P型コンタクト拡散領域7上には、ソース電極12が形成され、一方、N型ドレイン領域5上には、ドレイン電極13が形成されている。 A field oxide film 14 is formed on the surface of the N-type drift region 10. Between the end of the N + type source region 6 and the end of the N type drift region 10, an N + type Poly-Si film gate electrode 9 is formed via a gate insulating film 8. A source electrode 12 is formed on the N + -type source region 6 and the P + -type contact diffusion region 7, while a drain electrode 13 is formed on the N + -type drain region 5.

このような高耐圧NMOSトランジスタにおいて、オフ時の耐圧を測定する時のバイアス状態として、ソース電極、ゲート電極、基板電極はGNDに設定され、ドレイン電極にプラス電位を印加する。そのようにドレイン−ソース間に逆バイアスが印加されると、P型ウェル領域4とその下のP型半導体層3が空乏化し、ドレイン−ソース間に加わった電圧は、この空乏層で支えられている。そして、ドレイン−ソース間に印加する電圧を上昇させた場合、空乏層内に形成される電界が臨界電界に達すると、なだれ降伏が生じて、急にドレイン−ソース間に電流が流れ始めるようになり、この時の印加電圧値がトランジスタの耐圧値となる。
特開平11−251597号公報
In such a high breakdown voltage NMOS transistor, as a bias state when measuring the breakdown voltage when off, the source electrode, the gate electrode, and the substrate electrode are set to GND, and a positive potential is applied to the drain electrode. When a reverse bias is applied between the drain and source in this way, the P-type well region 4 and the P-type semiconductor layer 3 therebelow are depleted, and the voltage applied between the drain and source is supported by this depletion layer. ing. When the voltage applied between the drain and source is increased, the avalanche breakdown occurs when the electric field formed in the depletion layer reaches the critical electric field, so that current suddenly starts to flow between the drain and source. Thus, the applied voltage value at this time becomes the withstand voltage value of the transistor.
Japanese Patent Laid-Open No. 11-251597

図2(b)に従来例における、N型ドレイン領域5とN型ディープウェル中濃度拡散層11とN型ドリフト領域10の表面からの深さと不純物濃度の関係を示す。従来のディープウェル中濃度拡散層を挿入する構造は、ディープウェル中濃度拡散層11の表面濃度がN型ドリフト領域10の不純物濃度より高く設定されている。これはオン状態のバイポーラ動作を抑制させ、サステイン耐圧を高めるためである。それにより、表面付近の空乏層の広がりが抑制されるため、オフ耐圧の向上が困難である課題を有する。 FIG. 2B shows the relationship between the depth from the surface of the N + -type drain region 5, the N-type deep well concentration diffusion layer 11, and the N-type drift region 10 and the impurity concentration in the conventional example. In the conventional structure in which the deep well concentration diffusion layer is inserted, the surface concentration of the deep well concentration diffusion layer 11 is set higher than the impurity concentration of the N-type drift region 10. This is to suppress the on-state bipolar operation and increase the sustain breakdown voltage. Thereby, since the spread of the depletion layer near the surface is suppressed, there is a problem that it is difficult to improve the off breakdown voltage.

これは、N型ディープウェル中濃度拡散層11の表面付近の濃度が高い場合、オフ状態でドレイン−ソース間に印加する電圧を上昇させると表面付近の空乏層は伸びにくいため電位分布の傾きが急となり電界強度が強くなる。そのような電界強度の強い領域に空乏領域が到達すると、インパクト・イオン化が起こりアバランシェ降伏する。   This is because, when the concentration near the surface of the N-type deep well concentration diffusion layer 11 is high, if the voltage applied between the drain and the source is increased in the off state, the depletion layer near the surface is difficult to extend, and therefore the potential distribution has a slope. It becomes sudden and the electric field strength increases. When the depletion region reaches such a region where the electric field strength is strong, impact ionization occurs and avalanche breakdown occurs.

従って、表面付近の濃度が高いN型ディープウェル中濃度拡散層を挿入することでオフ耐圧の向上が困難となる課題があった。   Therefore, there has been a problem that it is difficult to improve the off breakdown voltage by inserting an N type deep well concentration diffusion layer having a high concentration near the surface.

