JP2006009129A - Steel for vessel having excellent corrosion resistance - Google Patents
Steel for vessel having excellent corrosion resistanceInfo
- Publication number
- JP2006009129A JP2006009129A JP2004191759A JP2004191759A JP2006009129A JP 2006009129 A JP2006009129 A JP 2006009129A JP 2004191759 A JP2004191759 A JP 2004191759A JP 2004191759 A JP2004191759 A JP 2004191759A JP 2006009129 A JP2006009129 A JP 2006009129A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- corrosion resistance
- steel
- test
- test piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Abstract
Description
本発明は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶において、主要な構造材として用いられる船舶用耐食鋼に関するものであり、特に海水による塩分や恒温多湿に曝される環境下における耐食性に優れ、しかも石油系液体燃料タンクの素材として要求される耐食性にも優れた船舶用鋼材に関するものである。 The present invention relates to marine corrosion resistant steel used as a main structural material in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships, etc., particularly in environments exposed to salt and constant temperature and humidity due to seawater. The present invention relates to a marine steel having excellent corrosion resistance and excellent corrosion resistance required as a material for petroleum liquid fuel tanks.
上記各種船舶において主要な構造材(例えば、外板、バラストタンク、原油タンク等)として用いられている鋼材は、海水による塩分や恒温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。これまで行われている防食手段としては、(a)塗装や(b)電気防食等が従来からよく知られている。 Steel materials used as main structural materials (for example, outer plates, ballast tanks, crude oil tanks, etc.) in the above-mentioned various vessels are often corroded because they are exposed to seawater salt and constant temperature and humidity. Since such corrosion may cause marine accidents such as inundation and sinking, it is necessary to apply some anticorrosion means to the steel. Conventionally, (a) coating, (b) cathodic protection, and the like are well known as anticorrosion means used so far.
このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、内容されている石油系液体燃料の早期漏洩に繋がることになる。 Of these, in coatings represented by heavy coating, there is a high possibility that coating film defects exist, and the coating film may be damaged due to a collision or the like in the manufacturing process, so that the base steel material is often exposed. In such a steel exposed portion, the steel material corrodes locally and intensively, leading to early leakage of the petroleum-based liquid fuel contained therein.
一方、電気防食においては、海水中に完全に浸漬された部位に対しては、非常に有効であるが、大気中で海水飛沫を受ける部位などでは防食に必要な電気回路が形成されず、防食効果が十分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落して消失した場合には、直ちに激しい腐食が進行することがある。 On the other hand, in the anti-corrosion, it is very effective for the part completely immersed in the seawater. However, in the part that receives the seawater splash in the atmosphere, the electric circuit necessary for the anticorrosion is not formed, and the anticorrosion. The effect may not be fully demonstrated. In addition, when the galvanic anode for anticorrosion disappears due to abnormal consumption or dropping, severe corrosion may immediately proceed.
上記技術の他、鋼材自体の耐食性を向上させるものとして例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。また特許文献2には、鋼材の化学成分組成を適切なものとすることによって、塗膜寿命性を向上させた船舶用鋼材について開示されている。これらの技術では、従来に比べてある程度の耐食性は確保できるようになったといえる。 In addition to the above technique, for example, a technique as disclosed in Patent Document 1 has been proposed as a means for improving the corrosion resistance of the steel material itself. This technology discloses a corrosion-resistant steel for shipbuilding that has excellent corrosion resistance by appropriately adjusting the chemical composition of the steel material and can be used even without coating. Patent Document 2 discloses a marine steel material having an improved coating film life by making the chemical composition of the steel material appropriate. With these technologies, it can be said that a certain degree of corrosion resistance can be ensured as compared with the prior art.
しかしながら、より厳しい腐食環境下での耐食性については依然として十分なものとはいえず、更なる耐食性向上が要求されることになる。特に、異物と鋼材との接触部分、構造的な理由や防食塗膜の損傷部分等で形成される「すきま」部分における腐食(いわゆるすきま腐食)が顕著になり、寿命を低下させる場合があるが、これまで提案されている技術ではこうした部分における耐食性が不十分である。 However, the corrosion resistance in a more severe corrosive environment is still not sufficient, and further improvement in corrosion resistance is required. In particular, corrosion (so-called crevice corrosion) in the “clearance” portion formed at the contact portion between the foreign material and the steel material, the structural reason, or the damaged portion of the anticorrosion coating film, etc., becomes prominent and may reduce the service life. So far, the proposed techniques have insufficient corrosion resistance in these areas.
ところで、原油タンカーのタンク(石油系液体燃料タンク)における腐食は、鋼板表面に形成されるオイルコートの欠陥部分で顕著に進行し、この欠陥部分は運航時の原油の移動や船体の変形等のよって修復されたり、新たに形成されたりすると考えられる。このために、腐食箇所はある1箇所に集中することなく、鋼材のほぼ全面に亘って発生する。従って、石油系液体燃料タンクの素材として用いられる鋼材については、局部腐食が全面に進展する特殊な腐食環境での耐食性が良好であることが要求されることになる。また、こうした石油系液体燃料タンクにおいても上記のような「すきま腐食」が顕著に生じ、タンク寿命を低下させることがあることから、耐すきま腐食性にも優れていることが要求される。 By the way, corrosion in crude oil tanker tanks (petroleum liquid fuel tanks) proceeds remarkably at the defective part of the oil coat formed on the surface of the steel plate, and this defective part is caused by the movement of crude oil and deformation of the hull during operation. Therefore, it is considered that it is repaired or newly formed. For this reason, a corrosion location does not concentrate on one certain location, but generate | occur | produces over the substantially whole surface of steel materials. Therefore, the steel material used as the raw material for the petroleum-based liquid fuel tank is required to have good corrosion resistance in a special corrosive environment in which local corrosion progresses to the entire surface. Also, in such a petroleum-based liquid fuel tank, the above-mentioned “crevice corrosion” occurs remarkably and the life of the tank may be shortened, so that it is required to have excellent crevice corrosion resistance.
上記のような石油系液体燃料タンクの素材として、その耐食性を向上させたものとして、例えば特許文献3のような技術も提案されている。この技術では、化学成分組成を適切に調整することによって、液体燃料を貯蔵するタンクの素材として有用な耐食鋼が提案されている。この技術においては、全面腐食と共に「すきま腐食」のような局部腐食についても考慮されたものであり、その耐食性は向上したものといえる。しかしながら、こうした鋼材においても近年の要求に耐え得るだけの耐食性を具備したものとはいえない。
本発明は上記の様な事情に着目してなされたものであって、その目的は、塗装や電気防食を施さなくても実用化できる耐食性に優れた造船用鋼、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮し、しかも石油系液体燃料タンクに適用したときにおいても優れた耐食性を発揮することのできる造船用鋼材を提供することにある。 The present invention has been made by paying attention to the above-mentioned circumstances, and its purpose is to provide a shipbuilding steel excellent in corrosion resistance that can be put into practical use without being subjected to painting or anticorrosion, particularly durability against crevice corrosion. Shipbuilding capable of improving, exhibiting excellent durability against salt adhesion caused by seawater and corrosion due to wet environment, and also exhibiting excellent corrosion resistance when applied to petroleum liquid fuel tanks It is to provide steel for construction.
上記目的を達成することのできた本発明の造船用鋼材とは、C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.01〜2.0%、Mn:0.01〜2.0%、Al:0.005〜0.10%を夫々含有する他、Se:0.005〜0.50%を含有し、残部がFeおよび不可避的不純物からなる点に要旨を有するものである。 The steel for shipbuilding of the present invention that has achieved the above object is C: 0.01 to 0.30% (meaning of mass%, the same shall apply hereinafter), Si: 0.01 to 2.0%, Mn: In addition to containing 0.01 to 2.0%, Al: 0.005 to 0.10%, and Se: 0.005 to 0.50%, the balance being Fe and inevitable impurities. It has a gist.
