[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007263299A - Manufacturing method of bearing device for wheel - Google Patents

Manufacturing method of bearing device for wheel Download PDF

Info

Publication number
JP2007263299A
JP2007263299A JP2006091515A JP2006091515A JP2007263299A JP 2007263299 A JP2007263299 A JP 2007263299A JP 2006091515 A JP2006091515 A JP 2006091515A JP 2006091515 A JP2006091515 A JP 2006091515A JP 2007263299 A JP2007263299 A JP 2007263299A
Authority
JP
Japan
Prior art keywords
wheel
bearing device
rolling surface
manufacturing
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006091515A
Other languages
Japanese (ja)
Inventor
Naoki Nakagawa
直樹 中川
Hitohiro Ozawa
仁博 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006091515A priority Critical patent/JP2007263299A/en
Publication of JP2007263299A publication Critical patent/JP2007263299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/187Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with all four raceways integrated on parts other than race rings, e.g. fourth generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22326Attachments to the outer joint member, i.e. attachments to the exterior of the outer joint member or to the shaft of the outer joint member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a bearing device for a wheel of fourth generation structure, for reducing weight and size of the device, increasing bearing stiffness, and reducing the number of processing steps. <P>SOLUTION: Trial assembly of double-rows of balls 6a, 6b to double-rows of outer rolling surfaces 4a, 4b of an outward member 4 is performed through retainers 9a, 9b. Then, seals 10, 10 are installed to both end parts of the outer member 4. A hub wheel 1 and an outer joint member 14 are respectively inserted from both sides of the outward member 4, a serration 20a of the shaft part 20 of the outer joint member 14 is fitted to a serration 1c of the hub wheel 1. With a state where a predetermined pre-load is applied to the double-rows of rolling bearings 2, an abutting part between the hub wheel 1 and the shaft part 20 is preheated, the hub wheel 1 and the shaft part 20 are integrally joined at a joint part 11 by joining, and then post heating is performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支承する車輪用軸受装置の製造方法、特に、装置の軽量・コンパクト化を図ると共に、軸受剛性を高め、加工工程を削減した第4世代構造の車輪用軸受装置の製造方法に関するものである。   The present invention relates to a method of manufacturing a wheel bearing device for rotatably supporting a wheel of an automobile or the like with respect to a suspension device, and in particular, to reduce the weight and size of the device, increase the bearing rigidity, and reduce the machining process. The present invention relates to a method for manufacturing a four-generation wheel bearing device.

自動車等の車輪を回転自在に支承する車輪用軸受装置は、第1世代と称される複列の転がり軸受を単独に使用する構造から、外方部材に車体取付フランジを一体に有する第2世代に進化し、さらに、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方の内側転走面が一体に形成された第3世代、さらにはこのハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側転走面が一体に形成された第4世代のものまで開発されている。   The wheel bearing device for rotatably supporting the wheel of an automobile or the like is a second generation having a body mounting flange integrally with an outer member from a structure in which a double row rolling bearing called a first generation is used independently. In addition, the third generation in which one inner rolling surface of the double row rolling bearing is integrally formed on the outer periphery of the hub ring integrally having the wheel mounting flange, and further, the constant velocity universal joint is provided on the hub ring. Have been developed to the fourth generation in which the other inner rolling surface of the double row rolling bearing is integrally formed on the outer periphery of the outer joint member constituting the constant velocity universal joint.

以下、図を参照しつつ、従来技術の説明をする。
図8は、従来の車輪用軸受装置を示す断面図である。図8に示す車輪用軸受装置は第3世代構造の代表的な一例である。図8に示す車輪用軸受装置は、内方部材50と、外方部材60と、等速自在継手70とをユニット化して構成している。
Hereinafter, the prior art will be described with reference to the drawings.
FIG. 8 is a cross-sectional view showing a conventional wheel bearing device. The wheel bearing device shown in FIG. 8 is a typical example of a third generation structure. The wheel bearing device shown in FIG. 8 includes an inner member 50, an outer member 60, and a constant velocity universal joint 70 as a unit.

内方部材50は、ハブ輪51と、このハブ輪51に圧入した別体の内輪52とからなる。ハブ輪51は、車輪(図示せず)を取り付けるための車輪取付フランジ53を一体に有し、この車輪取付フランジ53の円周等配位置には車輪を固定するためのハブボルト54を植設している。ハブ輪52に形成した小径段部55に内輪52を圧入し、さらに、小径段部55の端部を径方向外方に塑性変形させた加締部56により、内輪52が軸方向へ抜けるのを防止している。   The inner member 50 includes a hub ring 51 and a separate inner ring 52 that is press-fitted into the hub ring 51. The hub wheel 51 integrally has a wheel mounting flange 53 for mounting a wheel (not shown), and a hub bolt 54 for fixing the wheel is planted at a circumferentially equidistant position of the wheel mounting flange 53. ing. The inner ring 52 is pulled out in the axial direction by the crimping portion 56 in which the inner ring 52 is press-fitted into the small-diameter step portion 55 formed in the hub wheel 52 and the end of the small-diameter step portion 55 is plastically deformed radially outward. Is preventing.

外方部材60は外周に車体(図示せず)に取り付けるための車体取付フランジ61を一体に有し、内周には複列の転走面60a、60aを形成している。一方、内方部材50は、これら外方部材60の転走面60a、60aに対向する複列の転走面51a、52aをそれぞれハブ輪51と内輪52に一体形成し、それぞれの転走面60a、51aと60a、52a間には複列の転動体(ボール)62、62を収容している。保持器63、63は、これら複列の転動体62、62を転動可能に保持する。また、外方部材60の端部にはシール64、65を装着し、軸受内部に封入した潤滑グリースの漏洩を防止すると共に、外部からの雨水やダスト等の侵入を防止している。   The outer member 60 integrally has a vehicle body mounting flange 61 for mounting to a vehicle body (not shown) on the outer periphery, and forms double-row rolling surfaces 60a and 60a on the inner periphery. On the other hand, the inner member 50 is formed integrally with the hub wheel 51 and the inner ring 52 with double row rolling surfaces 51a, 52a facing the rolling surfaces 60a, 60a of the outer member 60, respectively. Double row rolling elements (balls) 62, 62 are accommodated between 60a, 51a and 60a, 52a. The holders 63 and 63 hold the double-row rolling elements 62 and 62 in a rollable manner. Further, seals 64 and 65 are attached to the end portion of the outer member 60 to prevent leakage of the lubricating grease enclosed in the bearing, and to prevent rainwater and dust from entering from the outside.

等速自在継手70は外側継手部材71と継手内輪72、ケージ73、およびトルク伝達ボール74とからなる。外側継手部材71はカップ状のマウス部75と、このマウス部75から軸方向に延びる軸部76を有し、マウス部75の内周には軸方向に延びる曲線状のトラック溝71aを形成している。一方、トラック溝71aに対向し、継手内輪72の外周には曲線状のトラック溝72aを形成している。これらトラック溝71a、72aの曲率中心は、継手中心に対して互いに軸方向に等距離だけオフセットしている。したがって、両トラック溝71a、72a間に収容したトルク伝達ボール74を、如何なる作動角においても常にその作動角の二等分面上に保持して等速性を有している。   The constant velocity universal joint 70 includes an outer joint member 71, a joint inner ring 72, a cage 73, and a torque transmission ball 74. The outer joint member 71 has a cup-shaped mouth portion 75 and a shaft portion 76 extending in the axial direction from the mouth portion 75, and a curved track groove 71 a extending in the axial direction is formed on the inner periphery of the mouth portion 75. ing. On the other hand, a curved track groove 72 a is formed on the outer periphery of the joint inner ring 72 so as to face the track groove 71 a. The centers of curvature of the track grooves 71a and 72a are offset from each other by an equal distance in the axial direction with respect to the joint center. Therefore, the torque transmission ball 74 accommodated between the track grooves 71a and 72a is always held on a bisector of the operating angle at any operating angle, so that the speed is constant.

外側継手部材71の軸部76をハブ輪51にセレーション76aを介してトルク伝達可能に内嵌すると共に、固定ボルト77により加締部56と外側継手部材71の肩部78とが当接した状態で、内方部材50と外側継手部材71とを着脱自在に締結している。
特開2003−72308号公報 特開2003−74569号公報
The shaft portion 76 of the outer joint member 71 is fitted into the hub wheel 51 through the serration 76a so that torque can be transmitted, and the caulking portion 56 and the shoulder portion 78 of the outer joint member 71 are in contact with each other by the fixing bolt 77. Thus, the inner member 50 and the outer joint member 71 are detachably fastened.
JP 2003-72308 A JP 2003-74569 A

然しながら、こうした従来の車輪用軸受装置において、固定ボルト、ナット等による締結や端面加締固定を採用した場合、ねじ部や加締部を余分に設ける必要があるため、軽量・コンパクト化の妨げとなっていた。また、近年、車両の燃費向上やばね下重量軽量化による運動性能の向上のために軽量・コンパクト化を図りつつ、さらに耐久性と軸受剛性を高めることが望まれている。さらに、従来の車輪用軸受装置において、固定ボルト、ナット等による締結方法を採用すると加工工程も多くなる傾向がある。   However, in such a conventional wheel bearing device, when fastening with fixing bolts, nuts, etc. or end face caulking / fixing is adopted, it is necessary to provide an extra screw part or caulking part. It was. In recent years, it has been desired to further improve durability and bearing rigidity while reducing the weight and size in order to improve the vehicle fuel efficiency and the motion performance by reducing the unsprung weight and weight. Furthermore, in a conventional wheel bearing device, if a fastening method using a fixing bolt, a nut or the like is employed, the number of processing steps tends to increase.

本発明は、このような事情に鑑みてなされたもので、装置の軽量・コンパクト化を図ると共に、軸受剛性を高め、加工工程を削減した第4世代構造の車輪用軸受装置の製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and provides a method of manufacturing a fourth-generation wheel bearing device having a reduced weight and size, increasing bearing rigidity, and reducing processing steps. The purpose is to do.

係る目的を達成すべく、本発明のうち請求項1に記載の発明は、ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された車輪用軸受装置の製造方法であって、前記複列の転がり軸受が、内周に複列の外側転走面が形成され、外周に車体取付フランジが形成された外方部材と、一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる円筒状の小径段部と、内周にセレーションとが形成されたハブ輪、および、外周に前記複列の外側転走面に対向する他方の内側転走面と、この内側転走面から軸方向に延び、セレーションが形成された軸部とが一体に形成された前記等速自在継手の外側継手部材からなる内方部材と、この内方部材と前記外方部材の両転走面間に転動自在に収容された複列のボール群とを備えた車輪用軸受装置の製造方法において、前記軸部が前記ハブ輪にセレーションを介して嵌合される工程と、この嵌合部の突合せ部が接合による接合部で一体に結合される工程と、を有することを特徴とする。   In order to achieve the object, the invention described in claim 1 of the present invention is a method of manufacturing a wheel bearing device in which a hub wheel, a double row rolling bearing, and a constant velocity universal joint are unitized. The double row rolling bearing has an outer member in which a double row outer rolling surface is formed on the inner periphery and a vehicle body mounting flange is formed on the outer periphery, and a wheel mounting flange is integrally formed on one end, and on the outer periphery. A hub wheel having one inner rolling surface facing the outer rolling surface of the double row, a small cylindrical step extending in the axial direction from the inner rolling surface, and a serration on the inner periphery; and And the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and the shaft portion extending in the axial direction from the inner rolling surface and having serrations formed integrally therewith. An inner member composed of an outer joint member of a universal joint, and both rotations of the inner member and the outer member. In a method of manufacturing a wheel bearing device including a double row ball group accommodated in a freely rolling manner between surfaces, a step of fitting the shaft portion to the hub wheel via serrations, and the fitting And a step of joining the butt portions of the portions together at a joint portion by joining.

