[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006287489A - Mobile communications system and method of controlling downlink initial transmission power - Google Patents

Mobile communications system and method of controlling downlink initial transmission power Download PDF

Info

Publication number
JP2006287489A
JP2006287489A JP2005103271A JP2005103271A JP2006287489A JP 2006287489 A JP2006287489 A JP 2006287489A JP 2005103271 A JP2005103271 A JP 2005103271A JP 2005103271 A JP2005103271 A JP 2005103271A JP 2006287489 A JP2006287489 A JP 2006287489A
Authority
JP
Japan
Prior art keywords
transmission power
initial transmission
power value
value
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103271A
Other languages
Japanese (ja)
Inventor
純 ▲高▼野
Jun Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005103271A priority Critical patent/JP2006287489A/en
Publication of JP2006287489A publication Critical patent/JP2006287489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten an initial transmission power control section until establishment of downlink wireless synchronization when propagation conditions are good. <P>SOLUTION: A BTS 102 sends the number of times of ramping reported from an MS101 to an RNC103 to obtain the propagation condition and an initial transmission power value which the MS101 uses at the time of synchronization. When the obtained propagation condition is satisfactory, a part or all of the number of times of increase, an increase width and an increase period being parameters for control for gradually increasing the transmission power value of the MS101 to reach the initial transmission power value, are set to be a little smaller so as to raise the transmission starting power value of the MS101. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、移動通信システム及び下り初期送信電力制御方法に関する。   The present invention relates to a mobile communication system and a downlink initial transmission power control method.

図11は、従来の移動通信システムの構成例を示すブロック図である。なお、図11では、主に下り初期送信電力制御に関わる構成が示されている。図11に示す移動通信システム1100は、移動局(MS)1101と、各セルないしは各セクタにおいて移動局(MS)1101が無線接続される無線基地局装置(BTS)1102と、各BTS1101が有線接続される上位装置である基地局制御装置(RNC)1103とを備えている。   FIG. 11 is a block diagram illustrating a configuration example of a conventional mobile communication system. In addition, in FIG. 11, the structure mainly related to downlink initial transmission power control is shown. A mobile communication system 1100 shown in FIG. 11 includes a mobile station (MS) 1101, a radio base station apparatus (BTS) 1102 to which the mobile station (MS) 1101 is wirelessly connected in each cell or sector, and each BTS 1101 is connected by wire. A base station controller (RNC) 1103 that is a higher-level device.

移動局(MS)1101は、アンテナ1111が接続される無線部1112と、RACH(ランダムアクセスチャネル)送信部1113と、BCH(報知チャネル)受信部1114と、受信SIR(希望波対干渉波比)算出部1115とを備えている。   A mobile station (MS) 1101 includes a radio unit 1112 to which an antenna 1111 is connected, a RACH (random access channel) transmission unit 1113, a BCH (broadcast channel) reception unit 1114, and a reception SIR (desired wave to interference wave ratio). And a calculation unit 1115.

無線部1112は、アンテナ1111が受信したギガヘルツ帯の下り無線信号をベースバンド帯の信号にダウンコンバートし、搬送波に乗せられた情報(ベースバンドIQ信号)を取り出し、BCH受信部1114に与える。BCH受信部1114は、無線部1112から受け取るベースバンドIQ信号に含まれている下り共通チャネルであるBCHを逆拡散・復調し、受信SIR算出部1115に与える。   Radio section 1112 down-converts the downlink radio signal in the gigahertz band received by antenna 1111 to a baseband signal, extracts information (baseband IQ signal) carried on the carrier wave, and provides it to BCH reception section 1114. The BCH receiving unit 1114 despreads and demodulates the BCH, which is a downlink common channel included in the baseband IQ signal received from the radio unit 1112, and provides the received SIR calculating unit 1115 with it.

受信SIR算出部1115は、BCHの受信強度としてSIR値を算出し、RACH送信部1113に与える。RACH送信部1113は、受信SIR算出部1115から受け取った受信SIR値を上り共通チャネルであるRACHに挿入し、そのRACHを変調・拡散し、ベースバンドIQ信号として無線部1112に与える。無線部1112は、RACH送信部1113から受け取ったベースバンドIQ信号を乗せた搬送波をギガヘルツ帯の無線信号にアップコンバートし、アンテナ1111を励振して上りリンクに送出する。   Reception SIR calculation section 1115 calculates the SIR value as the BCH reception intensity, and provides it to RACH transmission section 1113. The RACH transmission unit 1113 inserts the reception SIR value received from the reception SIR calculation unit 1115 into the RACH that is an uplink common channel, modulates and spreads the RACH, and provides the radio unit 1112 as a baseband IQ signal. The radio unit 1112 up-converts the carrier wave carrying the baseband IQ signal received from the RACH transmission unit 1113 into a gigahertz-band radio signal, excites the antenna 1111 and transmits it to the uplink.

また、無線基地局装置(BTS)1102は、アンテナ1121が接続される無線部1122と、RACH受信部1123と、RACH復号部1124と、BCH送信部1125と、DPCH(下り個別チャネル)符号部1126と、DPCH送信部1127とを備えている。   Also, the radio base station apparatus (BTS) 1102 includes a radio unit 1122 to which an antenna 1121 is connected, a RACH reception unit 1123, a RACH decoding unit 1124, a BCH transmission unit 1125, and a DPCH (downlink dedicated channel) encoding unit 1126. And a DPCH transmission unit 1127.

無線部1122は、アンテナ1121が受信したギガヘルツ帯の上り無線信号をベースバンド帯の信号にダウンコンバートし、搬送波に乗せられた情報(ベースバンドIQ信号)を取り出し、RACH受信部1123に与える。RACH受信部1123は、無線部1122から受け取るベースバンドIQ信号に含まれている上り共通チャネルであるRACHを逆拡散・復調し、RACH復号部1124に与える。RACH復号部1124は、RACH受信部1123から受け取ったRACHの信号を復号し、有線伝送路1104を介して基地局制御装置(RNC)1103に送出する。   The radio unit 1122 down-converts the gigahertz uplink radio signal received by the antenna 1121 into a baseband signal, extracts information (baseband IQ signal) carried on the carrier wave, and provides the RACH receiver 1123 with the information. The RACH receiving unit 1123 despreads and demodulates the RACH that is an uplink common channel included in the baseband IQ signal received from the radio unit 1122, and provides the RACH decoding unit 1124 with the RACH. The RACH decoding unit 1124 decodes the RACH signal received from the RACH receiving unit 1123 and transmits the decoded signal to the base station controller (RNC) 1103 via the wired transmission path 1104.

BCH送信部1125は、有線伝送路1104を介して基地局制御装置(RNC)1103ら受け取ったBCHを変調・拡散し、ベースバンドIQ信号として無線部1122に与える。無線部1122は、BCH送信部1125から受け取ったベースバンドIQ信号を乗せた搬送波をギガヘルツ帯の無線信号にアップコンバートし、アンテナ1121を励振して下りリンクに送出する。   The BCH transmission unit 1125 modulates and spreads the BCH received from the base station controller (RNC) 1103 via the wired transmission path 1104, and provides the radio unit 1122 with the baseband IQ signal. The radio unit 1122 up-converts the carrier wave carrying the baseband IQ signal received from the BCH transmission unit 1125 into a gigahertz band radio signal, excites the antenna 1121, and transmits it to the downlink.

DPCH符号部1126は、有線伝送路1104を介して基地局制御装置(RNC)1103から受け取ったDPCHを符号化してDPCH送信部1127に与える。DPCH送信部1127は、DPCH符号部1126から受け取った符号化DPCHを変調・拡散し、ベースバンドIQ信号として無線部1122に与える。無線部1122は、DPCH送信部1127から受け取ったベースバンドIQ信号を乗せた搬送波をギガヘルツ帯の無線信号にアップコンバートし、アンテナ1121を励振して下りリンクに送出する。   The DPCH encoding unit 1126 encodes the DPCH received from the base station controller (RNC) 1103 via the wired transmission path 1104 and supplies the encoded DPCH to the DPCH transmission unit 1127. The DPCH transmission unit 1127 modulates and spreads the encoded DPCH received from the DPCH encoding unit 1126, and provides the radio unit 1122 with the baseband IQ signal. The radio unit 1122 up-converts the carrier wave carrying the baseband IQ signal received from the DPCH transmission unit 1127 into a gigahertz band radio signal, excites the antenna 1121, and transmits it to the downlink.