また本発明の造船用鋼材においては、必要によって、(1)Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上、(2)La:0.0005〜0.15%、Ce:0.0005〜0.15%、Ca:0.0005〜0.015%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上、(3)Mo:0.01〜5.0%、(4)Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%、Te:0.01〜0.5%、よりなる群から選ばれる1種以上、(5)B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて造船用鋼材の特性が更に改善されることになる。 Further, in the steel material for shipbuilding of the present invention, (1) Cu: 0.01 to 5.0%, Cr: 0.01 to 5.0%, Co: 0.01 to 5.0%, Ni if necessary. : One or more selected from the group consisting of 0.01 to 5.0% and Ti: 0.005 to 0.20%, (2) La: 0.0005 to 0.15%, Ce: 0.0005 One or more selected from the group consisting of 0.15%, Ca: 0.0005 to 0.015% and Mg: 0.0005 to 0.015%, (3) Mo: 0.01 to 5.0%, (4) Sb: 0.01 to 0.5%, As: 0.01 to 0.5%, Sn: 0.01 to 0.5%, Bi: 0.01 to 0.5%, Te: 0 .01-0.5%, one or more selected from the group consisting of: (5) B: 0.0001-0.010%, V: 0.01-0.50% and Nb At least one member selected from the group consisting of from 0.003 to 0.50%, and the like is also effective to contain, so that the characteristics of shipbuilding steel materials according to the type of components to be contained are further improved.
本発明の造船用鋼材は、石油系液体燃料タンクの素材として用いられたときであっても、その腐食環境下において優れた耐食性を発揮するものとなる。 Even when the steel material for shipbuilding of the present invention is used as a material for a petroleum-based liquid fuel tank, it exhibits excellent corrosion resistance in a corrosive environment.
本発明の造船用鋼材においては、所定量のSeを含有させると共に、化学成分組成を適切に調整することによって、塗装および電気防食を施さなくても実用化できる耐食性に優れた造船用鋼が実現でき、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する造船用鋼材が実現でき、しかも石油系液体燃料タンクの素材として用いられたときであっても、その腐食環境下においても優れた耐食性を発揮するものとなる。こうした船舶用鋼材は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶における外板としてばかりでなく、バラストタンク、原油タンク等の素材として有用である。 In the steel for shipbuilding of the present invention, a steel for shipbuilding having excellent corrosion resistance that can be put into practical use without coating and cathodic protection is realized by containing a predetermined amount of Se and appropriately adjusting the chemical composition. In particular, it is possible to improve the durability against crevice corrosion, and to realize a steel material for shipbuilding that exhibits excellent durability against adhesion of salt caused by seawater and corrosion caused by a wet environment. Even when used as a raw material, excellent corrosion resistance is exhibited even in the corrosive environment. Such steel materials for ships are useful not only as outer plates in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships, but also as materials for ballast tanks, crude oil tanks, and the like.
本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、所定量のSeを含有させると共に、化学成分組成を適切に調整すれば、上記課題を解決することのできる造船用鋼材が実現できることを見出し、本発明を完成した。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that if a predetermined amount of Se is contained and the chemical composition is appropriately adjusted, a steel material for shipbuilding capable of solving the above-described problems can be realized, and the present invention has been completed.
本発明の鋼材においては、所定量のSeを含有させることが重要であり、この成分における各作用効果は後述するが、Seを含有させることによって耐食性が向上した理由は次のように考えることができた。 In the steel material of the present invention, it is important to contain a predetermined amount of Se, and each effect of this component will be described later. The reason why the corrosion resistance is improved by containing Se can be considered as follows. did it.
Seは腐食の溶解反応が起こっているサイトのpH低下を抑制して腐食反応を抑制して耐食性を向上させる作用を発揮するものである。こうしたSeを含有させることによって、局部的なpH変化が起こりにくくなるため、腐食均一性が向上する作用がある。単に、生成錆を緻密化・安定化させた場合には耐全面腐食性は高くなるが、その一方で局部腐食性が高まって腐食起点部でpH低下が起こり、局部pH低下部の腐食傾向(局部腐食)が高まるという傾向がある。こうした傾向に対して、Seを含有させることによって、このSeは局部腐食の起点となりやすい錆の欠陥部分に濃縮する傾向があるため、このような局部的pH低下に対して、pH低下抑制作用が大きいものとなると考えられる。こうした理由から、Seを含有させることによって腐食均一性および耐局部腐性が向上するものとなるが、こうした作用効果は、必要によって含有され生成錆を緻密化・安定化させる作用のあるCu,Ni,Tiと共存させることによって飛躍的に向上することになる。 Se exerts the action of suppressing the pH drop at the site where the dissolution reaction of corrosion occurs to suppress the corrosion reaction and improve the corrosion resistance. Inclusion of such Se makes it difficult for local pH changes to occur, and thus has an effect of improving corrosion uniformity. Simply, when the generated rust is densified and stabilized, the overall corrosion resistance is increased, but on the other hand, the local corrosion is increased and the pH is lowered at the corrosion starting point, and the corrosion tendency of the local pH lowered part ( There is a tendency for local corrosion) to increase. In contrast to such a tendency, by containing Se, Se tends to concentrate in a defective portion of rust that tends to be a starting point of local corrosion. It will be big. For these reasons, the inclusion of Se improves corrosion uniformity and local corrosion resistance. However, these functions and effects include Cu and Ni, which are contained if necessary and have the function of densifying and stabilizing the generated rust. , Ti can be improved dramatically by coexisting with Ti.
本発明の鋼材では、その鋼材としての基本的特性を満足させるために、C,Si,Mn,Al等の基本成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記Seによる作用効果と共に、次に示す。 In the steel material of the present invention, basic components such as C, Si, Mn, and Al need to be appropriately adjusted in order to satisfy the basic characteristics as the steel material. The reasons for limiting the ranges of these components will be described below together with the effects of Se.
C:0.01〜0.30%
Cは、材料の強度確保のために必要な元素である。船舶の構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させる必要がある。しかし、0.30%を超えて過剰に含有させると靱性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.30%とした。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.28%であり、より好ましくは0.26%以下とするのが良い。
C: 0.01 to 0.30%
C is an element necessary for ensuring the strength of the material. In order to obtain the minimum strength as a structural member of a ship, that is, about 400 MPa (depending on the thickness of the steel material used), it is necessary to contain 0.01% or more. However, if the content exceeds 0.30%, the toughness deteriorates. For these reasons, the C content range was set to 0.01 to 0.30%. In addition, the minimum with preferable C content is 0.02%, More preferably, it is good to set it as 0.04% or more. Moreover, the upper limit with preferable C content is 0.28%, More preferably, it is good to set it as 0.26% or less.
Si:0.01〜2.0%
Siは脱酸と強度確保のための必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると溶接性が劣化する。尚、Si含有量の好ましい下限は0.02%であり、より好ましくは0.05%以上とするのが良い。また、Si含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
Si: 0.01 to 2.0%
Si is a necessary element for deoxidation and securing strength, and the minimum strength as a structural member cannot be secured unless it is less than 0.01%. However, if the content exceeds 2.0%, the weldability deteriorates. In addition, the minimum with preferable Si content is 0.02%, More preferably, it is good to set it as 0.05% or more. Moreover, the upper limit with preferable Si content is 1.80%, It is good to set it as 1.60% or less more preferably.
Mn:0.01〜2.0%
MnもSiと同様に脱酸および強度確保のために必要であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.10%以上とするのが良い。また、Mn含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
Mn: 0.01 to 2.0%
Mn is also necessary for deoxidation and securing strength in the same manner as Si, and if it is less than 0.01%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable Mn content is 0.05%, It is good to set it as 0.10% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.80%, More preferably, it is good to set it as 1.60% or less.