このように、セレーション嵌合と溶接で軸部をハブ輪に固定する方法を採用することで、固定ボルト、ナット等による締結や端面加締固定等と比べると、ねじ部や加締部を余分に設ける必要がなく、軽量・コンパクト化を実現できると共に、軸受剛性を高めることができる。また、所謂アウトボード側の溶接を行った場合には、接合の後の洗浄をする必要がない。   In this way, by adopting a method of fixing the shaft part to the hub wheel by serration fitting and welding, the screw part and the caulking part are extraneous compared to fastening with fixing bolts, nuts, etc. or end face caulking and fixing. Therefore, it is possible to realize light weight and compactness and to increase bearing rigidity. In addition, when so-called outboard welding is performed, it is not necessary to perform cleaning after joining.

また、本発明のうち請求項2に記載の発明は、ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された車輪用軸受装置の製造方法であって、前記複列の転がり軸受が、内周に複列の外側転走面が形成され、外周に車体取付フランジが形成された外方部材と、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる円筒状の小径段部と、内周にセレーションとが形成された前記等速自在継手、および、一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する他方の内側転走面と、この内側転走面から軸方向に延び、セレーションが形成された軸部が形成されたハブ輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に転動自在に収容された複列のボール群とを備えた車輪用軸受装置の製造方法において、前記軸部が前記等速自在継手にセレーションを介して嵌合される工程と、この嵌合部の突合せ部が接合による接合部で一体に結合される工程と、を有することを特徴とする。   The invention according to claim 2 of the present invention is a method of manufacturing a wheel bearing device in which a hub wheel, a double row rolling bearing, and a constant velocity universal joint are unitized, and the double row rolling. The bearing has an outer member in which a double row outer rolling surface is formed on the inner periphery and a vehicle body mounting flange is formed on the outer periphery, and one inner rolling surface facing the double row outer rolling surface on the outer periphery. And the constant velocity universal joint formed with a cylindrical small-diameter step portion extending in the axial direction from the inner rolling surface, serrations on the inner periphery, and a wheel mounting flange at one end, An inner member formed of a hub ring formed with a shaft portion extending in the axial direction from the inner rolling surface and formed with a serration. The double row baud accommodated between the rolling surfaces of the inner member and the outer member so as to roll freely. In the method of manufacturing a wheel bearing device including a group, the shaft portion is fitted into the constant velocity universal joint via serrations, and the butted portion of the fitting portion is integrally formed by a joint portion by joining. And a process to be combined.

ところで、自動車等の車両のエンジン動力を車輪に伝達する動力伝達装置は、エンジンから車輪へ動力を伝達すると共に、悪路走行時における車両のバウンドや車両の旋回時に生じる車輪からの径方向や軸方向変位、およびモーメント変位を許容する必要があるため、エンジン側と車輪側との間に介装されるドライブシャフトの一端を摺動型の等速自在継手を介してディファレンシャルに連結し、他端を固定型の等速自在継手を含む車輪用軸受装置を介して車輪に連結している。   By the way, a power transmission device that transmits engine power of a vehicle such as an automobile to a wheel transmits power from the engine to the wheel, and at the same time, the radial direction or axis from the wheel that occurs when the vehicle bounces or turns when traveling on a rough road. Because it is necessary to allow directional displacement and moment displacement, one end of the drive shaft interposed between the engine side and the wheel side is connected to the differential through a sliding type constant velocity universal joint, and the other end Are connected to the wheel via a wheel bearing device including a fixed type constant velocity universal joint.

こうした車両の車輪には、エンジン低速回転時、例えば車両発進時に、エンジンから摺動型等速自在継手を介して大きなトルクが負荷され、ドライブシャフトに捩じれを生じることが知られている。その結果、このドライブシャフトを支持する複列の転がり軸受にも捩じれが生じることになる。ドライブシャフトの捩じれ量が大きいと、固定型等速自在継手を構成する外側継手部材とハブ輪との当接面で急激なスリップによるスティックスリップ音が発生する。   It is known that a large torque is applied to a wheel of such a vehicle from the engine via a sliding type constant velocity universal joint when the engine rotates at a low speed, for example, when the vehicle starts, and the drive shaft is twisted. As a result, the double row rolling bearing supporting the drive shaft is also twisted. When the twist amount of the drive shaft is large, stick-slip noise due to a sudden slip is generated at the contact surface between the outer joint member constituting the fixed type constant velocity universal joint and the hub wheel.

しかし上述の方法によれば、等速自在継手を構成する外側継手部材とハブ輪の軸部との突合せ部を接合で固定してあるので、スティックスリップ音を抑制できる。また、所謂インボード側の接合では、接合部が外部に露出してないので錆びを抑制することができる。   However, according to the above-described method, since the butted portion between the outer joint member constituting the constant velocity universal joint and the shaft portion of the hub wheel is fixed by bonding, stick-slip noise can be suppressed. Moreover, in what is called inboard side joining, since a junction part is not exposed outside, rust can be suppressed.

また、請求項3に記載の発明のように、前記接合をレーザ溶接、アーク溶接、又は電子ビーム溶接で行うことが好ましい。
本発明によれば、等速自在継手の軸部をハブ輪にセレーションを介して嵌合、もしくは、ハブ輪の軸部を等速自在継手にセレーションを介して嵌合してトルクを伝達することができるため、溶接部にかかる負荷は比較的小さく、熱影響の少ない溶接法を採用することができる。したがって、高剛性化と耐久性の向上を図ると共に、等速自在継手とハブ輪との結合部の信頼性を向上させることができる。
Further, as in the invention described in claim 3, the joining is preferably performed by laser welding, arc welding, or electron beam welding.
According to the present invention, the shaft portion of the constant velocity universal joint is fitted to the hub wheel via serration, or the shaft portion of the hub wheel is fitted to the constant velocity universal joint via serration to transmit the torque. Therefore, it is possible to adopt a welding method in which the load applied to the welded portion is relatively small and the heat effect is small. Therefore, it is possible to improve the rigidity and durability, and to improve the reliability of the joint portion between the constant velocity universal joint and the hub wheel.

また、請求項4に記載の発明のように、前記接合部を摩擦攪拌接合で行うこともできる。
接合部が摩擦攪拌接合により接合されていれば、接合による熱影響を抑えて軸受部の変形や硬度低下の防止を図ることができる。
Moreover, like the invention of Claim 4, the said joint part can also be performed by friction stir welding.
If the joint portion is joined by friction stir welding, it is possible to prevent the deformation of the bearing portion and the decrease in hardness by suppressing the thermal effect due to the joining.

また、請求項5に記載の発明のように、前記接合部の径を前記等速自在継手に嵌合される中間シャフトの径よりも大きくすることが好ましい。
接合部の径を中間シャフト径よりも太くすることで、接合部に掛かるトルク伝達による負荷が中間シャフトに掛かる負荷よりも相対的に小さくなるので、接合部での破壊を抑制することができる。
Further, as in the invention described in claim 5, it is preferable to make the diameter of the joint portion larger than the diameter of the intermediate shaft fitted to the constant velocity universal joint.
By making the diameter of the joint part thicker than the diameter of the intermediate shaft, the load due to torque transmission applied to the joint part becomes relatively smaller than the load applied to the intermediate shaft, so that breakage at the joint part can be suppressed.

また、請求項6に記載の発明のように、前記接合部を、前記ハブ輪と前記等速自在継手との突合せ部の大径の部分に、車輪の進行方向にオフセットし、前記ハブ輪と前記等速自在継手に設けたセレーションの壁面が当接した状態で、形成することが好ましい。
大径の部分に接合を施すことで、大きな負荷トルクにも耐えることができる。また、進行方向にオフセットした状態で接合することにより、進行方向に負荷がかかってもセレーションの壁面でその負荷を受けることができるので、軸受剛性を高めることができる。
Further, as in the invention described in claim 6, the joint portion is offset in a traveling direction of a wheel at a large diameter portion of a butt portion between the hub wheel and the constant velocity universal joint, It is preferable to form in the state where the wall surface of the serration provided in the constant velocity universal joint abuts.
By joining the large diameter portion, it is possible to withstand a large load torque. Further, by joining in a state offset in the traveling direction, even if a load is applied in the traveling direction, the load can be received by the wall surface of the serration, so that the bearing rigidity can be increased.

また、請求項7に記載の発明のように、前記接合をする際に、予熱を実施することが好ましい。
予熱を施すことにより、接合後の接合部の冷却速度が遅くなり、マルテンサイト化を防ぐことができ、低温割れの発生も抑制できる。また、予熱を行うと、接合部付近の温度勾配が緩やかになるので、変形や残留応力の発生も低減できる。
Further, as in the invention described in claim 7, it is preferable to perform preheating when the joining is performed.
By performing preheating, the cooling rate of the joined portion after joining is slowed, martensite formation can be prevented, and the occurrence of cold cracking can also be suppressed. In addition, when preheating is performed, the temperature gradient in the vicinity of the joint becomes gentle, so that the generation of deformation and residual stress can be reduced.

また、請求項7に記載の発明のように、前記接合をした後に、後熱を実施することが好ましい。
723〜726度以上に加熱したものを5秒以内に550度を切る速さで温度を下げてしまうと、マルテンサイト化してしまうので、それよりも緩やかな温度勾配になるように後熱を行う。それにより、接合の信頼度を上げることができる。
Moreover, it is preferable to carry out post-heating after the joining as in the invention described in claim 7.
If the temperature of 723 to 726 ° C or higher is lowered at a speed of less than 550 ° within 5 seconds, it will become martensite, so post-heating is performed so that the temperature gradient becomes gentler than that. . Thereby, the reliability of joining can be raised.

また、請求項8に記載の発明のように、前記溶接を金属製のワイヤーを供給しながら実施することが好ましい。
レーザ溶接等において、金属製のワイヤーを入れながら溶接することにより、溶接部でワイヤーが溶け、溶接部の材質が改善し、溶接部の欠陥が抑制される。例えばステンレス鋼ワイヤーを供給することにより、炭素量が緩和され、材料組成のオーステナイトを残存するため、マルテンサイト化しにくく、溶接欠陥を防止することができる。さらに錆びにくくなる等、の利点がある。
Moreover, it is preferable to implement the said welding, supplying a metal wire like invention of Claim 8.
In laser welding or the like, by welding while putting a metal wire, the wire is melted at the welded portion, the material of the welded portion is improved, and defects in the welded portion are suppressed. For example, by supplying a stainless steel wire, the amount of carbon is relaxed and austenite having a material composition remains, so that it is difficult to form martensite and weld defects can be prevented. Furthermore, there are advantages such as being less likely to rust.