したがって、本発明の目的は、ディープウェル拡散層を挿入した構造において、オフ耐圧をさらに向上できる高耐圧半導体装置およびその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a high breakdown voltage semiconductor device and a manufacturing method thereof that can further improve the off breakdown voltage in a structure in which a deep well diffusion layer is inserted.

上記目的を達成するために、第1の発明の高耐圧半導体装置は、支持基板上に埋め込み絶縁膜を介して形成された半導体層を有するSOI基板に形成された高耐圧半導体装置であって、半導体層に形成された第1導電型のウェル領域と、ウェル領域に選択的に形成された第2導電型の高濃度のソース領域と、半導体層にウェル領域と離間して形成された第2導電型の高濃度のドレイン領域と、半導体層にウェル領域端からドレイン領域側に形成され、埋め込み絶縁膜まで到達しない第2導電型の低濃度ドリフト領域と、ドレイン領域を含む所定領域に形成される第2導電型の中濃度ディープウェル領域と、ソース領域端から低濃度ドリフト領域端の間にゲート絶縁膜を介して形成されたゲート電極とを備え、中濃度ディープウェル領域の表面濃度は、低濃度ドリフト領域の表面濃度以下にしたことを特徴とする。   In order to achieve the above object, a high voltage semiconductor device according to a first aspect of the present invention is a high voltage semiconductor device formed on an SOI substrate having a semiconductor layer formed on a support substrate through a buried insulating film, A first conductivity type well region formed in the semiconductor layer; a second conductivity type high concentration source region selectively formed in the well region; and a second conductivity type formed in the semiconductor layer spaced apart from the well region. A conductive type high-concentration drain region, a second conductive type low-concentration drift region that is formed in the semiconductor layer from the end of the well region to the drain region side and does not reach the buried insulating film, and a predetermined region including the drain region. A medium-concentration deep well region having a second conductivity type and a gate electrode formed between the source region end and the low-concentration drift region end through a gate insulating film, Once again, characterized in that the following surface concentration of the low concentration drift region.

第2の発明の高耐圧半導体装置は、第1の発明の高耐圧半導体装置において、ウェル領域のソース領域とは別の領域に形成された第1導電型のボディコンタクト領域を備えている。   A high breakdown voltage semiconductor device according to a second aspect of the present invention is the high breakdown voltage semiconductor device according to the first aspect of the present invention, comprising a body contact region of the first conductivity type formed in a region different from the source region of the well region.

第3の発明の高耐圧半導体装置は、第1または第2の発明の高耐圧半導体装置において、半導体層が第1導電型である。   A high breakdown voltage semiconductor device according to a third aspect of the present invention is the high breakdown voltage semiconductor device according to the first or second aspect, wherein the semiconductor layer is of the first conductivity type.

第4の発明の高耐圧半導体装置は、第1,2または3の発明の高耐圧半導体装置において、中濃度ディープウェル領域の半導体層との接合を、低濃度ドリフト領域と半導体層との接合より深くする。   A high breakdown voltage semiconductor device according to a fourth aspect of the present invention is the high breakdown voltage semiconductor device according to the first, second or third aspect, wherein the junction with the semiconductor layer in the medium concentration deep well region is made by the junction between the low concentration drift region and the semiconductor layer. Deepen.

第5の発明の高耐圧半導体装置の製造方法は、第1の発明の高耐圧半導体装置の製造方法であって、中濃度ディープウェル領域と低濃度ドリフト領域を、それぞれ不純物イオンを注入して形成する工程を含み、中濃度ディープウェル領域の注入エネルギーを低濃度ドリフト領域の注入エネルギーより高く設定することを特徴とする。   According to a fifth aspect of the present invention, there is provided a high breakdown voltage semiconductor device manufacturing method according to the first aspect of the present invention, wherein the medium concentration deep well region and the low concentration drift region are formed by implanting impurity ions, respectively. And the step of setting the implantation energy of the medium concentration deep well region to be higher than the implantation energy of the low concentration drift region.