Al:0.005〜0.10%
AlもSi、Mnと同様に脱酸および強度確保のために必要であり、0.005%に満たないと脱酸に効果がない。しかし、0.10%を超えて添加すると溶接性を害するため、Al添加量の範囲は0.005〜0.10%とした。尚、Al含有量の好ましい下限は0.010%であり、より好ましくは0.015%以上とするのが良い。また、Al含有量の好ましい上限は0.040%であり、より好ましくは0.050%以下とするのが良い。
Al: 0.005-0.10%
Al is also necessary for deoxidation and securing of strength in the same manner as Si and Mn, and if less than 0.005%, there is no effect on deoxidation. However, if added over 0.10%, the weldability is impaired, so the range of the amount of Al added is set to 0.005 to 0.10%. In addition, the minimum with preferable Al content is 0.010%, It is good to set it as 0.015% or more more preferably. Moreover, the upper limit with preferable Al content is 0.040%, It is good to set it as 0.050% or less more preferably.
Se:0.005〜0.50%
上述したように、Seは腐食の溶解反応が起こっているサイトのpH低下を抑制して腐食反応を抑制して耐食性を向上させる作用を発揮するものである。こうしたSeを含有させることによって、局部的なpH変化が起こりにくくなるため、腐食均一性が向上する作用がある。また、物質移動が制限されている局所的はpH低下が起こりやすい「すきま部」においては、上記した理由によってその効果(局部腐食抑制効果)が有効に発揮される。こうした環境で要求される耐食性を確保するためには、Seの含有量は0.005%以上とする必要がある。しかしながら、0.50%を超えて過剰に含有させると加工性と溶接性が劣化する。こうしたことからSe含有量は、0.005〜0.50%とした。尚、Se含有量の好ましい下限は0.006%であり、より好ましくは0.008%以上とするのが良い。また、Se含有量の好ましい上限は0.45%であり、より好ましくは0.40%以下とするのが良い。
Se: 0.005-0.50%
As described above, Se exerts an action of suppressing corrosion reduction by suppressing the pH drop of the site where the corrosion dissolution reaction occurs to improve the corrosion resistance. Inclusion of such Se makes it difficult for local pH changes to occur, and thus has an effect of improving corrosion uniformity. In addition, in the “gap portion” where the mass transfer is restricted and the pH is likely to decrease, the effect (local corrosion inhibition effect) is effectively exhibited for the reason described above. In order to ensure the corrosion resistance required in such an environment, the Se content needs to be 0.005% or more. However, if the content exceeds 0.50%, workability and weldability deteriorate. For these reasons, the Se content is set to 0.005 to 0.50%. In addition, the minimum with preferable Se content is 0.006%, More preferably, it is good to set it as 0.008% or more. Moreover, the upper limit with preferable Se content is 0.45%, More preferably, it is good to set it as 0.40% or less.
本発明の船舶用鋼材における基本成分は上記の通りであり、残部は鉄および不可避的不純物(例えば、P,S,O等)からなるものであるが、これら以外にも鋼材の特性を阻害しない程度の成分(例えば、Zr,N等)も許容できる。但し、これら許容成分は、その量が過剰になると靭性が劣化するので、0.1%程度以下に抑えるべきである。 The basic components in the marine steel of the present invention are as described above, and the balance is composed of iron and inevitable impurities (for example, P, S, O, etc.), but does not impair the properties of the steel other than these. Some components (eg, Zr, N, etc.) are acceptable. However, these allowable components should be suppressed to about 0.1% or less because their toughness deteriorates when the amount is excessive.
また、本発明の船舶用鋼材には、上記成分の他必要によって、(1)Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上、(2)La:0.0005〜0.15%、Ce:0.0005〜0.15%、Ca:0.0005〜0.015%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上、(3)Mo:0.01〜5.0%よりなる群から選ばれる1種以上、(4)Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%、Te:0.01〜0.5%、よりなる群から選ばれる1種以上、(5)B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて造船用鋼材の特性が更に改善されることになる。 Further, the marine steel of the present invention has (1) Cu: 0.01 to 5.0%, Cr: 0.01 to 5.0%, Co: 0.01 to 5 depending on the necessity in addition to the above components. One or more selected from the group consisting of 0.0%, Ni: 0.01 to 5.0% and Ti: 0.005 to 0.20%, (2) La: 0.0005 to 0.15%, Ce : One or more selected from the group consisting of 0.0005 to 0.15%, Ca: 0.0005 to 0.015% and Mg: 0.0005 to 0.015%, (3) Mo: 0.01 to One or more selected from the group consisting of 5.0%, (4) Sb: 0.01 to 0.5%, As: 0.01 to 0.5%, Sn: 0.01 to 0.5%, Bi: 0.01 to 0.5%, Te: 0.01 to 0.5%, one or more selected from the group consisting of: (5) B: 0.0001 to 0.010 , V: 0.01 to 0.50% and Nb: 0.001 to 0.50% selected from the group consisting of one or more, etc. are also effective, depending on the type of component to be included The characteristics of the steel for shipbuilding will be further improved.
Cu:0.01〜5.0%、Cr:0.01〜5.0%、Co:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上
Cu,Cr,Co,NiおよびTiは、いずれも耐食性向上に有効な元素である。このうちCu,CrおよびCoは、耐食性向上に大きく寄与する緻密な表面錆被膜を形成するのに有効な元素である。またCoは、高塩分環境において有効な元素である。これらの元素による効果を発揮させるためには、いずれも0.01%以上含有させることが好ましいが、過剰に含有させると溶接性や熱間加工性が劣化することから、5.0%以下とすることが好ましい。Cu,CrおよびCoを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は4.50%である。
Cu: 0.01-5.0%, Cr: 0.01-5.0%, Co: 0.01-5.0%, Ni: 0.01-5.0% and Ti: 0.005- One or more selected from the group consisting of 0.20% Cu, Cr, Co, Ni and Ti are all effective elements for improving corrosion resistance. Among these, Cu, Cr and Co are effective elements for forming a dense surface rust film that greatly contributes to the improvement of corrosion resistance. Co is an effective element in a high salinity environment. In order to exert the effect of these elements, it is preferable to contain 0.01% or more of all, but if contained excessively, weldability and hot workability deteriorate, so 5.0% or less. It is preferable to do. A more preferable lower limit when Cu, Cr and Co are contained is 0.05%, and a more preferable upper limit is 4.50%.
Niは耐食性向上に大きく寄与する緻密な表面錆被膜を安定化させるのに有効な元素であり、こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかしながら、Ni含有量が過剰になると溶接性や熱間加工性が劣化することから、5.0%以下とすることが好ましい。Niを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は4.50%である。 Ni is an element effective for stabilizing a dense surface rust film that greatly contributes to the improvement of corrosion resistance. In order to exert such an effect, it is preferably contained in an amount of 0.01% or more. However, if the Ni content is excessive, weldability and hot workability deteriorate, so 5.0% or less is preferable. The more preferable lower limit when Ni is contained is 0.05%, and the more preferable upper limit is 4.50%.
Tiは耐食性向上に大きく寄与する表面錆被膜を緻密化してその環境遮断性を向上させると共に、すきま内部における腐食を抑制して、耐すきま腐食性も向上させる元素である。こうした環境下で要求される耐食性を確保するためには、0.005%以上含有させることが好ましいが、0.20%を超えて過剰に含有させると加工性と溶接性を劣化させることになる。Tiを含有させるときのより好ましい下限は0.008%であり、より好ましい上限は0.15%である。 Ti is an element that densifies the surface rust coating, which greatly contributes to the improvement of corrosion resistance, improves its environmental barrier properties, suppresses corrosion inside the crevice, and improves crevice corrosion resistance. In order to ensure the corrosion resistance required in such an environment, it is preferable to contain 0.005% or more. However, if it exceeds 0.20%, workability and weldability are deteriorated. . The more preferable lower limit when Ti is contained is 0.008%, and the more preferable upper limit is 0.15%.