本発明に係る車輪用軸受装置の製造方法は、セレーション嵌合と接合で軸部をハブ輪に固定する方法を採用することで、固定ボルト、ナット等による締結や端面加締固定等と比べると、ねじ部や加締部を余分に設ける必要がなく、軽量・コンパクト化を図ると共に、軸受剛性を高め、加工工程を削減できる。   The method of manufacturing a wheel bearing device according to the present invention employs a method of fixing a shaft portion to a hub wheel by serration fitting and joining, and compared with fastening with fixing bolts, nuts, etc. or end surface caulking and fixing. In addition, it is not necessary to provide an extra screw part or caulking part, so that the weight and size can be reduced, the bearing rigidity can be increased, and the machining process can be reduced.

本発明に係る車輪用軸受装置の製造方法は、ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された車輪用軸受装置の製造方法であって、前記複列の転がり軸受が、内周に複列の外側転走面が形成され、外周に車体取付フランジが形成された外方部材と、一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる円筒状の小径段部と、内周にセレーションとが形成されたハブ輪、および、外周に前記複列の外側転走面に対向する他方の内側転走面と、この内側転走面から軸方向に延び、セレーションが形成された軸部とが一体に形成された前記等速自在継手の外側継手部材からなる内方部材と、この内方部材と前記外方部材の両転走面間に転動自在に収容された複列のボール群とを備えた車輪用軸受装置の製造方法において、前記軸部が前記ハブ輪にセレーションを介して嵌合される工程と、この嵌合部の突合せ部が接合による接合部で一体に結合される工程と、を有することを特徴とする。   A method for manufacturing a wheel bearing device according to the present invention is a method for manufacturing a wheel bearing device in which a hub wheel, a double-row rolling bearing, and a constant velocity universal joint are unitized, and the double-row rolling bearing includes: The outer member having a double row outer rolling surface formed on the inner periphery, the outer member having the vehicle body mounting flange formed on the outer periphery, and the wheel mounting flange at one end is integrally formed, and the outer surface of the double row is rolled on the outer periphery. One inner rolling surface facing the surface, a cylindrical small-diameter stepped portion extending in the axial direction from the inner rolling surface, a hub ring formed with serrations on the inner circumference, and the double row on the outer circumference. From the outer joint member of the constant velocity universal joint in which the other inner rolling surface facing the outer rolling surface and the shaft portion extending in the axial direction from the inner rolling surface and having serrations are integrally formed. An inner member, and the inner member and the outer member can roll between both rolling surfaces. In a method for manufacturing a wheel bearing device including a double row ball group that is contained, a step in which the shaft portion is fitted to the hub wheel via serrations, and a butt portion of the fitting portion is formed by bonding. And a step of joining together at a joint.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の車輪用軸受装置の製造方法の第1の実施の形態を説明するための車軸用軸受装置の縦断面図である。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図面左側)、中央寄り側をインナー側(図面右側)という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view of an axle bearing device for explaining a first embodiment of a method for manufacturing a wheel bearing device of the present invention. In the following description, the side closer to the outer side of the vehicle in a state assembled to the vehicle is referred to as the outer side (left side in the drawing), and the side closer to the center is referred to as the inner side (right side in the drawing).

この車輪用軸受装置は、ハブ輪1と複列の転がり軸受2および等速自在継手3とがユニット化して構成されている。複列の転がり軸受2は、外方部材4と内方部材5と、これら両部材間に収容された複列のボール6a、6bとを備えている。内方部材5は、ハブ輪1と、このハブ輪1に内嵌された後述する外側継手部材14とからなる。   In this wheel bearing device, a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 are configured as a unit. The double-row rolling bearing 2 includes an outer member 4, an inner member 5, and double-row balls 6 a and 6 b accommodated between these members. The inner member 5 includes a hub wheel 1 and an outer joint member 14 to be described later that is fitted into the hub wheel 1.

外方部材4は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、外周に車体(図示せず)に取り付けるための車体取付フランジ4cを一体に有し、内周に円弧状の複列の外側転走面4a、4bが形成されている。この複列の外側転走面4a、4bは、高周波熱処理によって表面硬さを58〜64HRCの範囲に硬化されている。   The outer member 4 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and integrally has a vehicle body mounting flange 4c for mounting to the vehicle body (not shown) on the outer periphery. Arc-shaped double-row outer rolling surfaces 4a and 4b are formed. The double row outer rolling surfaces 4a, 4b are hardened to a surface hardness of 58 to 64 HRC by high frequency heat treatment.

一方、ハブ輪1はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、アウター側の端部に車輪を取り付けるための車輪取付フランジ7を有し、この車輪取付フランジ7の周方向等配に複数のハブボルト8が植設されている。また、ハブ輪1の外周には、前記複列の外側転走面4a、4bに対向する一方(アウター側)の円弧状の内側転走面1aと、この内側転走面1aから軸方向に延びる円筒状の小径段部1bが形成されている。さらに、ハブ輪1の内周にはセレーション(またはスプライン)1cが形成されている。   On the other hand, the hub wheel 1 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and has a wheel mounting flange 7 for mounting a wheel to an end portion on the outer side. A plurality of hub bolts 8 are planted at equal intervals in the circumferential direction. Further, on the outer periphery of the hub wheel 1, one arcuate inner rolling surface 1a (outer side) facing the double row outer rolling surfaces 4a and 4b, and an axial direction from the inner rolling surface 1a. An extending cylindrical small-diameter step portion 1b is formed. Further, a serration (or spline) 1 c is formed on the inner periphery of the hub wheel 1.

そして、アウター側のシール10が摺接するシールランド部7aから内側転走面1aおよび小径段部1bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。これにより、車輪取付フランジ7の基部となるシールランド部7aの耐摩耗性が向上するばかりでなく、車輪取付フランジ7に負荷される回転曲げ荷重に対して充分な機械的強度を有し、ハブ輪1の耐久性が向上する。   And the surface hardness is hardened in the range of 58-64 HRC by induction hardening over the inner rolling surface 1a and the small diameter step portion 1b from the seal land portion 7a with which the outer seal 10 is in sliding contact. As a result, not only the wear resistance of the seal land portion 7a serving as the base portion of the wheel mounting flange 7 is improved, but also the hub has sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange 7. The durability of the wheel 1 is improved.

等速自在継手3は、外側継手部材14と継手内輪15、ケージ16、およびトルク伝達ボール17とからなる。外側継手部材14はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、カップ状のマウス部18と、このマウス部18の底部をなす肩部19、およびこの肩部19から軸方向に延びる軸部20が一体に形成されている。肩部19の外周には、前記複列の外側転走面4a、4bに対向する他方(インナー側)の円弧状の内側転走面14aが形成される。   The constant velocity universal joint 3 includes an outer joint member 14, a joint inner ring 15, a cage 16, and a torque transmission ball 17. The outer joint member 14 is made of medium carbon steel containing carbon of 0.40 to 0.80 wt% such as S53C, and has a cup-shaped mouth portion 18, a shoulder portion 19 that forms the bottom portion of the mouth portion 18, and the shoulder portion 19. A shaft portion 20 extending in the axial direction from is integrally formed. On the outer periphery of the shoulder 19, the other (inner side) arcuate inner rolling surface 14 a facing the double row outer rolling surfaces 4 a, 4 b is formed.

軸部20の内側は、軸方向に円筒状に刳り貫かれた中空部21が形成されている。なお、この例では、軸部20の内側の全てを中空にしたが、中実または軸部20の端部の一部だけを中空にすることもできる。また、軸部20の外周には、セレーション(またはスプライン)20aが形成され、ハブ輪1のセレーション1cに嵌合している。   On the inner side of the shaft portion 20, a hollow portion 21 is formed so as to penetrate in a cylindrical shape in the axial direction. In this example, all of the inside of the shaft portion 20 is hollow, but only a part of the solid or the end portion of the shaft portion 20 may be hollow. A serration (or spline) 20 a is formed on the outer periphery of the shaft portion 20 and is fitted to the serration 1 c of the hub wheel 1.

マウス部18の内周には曲線部を有する軸方向に延びるトラック溝18aが形成されると共に、継手内輪15の外周にこのトラック溝18aに対応するトラック溝15aが形成され、これら両トラック溝18a、15a間にケージ16を介してトルク伝達ボール17が収容されている。そして、トラック溝18aと、インナー側のシール10が嵌合する外周面から内側転走面14aおよび軸部20に亙って高周波熱処理によって表面硬さを58〜64HRCの範囲に硬化されている。   An axially extending track groove 18 a having a curved portion is formed on the inner periphery of the mouse portion 18, and a track groove 15 a corresponding to the track groove 18 a is formed on the outer periphery of the joint inner ring 15. , 15a, a torque transmission ball 17 is accommodated via a cage 16. The surface hardness is hardened in the range of 58 to 64 HRC by high-frequency heat treatment from the outer peripheral surface where the track groove 18a and the inner side seal 10 are fitted to the inner rolling surface 14a and the shaft portion 20.

外方部材4の複列の外側転走面4a、4bと、これらに対向する複列の内側転走面1a、14a間には複列のボール6a、6bが収容され、保持器9a、9bによって転動自在に保持されている。また、外方部材4の端部にはシール10、10が装着され、軸受内部に封入された潤滑グリースの漏洩と、外部から軸受内部に雨水やダスト等が侵入するのを防止している。これらの複列の転がり軸受2は、両転走面4a、1aおよび4b、14aに加わる力の作用方向の作用線が軸心に向うほど軸方向に離反する、所謂背面合せタイプの複列アンギュラ玉軸受を構成している。   Between the double row outer raceway surfaces 4a and 4b of the outer member 4 and the double row inner raceway surfaces 1a and 14a facing these, double row balls 6a and 6b are accommodated, and cages 9a and 9b are accommodated. It is held so that it can roll freely. Further, seals 10 and 10 are attached to the end portion of the outer member 4 to prevent leakage of the lubricating grease sealed inside the bearing and intrusion of rainwater, dust and the like into the bearing from the outside. These double-row rolling bearings 2 are so-called back-to-back type double-row angular contacts in which the acting lines of the acting directions of the forces applied to the rolling surfaces 4a, 1a and 4b, 14a are separated in the axial direction as they approach the axial center. It constitutes a ball bearing.