本発明の高耐圧半導体装置によれば、中濃度ディープウェル領域の表面濃度は、低濃度ドリフト領域の表面濃度以下にしたので、ドレイン−ソース間に高電圧が印加されると、ウェル領域側、表面側、埋め込み絶縁膜側から低濃度ドリフト領域に空乏領域が拡がって、降伏前には完全に空乏化される。そして、ディープウェル中濃度拡散層の表面近傍の濃度が従来構造より低く設定されているため、表面付近の空乏領域の広がりが従来構造より促進されることで電位分布の傾きを緩やかにでき、電界強度を低減させオフ状態の耐圧を向上することができる。   According to the high breakdown voltage semiconductor device of the present invention, since the surface concentration of the medium concentration deep well region is set to be equal to or lower than the surface concentration of the low concentration drift region, when a high voltage is applied between the drain and the source, The depletion region extends from the surface side and the buried insulating film side to the low concentration drift region and is completely depleted before breakdown. Since the concentration in the vicinity of the surface of the deep well concentration diffusion layer is set lower than that in the conventional structure, the spread of the depletion region near the surface is promoted more than in the conventional structure, so that the gradient of the potential distribution can be moderated, and the electric field The strength can be reduced and the breakdown voltage in the off state can be improved.

また、電流能力については、ドレイン領域のトータルドーズ量は従来と変わっておらず、キャリアの流れは確保されていると考えられるため、表面近傍の濃度を小さくしたことによる低下は抑制される。   In addition, regarding the current capability, the total dose in the drain region is not changed from the conventional one, and it is considered that the carrier flow is ensured. Therefore, the decrease in the concentration near the surface is suppressed.

従って、本発明は、オフ耐圧を向上できて、かつ、電流能力の低下を抑えることができる優れた高耐圧半導体装置を実現することができる。   Therefore, the present invention can realize an excellent high withstand voltage semiconductor device that can improve the off withstand voltage and suppress the decrease in current capability.

また、本発明において、ウェル領域のソース領域とは別の領域に形成された第1導電型のボディコンタクト領域を備えていることが好ましい。   In the present invention, it is preferable that a body contact region of the first conductivity type formed in a region different from the source region of the well region is provided.

また、本発明において、半導体層が第1導電型であることが好ましい。   Moreover, in this invention, it is preferable that a semiconductor layer is a 1st conductivity type.

また、本発明において、中濃度ディープウェル領域の半導体層との接合を、低濃度ドリフト領域と半導体層との接合より深くすることが好ましい。   In the present invention, the junction with the semiconductor layer in the medium concentration deep well region is preferably deeper than the junction between the low concentration drift region and the semiconductor layer.

本発明の高耐圧半導体装置の製造方法によれば、中濃度ディープウェル領域と低濃度ドリフト領域を、それぞれ不純物イオンを注入して形成する工程を含み、中濃度ディープウェル領域の注入エネルギーを低濃度ドリフト領域の注入エネルギーより高く設定するので、中濃度ディープウェル領域の表面濃度を、低濃度ドリフト領域の表面濃度以下にすることができる。これにより、上記本発明の高耐圧半導体装置と同様の効果が得られる。   According to the high breakdown voltage semiconductor device manufacturing method of the present invention, the intermediate concentration deep well region and the low concentration drift region are formed by implanting impurity ions, respectively, and the implantation energy of the intermediate concentration deep well region is reduced to a low concentration. Since it is set higher than the implantation energy of the drift region, the surface concentration of the medium concentration deep well region can be made lower than the surface concentration of the low concentration drift region. Thereby, the same effect as that of the high voltage semiconductor device of the present invention can be obtained.

以下、本発明の実施形態に係る高耐圧半導体装置について、図面を参照しながら説明する。   Hereinafter, a high voltage semiconductor device according to an embodiment of the present invention will be described with reference to the drawings.

図1(a)は、本発明の実施形態の高耐圧NMOSトランジスタの断面概略図を示す。   FIG. 1A is a schematic cross-sectional view of a high voltage NMOS transistor according to an embodiment of the present invention.