La:0.0005〜0.15%、Ce:0.0005〜0.15%、Ca:0.0005〜0.015%およびMg:0.0005〜0.015%よりなる群から選ばれる1種以上
これらの元素は、腐食によって溶解したFeイオンの加水分解によるpH低下を抑制する作用を有しており、またに必要によって含有されるCu等による錆緻密化を促進し、Seによる局所pH低下抑制作用を更に高める働きがある。こうした作用は、これらの元素の1種以上を0.0005%以上含有させることによって有効に発揮される。しかしながら、LaおよびCeについては、0.15%、CaおよびMgについては0.015%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。尚、La,Ceを含有させるときのより好ましい下限は0.0010%であり、より好ましい上限は0.10%である。またCa,Mgを含有させるときのより好ましい下限は0.0010%であり、より好ましい上限は0.010%である。
1 selected from the group consisting of La: 0.0005 to 0.15%, Ce: 0.0005 to 0.15%, Ca: 0.0005 to 0.015% and Mg: 0.0005 to 0.015% These elements more than seeds have the effect of suppressing pH decrease due to hydrolysis of Fe ions dissolved by corrosion, and promote rust densification by Cu or the like if necessary, and local pH by Se It has the function of further increasing the reduction suppressing effect. Such an effect is effectively exhibited by containing at least 0.0005% of one or more of these elements. However, if La and Ce are contained in excess of 0.15% and Ca and Mg in excess of 0.015%, workability and weldability are deteriorated. In addition, a more preferable lower limit when containing La and Ce is 0.0010%, and a more preferable upper limit is 0.10%. Moreover, a more preferable lower limit when Ca and Mg are contained is 0.0010%, and a more preferable upper limit is 0.010%.
Mo:0.01〜5.0%
Moは、腐食の均一性を高めて局部腐食による穴あきを抑制する作用がある。特にCu,Cr,Co等と同時に含有させることによって、顕著な均一腐食性向上作用が発揮される。こうした効果を発揮させるためには、Moは0.01%以上含有させることが好ましいが、過剰に含有させると溶接性が劣化することから、5.0%以下とすることが好ましい。Moを含有させるときのより好ましい下限は0.02%であり、より好ましい上限は4.50%である。
Mo: 0.01-5.0%
Mo has the effect of increasing the uniformity of corrosion and suppressing perforations due to local corrosion. In particular, by containing Cu, Cr, Co, etc. at the same time, a remarkable uniform corrosion improvement effect is exhibited. In order to exhibit these effects, Mo is preferably contained in an amount of 0.01% or more. However, if excessively contained, the weldability is deteriorated, so 5.0% or less is preferable. The more preferable lower limit when Mo is contained is 0.02%, and the more preferable upper limit is 4.50%.
Sb:0.01〜0.5%、As:0.01〜0.5%、Sn:0.01〜0.5%、Bi:0.01〜0.5%、Te:0.01〜0.5%よりなる群から選ばれる1種以上
これらの元素は、Cu等による錆緻密化作用やLa等によるpH低下作用を助長して耐食性を向上させる元素である。こうした作用を発揮させるためには、いずれも0.01%以上含有させることが好ましいは、過剰に含有させると加工性と溶接性が劣化することから、0.5%以下とすることが好ましい。これらの元素を含有させるときのより好ましい下限はいずれも0.02%であり、より好ましい上限は0.40%である。
Sb: 0.01 to 0.5%, As: 0.01 to 0.5%, Sn: 0.01 to 0.5%, Bi: 0.01 to 0.5%, Te: 0.01 to One or more elements selected from the group consisting of 0.5% are elements that enhance corrosion resistance by promoting rust densification by Cu or the like and pH lowering action by La or the like. In order to exert such an effect, it is preferable to contain 0.01% or more in any case. However, if excessively contained, workability and weldability deteriorate, so 0.5% or less is preferable. The more preferable lower limit when these elements are contained is 0.02%, and the more preferable upper limit is 0.40%.
B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上
船舶用鋼材では、適用する部位によってはより高強度化が必要な場合があるが、これらの元素は強度向上に必要な元素である。このうちBは、0.0001%以上含有させることによって焼入性が向上して強度向上に有効であるが、0.010%を超えて過剰に勧誘させると母材靭性が劣化するため好ましくない。Vは、0.01%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになるので好ましくない。Nbは、0.003%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになる。尚、これらの元素のより好ましい下限は、Bについては0.0003%、Vについては0.02%、Nbについては0.005%である。またより好ましい上限はBについては0.0090%、Vについては0.45%、Nbについては0.45%である。
In one or more marine steel materials selected from the group consisting of B: 0.0001 to 0.010%, V: 0.01 to 0.50%, and Nb: 0.003 to 0.50% , depending on the portion to be applied In some cases, higher strength is required, but these elements are necessary for strength improvement. Of these, B is contained in an amount of 0.0001% or more, which improves the hardenability and is effective in improving the strength. However, excessively soliciting exceeding 0.010% deteriorates the base material toughness, which is not preferable. . V is effective for improving the strength by containing 0.01% or more, but if it exceeds 0.50%, it is not preferable because it causes toughness deterioration of the steel material. Nb is effective for improving the strength by containing 0.003% or more, but if it exceeds 0.50% and it is contained excessively, the toughness of the steel will be deteriorated. More preferable lower limits of these elements are 0.0003% for B, 0.02% for V, and 0.005% for Nb. The more preferable upper limit is 0.0090% for B, 0.45% for V, and 0.45% for Nb.
本発明の造船用鋼材は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食などの他の防食方法と併用することも可能である。こうした防食塗装を施した場合には、後記実施例に示すように塗装膜自体の耐食性(塗装耐食性)も良好なものとなる。 The steel material for shipbuilding of the present invention basically exhibits excellent corrosion resistance even if it is not coated, but if necessary, the tar epoxy resin paint shown in the examples below, or other than that It can be used in combination with other anticorrosion methods such as heavy duty anticorrosion coating, zinc rich paint, shop primer, and anticorrosion. When such anticorrosion coating is applied, the corrosion resistance of the coating film itself (coating corrosion resistance) is also good as shown in the examples described later.
また本発明の鋼材では、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する造船用鋼材が実現できるが、石油系液体燃料タンクの素材として用いられたときであっても、その腐食環境下においても優れた耐食性を発揮するものとなる。 In addition, the steel material of the present invention can realize a steel material for shipbuilding that exhibits excellent durability against salt adhesion caused by seawater and corrosion due to a moist environment, but when used as a material for petroleum liquid fuel tanks. Even if it exists, it will exhibit excellent corrosion resistance even in the corrosive environment.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
実施例1
下記表1、2に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造および熱間圧延により各種鋼板を製作した。得られた鋼板を切断および表面研削を行って、最終的に100×100×25(mm)の大きさの試験片を作製した(試験片A)。試験片Aの外観形状を図1に示す。
Example 1
Steel materials having the chemical composition shown in the following Tables 1 and 2 were melted in a converter, and various steel plates were produced by continuous casting and hot rolling. The obtained steel plate was cut and subjected to surface grinding to finally produce a test piece having a size of 100 × 100 × 25 (mm) (test piece A). The external shape of the test piece A is shown in FIG.