また、基地局制御装置(RNC)1103は、MS受信SIR検出部1131と、伝搬状況判定部1132と、DPCH初期送信電力値決定部1133と、呼制御データ伝送部1134とを備えている。   The base station controller (RNC) 1103 includes an MS reception SIR detection unit 1131, a propagation status determination unit 1132, a DPCH initial transmission power value determination unit 1133, and a call control data transmission unit 1134.

MS受信SIR検出部1131は、RACH復号部1124から受け取った情報から受信SIR値を取り出し、伝搬状況判定部1132に与える。伝搬状況判定部1132は、MS受信SIR検出部1131から受け取った受信SIR値から伝搬状況を判定し、判定結果をDPCH初期送信電力値決定部1133に与え、また有線伝送路1104を介して無線基地局装置(BTS)1102に送出する。DPCH初期送信電力値決定部1133は、伝搬状況判定部1132が判定した伝搬状況に基づき初期送信電力値を決定し、有線伝送路1104を介して無線基地局装置(BTS)1102に送出する。一方、呼制御データ伝送部1134は、無線基地局装置(BTS)1102と交換局との間での通話情報等の呼制御データの有線伝送を実現する。   The MS reception SIR detection unit 1131 extracts the reception SIR value from the information received from the RACH decoding unit 1124 and provides it to the propagation state determination unit 1132. The propagation status determination unit 1132 determines the propagation status from the received SIR value received from the MS reception SIR detection unit 1131, gives the determination result to the DPCH initial transmission power value determination unit 1133, and transmits the determination result to the wireless base station via the wired transmission path 1104. The data is sent to the station apparatus (BTS) 1102. The DPCH initial transmission power value determination unit 1133 determines an initial transmission power value based on the propagation status determined by the propagation status determination unit 1132, and sends the initial transmission power value to the radio base station apparatus (BTS) 1102 via the wired transmission path 1104. On the other hand, the call control data transmission unit 1134 realizes wired transmission of call control data such as call information between the radio base station apparatus (BTS) 1102 and the exchange.

次に、図11と図12を参照して従来の下り初期送信電力制御方法について説明する。なお図12は、従来の下り初期送信電力制御手順を説明する図である。MS1101は、ユーザから接続要求が入力すると、セルサーチによる下り無線リンクの確立動作を行う。下り無線リンクが確立すると、次いでMS1101は、BTS1102との上り無線リンクを確立するため、通信開始時に、RACHを用いて上り無線リンクへのランダムアクセス制御を実行する。   Next, a conventional downlink initial transmission power control method will be described with reference to FIG. 11 and FIG. FIG. 12 is a diagram for explaining a conventional downlink initial transmission power control procedure. When a connection request is input from the user, the MS 1101 performs a downlink radio link establishment operation by cell search. When the downlink radio link is established, the MS 1101 then executes random access control to the uplink radio link using RACH at the start of communication in order to establish an uplink radio link with the BTS 1102.

このランダムアクセス制御は、次のような手順で実行される。[手順1]RACHは、1つ以上のプリアンブル部とそれに後続するメッセージ部とで構成されるが、MS1101は、まず、プリアンブル部のみのRACHを送信する。[手順2]BTS1102は、プリアンブル部の受信を検出できると、プリアンブル部を検出できたことを示すAICH(同期検出表示チャネル)を送信する。[手順3]MS1101は、AICHを受信できると、BTS1102ではメッセージ部の拡散符号及び受信タイミングが検出できると判断して、受信SIR値を挿入したメッセージ部を含むRACHを送信する。以上は、伝搬状況が良好な場合である。   This random access control is executed in the following procedure. [Procedure 1] The RACH is composed of one or more preamble parts and a message part that follows the RACH, but the MS 1101 first transmits the RACH of only the preamble part. [Procedure 2] When the reception of the preamble part can be detected, the BTS 1102 transmits an AICH (synchronization detection display channel) indicating that the preamble part has been detected. [Procedure 3] When the MS 1101 can receive the AICH, the BTS 1102 determines that the spreading code and the reception timing of the message part can be detected, and transmits the RACH including the message part into which the received SIR value is inserted. The above is a case where the propagation situation is good.

伝搬状況が悪い場合には、手順3においてMS1101は、AICHを受信できない場合がある。また、手順2においてBTS1102がプリアンブル部を受信できず、AICHを送信しない場合も、MS1101は、AICHを受信できない。そこで、[手順4]MS1101は、AICHを受信できるまで、手順1に示すプリアンブル部のみのRACHを再送信することを繰り返す。MS1101は、これによって、AICHを受信できると、[手順3]を実行する。   If the propagation condition is bad, the MS 1101 may not be able to receive the AICH in the procedure 3. Further, even if the BTS 1102 cannot receive the preamble part and does not transmit the AICH in the procedure 2, the MS 1101 cannot receive the AICH. [Procedure 4] The MS 1101 repeats retransmitting the RACH of only the preamble part shown in Procedure 1 until the AICH can be received. When the MS 1101 can receive the AICH, it executes [Procedure 3].

この手順4でのプリアンブル部のみのRACHの再送動作では、MS1101は、AICHを受信できるまで、複数回(ランピング回数)送信電力を前回送信したときの送信電力にパワーランピングのステップ幅だけ増大し、繰り返し送信する。なお、パワーランピング幅とランピング回数は、MS1101に予め定められているパラメータである。   In the RACH retransmission operation of only the preamble part in this procedure 4, until the AICH can be received, the MS 1101 increases the transmission power at the previous transmission power a plurality of times (number of ramping times) by the power ramping step width. Send repeatedly. Note that the power ramping width and the number of ramping are parameters predetermined in the MS 1101.

以上説明した手順1〜手順4によるランダムアクセス制御が行われている区間が図12に示す未送信区間1201である。BTS1102は、MS1101からメッセージ部を含むRACHを受信すると、初期送信電力制御を開始する。   The section where the random access control according to the procedure 1 to the procedure 4 described above is performed is an untransmitted section 1201 shown in FIG. When the BTS 1102 receives the RACH including the message part from the MS 1101, the BTS 1102 starts the initial transmission power control.

即ち、BTS1102は、MS1101からのメッセージ部に含まれている受信SIR値を復号してRNC1103に通知する。RNC1103は、MS1101からの受信SIR値を元にMS1101とBTS1102との間の無線伝搬状況を判定し、下り初期送信電力値(変動値)を決定する。RNC1103では、下り初期送信電力値が高いと、他のMSへの干渉となるので、出来るだけ低い電力で下り無線同期を確立させるとの観点から、下り初期送信電力値を決定する。   That is, the BTS 1102 decodes the received SIR value included in the message part from the MS 1101 and notifies the RNC 1103 of it. The RNC 1103 determines the radio propagation status between the MS 1101 and the BTS 1102 based on the received SIR value from the MS 1101, and determines the downlink initial transmission power value (variation value). The RNC 1103 determines the downlink initial transmission power value from the viewpoint of establishing downlink radio synchronization with as low power as possible if the downlink initial transmission power value is high, which causes interference with other MSs.

BTS1102は、RNC1103が決定した下り初期送信電力値(変動値)を基準に、定められた増加回数(固定値)と増加幅(固定値)とを用いて下り初期送信開始電力値を算出し、MS1101に送信する。BTS1102は、下り初期送信開始電力値の送信後は、下り初期送信電力値に到達するまで、増加回数(固定値)と増加幅(固定値)と増加周期(固定値)とを用いてMS1101の送信電力を増加させる制御を繰り返す。   The BTS 1102 calculates a downlink initial transmission start power value using a predetermined increase number (fixed value) and an increase width (fixed value) based on the downlink initial transmission power value (variation value) determined by the RNC 1103, Send to MS1101. After transmitting the downlink initial transmission start power value, the BTS 1102 uses the increase count (fixed value), the increase width (fixed value), and the increase cycle (fixed value) of the MS 1101 until the downlink initial transmission power value is reached. Repeat the control to increase the transmission power.

以上が図12に示す初期送信電力制御区間1202での動作であり、その後無線同期確立区間1203に移行する。RNC1103が決定した下り初期送信電力値を下り初期送信開始電力値として送信すれば、その決定した下り初期送信電力値付近で無線同期を確立できることが想定されるが、従来では、図12に示すように、送信開始時はある程度低めの電力値で制御し、緩やかに送信電力を増加させる制御を行っている。   The above is the operation in the initial transmission power control section 1202 shown in FIG. If the downlink initial transmission power value determined by the RNC 1103 is transmitted as the downlink initial transmission start power value, it is assumed that radio synchronization can be established in the vicinity of the determined downlink initial transmission power value. Conventionally, as shown in FIG. At the start of transmission, control is performed with a somewhat lower power value, and control for gradually increasing the transmission power is performed.