本実施形態では、インナー側のボール6bのピッチ円直径PCDiがアウター側のボール6aのピッチ円直径PCDoよりも大径に設定されている。これら複列のボール6a、6bの外径は同じであるが、このピッチ円直径PCDo、PCDiの違いにより、インナー側のボール6bの個数がアウター側のボール6aの個数よりも多く設定されている。本実施形態の場合、複列のボール6a、6bの外径を同じにすることにより、組立工程における誤組みの問題を解消することができ、製造コストが低減できると共に、品質の信頼性が向上する。   In the present embodiment, the pitch circle diameter PCDi of the inner side ball 6b is set larger than the pitch circle diameter PCDo of the outer side ball 6a. The outer diameters of these double-row balls 6a and 6b are the same, but due to the difference in pitch circle diameters PCDo and PCDi, the number of inner-side balls 6b is set to be larger than the number of outer-side balls 6a. . In the case of this embodiment, by making the outer diameters of the double-row balls 6a and 6b the same, it is possible to eliminate the problem of misassembly in the assembly process, to reduce the manufacturing cost, and to improve the reliability of quality. To do.

このように、左右のボール6a、6bのピッチ円直径PCDo、PCDiの違いに伴い、内方部材5において、外側継手部材14の内側転走面14aの溝底径は、ハブ輪1の内側転走面1aの溝底径よりも拡径して形成されている。一方、外方部材4において、左右のボール6a、6bのピッチ円直径PCDo、PCDiの違いに伴い、インナー側の外側転走面4bの溝底径がアウター側の外側転走面4aの溝底径よりも拡径して形成されている。   As described above, with the difference in pitch circle diameters PCDo and PCDi between the left and right balls 6a and 6b, in the inner member 5, the groove bottom diameter of the inner rolling surface 14a of the outer joint member 14 is changed to the inner rolling of the hub wheel 1. The diameter is larger than the groove bottom diameter of the running surface 1a. On the other hand, in the outer member 4, with the difference in pitch circle diameters PCDo and PCDi of the left and right balls 6a and 6b, the groove bottom diameter of the inner-side outer rolling surface 4b is the groove bottom of the outer-side outer rolling surface 4a. The diameter is larger than the diameter.

こうした構成の車輪用軸受装置では、インナー側の内側転走面14aを外側継手部材14の肩部19の外周に直接形成するようにしたので、インナー側のボール6bのピッチ円直径PCDiをアウター側のボール6aのピッチ円直径PCDoよりも大径に設定することができると共に、ボール6bの個数もインナー側の個数をアウター側よりも多く設定することができるため、軽量・コンパクト化を図ることができると共に、軸受剛性の増大と、軸受の長寿命化を図ることができる。   In the wheel bearing device having such a configuration, the inner-side inner rolling surface 14a is directly formed on the outer periphery of the shoulder portion 19 of the outer joint member 14, so that the pitch circle diameter PCDi of the inner-side ball 6b is set to the outer side. The ball 6a can be set to have a larger diameter than the pitch circle diameter PCDo, and the number of balls 6b can be set to be larger on the inner side than on the outer side. In addition, the bearing rigidity can be increased and the bearing life can be extended.

次に、ハブ輪1と複列の転がり軸受2および等速自在継手3のユニット化の方法について説明する。
まず、外方部材4の複列の外側転走面4a、4bに保持器9a、9bを介して複列のボール6a、6bが仮組みされる。その後、外方部材4の両端部にシール10、10が装着される。次に、外方部材4の両側からハブ輪1と外側継手部材14とがそれぞれ内挿され、ハブ輪1のセレーション1cに外側継手部材14の軸部20のセレーション20aが嵌合される。そして、複列の転がり軸受2に所定の予圧が付与された状態で、ハブ輪1と軸部20との突合せ部に予熱が実施され、ハブ輪1と軸部20とが接合による接合部11で一体に結合され、その後、後熱が実施される。なお、接合をする際、予熱と後熱を実施するようにしたが、予熱あるいは後熱をいずれかを実施するようにしても良い。
Next, a method for unitizing the hub wheel 1, the double row rolling bearing 2 and the constant velocity universal joint 3 will be described.
First, the double row balls 6a and 6b are temporarily assembled to the double row outer rolling surfaces 4a and 4b of the outer member 4 via the cages 9a and 9b. Thereafter, the seals 10 and 10 are attached to both ends of the outer member 4. Next, the hub wheel 1 and the outer joint member 14 are respectively inserted from both sides of the outer member 4, and the serration 20 a of the shaft portion 20 of the outer joint member 14 is fitted into the serration 1 c of the hub wheel 1. Then, in a state in which a predetermined preload is applied to the double row rolling bearing 2, preheating is performed at the abutting portion between the hub wheel 1 and the shaft portion 20, and the hub wheel 1 and the shaft portion 20 are joined by joining. Are joined together, after which post-heating is performed. In addition, when joining, preheating and post-heating were implemented, but you may make it implement either pre-heating or post-heating.

次に、本発明の車軸用軸受装置の製造方法における接合法について説明する。
図2は、本発明の接合法を説明するための図である。図2においては、ハブ輪1と複列の転がり軸受2および等速自在継手3とがユニット化して構成されている。等速自在継手3は、外側継手部材14等からなり、軸部20の端面の内側は、軸方向に円筒状に刳り貫かれた中空部21が形成されている。また、等速自在継手3に内設された継手内輪15には、中間シャフト26が嵌合されている。
Next, the joining method in the manufacturing method of the axle bearing device of the present invention will be described.
FIG. 2 is a view for explaining the joining method of the present invention. In FIG. 2, a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 are configured as a unit. The constant velocity universal joint 3 is composed of an outer joint member 14 and the like, and a hollow portion 21 is formed inside the end face of the shaft portion 20 so as to penetrate in a cylindrical shape in the axial direction. An intermediate shaft 26 is fitted to the joint inner ring 15 provided in the constant velocity universal joint 3.

ハブ輪1と軸部20との突合せ部22には、レーザ溶接機23から出力されたレーザ光24が当てられている。また、突合せ部22のレーザ光24の先には、棒状のニッケルワイヤー25が供給されている。このニッケルワイヤー25を供給し、レーザ光24を突合せ部22に当てながら、レーザ溶接機23のレーザ光24の集光部をハブ輪1と軸部20との突合せ部22に沿って円環状に動かすことにより、溶接を実施していく。このようにして、ハブ輪1と軸部20との突合せ部22は、溶接による溶接部11で一体に結合される。なお、レーザ光24の集光部を動かして溶接するだけでなく、レーザ光24を当てた状態で、装置の方を軸周りに回転させて溶接することもできる。なお、溶接をする際、ワイヤーを供給しているが、ワイヤー供給しなくても溶接することはできる。   The laser beam 24 output from the laser welding machine 23 is applied to the abutting portion 22 between the hub wheel 1 and the shaft portion 20. Further, a rod-shaped nickel wire 25 is supplied to the tip of the laser beam 24 of the butting portion 22. While supplying the nickel wire 25 and applying the laser beam 24 to the butting portion 22, the condensing portion of the laser beam 24 of the laser welding machine 23 is formed in an annular shape along the butting portion 22 of the hub wheel 1 and the shaft portion 20. We will carry out welding by moving. In this way, the abutting portion 22 between the hub wheel 1 and the shaft portion 20 is integrally coupled by the welded portion 11 by welding. In addition to moving the condensing part of the laser beam 24 and welding, the apparatus can be welded by rotating the apparatus around the axis in the state where the laser beam 24 is applied. In addition, although the wire is supplied when welding, it can weld even if it does not supply a wire.

ここで、溶接部11の施された部分の径は、等速自在継手3に嵌合される中間シャフト26の径よりも大きくする。こうすることにより、溶接部に掛かるトルク伝達による負荷が中間シャフトに掛かる負荷よりも相対的に小さくなるので、溶接部での破壊を抑制することができる。   Here, the diameter of the portion to which the welded portion 11 is applied is made larger than the diameter of the intermediate shaft 26 fitted to the constant velocity universal joint 3. By carrying out like this, since the load by torque transmission concerning a welding part becomes relatively smaller than the load concerning an intermediate shaft, destruction in a welding part can be controlled.

なお、溶接は、ハブ輪1と軸部20との突合せ部22の全周にわたって行うこともできるし、断続溶接やスポット溶接のように円周上の複数箇所に実施することもできる。また、レーザ溶接の寸法としては、幅1〜3mm、深さ7〜8mm程の範囲に溶接を行う。   In addition, welding can also be performed over the perimeter of the butt | matching part 22 of the hub wheel 1 and the axial part 20, and can also be implemented in multiple places on the circumference like intermittent welding and spot welding. Laser welding is performed in a range of width 1 to 3 mm and depth 7 to 8 mm.

ワイヤー25としては、ニッケルワイヤーの他にクロムワイヤーなど、ステンレス鋼ワイヤーの種々のものを利用することができる。レーザ照射により溶接中にできたキーホールにワイヤーを供給することにより、溶接部の材料組成の改善を図り、溶接部に発生する欠陥を防止することが出来る。   As the wire 25, various types of stainless steel wires such as a chrome wire can be used in addition to a nickel wire. By supplying a wire to a keyhole formed during welding by laser irradiation, the material composition of the welded portion can be improved, and defects generated in the welded portion can be prevented.

溶接法としては、レーザ溶接の他に、アーク溶接、電子ビーム溶接、等を例示することができる。レーザ溶接とは、レーザ光を熱源に、放物線面鏡やレンズ等によりレーザを集光し、高エネルギー密度熱源にした状態で金属に照射し、金属を局部的に溶融・凝固させることによって接合する溶接法で、単色性・指向性・干渉性に優れており、放物線面鏡やレンズ等で集光することにより、溶接に高出力・高エネルギー密度を得ることができるという特徴がある。   Examples of the welding method include arc welding, electron beam welding and the like in addition to laser welding. Laser welding uses laser light as a heat source, condenses the laser with a parabolic mirror, lens, etc., irradiates the metal in a high energy density heat source, and joins the metal by locally melting and solidifying it. The welding method is excellent in monochromaticity, directivity, and coherence, and is characterized in that high power and high energy density can be obtained for welding by focusing with a parabolic mirror or lens.

アーク溶接とは、母材と溶接棒あるいはワイヤー間にアーク(火花)を発生させ、その時に発生する熱により接合部と溶接棒あるいはワイヤーを溶融して溶接する方法であり、電気エネルギーから熱エネルギーへの変換効率70%以上と高く、エネルギー密度が低い。   Arc welding is a method in which an arc (spark) is generated between a base material and a welding rod or wire, and the joint and the welding rod or wire are melted and welded by the heat generated at that time. The conversion efficiency to 70% or higher is high, and the energy density is low.

電子ビーム溶接とは、真空中で発生させた電子を高電圧により光速の2/3のスピードにまで加速させて材料に照射することにより、その衝撃発熱を利用して行う溶接方法で、高エネルギー密度の熱源を擁し、高速度溶接・深溶け込み溶接が可能である。また、真空中で溶接するため溶接部の酸化が無い。さらに、溶接部の幅が狭く、溶接ひずみが極めて小さいという特徴がある。   Electron beam welding is a welding method that uses impact heat generation by irradiating materials generated by accelerating electrons generated in a vacuum to 2/3 the speed of light with a high voltage. It has a high density heat source and can perform high-speed welding and deep penetration welding. Further, since welding is performed in a vacuum, there is no oxidation of the welded portion. Furthermore, there is a feature that the width of the welded portion is narrow and the welding distortion is extremely small.