また、図2に示すように20×20×5(mm)の小試験片4個を、100×100×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に5mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M4プラスチック製ねじで固定した。 Further, as shown in FIG. 2, four small test pieces of 20 × 20 × 5 (mm) are brought into contact with a large test piece of 100 × 100 × 25 (mm) (the same as the test piece A), A test piece B having a clearance was formed. The small test piece and the large test piece for forming the gap were steel materials having the same chemical composition, and the surface finish was the same as that of the test piece A. Then, a hole of 5 mmφ was formed in the center of the small test piece, and a screw hole was made on the base material side (large test piece side), and fixed with an M4 plastic screw.
本発明の鋼材では、防食塗装を併用する場合もあるが、何らかの原因で塗装に傷がついて素地の鋼材が露出した場合には、塗膜と素地鋼材のすきま部において腐食が顕著になることがある。そこで、防食塗装併用時の耐食性向上効果を検証するために、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片C(図3)も用いた。そして、試験片Cの片面には素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。 In the steel material of the present invention, anti-corrosion coating may be used in combination, but if the coating is damaged for some reason and the base steel material is exposed, corrosion may be significant in the gap between the coating film and the base steel material. is there. Therefore, in order to verify the effect of improving the corrosion resistance when used together with the anticorrosion coating, a test piece C (FIG. 3) on which the tar epoxy resin coating (undercoat: zinc rich primer) having an average thickness of 250 μm was applied to the entire surface was also used. Then, cut scratches (length: 100 mm, width: about 0.5 mm) reaching the substrate were formed on one side of the test piece C with a cutter knife.
前記表1、2に示した各化学成分組成の供試材について、試験片A、試験片Bおよび試験片Cを夫々5個ずつ用い腐食試験に供した。このときの腐食試験方法は次の通りである。 About the test material of each chemical component composition shown in the said Table 1, 2, the test piece A, the test piece B, and five test pieces C were used for the corrosion test, respectively. The corrosion test method at this time is as follows.
[腐食試験方法]
まず海洋環境を模擬して、海水噴霧、乾燥および湿潤を順次繰り返しによる複合サイクル腐食試験を行った。海水噴霧試験では、水平から60°の角度で傾けて供試材(各試験片A〜C)を試験槽内に設置し、35℃の人工海水(塩水)を霧状に噴霧させた。塩水の噴霧は常時連続して行った。このとき試験槽内において、水平に設置した面積80cm2の円形皿に1時間当たりに1.5±0.3mLの人工海水が任意の位置で採取されるような噴霧量に予め調整した。乾燥過程では、試験槽内の温度を50℃、湿度を50%RTに保持した。湿潤過程では、試験槽内の温度を60℃、湿度を98%に保持した。海水噴霧過程:2時間、乾燥過程:3時間、湿潤過程:3時間を1サイクルとして、これらを繰り返し行って、供試材の腐食を促進させた。トータルの試験時間は6ヶ月間とした。この腐食試験[以下、「腐食試験I」とする]では、上記試験片Aおよび試験片Bを夫々5個ずつを用いて評価した。
[Corrosion test method]
First, a marine environment was simulated, and a combined cycle corrosion test was performed by sequentially repeating seawater spraying, drying and wetting. In the seawater spray test, the specimen (each test piece A to C) was tilted at an angle of 60 ° from the horizontal, and was placed in a test tank, and 35 ° C artificial seawater (salt water) was sprayed in the form of a mist. Spraying of salt water was continuously performed. At this time, in the test tank, the spray amount was adjusted in advance so that 1.5 ± 0.3 mL of artificial seawater was collected at an arbitrary position per hour on a horizontally installed circular dish having an area of 80 cm 2 . In the drying process, the temperature in the test tank was maintained at 50 ° C. and the humidity at 50% RT. In the wetting process, the temperature in the test chamber was maintained at 60 ° C. and the humidity at 98%. Seawater spraying process: 2 hours, drying process: 3 hours, wetting process: 3 hours as one cycle, these were repeated to promote corrosion of the specimen. The total test time was 6 months. In this corrosion test [hereinafter referred to as “corrosion test I”], evaluation was performed using five test pieces A and five test pieces B, respectively.
ところで、バラストタンク内では、空荷時の海水注入時には電気防食を施された海水浸漬状態であるが、原油搭載時(海水なし)には高温多湿に曝されるという腐食環境である。また、外板の海面付近でも、海水浸漬時には電気防食により防食されるが、海上へ露出した場合には、電気防食が作用せず大気の湿潤腐食環境に曝されることになる。このような、海水中での電気防食と大気雰囲気との繰り返しによる腐食環境を模擬するために、人工海水中での陰極電解と湿潤とを繰り返す複合サイクルによる腐食試験も行った。 By the way, the ballast tank is in a corrosive environment in which it is immersed in seawater when it is in an unloaded state and is seawater-immersed, and is exposed to high temperatures and humidity when crude oil is loaded (without seawater). Further, even near the sea surface of the outer plate, it is protected by electrocorrosion when immersed in seawater. However, when it is exposed to the sea, it is exposed to the wet and corrosive environment of the atmosphere without being acted on by the anticorrosion. In order to simulate such a corrosive environment caused by repeated anti-corrosion in seawater and atmospheric atmosphere, a corrosion test was also conducted by a combined cycle in which cathodic electrolysis and wetting in artificial seawater were repeated.
人工海水中の電解では、温度:30℃の人工海水中に浸漬した各供試材の電極電位をポテンショスタットを用いて−800mV(銀/塩化銀電極基準)に保持した。このとき、対極は白金を、照合電極は銀/塩化銀電極を用いた。大気雰囲気としては、温度:60℃、湿度:95%RTの恒温恒湿雰囲気に保持した。人工海水中での陰極電解を1日間、大気雰囲気を1日間を1サイクルとして、これらを繰り返し行って、供試材の腐食を促進させた。トータルの試験時間は6ヶ月間とした。この腐食試験[以下、「腐食試験II」とする]では、上記試験片Aおよび試験片Cを夫々5個ずつを用いて評価した。
(1)試験片Aについては、試験前後の重量変化を平均板厚減少量D-ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さD-max(mm)を求め、平均板厚減少量[D-ave(mm)]で規格化して(即ち、D-max/D-aveを算出して)、腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物を除去してから行った。
(2)試験片Bについては、すきま部(接触面)の目視観察を行ってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、触針式三次元形状測定装置を用いて最大すきま腐食深さD-crev(mm)を測定した。
(3)塗装処理を施した試験片C(カット傷付き)については、試験後にカット傷を形成した面における塗膜膨れ面積の比率(膨れ面積率)を測定した。膨れ面積率は格子点法(格子間隔1mm)によって求めた。即ち、膨れの認められた格子点の数を全格子点数で除したものを膨れ面積率と定義して、試験片5個の平均値を求めた。また、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。
In electrolysis in artificial seawater, the electrode potential of each test material immersed in artificial seawater at a temperature of 30 ° C. was kept at −800 mV (silver / silver chloride electrode standard) using a potentiostat. At this time, platinum was used for the counter electrode, and a silver / silver chloride electrode was used for the reference electrode. The air atmosphere was maintained in a constant temperature and humidity atmosphere of temperature: 60 ° C. and humidity: 95% RT. The cathodic electrolysis in artificial seawater was repeated for 1 day and the atmospheric atmosphere for 1 day, which was repeated to promote corrosion of the specimen. The total test time was 6 months. In this corrosion test [hereinafter referred to as “corrosion test II”], the test piece A and the test piece C were evaluated using five pieces each.
(1) For test piece A, the weight change before and after the test is converted into the average thickness reduction D-ave (mm), the average value of the five test pieces is calculated, and the overall corrosivity of each specimen is calculated. Evaluated. Further, the maximum erosion depth D-max (mm) of the test piece A is obtained using a stylus type three-dimensional shape measuring apparatus, and normalized by the average thickness reduction amount [D-ave (mm)] (that is, D-max / D-ave was calculated) and corrosion uniformity was evaluated. In addition, the weight measurement and the plate thickness measurement after the test were performed after removing corrosion products such as iron rust by the cathodic electrolysis method [JIS K8284] in an aqueous solution of diammonium hydrogen citrate.