図12に示すように、伝搬環境が悪い場合は、MS1101が受信し易い状態にするため、下り初期送信電力値と送信開始電力値とは共に高めに設定される。一方、伝搬環境が良い場合は、下り初期送信電力値と送信開始電力値とは共に低めに設定される。これは、伝搬状態が良い分、電力を低めにしてもMS1101が受信可能であることによる。そして、初期送信電力制御区間は、何れの場合も、固定期間である。これは、下り初期送信電力の変化分を下り送信開始電力値に反映するための措置である。
国際公開第98/048528号パンフレット
As shown in FIG. 12, when the propagation environment is bad, both the initial downlink transmission power value and the transmission start power value are set higher in order to make the MS 1101 easier to receive. On the other hand, when the propagation environment is good, both the initial downlink transmission power value and the transmission start power value are set lower. This is because the MS 1101 can receive the signal even if the power is lowered because the propagation state is good. The initial transmission power control section is a fixed period in any case. This is a measure for reflecting the change in the downlink initial transmission power in the downlink transmission start power value.
International Publication No. 98/048528 Pamphlet

従来の下り初期送信電力制御方法では、伝搬状況が良い場合でも、初期送信電力制御区間は、伝搬状況が悪い場合と同じ制御区間を要するので、下り無線同期が確立するまでの時間が長くなるという問題がある。   In the conventional downlink initial transmission power control method, even when the propagation condition is good, the initial transmission power control period requires the same control period as when the propagation condition is bad, so that it takes a long time to establish downlink radio synchronization. There's a problem.

本発明は、かかる点に鑑みてなされたものであり、伝搬状況が良い場合には下り無線同期が確立するまでの初期送信電力制御区間を短くすることのできる移動通信システム及び下り初期送信電力制御方法を提供することを目的とする。   The present invention has been made in view of the above points, and when the propagation condition is good, the mobile communication system and the downlink initial transmission power control capable of shortening the initial transmission power control period until the downlink radio synchronization is established. It aims to provide a method.

かかる課題を解決するため、本発明に係る移動通信システムは、セルサーチを行った移動局と無線基地局との間で同期確立ができるまでの期間において下り初期送信電力制御を行う移動通信システムにおいて、前記無線基地局は、無線受信したランダムアクセスチャネルに含まれる前記移動局が挿入した伝搬環境に関する情報を上位の制御装置に有線伝送して伝搬状況及び前記移動局が同期確立時に用いる初期送信電力値を取得する手段と、取得した前記伝搬状況に基づき初期送信電力制御パラメータである増加回数、増加幅及び増加周期の各値を決定する手段と、取得した前記初期送信電力値と決定した前記初期送信電力制御パラメータの各値とに基づき前記移動局の送信開始電力値を決定する手段と、下り個別チャネルを用いて、まず前記送信開始電力値を無線送信し、その後、前記初期送信電力制御パラメータの各値に基づき前記移動局の送信電力値を漸増させ前記初期送信電力値に到達するように制御する手段とを具備する構成を採る。   In order to solve such a problem, a mobile communication system according to the present invention is a mobile communication system that performs downlink initial transmission power control in a period until synchronization is established between a mobile station that has performed cell search and a radio base station. The wireless base station wire-transmits information about the propagation environment inserted by the mobile station included in the wirelessly received random access channel to a higher-level control device, and the propagation status and initial transmission power used when the mobile station establishes synchronization. Means for acquiring a value, means for determining each value of the number of increases, an increase width, and an increase period, which are initial transmission power control parameters based on the acquired propagation status, and the initial transmission power value determined as the acquired initial transmission power value The means for determining the transmission start power value of the mobile station based on each value of the transmission power control parameter and the downlink dedicated channel, A means for wirelessly transmitting a transmission start power value, and thereafter, gradually increasing the transmission power value of the mobile station based on each value of the initial transmission power control parameter and controlling to reach the initial transmission power value Take.

また、本発明に係る下り初期送信電力制御方法は、セルサーチを行った移動局と無線基地局との間で同期確立ができるまでの期間において下り初期送信電力制御を行う移動通信システムにおいて、前記無線基地局は、無線受信したランダムアクセスチャネルに含まれる前記移動局が挿入した伝搬環境に関する情報を上位の制御装置に有線伝送して伝搬状況及び前記移動局が同期確立時に用いる初期送信電力値を取得する工程と、取得した前記伝搬状況に基づき初期送信電力制御パラメータである増加回数、増加幅及び増加周期の各値を決定する工程と、取得した前記初期送信電力値と決定した前記初期送信電力制御パラメータの各値とに基づき前記移動局の送信開始電力値を決定する工程と、下り個別チャネルを用いて、まず前記送信開始電力値を無線送信し、その後、前記初期送信電力制御パラメータの各値に基づき前記移動局の送信電力値を漸増させ前記初期送信電力値に到達するように制御する工程とを具備するようにした。   Further, the downlink initial transmission power control method according to the present invention is a mobile communication system that performs downlink initial transmission power control in a period until synchronization can be established between a mobile station that has performed cell search and a radio base station. The radio base station wire-transmits information about the propagation environment inserted by the mobile station included in the wirelessly received random access channel to a higher-level control device, and determines the propagation status and the initial transmission power value used by the mobile station when establishing synchronization. A step of acquiring, a step of determining each value of an increase number, an increase width, and an increase period, which are initial transmission power control parameters based on the acquired propagation state, and the initial transmission power value determined as the acquired initial transmission power value Determining a transmission start power value of the mobile station based on each value of the control parameter, and using the downlink dedicated channel, first, the transmission start power value The value transmitted by radio and then to and a step of controlling so that the gradually increasing the initial transmission power value of the mobile station based on each value of the transmission power control parameter reaches the initial transmission power value.

本発明によれば、伝搬状況が良い場合には下り無線同期が確立するまでの初期送信電力制御区間を短くすることができるので、下り無線同期確立に至るまでの時間を短縮することができる。   According to the present invention, when the propagation condition is good, the initial transmission power control period until the downlink radio synchronization is established can be shortened, so that the time until the downlink radio synchronization is established can be shortened.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1に係る移動通信システムの構成を示すブロック図である。なお、図1では、図11(従来例)に示した構成要素と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、本実施の形態1に関わる部分を中心に説明する。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a mobile communication system according to Embodiment 1 of the present invention. In FIG. 1, components that are the same as or equivalent to the components shown in FIG. 11 (conventional example) are given the same reference numerals. Here, the description will be focused on the portion related to the first embodiment.

図1に示すように、本実施の形態1に係る移動通信システム100は、移動局(MS)101と、無線基地局装置(BTS)102と、基地局制御装置(RNC)103とを備えている。   As shown in FIG. 1, a mobile communication system 100 according to Embodiment 1 includes a mobile station (MS) 101, a radio base station apparatus (BTS) 102, and a base station control apparatus (RNC) 103. Yes.

移動局(MS)101では、図11(従来例)に示した移動局(MS)1101において、BCH受信部1114と受信SIR算出部1115に代えて、AICH受信部111とランダムアクセス判定部112とランピング回数報知部113とが設けられている。   In the mobile station (MS) 101, in the mobile station (MS) 1101 shown in FIG. 11 (conventional example), instead of the BCH reception unit 1114 and the reception SIR calculation unit 1115, an AICH reception unit 111, a random access determination unit 112, A ramping frequency notification unit 113 is provided.

AICH受信部111は、無線部1112から受け取るベースバンドIQ信号に含まれている下り共通チャネルであるAICHを逆拡散・復調し、ランダムアクセス判定部112に与える。ランダムアクセス判定部112は、AICH受信部111からAICHを受け取ると、RACH送信部1113でのプリアンブル部のみのRACH送信を停止させ、メッセージを含むRACHの送信を開始させる。ランピング回数報知部113は、ランダムアクセス判定部112がAICH受信を判定した場合にRACH送信部1113に対して無線基地局装置(BTS)102に報知するランピング回数を出力する。RACH送信部1113は、メッセージにランピング回数を含ませたRACHを送信する。   The AICH receiving unit 111 despreads and demodulates the AICH, which is a downlink common channel included in the baseband IQ signal received from the radio unit 1112, and provides the random access determining unit 112 with it. When the random access determination unit 112 receives the AICH from the AICH reception unit 111, the random access determination unit 112 stops the RACH transmission of only the preamble part in the RACH transmission unit 1113 and starts transmission of the RACH including the message. The ramping frequency notification unit 113 outputs the ramping frequency to be notified to the radio base station apparatus (BTS) 102 to the RACH transmission unit 1113 when the random access determination unit 112 determines AICH reception. The RACH transmission unit 1113 transmits the RACH including the number of times of ramping in the message.