図1(a)に示すように、支持基板1上に埋め込み絶縁膜2を介して形成された半導体層3を有するSOI基板に形成された高耐圧半導体装置であって、半導体層3に形成された第1導電型のウェル領域4と、ウェル領域4に選択的に形成された第1導電型のボディコンタクト領域7と、ウェル領域4に選択的に形成された第2導電型のソース領域6と、半導体層3にウェル領域4と離間して形成された第2導電型の高濃度のドレイン領域5と、半導体層3にウェル領域4端からドレイン領域5側に形成され、埋め込み絶縁膜2まで到達しない第2導電型の低濃度ドリフト領域10と、ドレイン領域5を含む所定領域に形成される第2導電型の中濃度ディープウェル領域11と、ソース領域6端から低濃度ドリフト領域10端の間にゲート絶縁膜8を介して形成されたゲート電極9とを備えたMOSトランジスタが構成されている。この構成において、N型ディープウェル中濃度拡散層11の表面濃度は、N型ドリフト領域10の表面濃度以下にしている。   As shown in FIG. 1A, a high-voltage semiconductor device formed on an SOI substrate having a semiconductor layer 3 formed on a support substrate 1 via a buried insulating film 2, formed on the semiconductor layer 3. The first conductivity type well region 4, the first conductivity type body contact region 7 selectively formed in the well region 4, and the second conductivity type source region 6 selectively formed in the well region 4. A high-concentration drain region 5 of the second conductivity type formed in the semiconductor layer 3 so as to be separated from the well region 4, and a buried insulating film 2 formed on the semiconductor layer 3 from the end of the well region 4 to the drain region 5 side. A low-concentration drift region 10 of the second conductivity type that does not reach the end, a medium-concentration deep well region 11 formed in a predetermined region including the drain region 5, and an end of the low-concentration drift region 10 from the end of the source region 6 During the gate break MOS transistor having a gate electrode 9 formed through the film 8 is formed. In this configuration, the surface concentration of the N-type deep well concentration diffusion layer 11 is set to be equal to or lower than the surface concentration of the N-type drift region 10.

この場合、支持基板1上に埋め込み絶縁膜2を介して膜厚3.5μmの低濃度P型半導体層3が張り合わせされている。P型半導体層3内には、P型ウェル領域4、N型ドリフト領域10が間隔をおいて形成される。また、P型ウェル領域4表面にN型ソース領域6、P型コンタクト拡散領域7が形成され、N型ドリフト10領域内にN型ドレイン領域5が形成される。さらに、N型ドレイン領域5を含む領域にN型ディープウェル中濃度拡散層11が形成される。ここで、N型ディープウェル中濃度拡散層11の不純物濃度は、N型ドレイン領域5とN型ドリフト領域10の各不純物濃度の中間レベルに設定され、注入エネルギーはN型ドリフト領域10より高く設定される。また、N型ドリフト領域10の濃度は4×1017[cm−3]で埋め込み絶縁膜2までは到達していない。一方、N型ドレイン領域5は表面濃度1×1020[cm−3]で拡散深さ0.1μm程度である。 In this case, a low-concentration P-type semiconductor layer 3 having a film thickness of 3.5 μm is laminated on the support substrate 1 with a buried insulating film 2 interposed therebetween. In the P-type semiconductor layer 3, a P-type well region 4 and an N-type drift region 10 are formed at intervals. Further, an N + type source region 6 and a P + type contact diffusion region 7 are formed on the surface of the P type well region 4, and an N + type drain region 5 is formed in the N type drift 10 region. Further, an N-type deep well concentration diffusion layer 11 is formed in a region including the N + -type drain region 5. Here, the impurity concentration of the N-type deep well concentration diffusion layer 11 is set to an intermediate level between the impurity concentrations of the N + -type drain region 5 and the N-type drift region 10, and the implantation energy is higher than that of the N-type drift region 10. Is set. Further, the concentration of the N-type drift region 10 is 4 × 10 17 [cm −3 ] and does not reach the buried insulating film 2. On the other hand, the N + -type drain region 5 has a surface concentration of 1 × 10 20 [cm −3 ] and a diffusion depth of about 0.1 μm.

N型ドリフト領域10表面には、膜厚0.5μmのフィールド酸化膜14が形成されている。N型ソース領域6端からN型ドリフト領域10端までの間は、ゲート絶縁膜8を介してN型Poly−Si膜のゲート電極9が形成されている。N型ソース領域6、P型コンタクト拡散領域7上には、ソース電極12が形成され、一方、N型ドレイン領域5上には、ドレイン電極13が形成されている。 A field oxide film 14 having a thickness of 0.5 μm is formed on the surface of the N-type drift region 10. Between the end of the N + type source region 6 and the end of the N type drift region 10, an N + type Poly-Si film gate electrode 9 is formed via a gate insulating film 8. A source electrode 12 is formed on the N + -type source region 6 and the P + -type contact diffusion region 7, while a drain electrode 13 is formed on the N + -type drain region 5.