(2) For test piece B, the crevice portion (contact surface) was visually observed to check for crevice corrosion. If crevice corrosion was observed, the corrosion product was removed by the cathodic electrolysis method, The maximum crevice corrosion depth D-crev (mm) was measured using a stylus type three-dimensional shape measuring apparatus.
(3) About the test piece C (with cut flaws) which performed the coating process, the ratio (bulging area rate) of the coating film swollen area in the surface which formed the cut flaw after a test was measured. The swollen area ratio was determined by a lattice point method (lattice interval 1 mm). That is, an average value of five test pieces was obtained by defining a swelling area ratio by dividing the number of lattice points where swelling was observed by the total number of lattice points. In addition, the swollen width of the coating film in the direction perpendicular to the cut flaw was measured with calipers, and the maximum value of five test pieces was defined as the maximum swollen width.
上記耐全面腐食性(D-ave)、腐食均一性(D-max/D-ave)、耐すきま腐食性(D-crev)、塗装耐食性(膨れ面積率および最大膨れ幅)の評価基準は下記表3に示す通りである。腐食試験結果を下記表4、5に示す。 The evaluation criteria for the above general corrosion resistance (D-ave), corrosion uniformity (D-max / D-ave), crevice corrosion resistance (D-crev), and coating corrosion resistance (blowing area ratio and maximum swollen width) are as follows: As shown in Table 3. The corrosion test results are shown in Tables 4 and 5 below.
これらの結果から次のように考察できる。従来の耐食鋼相当材(JIS SMA490相当)であるNo.2のものや、Seの含有量が本発明で規定する下限値に満たないNo.3のものでは、従来鋼(C-Si-Mn鋼)のNo.1のものに比べて耐全面腐食性はやや改善しているが、その他の耐食性に関しては満足できるレベルは達成されていない。 These results can be considered as follows. No. 1 which is a conventional corrosion resistant steel equivalent material (equivalent to JIS SMA490). No. 2 or No. in which the Se content is less than the lower limit specified in the present invention. No. 3 of the conventional steel (C—Si—Mn steel) No. 3. Although the overall corrosion resistance is slightly improved as compared with the one, the other satisfactory levels of corrosion resistance are not achieved.
これに対して、Seを適性量含有させたもの(No.4〜41)では、Seによる耐食性向上効果によりいずれの耐食性も従来鋼(No.1)より優れ、特に耐すきま腐食性に優れた結果を示しており、造船用耐食鋼として好ましいことがわかる。 On the other hand, those containing Se in an appropriate amount (Nos. 4 to 41) are superior in corrosion resistance to conventional steel (No. 1) due to the effect of improving the corrosion resistance by Se, and particularly excellent in crevice corrosion resistance. The results are shown, and it can be seen that it is preferable as a corrosion-resistant steel for shipbuilding.
また、各種の耐食性向上元素を含有させることによって、鋼材の耐食性が更に向上していることが分かる。特に、CaやMgを含有させたもの(No.10,13,31等)では、腐食均一性の更なる向上が認められ、これらの元素の局所pH低下抑制作用が相乗的に作用したものと考えられた。またCu,Cr,NiまたはTiを添加した供試材では、特に塗装供試材の最大膨れ幅を低減させる効果が認められ(No.7,8,9等)、これらの元素の錆緻密化がカット部の錆安定化に作用して腐食進展を抑制したものと推察される。更に、SbやSn等を含有さすせることによって、耐食性が大幅に向上することが分かる(No.21,22等)。 Moreover, it turns out that the corrosion resistance of steel materials is further improving by containing various corrosion resistance improvement elements. In particular, in the case of containing Ca or Mg (No. 10, 13, 31 etc.), further improvement in corrosion uniformity was observed, and the local pH lowering inhibitory action of these elements acted synergistically. it was thought. In addition, in the test materials to which Cu, Cr, Ni or Ti is added, the effect of reducing the maximum swollen width of the painted test materials is recognized (No. 7, 8, 9 etc.), and rust densification of these elements. It is presumed that this acts on the rust stabilization of the cut part and suppresses the progress of corrosion. Furthermore, it turns out that corrosion resistance improves significantly by containing Sb, Sn, etc. (No. 21, 22, etc.).
実施例2
下記表6、7に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造および熱間圧延により各種鋼板を製作した。得られた鋼板を切断および表面研削を行って、最終的に300×300×25(mm)の大きさの試験片を作製した(試験片D)。試験片Dの外観形状を図4に示す。
Example 2
Steel materials having the chemical composition shown in Tables 6 and 7 below were melted in a converter, and various steel plates were produced by continuous casting and hot rolling. The obtained steel plate was cut and subjected to surface grinding to finally produce a test piece having a size of 300 × 300 × 25 (mm) (test piece D). The external shape of the test piece D is shown in FIG.
また、図5に示すように60×60×5(mm)の小試験片4個を、300×300×25(mm)の大試験片(前記試験片Dと同じもの)に接触させて、すきま部を形成した試験片Eを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Dと同じ表面研削とした。そして小試験片の中心に10mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M8プラスチック製ねじで固定した。 Further, as shown in FIG. 5, four small test pieces of 60 × 60 × 5 (mm) are brought into contact with a large test piece of 300 × 300 × 25 (mm) (the same as the test piece D), A test piece E in which a clearance was formed was produced. The small test piece and the large test piece for forming the gap were steel materials having the same chemical composition, and the surface finish was the same as that of the test piece D. Then, a 10 mmφ hole was formed in the center of the small test piece, and a screw hole was made on the base material side (large test piece side), and fixed with an M8 plastic screw.
更に、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片F(図6)も用いた。そして防食のための塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、試験片Fの片面には素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。 Further, a test piece F (FIG. 6) on which the entire surface was coated with a tar epoxy resin having an average thickness of 250 μm (undercoat: zinc rich primer) was also used. Then, in order to investigate the degree of corrosion progression when the base steel material is exposed due to scratches on the anticorrosion coating film, cut scratches (length: 100 mm, width: about 0) reaching the base on one side of the test piece F 0.5 mm) was formed with a cutter knife.
前記表6、7に示した各化学成分組成の供試材について、試験片D、試験片Eおよび試験片Fを夫々5個ずつ用い腐食試験に供した。このときの腐食試験方法(実船暴露試験)は次の通りである。 About the test material of each chemical component composition shown in the said Table 6, 7, the test piece D, the test piece E, and the test piece F were used for the corrosion test using 5 pieces each, respectively. The corrosion test method (actual ship exposure test) at this time is as follows.
[腐食試験方法]
作製した供試材(各試験片D〜F)を、VLCC原油タンカーの内面の底板、壁面および上甲板裏に取り付けて、5年間の通常運航の後、各供試材の腐食状況を調査した。底板および甲板裏には、試験片DおよびEを5個ずつ、壁面には試験片DおよびFを5個ずつ暴露した。
[Corrosion test method]
The prepared specimens (each test piece D to F) were attached to the inner bottom plate, wall surface and upper deck of the VLCC crude oil tanker, and after 5 years of normal operation, the corrosion status of each specimen was investigated. . Five test pieces D and E were exposed on the bottom plate and the back of the deck, and five test pieces D and F were exposed on the wall surface.