また、無線基地局装置(BTS)102では、図11(従来例)に示した無線基地局装置(BTS)1102において、BCH送信部1125に代えて、AICH送信部121が設けられ、送信開始電力値決定部122が追加されている。   Further, in the radio base station apparatus (BTS) 102, an AICH transmission section 121 is provided in place of the BCH transmission section 1125 in the radio base station apparatus (BTS) 1102 shown in FIG. A value determining unit 122 is added.

AICH送信部121は、RACH受信部1123からプリアンブル部を受け取ると、上り共通チャネルであるAICHを変調・拡散し、ベースバンドIQ信号として無線部1122に与える。送信開始電力値決定部122は、有線伝送路1104を介して基地局制御装置(RNC)103から受け取った初期送信電力値と伝搬状況とに基づき、送信開始電力値と初期送信電力制御パラメータ(増加回数、増加幅、増加周期)とを決定し、決定した送信開始電力値をDPCH送信部1127に与える。   When the AICH transmission unit 121 receives the preamble from the RACH reception unit 1123, the AICH transmission unit 121 modulates and spreads the AICH that is the uplink common channel, and provides the radio unit 1122 with the baseband IQ signal. Based on the initial transmission power value and the propagation status received from the base station controller (RNC) 103 via the wired transmission line 1104, the transmission start power value determination unit 122 increases the transmission start power value and the initial transmission power control parameter (increase). Frequency, increase width, increase cycle) and determine the determined transmission start power value to the DPCH transmitter 1127.

また、基地局制御装置(RNC)103では、図11(従来例)に示した基地局制御装置(RNC)1103において、MS受信SIR検出部1131に代えて、ランピング回数受信部131が設けられている。また、伝搬状況判定部1132に代えて伝搬状況判定部132が設けられている。   Further, in the base station controller (RNC) 103, a ramping frequency receiver 131 is provided in place of the MS reception SIR detector 1131 in the base station controller (RNC) 1103 shown in FIG. 11 (conventional example). Yes. Further, a propagation status determination unit 132 is provided instead of the propagation status determination unit 1132.

ランピング回数受信部131は、有線伝送路1104を介してRACH復号部1124から受け取った情報からランピング回数を取り出し、伝搬状況判定部132に与える。伝搬状況判定部132は、ランピング回数受信部131から受け取ったランピング回数から伝搬状況を判定し、判定結果をDPCH初期送信電力値決定部1133に与え、また有線伝送路1104を介して無線基地局装置(BTS)102の送信開始電力値決定部122に送出する。   The ramping frequency reception unit 131 extracts the ramping frequency from the information received from the RACH decoding unit 1124 via the wired transmission path 1104 and supplies the ramping frequency reception unit 131 to the propagation status determination unit 132. The propagation status determination unit 132 determines the propagation status from the number of ramping received from the ramping number reception unit 131, gives the determination result to the DPCH initial transmission power value determination unit 1133, and also the radio base station apparatus via the wired transmission path 1104 It is sent to the transmission start power value determination unit 122 of the (BTS) 102.

次に、図1〜図7を参照して、本実施の形態1による下り初期送信電力制御方法について説明する。なお、図2は、図1に示す移動局が通信開始時に行うランダムアクセス制御動作を説明するフローチャートである。図3は、図1に示す無線基地局装置のRACH受信動作を説明するフローチャートである。図4は、図1に示す無線基地局装置が受信したRACHに基づき図1に示す基地局制御装置が伝搬状況に応じた初期送信電力値を決定する動作の一例を説明する図である。図5は、図1に示す無線基地局装置が行う下り個別チャネルを用いた初期送信電力制御動作を説明するフローチャートである。図6は、図1に示す無線基地局装置が伝搬状況に応じて送信開始電力値を増減させる動作の一例を説明する図である。図7は、図1に示す移動通信システムにて実施される下り初期送信電力制御手順を説明する図である。ここで、図2、図3及び図5の説明では、手順を示すステップを「ST」と略記して使用する。   Next, the downlink initial transmission power control method according to the first embodiment will be described with reference to FIGS. FIG. 2 is a flowchart for explaining a random access control operation performed by the mobile station shown in FIG. 1 at the start of communication. FIG. 3 is a flowchart for explaining the RACH reception operation of the radio base station apparatus shown in FIG. FIG. 4 is a diagram illustrating an example of an operation in which the base station control device illustrated in FIG. 1 determines an initial transmission power value according to a propagation state based on the RACH received by the radio base station device illustrated in FIG. FIG. 5 is a flowchart for explaining an initial transmission power control operation using a downlink dedicated channel performed by the radio base station apparatus shown in FIG. FIG. 6 is a diagram illustrating an example of an operation in which the radio base station apparatus illustrated in FIG. 1 increases or decreases the transmission start power value according to the propagation state. FIG. 7 is a diagram for explaining a downlink initial transmission power control procedure performed in the mobile communication system shown in FIG. Here, in the description of FIG. 2, FIG. 3, and FIG. 5, the step indicating the procedure is abbreviated as “ST”.

図2において、MS101は、セルサーチを完了すると(ST201:Yes)、RACH送信部1113がプリアンブル部のみのRACHを無線送信し(ST202)、ランダムアクセス判定部112がAICHの受信成功有無を調べる(ST203)。AICHの受信ができない場合(ST203:No)は、ランダムアクセス判定部112がプリアンブル部のみのRACHの送信電力値を増加させるパワーランピングを行い(ST204)、ランピング回数報知部113がランピング回数をインクリメントし(ST205)、RACH送信部1113が、再度、プリアンブル部のみのRACHを無線送信し(ST202)、ランダムアクセス判定部112がAICHの受信成功有無を調べる(ST203)。   In FIG. 2, when the MS 101 completes the cell search (ST201: Yes), the RACH transmission unit 1113 wirelessly transmits the RACH including only the preamble portion (ST202), and the random access determination unit 112 checks whether or not the AICH has been successfully received (ST202). ST203). If the AICH cannot be received (ST203: No), the random access determination unit 112 performs power ramping to increase the RACH transmission power value of only the preamble unit (ST204), and the ramping count notification unit 113 increments the ramping count. (ST205), RACH transmission section 1113 again wirelessly transmits the RACH of only the preamble section (ST202), and random access determination section 112 checks whether AICH has been successfully received (ST203).

ST202→ST203:No→ST204→ST205→ST202の繰り返し動作の結果、AICHの受信ができると(ST203:Yes)、ランダムアクセス判定部112は、RACH送信部1113にプリアンブル部のみのRACHの送信を停止させ、ランピング回数報知部113からランピング回数を取得させ(ST206)、それをメッセージ部に挿入したRACHを無線送信させる(ST207)。   ST202 → ST203: No → ST204 → ST205 → When the AICH can be received as a result of the repetition operation (ST203: Yes), the random access determination unit 112 stops the RACH transmission unit 1113 from transmitting the RACH of only the preamble part. The ramping frequency notification unit 113 obtains the ramping frequency (ST206), and wirelessly transmits the RACH inserted in the message unit (ST207).

図3において、BTS102は、プリアンブル部のみのRACHの受信有無を監視し(ST301)、プリアンブル部のみのRACHを受信できると(ST301:Yes)、AICHを無線送信する(ST302)。次いで、メッセージ部を含むRACHを受信すると(ST303)、それを復号してRNC103に有線伝送する(ST304)。   In FIG. 3, the BTS 102 monitors whether or not the RACH is received only by the preamble part (ST301), and when it can receive the RACH only by the preamble part (ST301: Yes), wirelessly transmits the AICH (ST302). Next, when the RACH including the message part is received (ST303), the RACH is decoded and wired to the RNC 103 (ST304).

RNC103では、図1において、ランピング回数受信部131がランピング回数を復号データから取り出し、伝搬状況判定部132がランピング回数によって伝搬状況の良否を判断し、DPCH初期送信電力値決定部1133が伝搬状況に依存した初期送信電力値を決定する(図4参照)。判断した伝搬状況及び決定した初期送信電力値は、BTS102の送信開始電力値決定部122に有線伝送される。   In RNC 103, in FIG. 1, the ramping number reception unit 131 extracts the ramping number from the decoded data, the propagation state determination unit 132 determines the quality of the propagation state based on the number of ramping, and the DPCH initial transmission power value determination unit 1133 enters the propagation state. The dependent initial transmission power value is determined (see FIG. 4). The determined propagation status and the determined initial transmission power value are wired to the transmission start power value determination unit 122 of the BTS 102.