図1(b)は、本発明の実施形態における、N型ドレイン領域5とN型ディープウェル中濃度拡散層11とN型ドリフト領域10の表面からの深さと不純物濃度の関係を示す。 FIG. 1B shows the relationship between the depth from the surface of the N + -type drain region 5, the N-type deep well concentration diffusion layer 11, and the N-type drift region 10 and the impurity concentration in the embodiment of the present invention.

この構造において、N型ディープウェル中濃度拡散層11とN型ドリフト領域10を、それぞれ不純物イオンを注入して形成する際、N型ディープウェル中濃度拡散層11の注入エネルギーをN型ドリフト領域10の注入エネルギーより高く設定する。つまり、N型ディープウェル中濃度拡散層11の不純物濃度ピークをN型ドリフト領域10の濃度ピークより深く設定し、SOI基板表面に向かって濃度が小さくなるようにさせることで、N型ディープウェル中濃度拡散層11の表面濃度がN型ドリフト領域10の表面濃度以下に設定することを特徴とする。   In this structure, when the N-type deep well concentration diffusion layer 11 and the N-type drift region 10 are formed by implanting impurity ions, the implantation energy of the N-type deep well concentration diffusion layer 11 is changed to the N-type drift region 10. Set higher than the injection energy. That is, the impurity concentration peak of the N-type deep well concentration diffusion layer 11 is set deeper than the concentration peak of the N-type drift region 10 so that the concentration decreases toward the SOI substrate surface. The surface concentration of the concentration diffusion layer 11 is set to be equal to or lower than the surface concentration of the N-type drift region 10.

図2(b)に示す従来構造との違いは、N型ディープウェル中濃度拡散層11の表面濃度について、従来構造はN型ドリフト領域10より濃い設定であるが、本発明の実施形態は同程度以下の設定であることである。つまり従来構造よりN型ディープウェル中濃度拡散層11の表面濃度が薄くなっている。   The difference from the conventional structure shown in FIG. 2B is that the surface concentration of the N-type deep well concentration diffusion layer 11 is set to be higher than that of the N-type drift region 10, but the embodiment of the present invention is the same. The setting is less than or equal to. That is, the surface concentration of the N type deep well concentration diffusion layer 11 is thinner than that of the conventional structure.

図3は、従来例(a)と本発明の実施形態(b)の電界強度分布図を示す。図1,2の各断面図に記したX−X’位置の電界強度分布を示している。本発明の実施形態では、ドレインに高耐圧が印加されると、電位分布が密となっている表面近傍の濃度が薄くなっていることにより、表面近傍の空乏層の伸びは促進される。このため、ディープウェル領域端での電位分布の傾きは小さくなり、表面近傍の電界を低減でき、オフ状態の耐圧を向上できる。   FIG. 3 shows electric field intensity distribution diagrams of the conventional example (a) and the embodiment (b) of the present invention. The electric field intensity distribution of the X-X 'position described in each sectional view of FIGS. In the embodiment of the present invention, when a high breakdown voltage is applied to the drain, the concentration in the vicinity of the surface where the potential distribution is dense is reduced, thereby promoting the extension of the depletion layer in the vicinity of the surface. For this reason, the gradient of the potential distribution at the edge of the deep well region is reduced, the electric field in the vicinity of the surface can be reduced, and the breakdown voltage in the off state can be improved.

また、本発明の実施形態の電流能力については、従来例と比べて表面近傍の濃度を小さくしたことによる低下は抑制される。これはドレイン領域のトータルドーズ量は従来と変わっておらず、キャリアの流れは確保されているためと考えられる。さらに、オン状態での耐圧特性は従来例と差はなく問題ない。   Moreover, about the current capability of embodiment of this invention, the fall by having reduced the density | concentration of the surface vicinity compared with a prior art example is suppressed. This is presumably because the total dose in the drain region has not changed from the conventional one, and the carrier flow is secured. Further, the withstand voltage characteristic in the on state is not different from the conventional example and there is no problem.

以上のように、本発明の実施形態は、オフ耐圧を向上できて、かつ、電流能力の低下を抑えることができる優れた高耐圧半導体装置である。   As described above, the embodiment of the present invention is an excellent high withstand voltage semiconductor device that can improve the off withstand voltage and suppress the decrease in current capability.