5年間の暴露後に、試験片Dについては、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物の除去を行った。また、試験片Eについても、すきま形成用の小試験片を取り外し、同様の方法で腐食生成物の除去を行った。
(1)試験片Dについては、試験前後の重量変化を平均板厚減少量D-ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Dの最大侵食深さD-max(mm)を求め、平均板厚減少量[D-ave(mm)]で規格化して(即ち、D-max/D-aveを算出して)、腐食均一性を評価した。
(2)試験片Eについては、触針式三次元形状測定装置を用いて大試験片側の最大すきま腐食深さD-crev(mm)を測定した。
(3)塗装処理を施した試験片F(カット傷付き)については、カット傷に垂直方向の塗膜膨れ幅(mm))をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。
After exposure for 5 years, the test piece D was subjected to removal of corrosion products such as iron rust by a cathodic electrolysis method in diammonium hydrogen citrate aqueous solution [JIS K8284]. For the test piece E, the small test piece for forming the gap was removed, and the corrosion products were removed by the same method.
(1) For test piece D, the weight change before and after the test is converted to the average thickness reduction D-ave (mm), the average value of the five test pieces is calculated, and the overall corrosivity of each specimen is calculated. Evaluated. Further, the maximum erosion depth D-max (mm) of the test piece D is obtained by using a stylus type three-dimensional shape measuring apparatus, and normalized by the average thickness reduction amount [D-ave (mm)] (that is, D-max / D-ave was calculated) and corrosion uniformity was evaluated.
(2) For specimen E, the maximum crevice corrosion depth D-crev (mm) on the large specimen side was measured using a stylus type three-dimensional shape measuring device.
(3) For test piece F (with cut flaws) that had been subjected to coating treatment, the swollen width (mm) of the coating film perpendicular to the cut flaw was measured with a caliper, and the maximum value of the five test pieces was the maximum swollen width Defined.
上記耐全面腐食性(平均板減少量:D-ave)、腐食均一性(D-max/D-ave)、耐すきま腐食性(D-crev)、塗装耐食性(最大膨れ幅)の評価基準は下記表8に示す通りである。腐食試験結果を下記表9、10に示す。 Evaluation criteria for the above general corrosion resistance (average plate reduction: D-ave), corrosion uniformity (D-max / D-ave), crevice corrosion resistance (D-crev), and coating corrosion resistance (maximum swollen width) It is as shown in Table 8 below. The results of the corrosion test are shown in Tables 9 and 10 below.
これらの結果から次のように考察できる。従来の耐食鋼(No.2〜4)では、従来鋼のNo.1のものに比べて耐全面腐食性と腐食均一性はやや改善しているが、耐すきま腐食性や塗装耐食性については従来鋼レベルであり耐食鋼としては不十分である。また、Seを少量含有させたNo.5のものでは、耐すきま腐食性がやや改善されているが、Se含有量が本発明で規定する下限値に満たないので十分な効果が発揮されていないことが分かる。 These results can be considered as follows. In conventional corrosion resistant steels (Nos. 2 to 4), conventional steel Nos. Although the overall corrosion resistance and the corrosion uniformity are slightly improved as compared with those of No. 1, the crevice corrosion resistance and paint corrosion resistance are at the conventional steel level, which is insufficient as a corrosion resistant steel. In addition, No. containing a small amount of Se. In the case of No. 5, the crevice corrosion resistance is slightly improved, but it can be seen that a sufficient effect is not exhibited because the Se content is less than the lower limit defined in the present invention.
これに対して、Seを適性量含有させたもの(No.6〜50)では、Seによる耐食性向上効果によりいずれの耐食性も従来鋼(No.1)より優れ、特に耐すきま腐食性に優れた結果を示しており、造船用耐食鋼として好ましいことがわかる。特に、各種の耐食性向上元素(Cu,Cr,Co,Ni,Ti等)を含有させることによって、耐全面腐食性および腐食均一性に加えて、耐すきま腐食性や塗装耐食性も大きく向上していることが分かる。このような耐食性改善効果は、Seによる局所的pH低下抑制効果に上記元素による効果が相乗的に作用したものと推察される。 On the other hand, in the case of containing an appropriate amount of Se (No. 6 to 50), any corrosion resistance is superior to that of the conventional steel (No. 1) due to the effect of improving the corrosion resistance by Se, and particularly excellent in crevice corrosion resistance. The results are shown, and it can be seen that it is preferable as a corrosion-resistant steel for shipbuilding. In particular, the inclusion of various corrosion resistance improving elements (Cu, Cr, Co, Ni, Ti, etc.) greatly improves crevice corrosion resistance and paint corrosion resistance in addition to overall corrosion resistance and corrosion uniformity. I understand that. Such a corrosion resistance improvement effect is presumed that the effect of the above elements acts synergistically on the local pH lowering suppression effect of Se.
またLa,Ce等を適量含有させた供試材(No.14,15,18〜27等)では底板の耐すきま腐食性の更なる向上に効果が認められ、Ca,Mgを適量含有させた供試材(No.16,17,19〜27等)は壁面での塗装耐食性が大幅に向上していることが分かる。このような効果は、La,Ce,Ca,Mg等が、Cu,Cr,Ni,Tiによる錆緻密化を促進し、Seによる局所pH低下抑制作用を助長したものと推察される。 In addition, in the test materials (No. 14, 15, 18 to 27, etc.) containing an appropriate amount of La, Ce, etc., an effect was found to further improve the crevice corrosion resistance of the bottom plate, and an appropriate amount of Ca, Mg was contained. It can be seen that the test materials (No. 16, 17, 19 to 27, etc.) have significantly improved coating corrosion resistance on the wall surface. Such an effect is presumed that La, Ce, Ca, Mg, etc. promoted the rust densification by Cu, Cr, Ni, Ti and promoted the local pH lowering suppressing action by Se.
Moを適量含有させることも壁面の腐食均一性向上に効果を発揮するものであり(例えば、No.31,34,35等)、この元素による錆緻密化作用の均一化が作用したものと考えられる。 Inclusion of an appropriate amount of Mo is also effective for improving the corrosion uniformity of the wall surface (for example, No. 31, 34, 35, etc.), and it is considered that the rust densification action by this element was made uniform. It is done.
更に、Sb,As,Sn,BiあるいはTe等を含有させることによって、耐全面腐食性が大幅に向上することが明らかであり(No.37〜40等)、これらの元素が上述の各元素の錆緻密化やpH緩和作用を助長した結果と推察される。 Further, it is clear that the inclusion of Sb, As, Sn, Bi, Te or the like significantly improves the overall corrosion resistance (No. 37 to 40, etc.), and these elements are the above-mentioned elements. This is presumed to be the result of promoting rust densification and pH relaxation.
以上のように、本発明鋼はオイルコート欠陥部での局部腐食、構造的なすきま部でのすきま腐食、或いは塗膜傷部での腐食に対して優れた耐食性を発揮するものであり、原油タンク耐食鋼として好適に用いることができるものである。 As described above, the steel of the present invention exhibits excellent corrosion resistance against local corrosion at oil coating defects, crevice corrosion at structural gaps, or corrosion at coating scratches. It can be suitably used as tank corrosion resistant steel.