図4では、「ランピング回数」と、判断する「伝搬状況」と、決定する「初期送信電力値」との関係例が示されている。例えば、図4に示すように、ランピング回数=1では、伝搬状況はかなり良好と判断され、初期送信電力値は伝搬状況が悪い場合よりも6dB減少した値に決定される。また、ランピング回数=2では、伝搬状況は良好と判断され、初期送信電力値は伝搬状況が悪い場合よりも3dB減少した値に決定される。また、ランピング回数=3では、伝搬状況は普通と判断され、初期送信電力値は従来例よりも1dB減少した値に決定される。そして、ランピング回数が4以上では、伝搬状況は悪いと判断され、初期送信電力値は±0dBの値に決定される。   FIG. 4 shows an example of the relationship between the “ramping count”, the “propagation status” to be determined, and the “initial transmission power value” to be determined. For example, as shown in FIG. 4, when the number of ramping times = 1, the propagation state is determined to be quite good, and the initial transmission power value is determined to be a value that is reduced by 6 dB as compared with the case where the propagation state is bad. When the number of ramping times = 2, it is determined that the propagation state is good, and the initial transmission power value is determined to be a value that is 3 dB lower than the case where the propagation state is bad. Further, when the number of ramping times = 3, the propagation state is determined to be normal, and the initial transmission power value is determined to be 1 dB lower than the conventional example. When the number of ramping times is 4 or more, it is determined that the propagation state is bad, and the initial transmission power value is determined to be a value of ± 0 dB.

BTS102では、図5に示す手順で初期送信電力制御が実行される。図5において、BTS102の送信開始電力値決定部122では、RNC103から伝搬状況(かなり良好、良好、普通、悪い)と初期送信電力制御パラメータ(増加回数、増加幅、増加周期)とを取得すると(ST501、ST502)、RNC103が決定した伝搬状況(かなり良好、良好、普通、悪い)に依存した初期送信電力制御パラメータ(増加回数、増加幅、増加周期)の値を例えば図6に示すように決定する(ST503)。   In the BTS 102, initial transmission power control is executed according to the procedure shown in FIG. In FIG. 5, the transmission start power value determination unit 122 of the BTS 102 obtains the propagation status (pretty good, good, normal, bad) and the initial transmission power control parameters (increase number, increase width, increase period) from the RNC 103 ( ST501, ST502), the value of the initial transmission power control parameters (increase number of times, increase width, increase period) depending on the propagation situation (pretty good, good, normal, bad) determined by the RNC 103 is determined as shown in FIG. (ST503).

そして、送信開始電力値決定部122では、RNC103から取得する初期送信電力値(ST504)に、ST503にて決定した初期送信電力制御パラメータ(増加回数、増加幅、増加周期)の値を適用して、例えば図6に示すように、RNC103が決定した伝搬状況(かなり良好、良好、普通、悪い)に依存した送信開始電力値を算出する(ST505)。   Then, transmission start power value determination section 122 applies the values of the initial transmission power control parameters (increase count, increase width, increase cycle) determined in ST503 to the initial transmission power value (ST504) acquired from RNC 103. For example, as shown in FIG. 6, a transmission start power value depending on the propagation state (pretty good, good, normal, bad) determined by the RNC 103 is calculated (ST505).

図6ではRNC103が決定した伝搬状況(かなり良好、良好、普通、悪い)と送信開始電力値決定部122が決定する増加回数(送信開始電力)との関係例が示されている。なお、図6では、増加幅は、1dBとしている。図6に示すように、伝搬状況が「かなり良好」である場合は、例えば、増加回数=6回減少と決定し、送信開始電力=6dB増加と算出する。伝搬状況が「良好」である場合は、増加回数=3回減少と決定し、送信開始電力=3dB増加と算出する。伝搬状況が「普通」である場合は、増加回数=1回減少と決定し、送信開始電力=1dB増加と算出する。そして、伝搬状況が「悪い」である場合は、増加回数及び送信開始電力は従来例と同様の値(±0dB)に決定される。   FIG. 6 shows an example of the relationship between the propagation status (substantially good, good, normal, bad) determined by the RNC 103 and the number of increases (transmission start power) determined by the transmission start power value determination unit 122. In FIG. 6, the increase width is 1 dB. As illustrated in FIG. 6, when the propagation state is “substantially good”, for example, it is determined that the number of increases is decreased by 6 times, and the transmission start power is increased by 6 dB. When the propagation state is “good”, it is determined that the number of increases is decreased by 3 times, and the transmission start power is increased by 3 dB. When the propagation state is “normal”, the number of increases is determined to be decreased once, and the transmission start power is calculated to be increased by 1 dB. When the propagation status is “bad”, the number of increases and the transmission start power are determined to be the same value (± 0 dB) as in the conventional example.

図5に戻って、送信開始電力値決定部122が上記のように算出した送信開始電力値はDPCH送信部1127にて下り個別チャネルであるDPCHに乗せられてMS101宛てに無線送信され、下り初期送信電力制御が開始される(ST506)。   Returning to FIG. 5, the transmission start power value calculated by the transmission start power value determination unit 122 as described above is put on the DPCH which is the downlink dedicated channel by the DPCH transmission unit 1127 and wirelessly transmitted to the MS 101. Transmission power control is started (ST506).

下り初期送信電力制御では、決定した増加回数、増加幅、増加周期の値を用いて、MS101の送信電力値が初期送信電力値に到達するまで、MS101の送信電力を増加させることが繰り返される(ST507→ST508:No→ST507)。MS101の送信電力値が初期送信電力値に到達すると(ST508:Yes)、無線同期確立の処理に移行する。本実施の形態での下り初期送信電力制御は、図7に示すようになる。   In the downlink initial transmission power control, the transmission power of the MS 101 is repeatedly increased until the transmission power value of the MS 101 reaches the initial transmission power value using the determined number of increases, increase width, and increase period ( ST507 → ST508: No → ST507). When the transmission power value of MS 101 reaches the initial transmission power value (ST508: Yes), the process proceeds to the process of establishing wireless synchronization. The downlink initial transmission power control in this embodiment is as shown in FIG.

図7に示すように、伝搬環境が良い場合には、初期送信電力値は、従来例(図12)と同様に値(a)だけ低くなるが、送信開始電力値は、従来例(図12)よりも値(b)だけ高くなり、初期送信電力制御区間702は、従来例(図12)よりも区間(c)だけ短くなる。   As shown in FIG. 7, when the propagation environment is good, the initial transmission power value is lowered by the value (a) as in the conventional example (FIG. 12), but the transmission start power value is the same as in the conventional example (FIG. 12). ) And the initial transmission power control section 702 is shorter by the section (c) than the conventional example (FIG. 12).

このように、本実施の形態1によれば、伝搬状況によって初期送信電力値を増減させるだけでなく、初期送信電力制御による電力増加方法を変化させるようにしたので、伝搬状況が良いと判断できる場合においては、初期送信電力制御区間を短縮できる。これによって、下り無線同期確立までに時間を短縮することが可能となり、スムーズな移動通信サービスが実現可能となる。   As described above, according to the first embodiment, not only the initial transmission power value is increased / decreased depending on the propagation state, but also the power increase method by the initial transmission power control is changed, so that it can be determined that the propagation state is good. In some cases, the initial transmission power control period can be shortened. As a result, it is possible to shorten the time until establishment of downlink radio synchronization, and a smooth mobile communication service can be realized.

(実施の形態2)
図8は本発明の実施の形態2に係る移動通信システムの構成を示すブロック図である。なお、図8では、図11(従来例)や図1(実施の形態1)に示した構成要素と同一ないしは同等である構成要素には同一の符号が付されている。ここでは、本実施の形態2に関わる部分を中心に説明する。
(Embodiment 2)
FIG. 8 is a block diagram showing the configuration of the mobile communication system according to Embodiment 2 of the present invention. In FIG. 8, components that are the same as or equivalent to the components shown in FIG. 11 (conventional example) and FIG. 1 (Embodiment 1) are assigned the same reference numerals. Here, the description will be focused on the portion related to the second embodiment.

図8に示すように、本実施の形態2に係る移動通信システム800は、移動局(MS)801と、無線基地局装置(BTS)802と、基地局制御装置(RNC)803とを備えている。   As shown in FIG. 8, mobile communication system 800 according to Embodiment 2 includes mobile station (MS) 801, radio base station apparatus (BTS) 802, and base station controller (RNC) 803. Yes.