また、本発明の実施形態では、横型NMOSトランジスタの事例を示したが、これに限定されるわけではなく、ドレイン拡散層の導電型を逆にして横型PMOSトランジスタ、あるいは横型IGBTなどにも用いても特に構わない。   In the embodiment of the present invention, the example of the lateral NMOS transistor has been described. However, the present invention is not limited to this, and the drain diffusion layer is reversed in conductivity type and used for a lateral PMOS transistor or a lateral IGBT. Is also okay.

本発明にかかる高耐圧半導体装置およびその製造方法は、オフ耐圧を向上できて、かつ、電流能力の低下を抑えることができ、SOI基板を用いた高耐圧半導体装置等に有用である。   The high withstand voltage semiconductor device and the manufacturing method thereof according to the present invention can improve the off withstand voltage and suppress the decrease in current capability, and are useful for a high withstand voltage semiconductor device using an SOI substrate.

(a)は本発明の実施形態である高耐圧NMOSトランジスタの断面概略図、(b)は本発明の濃度プロファイルの概略図である。(A) is a schematic cross-sectional view of a high voltage NMOS transistor according to an embodiment of the present invention, and (b) is a schematic diagram of a concentration profile of the present invention. (a)は従来例の高耐圧NMOSトランジスタの断面概略図、(b)は従来の高耐圧NMOSの濃度プロファイルの概略図である。(A) is a schematic sectional view of a conventional high breakdown voltage NMOS transistor, and (b) is a schematic diagram of a concentration profile of a conventional high breakdown voltage NMOS transistor. 従来例(a)と本発明の実施形態(b)の電界強度分布図である。It is an electric field intensity distribution figure of a prior art example (a) and embodiment (b) of this invention.

符号の説明Explanation of symbols

1 支持基板
2 埋め込み絶縁層
3 P型半導体層
4 Pウェル領域
5 N型ドレイン領域
6 N型ソース領域
7 P型コンタクト拡散領域
8 ゲート絶縁膜
9 ゲート電極
10 N型ドリフト領域
11 N型ディープウェル中濃度拡散層
12 ソース電極
13 ドレイン電極
14 フィールド酸化膜
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Embedded insulating layer 3 P type semiconductor layer 4 P well region 5 N + type drain region 6 N + type source region 7 P + type contact diffusion region 8 Gate insulating film 9 Gate electrode 10 N type drift region 11 N type Deep well concentration diffusion layer 12 Source electrode 13 Drain electrode 14 Field oxide film

Claims (5)

支持基板上に埋め込み絶縁膜を介して形成された半導体層を有するSOI基板に形成された高耐圧半導体装置であって、
前記半導体層に形成された第1導電型のウェル領域と、
前記ウェル領域に選択的に形成された第2導電型の高濃度のソース領域と、
前記半導体層に前記ウェル領域と離間して形成された第2導電型の高濃度のドレイン領域と、
前記半導体層に前記ウェル領域端から前記ドレイン領域側に形成され、前記埋め込み絶縁膜まで到達しない第2導電型の低濃度ドリフト領域と、
前記ドレイン領域を含む所定領域に形成される第2導電型の中濃度ディープウェル領域と、
前記ソース領域端から前記低濃度ドリフト領域端の間にゲート絶縁膜を介して形成されたゲート電極とを備え、
前記中濃度ディープウェル領域の表面濃度は、前記低濃度ドリフト領域の表面濃度以下にしたことを特徴とする高耐圧半導体装置。
A high withstand voltage semiconductor device formed on an SOI substrate having a semiconductor layer formed on a supporting substrate through a buried insulating film,
A first conductivity type well region formed in the semiconductor layer;
A second conductivity type high-concentration source region selectively formed in the well region;
A second conductivity type high-concentration drain region formed in the semiconductor layer apart from the well region;
A low concentration drift region of a second conductivity type formed in the semiconductor layer from the end of the well region to the drain region side and not reaching the buried insulating film;
A second conductivity type medium concentration deep well region formed in a predetermined region including the drain region;
A gate electrode formed through a gate insulating film between the source region end and the low concentration drift region end;
The high breakdown voltage semiconductor device according to claim 1, wherein a surface concentration of the medium concentration deep well region is set to be equal to or lower than a surface concentration of the low concentration drift region.
前記ウェル領域の前記ソース領域とは別の領域に形成された第1導電型のボディコンタクト領域を備えている請求項1記載の高耐圧半導体装置。   2. The high withstand voltage semiconductor device according to claim 1, further comprising a body contact region of a first conductivity type formed in a region different from the source region of the well region. 前記半導体層が第1導電型である請求項1または2記載の高耐圧半導体装置。   The high breakdown voltage semiconductor device according to claim 1, wherein the semiconductor layer is of a first conductivity type. 前記中濃度ディープウェル領域の前記半導体層との接合を、前記低濃度ドリフト領域と前記半導体層との接合より深くする請求項1,2または3記載の高耐圧半導体装置。   4. The high breakdown voltage semiconductor device according to claim 1, wherein a junction between the medium concentration deep well region and the semiconductor layer is deeper than a junction between the low concentration drift region and the semiconductor layer. 請求項1記載の高耐圧半導体装置の製造方法であって、前記中濃度ディープウェル領域と前記低濃度ドリフト領域を、それぞれ不純物イオンを注入して形成する工程を含み、前記中濃度ディープウェル領域の注入エネルギーを前記低濃度ドリフト領域の注入エネルギーより高く設定することを特徴とする高耐圧半導体装置の製造方法。   2. The method of manufacturing a high breakdown voltage semiconductor device according to claim 1, comprising a step of forming the intermediate concentration deep well region and the low concentration drift region by implanting impurity ions, respectively. A method of manufacturing a high breakdown voltage semiconductor device, wherein the implantation energy is set higher than the implantation energy of the low concentration drift region.
JP2006173309A 2006-06-23 2006-06-23 High withstand voltage semiconductor device and its manufacturing method Pending JP2008004783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173309A JP2008004783A (en) 2006-06-23 2006-06-23 High withstand voltage semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173309A JP2008004783A (en) 2006-06-23 2006-06-23 High withstand voltage semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008004783A true JP2008004783A (en) 2008-01-10