また、ハブ輪1のセレーション1cに外側継手部材14の軸部20のセレーション20aが嵌合され、セレーションを介してトルクを伝達することができるため、溶接部11にかかる負荷は小さく、熱影響の少ない溶接法を採用することができる。したがって、高剛性化と耐久性の向上を図ると共に、等速自在継手3の外側継手部材14とハブ輪1との結合部の信頼性を向上させることができる。   Further, since the serration 20a of the shaft portion 20 of the outer joint member 14 is fitted to the serration 1c of the hub wheel 1 and torque can be transmitted via the serration, the load applied to the welded portion 11 is small, and the heat effect is reduced. Fewer welding methods can be employed. Therefore, it is possible to improve the rigidity and durability, and to improve the reliability of the joint portion between the outer joint member 14 of the constant velocity universal joint 3 and the hub wheel 1.

なお、ここでは、ハブ輪1と外側継手部材14に中炭素鋼を使用し、高周波熱処理によって表面を硬化するようにしたが、これに限らず、例えば、SCr415等の肌焼鋼を使用し、浸炭焼入れを施しても良い。この場合、ハブ輪1と外側継手部材14の軸部20との嵌合部の端部は、予め浸炭防止剤を塗布し、熱処理後に溶接を施す。これにより、鍛造加工性が向上すると共に、溶接による割れの問題を確実に解消することができる。   Here, medium carbon steel is used for the hub wheel 1 and the outer joint member 14, and the surface is hardened by high-frequency heat treatment, but not limited thereto, for example, case-hardened steel such as SCr415 is used, Carburizing and quenching may be performed. In this case, the end portion of the fitting portion between the hub wheel 1 and the shaft portion 20 of the outer joint member 14 is preliminarily coated with a carburizing inhibitor and welded after heat treatment. As a result, forging processability is improved and the problem of cracking due to welding can be reliably solved.

次に、他の製造方法について説明する。
図3は、他の製造方法を示す説明図である。ハブ輪1と外側継手部材14の結合部における所謂フェールセーフ機構は、こうしたレーザ溶接による接合部11に限らず、図3に示すように、摩擦攪拌接合、所謂FSW(Friction Stir Welding)により接合しても良い。なお、前述した実施形態と同一部品同一部位あるいは同一機能を有する部位には同じ符号を付してその詳細な説明を省略する。
Next, another manufacturing method will be described.
FIG. 3 is an explanatory view showing another manufacturing method. The so-called fail-safe mechanism at the joint between the hub wheel 1 and the outer joint member 14 is not limited to the joint 11 by such laser welding, but is joined by friction stir welding, so-called FSW (Friction Stir Welding) as shown in FIG. May be. In addition, the same code | symbol is attached | subjected to the site | part which has the same components same site | part or the same function as embodiment mentioned above, and the detailed description is abbreviate | omitted.

このFSWは固相接合法の一つで、先端にプローブ27aのある回転子27を回転させながら突合せ接合部に押込み、摩擦熱によって軟化した部材を攪拌(塑性流動化)して接合するものである。FSWは固相接合であるので、一般的なアーク溶接等と比較して残留応力や接合による変形を抑えることができると共に、その接合部11の金属組織が微細結晶組織となって接合部11の強度を高めることができる。また、接合される部材は、プローブ27aよりも軟らかい材質であれば良く、接合される部材が異種金属同士の接合も可能といった特徴を有している。   This FSW is one of the solid-phase bonding methods, in which the rotor 27 with the probe 27a at the tip is rotated and pushed into the butt joint, and the members softened by frictional heat are agitated (plastic fluidized) and joined. is there. Since FSW is a solid phase bonding, the residual stress and deformation due to bonding can be suppressed as compared with general arc welding or the like, and the metal structure of the joint 11 becomes a fine crystal structure of the joint 11. Strength can be increased. Further, the member to be joined may be any material that is softer than the probe 27a, and the member to be joined has a feature that different metals can be joined.

次に、ハブ輪1と外側継手部材14の接合方法について説明する。
まず、ハブ輪1と外側継手部材14の突合せ部22における開口部にピン状のプローブ27aを所定の接触圧で当接させる。プローブ27aは、接合部材、ここでは、ハブ輪1および外側継手部材14よりも硬質で、かつ接合時に発生する摩擦熱に耐える耐熱材料からなり、円柱状の回転子27の端部軸線上に突出して一体に形成されている。そして、この回転子27を高速回転させることによりこのプローブ27aも高速回転され、接触による摩擦熱により接触部分が軟化可塑化する。さらに、プローブ27aを押付けて突合せ部22の内部に挿入していく。
Next, a method for joining the hub wheel 1 and the outer joint member 14 will be described.
First, the pin-shaped probe 27a is brought into contact with the opening in the abutting portion 22 of the hub wheel 1 and the outer joint member 14 with a predetermined contact pressure. The probe 27 a is made of a heat-resistant material that is harder than the joining member, here, the hub wheel 1 and the outer joint member 14, and resists frictional heat generated during joining, and projects on the end axis of the cylindrical rotor 27. Are integrally formed. Then, by rotating the rotor 27 at a high speed, the probe 27a is also rotated at a high speed, and the contact portion is softened and plasticized by frictional heat due to the contact. Further, the probe 27 a is pressed and inserted into the abutting portion 22.

その後、突合せ部22に沿って周方向にプローブ27aを移動させる。すると、プローブ27aの回転により、プローブ27aとの接触部近傍が摩擦熱によって軟化し、かつ攪拌されると共に、プローブ27aの移動によって、軟化攪拌部分がプローブ27aの進行圧力を受けてプローブ27aの通過した凹所を埋めるようにプローブ27aの進行方向後方へと回り込むように塑性流動する。そして、摩擦熱を急速に失って接合部11が冷却固化される。この状態が順次プローブ27aの移動に伴って繰り返され、ハブ輪1と外側継手部材14の突合せ部22が全周に亙って接合される。   Thereafter, the probe 27 a is moved in the circumferential direction along the abutting portion 22. Then, due to the rotation of the probe 27a, the vicinity of the contact portion with the probe 27a is softened and agitated by frictional heat, and the softened stirring portion is subjected to the advance pressure of the probe 27a by the movement of the probe 27a and passes through the probe 27a. The probe 27a plastically flows so as to wrap around the recessed portion so as to fill the recessed portion. Then, the frictional heat is rapidly lost, and the joint portion 11 is cooled and solidified. This state is sequentially repeated with the movement of the probe 27a, and the hub wheel 1 and the butted portion 22 of the outer joint member 14 are joined over the entire circumference.

ここで、プローブ27aが挿入された状態で、回転子27の肩部27bを突合せ部22の開口部に接触させるのが好ましい。これにより、肩部27bの接触によって軟化を促進させることができので、接合中の軟化部分における素材の飛散を抑え、均一な接合部表面11が得られる。   Here, it is preferable that the shoulder 27b of the rotor 27 is brought into contact with the opening of the butting portion 22 in a state where the probe 27a is inserted. As a result, the softening can be promoted by the contact of the shoulder portion 27b, so that the scattering of the material in the softened portion being joined is suppressed, and the uniform joined portion surface 11 is obtained.

次に、本発明の車軸用軸受装置の製造方法における突合せ部の加工形状について説明する。
図4は、本発明の突合せ部の形状を示す図である。図4(a)は、突合せ部の加工を行わない例を示し、図4(b)は突合せ部を溝形状に加工した例で、図4(c)は、突合せ部を開先形状に加工した例を示している。
Next, the processed shape of the butt portion in the method for manufacturing an axle bearing device of the present invention will be described.
FIG. 4 is a view showing the shape of the butt portion of the present invention. 4 (a) shows an example in which the butt portion is not processed, FIG. 4 (b) shows an example in which the butt portion is processed into a groove shape, and FIG. 4 (c) shows that the butt portion is processed into a groove shape. An example is shown.

図4(a)の突合せ部22の加工を行わない例は、ビードの盛り上がりの少ないレーザ溶接が適している。この例では、加工をしなくて済むので加工工程を簡略化できる。   In the example in which the butt portion 22 in FIG. 4A is not processed, laser welding with less bead swell is suitable. In this example, it is not necessary to perform processing, so that the processing process can be simplified.

図4(b)の突合せ部22を溝形状に加工した例は、ワイヤーを供給しながら溶接する場合に適している。これは、ワイヤーをこの突合せ部22の溝部に供給しながら溶接を行うことで、ビードの盛り上がりを抑制することができるからである。   The example in which the butt portion 22 in FIG. 4B is processed into a groove shape is suitable for welding while supplying a wire. This is because swell of the beads can be suppressed by performing welding while supplying the wire to the groove portion of the butt portion 22.

図4(c)の突合せ部22を開先形状に加工した例も、ワイヤーを供給しながら溶接する場合に適している。また、アーク溶接で接合する部材には、開先を設ける必要があるので、開先形状に加工する場合には、アーク溶接に適している。   An example in which the butt portion 22 in FIG. 4C is processed into a groove shape is also suitable for welding while supplying a wire. Moreover, since it is necessary to provide a groove in the member to be joined by arc welding, it is suitable for arc welding when processing into a groove shape.

次に、本発明の車軸用軸受装置の製造方法における予熱・後熱の方法について説明する。
図5は、予熱・後熱の熱変化を示す図である。図5(a)は、溶接部のヒートパターンを示す図であり、図5(b)は、溶接箇所から深さ20mmの位置におけるヒートパターンを示す図である。
Next, the preheating / postheating method in the method of manufacturing an axle bearing device of the present invention will be described.
FIG. 5 is a diagram showing thermal changes of preheating and postheating. Fig.5 (a) is a figure which shows the heat pattern of a welding part, FIG.5 (b) is a figure which shows the heat pattern in the position of 20 mm deep from a welding location.

図5(a)には、レーザ溶接のみを実施したときのヒートパターンP1と、予熱を施したときのレーザ溶接によるヒートパターンP2が示されている。この例では、ヒートパターンP2においては、レーザ溶接を実施する前に10秒間の予熱が施されており、その時の温度は300℃に達している。その後、レーザ溶接を実施したことにより、温度は2200℃程にまで上がり、溶接を終えるとゆっくりと温度は下がっている。   FIG. 5 (a) shows a heat pattern P1 when only laser welding is performed and a heat pattern P2 by laser welding when preheating is performed. In this example, in the heat pattern P2, preheating for 10 seconds is performed before laser welding is performed, and the temperature at that time reaches 300 ° C. Thereafter, by performing laser welding, the temperature rises to about 2200 ° C., and when the welding is finished, the temperature slowly falls.

予熱の方法としては、例えば、図2の突合せ部22に円環状の高周波発生装置を対向して配置し、高周波加熱を10〜15秒間実施することにより、突合せ部22から10mm程の範囲に予熱を加えることができる。なお、予熱方法としては、高周波の他にガスバーナー等の方法がある。   As a preheating method, for example, an annular high-frequency generator is disposed opposite to the butting portion 22 in FIG. 2 and high-frequency heating is performed for 10 to 15 seconds to preheat the butting portion 22 to a range of about 10 mm. Can be added. As a preheating method, there is a method such as a gas burner in addition to a high frequency.