移動局(MS)801は、図11(従来例)に示した移動局(MS)1101と同様の構成である。無線基地局装置(BTS)802では、図11(従来例)に示した無線基地局装置(BTS)1102において、図1に示した送信開始電力値決定部122が追加されている。基地局制御装置(RNC)803では、図11(従来例)に示した基地局制御装置(RNC)1103において、伝搬状況判定部1132に代えて伝搬状況判定部831が設けられ、基準SIR保持部832が追加されている。   The mobile station (MS) 801 has the same configuration as the mobile station (MS) 1101 shown in FIG. 11 (conventional example). In the radio base station apparatus (BTS) 802, the transmission start power value determining unit 122 shown in FIG. 1 is added to the radio base station apparatus (BTS) 1102 shown in FIG. 11 (conventional example). In the base station controller (RNC) 803, in the base station controller (RNC) 1103 shown in FIG. 11 (conventional example), a propagation state determination unit 831 is provided instead of the propagation state determination unit 1132, and a reference SIR holding unit 832 has been added.

基準SIR保持部832には、伝搬状況判定部831がMS受信SIR検出部1131からの受信SIR値と比較して伝搬状況を判定する基準となるSIR値が保持されている。   The reference SIR holding unit 832 holds an SIR value that serves as a reference for the propagation status determination unit 831 to compare the received SIR value from the MS reception SIR detection unit 1131 and determine the propagation status.

次に、図8〜図10を参照して、本実施の形態2による下り初期送信電力制御方法について説明する。なお、図9は、図8に示す無線基地局装置が受信したRACHに基づき図8に示す基地局制御装置が伝搬状況に応じた初期送信電力値を決定する動作の一例を説明する図である。図10は、図8に示す無線基地局装置が伝搬状況に応じて送信開始電力値を増減させる動作の一例を説明する図である。   Next, the downlink initial transmission power control method according to the second embodiment will be described with reference to FIGS. FIG. 9 is a diagram for explaining an example of an operation in which the base station control device shown in FIG. 8 determines an initial transmission power value corresponding to the propagation state based on the RACH received by the radio base station device shown in FIG. . FIG. 10 is a diagram illustrating an example of an operation in which the radio base station apparatus illustrated in FIG. 8 increases or decreases the transmission start power value according to the propagation state.

MS801は、BTS802からAICHを受信できると、測定したBCHの受信SIR値を乗せたRACHを無線送信する。BTS802は、無線受信したRACHの情報を復号してRNC803に有線伝送する。   When the MS 801 can receive the AICH from the BTS 802, the MS 801 wirelessly transmits the RACH on which the measured reception SIR value of the BCH is placed. The BTS 802 decodes the wirelessly received RACH information and wire-transmits it to the RNC 803.

RNC803では、MS受信SIR検出部1131が復号データから受信SIR値を検出する。伝搬状況判定部831は、MS受信SIR検出部1131からの受信SIR値と基準SIR保持部832が保持する基準SIR値と比較して伝搬状況を判定する。DPCH初期送信電力値決定部1133は、伝搬状況判定部831が判定した伝搬状況に応じた初期送信電力値を決定し、BTS802の送信開始電力値決定部122に対して有線伝送する。   In RNC 803, MS reception SIR detection section 1131 detects the reception SIR value from the decoded data. The propagation state determination unit 831 determines the propagation state by comparing the reception SIR value from the MS reception SIR detection unit 1131 with the reference SIR value held by the reference SIR holding unit 832. The DPCH initial transmission power value determination unit 1133 determines an initial transmission power value according to the propagation status determined by the propagation status determination unit 831 and performs wired transmission to the transmission start power value determination unit 122 of the BTS 802.

図9では、「BCH受信SIR値」と、判断する「伝搬状況」と、決定する「初期送信電力値」との関係例が示されている。例えば、図9に示すように、受信SIR値が基準SIR値に対して2dB以上高い場合は、伝搬状況は「かなり良好」と判定され、初期送信電力値は伝搬状況が悪い場合よりも6dB減少した値に決定される。受信SIR値が基準SIR値に対して1dB以上高い場合は、伝搬状況は「良好」と判定され、初期送信電力値は伝搬状況が悪い場合よりも3dB減少した値に決定される。受信SIR値が基準SIR値に対して1dB未満である場合は、伝搬状況は「普通」と判定され、初期送信電力値は伝搬状況が悪い場合よりも1dB減少した値に決定される。受信SIR値が基準SIR値に対して0.5dB未満である場合は、伝搬状況は「悪い」と判定され、初期送信電力値は±0dBの値に決定される。   FIG. 9 shows a relationship example between the “BCH reception SIR value”, the “propagation state” to be determined, and the “initial transmission power value” to be determined. For example, as shown in FIG. 9, when the received SIR value is 2 dB or more higher than the reference SIR value, the propagation state is determined to be “pretty good”, and the initial transmission power value is reduced by 6 dB compared to the case where the propagation state is bad. The value is determined. When the received SIR value is 1 dB or more higher than the reference SIR value, the propagation state is determined as “good”, and the initial transmission power value is determined to be a value that is 3 dB lower than that in the case where the propagation state is bad. When the received SIR value is less than 1 dB with respect to the reference SIR value, the propagation state is determined to be “normal”, and the initial transmission power value is determined to be a value that is reduced by 1 dB as compared with the case where the propagation state is bad. When the received SIR value is less than 0.5 dB with respect to the reference SIR value, the propagation state is determined as “bad”, and the initial transmission power value is determined to be ± 0 dB.

BTS802の送信開始電力値決定部122では、RNC803から伝搬状況(かなり良好、良好、普通、悪い)及び初期送信電力値を取得すると、伝搬状況(かなり良好、良好、普通、悪い)に依存した初期送信電力制御パラメータ(増加回数、増加幅、増加周期)の値を例えば図10に示すように決定する。   When the transmission start power value determination unit 122 of the BTS 802 acquires the propagation status (pretty good, good, normal, bad) and the initial transmission power value from the RNC 803, the initial value depending on the propagation status (pretty good, good, normal, bad) The values of the transmission power control parameters (increase frequency, increase width, increase cycle) are determined as shown in FIG. 10, for example.

図10では、RNC803が決定した伝搬状況(かなり良好、良好、普通、悪い)と送信開始電力値決定部122が決定する増加回数(送信開始電力)との関係例が示されている。なお、図10では、増加幅は、1dBとしている。図10に示すように、伝搬状況が「かなり良好」である場合は、例えば、増加回数=6回減少と決定し、送信開始電力=6dB増加と算出する。伝搬状況が「良好」である場合は、増加回数=3回減少と決定し、送信開始電力=3dB増加と算出する。伝搬状況が「普通」である場合は、増加回数=1回減少と決定し、送信開始電力=1dB増加と算出する。そして、伝搬状況が「悪い」である場合は、増加回数及び送信開始電力は従来例と同様の値(±0dB)に決定される。   FIG. 10 shows an example of the relationship between the propagation status (substantially good, good, normal, and bad) determined by the RNC 803 and the number of increases (transmission start power) determined by the transmission start power value determining unit 122. In FIG. 10, the increase width is 1 dB. As illustrated in FIG. 10, when the propagation state is “substantially good”, for example, it is determined that the number of increases is decreased by 6 times, and the transmission start power is increased by 6 dB. When the propagation state is “good”, it is determined that the number of increases is decreased by 3 times, and the transmission start power is increased by 3 dB. When the propagation state is “normal”, the number of increases is determined to be decreased once, and the transmission start power is calculated to be increased by 1 dB. When the propagation status is “bad”, the number of increases and the transmission start power are determined to be the same value (± 0 dB) as in the conventional example.

送信開始電力値決定部122が上記のように算出した送信開始電力値はDPCH送信部1127にて下り個別チャネルであるDPCHに乗せられてMS801宛てに無線送信され、下り初期送信電力制御が開始される。   The transmission start power value calculated by the transmission start power value determining unit 122 as described above is put on the DPCH which is the downlink dedicated channel by the DPCH transmission unit 1127 and wirelessly transmitted to the MS 801, and downlink initial transmission power control is started. The

このように、本実施の形態2によれば、実施の形態1と同様に、伝搬状況によって初期送信電力値を増減させるだけでなく、初期送信電力制御による電力増加方法を変化させるようにしたので、伝搬状況が良いと判断できる場合においては、初期送信電力制御区間を短縮できる。これによって、下り無線同期確立までに時間を短縮することが可能となり、スムーズな移動通信サービスが実現可能となる。   As described above, according to the second embodiment, as in the first embodiment, not only the initial transmission power value is increased / decreased depending on the propagation situation, but also the power increase method by the initial transmission power control is changed. When it can be determined that the propagation state is good, the initial transmission power control section can be shortened. As a result, it is possible to shorten the time until establishment of downlink radio synchronization, and a smooth mobile communication service can be realized.