Family

ID=39008918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173309A Pending JP2008004783A (en) 2006-06-23 2006-06-23 High withstand voltage semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008004783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838513A (en) * 2018-08-17 2020-02-25 立锜科技股份有限公司 High voltage device and method for manufacturing the same
CN113270423A (en) * 2021-05-08 2021-08-17 电子科技大学 Radiation-resistant SOI device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838513A (en) * 2018-08-17 2020-02-25 立锜科技股份有限公司 High voltage device and method for manufacturing the same
CN110838513B (en) * 2018-08-17 2023-03-24 立锜科技股份有限公司 High voltage device and method for manufacturing the same
CN113270423A (en) * 2021-05-08 2021-08-17 电子科技大学 Radiation-resistant SOI device and manufacturing method thereof
CN113270423B (en) * 2021-05-08 2023-06-23 电子科技大学 Anti-radiation SOI device and manufacturing method

Similar Documents

Publication Publication Date Title
JP5261927B2 (en) Semiconductor device
JP2007123887A (en) Lateral dmos transistor comprising retrograde region and manufacturing method thereof
JP2008140817A (en) Semiconductor device
JP4387291B2 (en) Horizontal semiconductor device and manufacturing method thereof
US7973361B2 (en) High breakdown voltage semiconductor device and fabrication method of the same
JP2011187708A (en) Semiconductor device
KR101213526B1 (en) semiconductor device
US20210151590A1 (en) Semiconductor device and method of manufacturing same
JP2008078282A (en) Semiconductor device and manufacturing method thereof
KR101667499B1 (en) Semiconductor device and method of manufacturing the same
JP2000332247A (en) Semiconductor device
JP2008244466A (en) Semiconductor device
JP4725040B2 (en) SOI trench lateral IGBT
CN108885999B (en) Semiconductor device and method for manufacturing the same
JP2009060064A (en) Semiconductor device and manufacturing method therefor
JP2005217202A (en) Trench horizontal semiconductor device and its manufacturing method
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
JP2008066508A (en) Semiconductor device
JP2008004783A (en) High withstand voltage semiconductor device and its manufacturing method
JP2004039773A (en) Semiconductor device and its manufacturing method
JP4248548B2 (en) High breakdown voltage semiconductor device and manufacturing method thereof
JP2007299802A (en) Semiconductor device
JP2002026314A (en) Semiconductor device
JP2007266326A (en) Lateral-type semiconductor device
JP4150704B2 (en) Horizontal short channel DMOS