一方、レーザ溶接のみを実施したときのヒートパターンP1は、図の10秒の時点にレーザ溶接を開始し、一気に2000℃程にまで温度が上がっている。その後、溶接を終えると、温度は下がっていく。   On the other hand, the heat pattern P1 when only laser welding is performed starts laser welding at the time point of 10 seconds in the figure, and the temperature rises to about 2000 ° C. at a stretch. After that, when welding is finished, the temperature decreases.

ここで、予熱を施したときのヒートパターンP2と予熱を施さないときのヒートパターンP1を比べると、溶接を開始してから温度が上昇するまでの勾配はほぼ同じであるが、溶接を終えてからの下降勾配が異なる。つまり、予熱を施したときの方が溶接後の温度がゆっくりと下降していることがわかる。ヒートパターンP2のように、ゆっくりと温度を下げることにより、マルテンサイト化を防止することができる。このように、レーザ溶接が終わったら放置するかエアでの冷却を行い、ゆっくりと後熱を行うことが好ましい。   Here, when comparing the heat pattern P2 when preheating is performed and the heat pattern P1 when preheating is not performed, the gradient from the start of welding to the temperature rise is almost the same, but the welding is finished. The descending slope from is different. That is, it can be seen that the temperature after welding is lowered more slowly when preheating is performed. Like the heat pattern P2, it is possible to prevent martensite by slowly lowering the temperature. As described above, it is preferable that the laser welding is performed after the laser welding is finished or is cooled with air, and then the post-heating is performed slowly.

図5(b)には、アーク溶接を施したときのヒートパターンP3、レーザ溶接を施したときのヒートパターンP4、電子ビーム溶接を施したときのヒートパターンP5が示されている。レーザ溶接によるヒートパターンP4と電子ビーム溶接によるヒートパターンP5は、アーク溶接によるヒートパターンP3に比べ、溶接による温度影響が小さい。   FIG. 5B shows a heat pattern P3 when arc welding is performed, a heat pattern P4 when laser welding is performed, and a heat pattern P5 when electron beam welding is performed. The heat pattern P4 by laser welding and the heat pattern P5 by electron beam welding are less affected by temperature than the heat pattern P3 by arc welding.

本発明によれば、ハブ輪1のセレーション1cに外側継手部材14の軸部20のセレーション20aが嵌合され、セレーションを介してトルクを伝達することができるため、溶接部にかかる負荷は比較的小さく、上述のように熱影響の少ない溶接法を採用することができる。したがって、高剛性化と耐久性の向上を図ると共に、等速自在継手とハブ輪との結合部の信頼性を向上させることができる。   According to the present invention, since the serration 20a of the shaft portion 20 of the outer joint member 14 is fitted to the serration 1c of the hub wheel 1 and torque can be transmitted via the serration, the load on the welded portion is relatively low. It is possible to employ a welding method that is small and has little thermal influence as described above. Therefore, it is possible to improve the rigidity and durability, and to improve the reliability of the joint portion between the constant velocity universal joint and the hub wheel.

次に、本発明の車軸用軸受装置の製造方法における溶接部位について説明する。
図6は、本発明の車軸用軸受装置の製造方法における溶接部位を示す図である。図6には、ハブ輪1と外側継手部材14の軸部20との嵌合部の拡大図が示されている。ハブ輪1の内面には、セレーション1cが形成されており、軸部20の外面には、セレーション20aが形成されており、両者が嵌合している。
Next, the welding site | part in the manufacturing method of the axle bearing apparatus of this invention is demonstrated.
FIG. 6 is a diagram showing a welding site in the method of manufacturing an axle bearing device of the present invention. FIG. 6 shows an enlarged view of a fitting portion between the hub wheel 1 and the shaft portion 20 of the outer joint member 14. A serration 1c is formed on the inner surface of the hub wheel 1, and a serration 20a is formed on the outer surface of the shaft portion 20, and both are fitted.

セレーション1cとセレーション20aの間には、隙間があるが、この例では、矢印で示すように、ハブ輪1を時計回りに回し、軸部20を反時計回りに回して、セレーションの壁面が当接するようにオフセットされた状態で、接合部11が形成される。この矢印の方向が、車輪の進行方向を示しており、車の進行中は、セレーションの壁面全体で負荷を受けることができるので、軸受剛性を高めることができる。   There is a gap between the serration 1c and the serration 20a. In this example, as shown by the arrow, the hub wheel 1 is rotated clockwise and the shaft portion 20 is rotated counterclockwise so that the wall surface of the serration contacts. The joint portion 11 is formed in an offset state so as to contact. The direction of the arrow indicates the traveling direction of the wheel. Since the load can be applied to the entire wall surface of the serration while the vehicle is traveling, the bearing rigidity can be increased.

また、接合面11は、軸部20のセレーション20aの凹部ではなく、ハブ輪1のセレーション1cの凹部に形成されている。つまり、この図のように、ハブ輪1と外側継手部材14との突合せ部の大径の部分に溶接を施すことにより、大きな負荷トルクにも耐えることができる。   The joint surface 11 is not formed in the recess of the serration 20 a of the shaft portion 20 but in the recess of the serration 1 c of the hub wheel 1. That is, as shown in this figure, it is possible to withstand a large load torque by welding the large diameter portion of the butt portion between the hub wheel 1 and the outer joint member 14.

図7は、本発明の車輪用軸受装置の製造方法の第2の実施の形態を説明するための車輪用軸受装置の縦断面図である。この車輪用軸受装置は、ハブ輪31と複列の転がり軸受32および等速自在継手33とがユニット化して構成されている。複列の転がり軸受32は、外方部材34と内方部材35と、これら両部材間に収容された複列のボール6a、6bとを備えている。内方部材35は、ハブ輪31と、このハブ輪31に内嵌された後述する外側継手部材44とからなる。   FIG. 7 is a longitudinal sectional view of a wheel bearing device for explaining a second embodiment of the method for manufacturing the wheel bearing device of the present invention. In this wheel bearing device, a hub wheel 31, a double row rolling bearing 32 and a constant velocity universal joint 33 are configured as a unit. The double-row rolling bearing 32 includes an outer member 34, an inner member 35, and double-row balls 6a and 6b accommodated between these members. The inner member 35 includes a hub ring 31 and an outer joint member 44 (described later) fitted in the hub ring 31.

外方部材34は、外周に車体(図示せず)に取り付けるための車体取付フランジ34cを一体に有し、内周に円弧状の複列の外側転走面34a、34bが形成されている。   The outer member 34 integrally has a vehicle body attachment flange 34c for attachment to a vehicle body (not shown) on the outer periphery, and arc-shaped double-row outer rolling surfaces 34a and 34b are formed on the inner periphery.

一方、ハブ輪31は、アウター側の端部に車輪を取り付けるための車輪取付フランジ37を有し、この車輪取付フランジ37の周方向等配に複数のハブボルト8が植設されている。また、ハブ輪31の外周には、前記複列の外側転走面34a、34bに対向する一方(アウター側)の円弧状の内側転走面31aと、内側転走面31aから軸方向に延びる軸部36が形成されている。軸部36の外周には、セレーション36aが形成されている。車輪取付フランジ37の基部には、シールランド部37aが形成されている。   On the other hand, the hub wheel 31 has a wheel mounting flange 37 for mounting a wheel at an end on the outer side, and a plurality of hub bolts 8 are implanted in the circumferential direction of the wheel mounting flange 37. Further, on the outer periphery of the hub wheel 31, one (outer side) arcuate inner rolling surface 31a facing the double row outer rolling surfaces 34a, 34b, and the inner rolling surface 31a extend in the axial direction. A shaft portion 36 is formed. A serration 36 a is formed on the outer periphery of the shaft portion 36. A seal land portion 37 a is formed at the base portion of the wheel mounting flange 37.

等速自在継手33は、外側継手部材44と継手内輪15、ケージ16、およびトルク伝達ボール17とからなる。外側継手部材44は、カップ状のマウス部18と、このマウス部18の底部をなす肩部49とからなる。肩部49の外周には、複列の外側転走面34a、34bに対向する他方(インナー側)の円弧状の内側転走面44aと、この内側転走面44aから軸方向に延びる円筒状の小径段部44bが形成されている。等速自在継手33の小径段部44bの内面には、セレーション44cが形成され、ハブ輪1の軸部36に形成されたセレーション36aが嵌合されている。   The constant velocity universal joint 33 includes an outer joint member 44, a joint inner ring 15, a cage 16, and a torque transmission ball 17. The outer joint member 44 includes a cup-shaped mouth portion 18 and a shoulder portion 49 that forms the bottom of the mouth portion 18. On the outer periphery of the shoulder 49, the other (inner side) arcuate inner rolling surface 44a facing the double row outer rolling surfaces 34a, 34b, and a cylindrical shape extending in the axial direction from the inner rolling surface 44a. The small diameter step 44b is formed. A serration 44c is formed on the inner surface of the small diameter step portion 44b of the constant velocity universal joint 33, and a serration 36a formed on the shaft portion 36 of the hub wheel 1 is fitted.

外方部材34の複列の外側転走面34a、34bと、これらに対向する複列の内側転走面31a、44a間には複列のボール6a、6bが収容され、保持器9a、9bによって転動自在に保持されている。また、外方部材34の端部にはシール10、10が装着されている。なお、本実施の形態では、インナー側のボール6bのピッチ円直径とアウター側のボール6aのピッチ円直径が同一に設定されている。   Between the double row outer raceway surfaces 34a and 34b of the outer member 34 and the double row inner raceway surfaces 31a and 44a facing these, double row balls 6a and 6b are accommodated, and cages 9a and 9b are accommodated. It is held so that it can roll freely. Further, seals 10 and 10 are attached to the end of the outer member 34. In the present embodiment, the pitch circle diameter of the inner-side ball 6b and the pitch circle diameter of the outer-side ball 6a are set to be the same.

次に、ハブ輪31と複列の転がり軸受32および等速自在継手33のユニット化の方法について詳細に説明する。
まず、外方部材34の複列の外側転走面34a、34bに保持器9a、9bを介して複列のボール6a、6bが仮組みされる。その後、外方部材34の両端部にシール10、10が装着される。次に、外方部材34の両側からハブ輪31と外側継手部材44とがそれぞれ内挿され、等速自在継手33の小径段部44bの内面のセレーション44cに軸部36の外周のセレーション36aが嵌合される。そして、複列の転がり軸受32に所定の予圧が付与された状態で、小径段部44bと軸部36との突合せ部に予熱が実施され、小径段部44bと軸部36とが溶接による溶接部41で一体に結合されて、その後、後熱が実施される。なお、溶接をする際、予熱と後熱を実施するようにしたが、予熱あるいは後熱をいずれかを実施するようにしても良い。
Next, a method of unitizing the hub wheel 31, the double row rolling bearing 32, and the constant velocity universal joint 33 will be described in detail.
First, the double row balls 6a and 6b are temporarily assembled to the double row outer rolling surfaces 34a and 34b of the outer member 34 via the cages 9a and 9b. Thereafter, the seals 10 and 10 are attached to both ends of the outer member 34. Next, the hub wheel 31 and the outer joint member 44 are respectively inserted from both sides of the outer member 34, and the serration 36 a on the outer periphery of the shaft portion 36 is formed on the serration 44 c on the inner surface of the small diameter step portion 44 b of the constant velocity universal joint 33. Mated. Then, in a state where a predetermined preload is applied to the double row rolling bearing 32, preheating is performed on the abutting portion between the small diameter step portion 44b and the shaft portion 36, and the small diameter step portion 44b and the shaft portion 36 are welded by welding. It couple | bonds together in the part 41, and after-heat is implemented after that. In addition, when welding, preheating and afterheating were implemented, but you may make it implement either preheating or afterheating.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る車輪用軸受装置は、ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された第4世代構造の車輪用軸受装置に適用することができる。   The wheel bearing device according to the present invention can be applied to a wheel bearing device having a fourth generation structure in which a hub wheel, a double row rolling bearing, and a constant velocity universal joint are unitized.