なお、実施の形態1ではランピング回数を用いて、実施の形態2では受信SIR値と基準SIRとの比較結果を用いて、伝搬状況を判断するようにしたが、その他、例えば上り共通チャネルであるRACHの受信強度SIRを測定し、その受信SIR値を用いて伝搬状況を判定し、下り初期送信電力制御に反映するようにしてもよい。   In the first embodiment, the propagation state is determined by using the number of ramping times and in the second embodiment using the comparison result between the received SIR value and the reference SIR. The reception intensity SIR of the RACH may be measured, the propagation state may be determined using the reception SIR value, and reflected in the downlink initial transmission power control.

本発明は、伝搬状況が良好な場合に初期送信電力制御区間を短縮するのに有用である。   The present invention is useful for shortening the initial transmission power control interval when the propagation state is good.

本発明の実施の形態1に係る移動通信システムの構成を示すブロック図Block diagram showing the configuration of the mobile communication system according to the first embodiment of the present invention. 図1に示す移動局が通信開始時に行うランダムアクセス制御動作を説明するフローチャートThe flowchart explaining the random access control operation which the mobile station shown in FIG. 図1に示す無線基地局装置のRACH受信動作を説明するフローチャートThe flowchart explaining the RACH receiving operation of the radio base station apparatus shown in FIG. 図1に示す無線基地局装置が受信したRACHに基づき図1に示す基地局制御装置が伝搬状況に応じた初期送信電力値を決定する動作の一例を説明する図The figure explaining an example of the operation | movement which the base station control apparatus shown in FIG. 1 determines the initial transmission power value according to a propagation condition based on RACH which the wireless base station apparatus shown in FIG. 1 received 図1に示す無線基地局装置が行う下り個別チャネルを用いた初期送信電力制御動作を説明するフローチャートThe flowchart explaining the initial transmission power control operation using the downlink dedicated channel performed by the radio base station apparatus shown in FIG. 図1に示す無線基地局装置が伝搬状況に応じて送信開始電力値を増減させる動作の一例を説明する図The figure explaining an example of the operation | movement which the radio base station apparatus shown in FIG. 1 increases / decreases transmission start power value according to a propagation condition 図1に示す移動通信システムにて実施される下り初期送信電力制御手順を説明する図The figure explaining the downlink initial transmission power control procedure implemented in the mobile communication system shown in FIG. 本発明の実施の形態2に係る移動通信システムの構成を示すブロック図Block diagram showing the configuration of a mobile communication system according to Embodiment 2 of the present invention. 図8に示す無線基地局装置が受信したRACHに基づき図8に示す基地局制御装置が伝搬状況に応じた初期送信電力値を決定する動作の一例を説明する図The figure explaining an example of the operation | movement which the base station control apparatus shown in FIG. 8 determines the initial transmission power value according to a propagation condition based on RACH which the wireless base station apparatus shown in FIG. 8 received. 図8に示す無線基地局装置が伝搬状況に応じて送信開始電力値を増減させる動作の一例を説明する図The figure explaining an example of the operation | movement which the radio base station apparatus shown in FIG. 8 increases / decreases transmission start power value according to a propagation condition 従来の移動通信システムの構成例を示すブロック図Block diagram showing a configuration example of a conventional mobile communication system 図11に示す従来の移動通信システムにて実施される下り初期送信電力制御手順を説明する図The figure explaining the downlink initial transmission power control procedure implemented in the conventional mobile communication system shown in FIG.

符号の説明Explanation of symbols

100、800 移動通信システム
101、801 移動局(MS)
102、802 無線基地局装置(BTS)
103、803 基地局制御装置(RNC)
111 AICH受信部
112 ランダムアクセス判定部
113 ランピング回数報知部
121 AICH送信部
122 送信開始電力値決定部
131 ランピング回数受信部
132、831 伝搬状況判定部
832 基準SIR保持部
1111、1121 アンテナ
1112、1122 無線部
1113 RACH送信部
1123 RACH受信部
1124 RACH復号部
1125 BCH送信部
1126 DPCH符号部
1127 DPCH送信部
1131 MS受信SIR検出部
1133 DPCH初期送信電力値決定部
1134 呼制御データ伝送部
100, 800 Mobile communication system 101, 801 Mobile station (MS)
102, 802 Wireless base station equipment (BTS)
103, 803 Base station controller (RNC)
111 AICH reception unit 112 Random access determination unit 113 Ramping count notification unit 121 AICH transmission unit 122 Transmission start power value determination unit 131 Ramping count reception unit 132, 831 Propagation status determination unit 832 Reference SIR holding unit 1111, 1121 Antenna 1112, 1122 Radio Unit 1113 RACH transmission unit 1123 RACH reception unit 1124 RACH decoding unit 1125 BCH transmission unit 1126 DPCH encoding unit 1127 DPCH transmission unit 1131 MS reception SIR detection unit 1133 DPCH initial transmission power value determination unit 1134 call control data transmission unit

Claims (5)

セルサーチを行った移動局と無線基地局との間で同期確立ができるまでの期間において下り初期送信電力制御を行う移動通信システムにおいて、前記無線基地局は、無線受信したランダムアクセスチャネルに含まれる前記移動局が挿入した伝搬環境に関する情報を上位の制御装置に有線伝送して伝搬状況及び前記移動局が同期確立時に用いる初期送信電力値を取得する手段と、取得した前記伝搬状況に基づき初期送信電力制御パラメータである増加回数、増加幅及び増加周期の各値を決定する手段と、取得した前記初期送信電力値と決定した前記初期送信電力制御パラメータの各値とに基づき前記移動局の送信開始電力値を決定する手段と、下り個別チャネルを用いて、まず前記送信開始電力値を無線送信し、その後、前記初期送信電力制御パラメータの各値に基づき前記移動局の送信電力値を漸増させ前記初期送信電力値に到達するように制御する手段と、を具備することを特徴とする移動通信システム。   In a mobile communication system that performs downlink initial transmission power control in a period until synchronization can be established between a mobile station that has performed cell search and a radio base station, the radio base station is included in a radio-received random access channel Means for wired transmission of information related to the propagation environment inserted by the mobile station to a higher-level control device to acquire a propagation status and an initial transmission power value used when the mobile station establishes synchronization, and initial transmission based on the acquired propagation status Start of transmission of the mobile station based on means for determining each value of increase number, increase width and increase period as power control parameters, and the obtained initial transmission power value and each value of the determined initial transmission power control parameter First, the transmission start power value is wirelessly transmitted using means for determining a power value and a downlink dedicated channel, and then the initial transmission power control Mobile communication system, characterized by comprising means for controlling so as to gradually increase the transmission power value of the mobile station based on each value of the parameter reaches the initial transmission power value. 前記無線基地局は、取得した前記伝搬状況が良好である程、前記送信開始電力値が高くなるように前記増加回数、増加幅及び増加周期の一部又は全部を少なく設定することを特徴とする請求項1記載の移動通信システム。   The radio base station sets a part or all of the increase count, the increase range, and the increase period so that the transmission start power value becomes higher as the acquired propagation state is better. The mobile communication system according to claim 1. 前記移動局が通知する前記伝搬環境に関する情報は、前記無線基地局が送信する同期検出表示チャネルの受信ができるまでに行ったパワーランピングの回数をカウントしたランピング回数であることを特徴とする請求項1又は請求項2に記載の移動通信システム。   The information on the propagation environment notified by the mobile station is a number of times of ramping obtained by counting the number of times of power ramping performed until the synchronization detection display channel transmitted by the radio base station can be received. The mobile communication system according to claim 1 or 2. 前記移動局が通知する伝搬環境に関する情報は、所定の下り共通チャネルにて測定した受信強度であることを特徴とする請求項1又は請求項2に記載の移動通信システム。   The mobile communication system according to claim 1 or 2, wherein the information on the propagation environment notified by the mobile station is a reception intensity measured on a predetermined downlink common channel. セルサーチを行った移動局と無線基地局との間で同期確立ができるまでの期間において下り初期送信電力制御を行う移動通信システムにおいて、前記無線基地局は、無線受信したランダムアクセスチャネルに含まれる前記移動局が挿入した伝搬環境に関する情報を上位の制御装置に有線伝送して伝搬状況及び前記移動局が同期確立時に用いる初期送信電力値を取得する工程と、取得した前記伝搬状況に基づき初期送信電力制御パラメータである増加回数、増加幅及び増加周期の各値を決定する工程と、取得した前記初期送信電力値と決定した前記初期送信電力制御パラメータの各値とに基づき前記移動局の送信開始電力値を決定する工程と、下り個別チャネルを用いて、まず前記送信開始電力値を無線送信し、その後、前記初期送信電力制御パラメータの各値に基づき前記移動局の送信電力値を漸増させ前記初期送信電力値に到達するように制御する工程と、を具備することを特徴とする下り初期送信電力制御方法。   In a mobile communication system that performs downlink initial transmission power control in a period until synchronization can be established between a mobile station that has performed cell search and a radio base station, the radio base station is included in a radio-received random access channel Information regarding propagation environment inserted by the mobile station is wired to an upper control device to acquire a propagation status and an initial transmission power value used when the mobile station establishes synchronization, and initial transmission based on the acquired propagation status The mobile station starts transmission based on the step of determining each value of the number of increases, the increase width, and the increase cycle, which are power control parameters, and the acquired initial transmission power value and each value of the determined initial transmission power control parameter A step of determining a power value, and using the downlink dedicated channel, first, the transmission start power value is wirelessly transmitted, and then the initial transmission power control Downlink initial transmission power control method characterized by gradually increasing the transmission power value of the mobile station based on the values of parameters comprises the the steps of controlling so as to reach the initial transmission power value.
JP2005103271A 2005-03-31 2005-03-31 Mobile communications system and method of controlling downlink initial transmission power Pending JP2006287489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103271A JP2006287489A (en) 2005-03-31 2005-03-31 Mobile communications system and method of controlling downlink initial transmission power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103271A JP2006287489A (en) 2005-03-31 2005-03-31 Mobile communications system and method of controlling downlink initial transmission power

Publications (1)

Publication Number Publication Date
JP2006287489A true JP2006287489A (en) 2006-10-19

Family

ID=37408934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103271A Pending JP2006287489A (en) 2005-03-31 2005-03-31 Mobile communications system and method of controlling downlink initial transmission power

Country Status (1)

Country Link
JP (1) JP2006287489A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091420A1 (en) * 2006-02-06 2007-08-16 Matsushita Electric Industrial Co., Ltd. Base station and communication system
JP2008167164A (en) * 2006-12-28 2008-07-17 Nec Corp Communication system, base station, communication method, and program
JP2008278268A (en) * 2007-04-27 2008-11-13 Nec Corp Control method and device of uplink access transmission power in radio communications system
JP2009296267A (en) * 2008-06-04 2009-12-17 Ntt Docomo Inc Mobile communication terminal device and transmission power setting method
JP2010508785A (en) * 2006-10-31 2010-03-18 クゥアルコム・インコーポレイテッド Random access for wireless communication
KR20100103485A (en) * 2007-11-01 2010-09-27 코닌클리케 필립스 일렉트로닉스 엔.브이. Improved power ramping for rach
JP2014017856A (en) * 2008-03-07 2014-01-30 Nec Corp Radio communication system, mobile station, base station, and radio communication method
US9832740B2 (en) 2015-01-05 2017-11-28 Fujitsu Limited Apparatus and method for correcting transmit power based on received signal strength from a base station
US10306678B2 (en) 2005-11-04 2019-05-28 Nec Corporation Wireless communication system and method of controlling a transmission power

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134520B2 (en) 2005-11-04 2021-09-28 Nec Corporation Wireless communication system and method of controlling a transmission power
US11672020B2 (en) 2005-11-04 2023-06-06 Nec Corporation Wireless communication system and method of controlling a transmission power
US10306678B2 (en) 2005-11-04 2019-05-28 Nec Corporation Wireless communication system and method of controlling a transmission power
US12127262B2 (en) 2005-11-04 2024-10-22 Nec Corporation Wireless communication system and method of controlling a transmission power
US10750545B2 (en) 2005-11-04 2020-08-18 Nec Corporation Wireless communication system and method of controlling a transmission power
WO2007091420A1 (en) * 2006-02-06 2007-08-16 Matsushita Electric Industrial Co., Ltd. Base station and communication system
JP2010508785A (en) * 2006-10-31 2010-03-18 クゥアルコム・インコーポレイテッド Random access for wireless communication
JP2012186830A (en) * 2006-10-31 2012-09-27 Qualcomm Inc Random access for wireless communication
JP2008167164A (en) * 2006-12-28 2008-07-17 Nec Corp Communication system, base station, communication method, and program
JP2008278268A (en) * 2007-04-27 2008-11-13 Nec Corp Control method and device of uplink access transmission power in radio communications system
JP2011503951A (en) * 2007-11-01 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Improved power ramping for RACH (PowerRamping)
KR20100103485A (en) * 2007-11-01 2010-09-27 코닌클리케 필립스 일렉트로닉스 엔.브이. Improved power ramping for rach
US9084212B2 (en) 2007-11-01 2015-07-14 Koninklijke Philips N.V. Power ramping for RACH
KR101588039B1 (en) * 2007-11-01 2016-01-25 코닌클리케 필립스 엔.브이. Improved power ramping for rach
US9883461B2 (en) 2007-11-01 2018-01-30 Koninklijke Philips N.V. Power ramping for RACH
US9591586B2 (en) 2008-03-07 2017-03-07 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2019115058A (en) * 2008-03-07 2019-07-11 日本電気株式会社 Random access transmission method and user apparatus
US9603103B2 (en) 2008-03-07 2017-03-21 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2017103819A (en) * 2008-03-07 2017-06-08 日本電気株式会社 Communication method and base station device
US12069737B2 (en) 2008-03-07 2024-08-20 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2016123101A (en) * 2008-03-07 2016-07-07 日本電気株式会社 Random access transmission method, and user equipment
US9986589B2 (en) 2008-03-07 2018-05-29 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2018137813A (en) * 2008-03-07 2018-08-30 日本電気株式会社 Random Access Transmission Method and User Equipment
US9338752B2 (en) 2008-03-07 2016-05-10 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
US9497712B2 (en) 2008-03-07 2016-11-15 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
US10356822B2 (en) 2008-03-07 2019-07-16 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
US10701736B2 (en) 2008-03-07 2020-06-30 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2015159573A (en) * 2008-03-07 2015-09-03 日本電気株式会社 Random access transmission method, radio communication device, and radio communication method
US11083024B2 (en) 2008-03-07 2021-08-03 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2014147135A (en) * 2008-03-07 2014-08-14 Nec Corp Radio communication system, mobile station, base station, reporting method, and acquisition method
US11665744B2 (en) 2008-03-07 2023-05-30 Nec Corporation Radio communication system, communication apparatus, radio communication network system and method therefor
JP2014017856A (en) * 2008-03-07 2014-01-30 Nec Corp Radio communication system, mobile station, base station, and radio communication method
JP2009296267A (en) * 2008-06-04 2009-12-17 Ntt Docomo Inc Mobile communication terminal device and transmission power setting method
US9832740B2 (en) 2015-01-05 2017-11-28 Fujitsu Limited Apparatus and method for correcting transmit power based on received signal strength from a base station

Similar Documents

Publication Publication Date Title
TWI475918B (en) Adaptive random access channel retransmission
USRE48326E1 (en) Method of transmitting and receiving radio access information in a wireless mobile communications system
US7239884B2 (en) Method for providing improved access times for a communication device
JP4542997B2 (en) Wireless communication apparatus and wireless communication method
JP6934525B2 (en) Random access methods, user equipment, and network devices
US6292471B1 (en) Power control for mobile wireless communication system
US9699808B2 (en) Apparatus, system, and method for access procedure enhancements
CN108617001B (en) Uplink data transmission method and device
CA2535931A1 (en) System and method for selecting a serving base station according to a drop of a mobile subscriber station in a broadband wireless access communication system
EP3952121A1 (en) Random access method and device, and storage medium
RU2701991C1 (en) Radio network node, wireless device and methods
KR20090002779A (en) Method and apparatus for controlling preamble transmission power in a mobile communication system
KR20000042502A (en) Method for controlling transmission power of mobile communication system
EP4184970A1 (en) Apparatuses and methods for discovery message formats distinction
JP2006287489A (en) Mobile communications system and method of controlling downlink initial transmission power
JP2012074784A (en) Initial access setting information generating device, initial access setting information generating method, initial access setting information generating program, and base station device
JP4723589B2 (en) Wireless network control device, communication system, and communication method
US20130064163A1 (en) Method for minimizing collisions of messages responsive to multi- or broadcast messages in a radio communications system
US20110034195A1 (en) Ranging method and device
JP6755383B2 (en) Special uplink subframe for enhanced mobility
WO2018202136A1 (en) Data transmission method and device
RU2815440C2 (en) Communication device and communication method for communication via improved direct communication line
JP4769334B1 (en) Wireless communication terminal device and wireless communication method
JPWO2019155586A1 (en) Wireless communication equipment, wireless communication systems, and wireless communication methods
AU6439299A (en) Precursive messaging protocol for initiating position location