本発明の車輪用軸受装置の製造方法の第1の実施の形態を説明するための車軸用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the axle bearing device for demonstrating 1st Embodiment of the manufacturing method of the wheel bearing device of this invention. 本発明の溶接法を説明するための図である。It is a figure for demonstrating the welding method of this invention. 他の製造方法を示す説明図である。It is explanatory drawing which shows the other manufacturing method. 本発明の突合せ部の形状を示す図である。図4(a)は、突合せ部の加工を行わない例を示し、図4(b)は突合せ部を溝形状に加工した例で、図4(c)は、突合せ部を開先形状に加工した例を示している。It is a figure which shows the shape of the butt | matching part of this invention. 4 (a) shows an example in which the butt portion is not processed, FIG. 4 (b) shows an example in which the butt portion is processed into a groove shape, and FIG. 4 (c) shows that the butt portion is processed into a groove shape. An example is shown. 予熱・後熱の熱変化を示す図である。図5(a)は、溶接部のヒートパターンを示す図であり、図5(b)は、溶接箇所から20mmの位置におけるヒートパターンを示す図である。It is a figure which shows the heat | fever change of preheating and postheating. Fig.5 (a) is a figure which shows the heat pattern of a welding part, FIG.5 (b) is a figure which shows the heat pattern in the position of 20 mm from a welding location. 本発明の車軸用軸受装置の製造方法における溶接部位を示す図である。It is a figure which shows the welding site | part in the manufacturing method of the axle bearing apparatus of this invention. 本発明の車輪用軸受装置の製造方法の第2の実施の形態を説明するための車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus for demonstrating 2nd Embodiment of the manufacturing method of the wheel bearing apparatus of this invention. 従来の車輪用軸受装置を示す断面図である。It is sectional drawing which shows the conventional wheel bearing apparatus.

符号の説明Explanation of symbols

1・・・・・・・・・・・・・・・・ハブ輪
1a、14a・・・・・・・・・・・内側転走面
1b・・・・・・・・・・・・・・・小径段部
1c・・・・・・・・・・・・・・・セレーション
2・・・・・・・・・・・・・・・・複列の転がり軸受
3・・・・・・・・・・・・・・・・等速自在継手
4・・・・・・・・・・・・・・・・外方部材
4a、4b・・・・・・・・・・・・外側転走面
4c・・・・・・・・・・・・・・・車体取付フランジ
5・・・・・・・・・・・・・・・・内方部材
6a、6b・・・・・・・・・・・・ボール
7・・・・・・・・・・・・・・・・車輪取付フランジ
7a・・・・・・・・・・・・・・・シールランド部
8・・・・・・・・・・・・・・・・ハブボルト
9a、9b・・・・・・・・・・・・保持器
10・・・・・・・・・・・・・・・シール
11・・・・・・・・・・・・・・・接合部
14・・・・・・・・・・・・・・・外側継手部材
15・・・・・・・・・・・・・・・継手内輪
15a、18a・・・・・・・・・・トラック溝
16・・・・・・・・・・・・・・・ケージ
17・・・・・・・・・・・・・・・トルク伝達ボール
18・・・・・・・・・・・・・・・マウス部
19・・・・・・・・・・・・・・・肩部
20・・・・・・・・・・・・・・・軸部
20a・・・・・・・・・・・・・・セレーション
21・・・・・・・・・・・・・・・中空部
22・・・・・・・・・・・・・・・突合せ部
23・・・・・・・・・・・・・・・レーザ溶接機
24・・・・・・・・・・・・・・・レーザ光
25・・・・・・・・・・・・・・・ニッケルワイヤー
26・・・・・・・・・・・・・・・中間シャフト
27・・・・・・・・・・・・・・・回転子
27a・・・・・・・・・・・・・・プローブ
27b・・・・・・・・・・・・・・回転子の肩部
31・・・・・・・・・・・・・・・ハブ輪
31a、44a・・・・・・・・・・内側転走面
32・・・・・・・・・・・・・・・複列の転がり軸受
33・・・・・・・・・・・・・・・等速自在継手
34・・・・・・・・・・・・・・・外方部材
34a、34b・・・・・・・・・・外側転走面
34c・・・・・・・・・・・・・・車体取付フランジ
35・・・・・・・・・・・・・・・内方部材
36・・・・・・・・・・・・・・・軸部
36a・・・・・・・・・・・・・・セレーション
37・・・・・・・・・・・・・・・車輪取付フランジ
37a・・・・・・・・・・・・・・シールランド部
41・・・・・・・・・・・・・・・溶接部
44・・・・・・・・・・・・・・・外側継手部材
44b・・・・・・・・・・・・・・小径段部
44c・・・・・・・・・・・・・・セレーション
49・・・・・・・・・・・・・・・肩部
50・・・・・・・・・・・・・・・内方部材
51・・・・・・・・・・・・・・・ハブ輪
51a・・・・・・・・・・・・・・転走面
52・・・・・・・・・・・・・・・内輪
52a・・・・・・・・・・・・・・転走面
53・・・・・・・・・・・・・・・車輪取付フランジ
54・・・・・・・・・・・・・・・ハブボルト
55・・・・・・・・・・・・・・・小径段部
56・・・・・・・・・・・・・・・加締部
60・・・・・・・・・・・・・・・外方部材
60a・・・・・・・・・・・・・・転走面
61・・・・・・・・・・・・・・・車体取付フランジ
62・・・・・・・・・・・・・・・転動体
63・・・・・・・・・・・・・・・保持器
64・・・・・・・・・・・・・・・シール
65・・・・・・・・・・・・・・・シール
70・・・・・・・・・・・・・・・等速自在継手
71・・・・・・・・・・・・・・・外側継手部材
71a・・・・・・・・・・・・・・トラック溝
72・・・・・・・・・・・・・・・継手内輪
72a・・・・・・・・・・・・・・トラック溝
73・・・・・・・・・・・・・・・ケージ
74・・・・・・・・・・・・・・・トルク伝達ボール
75・・・・・・・・・・・・・・・マウス部
76・・・・・・・・・・・・・・・軸部
76a・・・・・・・・・・・・・・セレーション
77・・・・・・・・・・・・・・・固定ボルト
P1、P2、P3、P4、P5・・・ヒートパターン
PCDi・・・・・・・・・・・・・インナー側のボールのピッチ円直径
PCDo・・・・・・・・・・・・・アウター側のボールのピッチ円直径
1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Hub wheel 1a, 14a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inner rolling surface 1b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・... Small diameter step 1c ... Serration 2 ... Double row rolling bearing 3 ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Constant velocity universal joint 4 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Outer member 4a, 4b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・-Outer rolling surface 4c ... Body mounting flange 5 ... Inner members 6a, 6b ... ·········· Ball 7 ·············· Wheel mounting flange 7a ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Hub bolts 9a and 9b 10 ... Seal 11 ... Joint 14 ...・ Outer joint member 15 ..... Fitting inner ring 15a, 18a .... Track groove 16 ... ... Cage 17 ... Torque transmission ball 18 ... Mouse 19 ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Shoulder 20 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Shaft 20a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Serration 21 ・ ・ ・ ・ ・ ・···························································· Laser welder 24・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Laser beam 25 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ Nickel wire 26 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Intermediate shaft 27 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rotor 27a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ ・ ・ ・ Probe 27b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rotor shoulder 31 ・ ・ ・ ・ ・ ・ ・ ・ Hub wheels 31a, 44a ・ ・ ・.... Inner rolling surface 32 ... Double row rolling bearing 33 ... Constant speed Universal joint 34 ... Outer members 34a, 34b ... Outer rolling surface 34c ... ... Car body mounting flange 35 ... Inward member 36 ... Shaft part 36a ... ... Serration 37 ... ··· Wheel mounting flange 37a ····················· seal land portion 41 ··········· welded portion 44 ··· ······ Outer joint member 44b ············· Small diameter step 44c ······················· Serration 49 ... shoulder 50 ... inner member 51 ... hub wheel 51a・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rolling surface 52 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inner ring 52a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rolling Running surface 53 ・ ・ ・ ・ ・ ・ Wheel mounting flange 54 ・ ・ ・ ・ ・ ・ Hub bolt 55 ・ ・ ・ ・ ・ ・・ ・ ・ ・ Small diameter step 56 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Clamping section 60・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Outer member 60a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Rolling surface 61 ・ ・ ・ ・ ・ ・ ・ ・ Car body mounting Flange 62 ... rolling element 63 ... cage 64 ... ... Seal 65 ... Seal 70 ... Constant velocity universal joint 71 ... ······ Outer joint member 71a ······················································· Track groove 73 ... Cage 74 ... Torque transmission ball 75・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Mouse part 76 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・· Shaft portion 76a · · · · · · serration 77 · · · · · · Fixing bolts P1, P2, P3, P4, P5 · · · Heat Pattern PCDi: Pitch circle diameter of inner side ball PCDo: Pitch circle diameter of outer side ball

Claims (8)

ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された車輪用軸受装置の製造方法であって、
前記複列の転がり軸受が、内周に複列の外側転走面が形成され、外周に車体取付フランジが形成された外方部材と、
一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる円筒状の小径段部と、内周にセレーションとが形成されたハブ輪、および、外周に前記複列の外側転走面に対向する他方の内側転走面と、この内側転走面から軸方向に延び、セレーションが形成された軸部とが一体に形成された前記等速自在継手の外側継手部材からなる内方部材と、
この内方部材と前記外方部材の両転走面間に転動自在に収容された複列のボール群とを備えた車輪用軸受装置の製造方法において、
前記軸部が前記ハブ輪にセレーションを介して嵌合される工程と、この嵌合部の突合せ部が接合による接合部で一体に結合される工程と、を有することを特徴とする車輪用軸受装置の製造方法。
A wheel bearing device manufacturing method in which a hub wheel, a double row rolling bearing and a constant velocity universal joint are unitized,
The double-row rolling bearing has an outer member in which a double-row outer rolling surface is formed on the inner periphery and a vehicle body mounting flange is formed on the outer periphery.
A wheel mounting flange is integrally formed at one end, one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a cylindrical small-diameter step portion extending in the axial direction from the inner rolling surface; A hub ring having serrations on the inner periphery, the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and an axial direction extending from the inner rolling surface to form serrations An inner member composed of an outer joint member of the constant velocity universal joint integrally formed with the shaft portion,
In the manufacturing method of the wheel bearing device comprising this inner member and a double row ball group accommodated so as to roll between both rolling surfaces of the outer member,
A wheel bearing comprising: a step in which the shaft portion is fitted to the hub wheel via serrations; and a step in which a butted portion of the fitting portion is integrally joined at a joint portion by joining. Device manufacturing method.
ハブ輪と複列の転がり軸受と等速自在継手とがユニット化された車輪用軸受装置の製造方法であって、
前記複列の転がり軸受が、内周に複列の外側転走面が形成され、外周に車体取付フランジが形成された外方部材と、
外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる円筒状の小径段部と、内周にセレーションとが形成された前記等速自在継手、および、一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する他方の内側転走面と、この内側転走面から軸方向に延び、セレーションが形成された軸部が形成されたハブ輪からなる内方部材と、
この内方部材と前記外方部材の両転走面間に転動自在に収容された複列のボール群とを備えた車輪用軸受装置の製造方法において、
前記軸部が前記等速自在継手にセレーションを介して嵌合される工程と、この嵌合部の突合せ部が接合による接合部で一体に結合される工程と、を有することを特徴とする車輪用軸受装置の製造方法。
A wheel bearing device manufacturing method in which a hub wheel, a double row rolling bearing and a constant velocity universal joint are unitized,
The double-row rolling bearing has an outer member in which a double-row outer rolling surface is formed on the inner periphery and a vehicle body mounting flange is formed on the outer periphery.
One inner rolling surface facing the outer rolling surface of the double row on the outer periphery, a cylindrical small-diameter step portion extending in the axial direction from the inner rolling surface, and a serration formed on the inner periphery, etc. A speed universal joint, and a wheel mounting flange integrally formed at one end, the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and extending in an axial direction from the inner rolling surface; An inner member formed of a hub wheel formed with a shaft portion on which serrations are formed;
In the manufacturing method of the wheel bearing device comprising this inner member and a double row ball group accommodated so as to roll between both rolling surfaces of the outer member,
A wheel comprising: a step in which the shaft portion is fitted to the constant velocity universal joint via serrations; and a step in which a butt portion of the fitting portion is integrally joined at a joint portion by joining. Of manufacturing a bearing device for a vehicle.
前記接合をレーザ溶接、アーク溶接、又は電子ビーム溶接で行うことを特徴とする請求項1又は2に記載の車輪用軸受装置の製造方法。   The method for manufacturing a wheel bearing device according to claim 1 or 2, wherein the joining is performed by laser welding, arc welding, or electron beam welding. 前記溶接部を摩擦攪拌接合で行うことを特徴とする請求項1又は2に記載の車輪用軸受装置の製造方法。   3. The method for manufacturing a wheel bearing device according to claim 1, wherein the welded portion is formed by friction stir welding. 前記接合部の径を前記等速自在継手に嵌合される中間シャフトの径よりも大きくすることを特徴とする請求項1乃至4いずれかに記載の車輪用軸受装置の製造方法。   5. The method for manufacturing a wheel bearing device according to claim 1, wherein a diameter of the joint portion is made larger than a diameter of an intermediate shaft fitted to the constant velocity universal joint. 前記接合部を、前記ハブ輪と前記等速自在継手との突合せ部の大径の部分に、車輪の進行方向にオフセットし、前記ハブ輪と前記等速自在継手に設けたセレーションの壁面に当接した状態で、形成することを特徴とする請求項1乃至5いずれかに記載の車輪用軸受装置の製造方法。   The joint is offset to the large diameter portion of the abutting portion between the hub wheel and the constant velocity universal joint in the traveling direction of the wheel, and abuts against the wall surface of the serration provided on the hub wheel and the constant velocity universal joint. 6. The method for manufacturing a wheel bearing device according to claim 1, wherein the wheel bearing device is formed in contact with the wheel bearing device. 前記接合をする際に、予熱、後熱を実施することを特徴とする請求項1乃至6いずれかに記載の車輪用軸受装置の製造方法。   The method for manufacturing a wheel bearing device according to any one of claims 1 to 6, wherein preheating and postheating are performed when the joining is performed. 前記溶接を金属製のワイヤーを供給しながら実施することを特徴とする請求項1乃至3、5乃至7、いずれかに記載の車輪用軸受装置の製造方法。

The method for manufacturing a wheel bearing device according to any one of claims 1 to 3, 5 to 7, wherein the welding is performed while supplying a metal wire.

JP2006091515A 2006-03-29 2006-03-29 Manufacturing method of bearing device for wheel Pending JP2007263299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091515A JP2007263299A (en) 2006-03-29 2006-03-29 Manufacturing method of bearing device for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091515A JP2007263299A (en) 2006-03-29 2006-03-29 Manufacturing method of bearing device for wheel

Publications (1)

Publication Number Publication Date
JP2007263299A true JP2007263299A (en) 2007-10-11

Family

ID=38636484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091515A Pending JP2007263299A (en) 2006-03-29 2006-03-29 Manufacturing method of bearing device for wheel

Country Status (1)

Country Link
JP (1) JP2007263299A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296568A (en) * 2006-05-01 2007-11-15 Mazda Motor Corp Friction joining method
JP2009210057A (en) * 2008-03-05 2009-09-17 Jtekt Corp Bearing member manufacturing method
JP2011527635A (en) * 2008-07-11 2011-11-04 アクティエボラゲット・エスコーエッフ Method for manufacturing steel components, weld lines, welded steel components, and bearing components
WO2014097821A1 (en) * 2012-12-19 2014-06-26 Ntn株式会社 Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
WO2015045421A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Steel-plate friction/stirring joining method and method for producing bonded joint
WO2015045420A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Steel-plate friction/stirring joining method and method for producing bonded joint
WO2015194304A1 (en) * 2014-06-17 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
CN106460947A (en) * 2014-06-18 2017-02-22 Ntn株式会社 Constant velocity universal joint outer joint member and manufacturing method for same
WO2019139456A1 (en) * 2018-01-15 2019-07-18 주식회사 일진글로벌 Bearing hub of wheel bearing and method for manufacturing bearing hub
CN110030292A (en) * 2017-12-28 2019-07-19 本田技研工业株式会社 The components joining structure of power transmission

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296568A (en) * 2006-05-01 2007-11-15 Mazda Motor Corp Friction joining method
JP2009210057A (en) * 2008-03-05 2009-09-17 Jtekt Corp Bearing member manufacturing method
JP2011527635A (en) * 2008-07-11 2011-11-04 アクティエボラゲット・エスコーエッフ Method for manufacturing steel components, weld lines, welded steel components, and bearing components
CN104884832A (en) * 2012-12-19 2015-09-02 Ntn株式会社 Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
WO2014097821A1 (en) * 2012-12-19 2014-06-26 Ntn株式会社 Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
JP2014119096A (en) * 2012-12-19 2014-06-30 Ntn Corp Process of manufacture of outside joint member of constant velocity universal joint and outside joint member
US9505081B2 (en) 2012-12-19 2016-11-29 Ntn Corporation Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
WO2015045420A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Steel-plate friction/stirring joining method and method for producing bonded joint
US9833861B2 (en) 2013-09-30 2017-12-05 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
CN105579183B (en) * 2013-09-30 2018-10-26 杰富意钢铁株式会社 The friction stirring connecting method of steel plate and the manufacturing method of junction joint
CN105579183A (en) * 2013-09-30 2016-05-11 杰富意钢铁株式会社 Friction stir welding method for steel sheets and method of manufacturing joint
WO2015045421A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Steel-plate friction/stirring joining method and method for producing bonded joint
US10005151B2 (en) 2013-09-30 2018-06-26 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
JPWO2015045420A1 (en) * 2013-09-30 2017-03-09 Jfeスチール株式会社 Friction stir welding method for steel plate and method for manufacturing joint
JPWO2015045421A1 (en) * 2013-09-30 2017-03-09 Jfeスチール株式会社 Friction stir welding method for steel plate and method for manufacturing joint
US10213868B2 (en) 2014-06-17 2019-02-26 Ntn Corporation Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP2016003711A (en) * 2014-06-17 2016-01-12 Ntn株式会社 Method of manufacturing outer joint member of constant velocity universal joint, and outer joint member
WO2015194304A1 (en) * 2014-06-17 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
CN106460947A (en) * 2014-06-18 2017-02-22 Ntn株式会社 Constant velocity universal joint outer joint member and manufacturing method for same
US10352369B2 (en) 2014-06-18 2019-07-16 Ntn Corporation Constant velocity universal joint outer joint member and manufacturing method for same
CN110030292A (en) * 2017-12-28 2019-07-19 本田技研工业株式会社 The components joining structure of power transmission
JP2019120310A (en) * 2017-12-28 2019-07-22 本田技研工業株式会社 Member joint structure for power transmission device
CN110030292B (en) * 2017-12-28 2020-12-08 本田技研工业株式会社 Member engagement structure of power transmission device
WO2019139456A1 (en) * 2018-01-15 2019-07-18 주식회사 일진글로벌 Bearing hub of wheel bearing and method for manufacturing bearing hub
KR20190086824A (en) * 2018-01-15 2019-07-24 주식회사 일진글로벌 Bearing hub of wheel bearing and method of manufacturing bearing hub
KR102040727B1 (en) * 2018-01-15 2019-11-06 주식회사 일진글로벌 Bearing hub of wheel bearing and method of manufacturing bearing hub

Similar Documents

Publication Publication Date Title
JP2007263299A (en) Manufacturing method of bearing device for wheel
JP2005003061A (en) Wheel bearing device
WO2008029512A1 (en) Bearing device for wheel
JP4115352B2 (en) Drive wheel bearing device and manufacturing method thereof
JP2007263298A (en) Manufacturing method of bearing device for wheel
JP4536086B2 (en) Wheel bearing device and manufacturing method thereof
JP4150317B2 (en) Wheel bearing device
JP2007261305A (en) Bearing device for wheel
JP2006312460A (en) Bearing device for drive wheel
JP2006137297A (en) Bearing device for wheel
JP2007270869A (en) Bearing device for wheel
JP2007269099A (en) Bearing device for wheel
JP2010058575A (en) Bearing device for wheels
JP2008155692A (en) Bearing device for wheel
JP2007225012A (en) Wheel bearing device
JP4587205B2 (en) Axle module
JP2007198566A (en) Wheel bearing device
JP2010132264A (en) Bearing device for wheel
JP2008296621A (en) Wheel bearing device
JP2005239100A (en) Bearing device for wheel
JP2007186109A (en) Bearing device for wheel and its manufacturing method
JP2007198398A (en) Wheel bearing device
JP2008296666A (en) Wheel bearing device
JP2008001237A (en) Bearing unit for driving wheel
JP2005119383A (en) Bearing device for wheel