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191759A JP4393291B2 (en) | 2004-06-29 | 2004-06-29 | Marine steel with excellent corrosion resistance |
TW094120015A TWI281505B (en) | 2004-06-29 | 2005-06-16 | Excellent corrosion resistance steel for ship |
KR1020050053784A KR20060049650A (en) | 2004-06-29 | 2005-06-22 | Steel for shipbuilding, excellent in corrosion-resistance |
CNB2005100814937A CN100494452C (en) | 2004-06-29 | 2005-06-29 | Corrosion resistance excellent steel for ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191759A JP4393291B2 (en) | 2004-06-29 | 2004-06-29 | Marine steel with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006009129A true JP2006009129A (en) | 2006-01-12 |
JP4393291B2 JP4393291B2 (en) | 2010-01-06 |
Family
ID=35776689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004191759A Expired - Fee Related JP4393291B2 (en) | 2004-06-29 | 2004-06-29 | Marine steel with excellent corrosion resistance |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4393291B2 (en) |
CN (1) | CN100494452C (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191730A (en) * | 2006-01-17 | 2007-08-02 | Nippon Steel Corp | Steel for welded structure with excellent seawater corrosion resistance, and corrosion protection method for ship ballast tank using the same |
JP2007197759A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Steel material superior in haz toughness in high-heat-input welding and corrosion resistance for ship |
JP2007197762A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Marine steel with excellent corrosion resistance and fatigue crack propagation resistance |
JP2007197757A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | High tensile strength marine steel having excellent corrosion resistance and base metal toughness |
JP2007197760A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic |
JP2007197761A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Marine steel with excellent corrosion resistance and brittle crack arrest behavior |
JP2010185108A (en) * | 2009-02-12 | 2010-08-26 | Jfe Steel Corp | Corrosion-resistant steel material for ship, and method of manufacturing the same |
WO2011021714A1 (en) * | 2009-08-19 | 2011-02-24 | Jfeスチール株式会社 | Corrosion evaluation test method for ballast tank on ship |
CN103352180A (en) * | 2013-06-23 | 2013-10-16 | 浙江浦宁不锈钢有限公司 | Manufacturing method of carbon alloy |
CN104589501A (en) * | 2015-02-09 | 2015-05-06 | 张鑫杰 | Mixing drum of concrete mixer with alloy material |
JP2019109061A (en) * | 2017-12-15 | 2019-07-04 | 日本製鉄株式会社 | Corrosion test method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101880816A (en) * | 2010-06-18 | 2010-11-10 | 仪征市华诚内燃机配件厂 | Chilled tappet |
JP5771011B2 (en) * | 2011-01-18 | 2015-08-26 | 株式会社神戸製鋼所 | Steel for structural members with excellent corrosion resistance |
JP5662894B2 (en) * | 2011-07-27 | 2015-02-04 | 株式会社神戸製鋼所 | Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers |
JP5814864B2 (en) * | 2012-06-12 | 2015-11-17 | 株式会社神戸製鋼所 | Corrosion resistant steel for ships |
CN103848588A (en) * | 2012-11-29 | 2014-06-11 | 刘平 | Novel steel magnesium composite board |
CN103451543A (en) * | 2013-09-10 | 2013-12-18 | 内蒙古包钢钢联股份有限公司 | Oil casing for ultra-deep well and production technology thereof |
CN103952627B (en) * | 2014-05-16 | 2016-08-24 | 武汉钢铁(集团)公司 | A kind of high-elongation low yield strength ratio ferrite weathering steel and production method |
CN104789905A (en) * | 2015-04-21 | 2015-07-22 | 苏州统明机械有限公司 | High-toughness ferrous alloy coating for thermal spraying and preparation method thereof |
CN105063488B (en) * | 2015-07-30 | 2017-11-07 | 中国电力科学研究院 | It is a kind of for acid resistance soil corrosion steel of grounded screen and preparation method thereof |
CN105821314A (en) * | 2016-04-26 | 2016-08-03 | 江苏省沙钢钢铁研究院有限公司 | Corrosion-resistant steel plate for bottom plate in cargo oil tank of crude oil carrier and production method thereof |
CN105734424A (en) * | 2016-05-09 | 2016-07-06 | 周常 | Alloy material for offshore drilling platform freshwater cooling system and preparation method thereof |
CN106005946A (en) * | 2016-06-23 | 2016-10-12 | 巢湖鹏远金属焊管有限公司 | Belt conveyor carrier roller |
CN105970086B (en) * | 2016-06-29 | 2018-04-20 | 巢湖鹏远金属焊管有限公司 | High-strength corrosion-resisting straight welded pipe steel |
CN114086074B (en) * | 2021-11-24 | 2022-11-25 | 马鞍山钢铁股份有限公司 | High-corrosion-resistance cold forging steel for ocean island reef and production method and heat treatment method thereof |
CN115584439B (en) * | 2022-10-10 | 2023-07-04 | 本钢板材股份有限公司 | Special anti-corrosion steel plate for wood drying equipment and preparation method thereof |
-
2004
- 2004-06-29 JP JP2004191759A patent/JP4393291B2/en not_active Expired - Fee Related
-
2005
- 2005-06-29 CN CNB2005100814937A patent/CN100494452C/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191730A (en) * | 2006-01-17 | 2007-08-02 | Nippon Steel Corp | Steel for welded structure with excellent seawater corrosion resistance, and corrosion protection method for ship ballast tank using the same |
JP4579837B2 (en) * | 2006-01-25 | 2010-11-10 | 株式会社神戸製鋼所 | Marine steel with excellent corrosion resistance and brittle fracture characteristics |
JP2007197757A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | High tensile strength marine steel having excellent corrosion resistance and base metal toughness |
JP4616181B2 (en) * | 2006-01-25 | 2011-01-19 | 株式会社神戸製鋼所 | Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding |
JP4659626B2 (en) * | 2006-01-25 | 2011-03-30 | 株式会社神戸製鋼所 | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness |
JP2007197761A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Marine steel with excellent corrosion resistance and brittle crack arrest behavior |
JP2007197762A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Marine steel with excellent corrosion resistance and fatigue crack propagation resistance |
JP4579838B2 (en) * | 2006-01-25 | 2010-11-10 | 株式会社神戸製鋼所 | Marine steel with excellent corrosion resistance and brittle crack stopping properties |
JP2007197759A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Steel material superior in haz toughness in high-heat-input welding and corrosion resistance for ship |
JP2007197760A (en) * | 2006-01-25 | 2007-08-09 | Kobe Steel Ltd | Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic |
JP2010185108A (en) * | 2009-02-12 | 2010-08-26 | Jfe Steel Corp | Corrosion-resistant steel material for ship, and method of manufacturing the same |
JP2011064678A (en) * | 2009-08-19 | 2011-03-31 | Jfe Steel Corp | Vessel ballast tank corrosion testing method |
EP2469265A4 (en) * | 2009-08-19 | 2015-07-01 | Jfe Steel Corp | Corrosion evaluation test method for ballast tank on ship |
WO2011021714A1 (en) * | 2009-08-19 | 2011-02-24 | Jfeスチール株式会社 | Corrosion evaluation test method for ballast tank on ship |
CN103352180A (en) * | 2013-06-23 | 2013-10-16 | 浙江浦宁不锈钢有限公司 | Manufacturing method of carbon alloy |
CN103352180B (en) * | 2013-06-23 | 2015-11-25 | 浙江浦宁不锈钢有限公司 | A kind of manufacture method of carbon alloy |
CN104589501A (en) * | 2015-02-09 | 2015-05-06 | 张鑫杰 | Mixing drum of concrete mixer with alloy material |
JP7043823B2 (en) | 2017-12-15 | 2022-03-30 | 日本製鉄株式会社 | Corrosion test method |
JP2019109061A (en) * | 2017-12-15 | 2019-07-04 | 日本製鉄株式会社 | Corrosion test method |
Also Published As
Publication number | Publication date |
---|---|
JP4393291B2 (en) | 2010-01-06 |
CN1715432A (en) | 2006-01-04 |
CN100494452C (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4393291B2 (en) | Marine steel with excellent corrosion resistance | |
JP4868916B2 (en) | Marine steel with excellent corrosion resistance | |
JP5763929B2 (en) | Marine steel with excellent corrosion resistance | |
JP2006037201A (en) | Marine steel material superior in corrosion resistance | |
JP2015151571A (en) | Coated steel excellent in corrosion resistance | |
JP4616181B2 (en) | Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding | |
JP4579837B2 (en) | Marine steel with excellent corrosion resistance and brittle fracture characteristics | |
JP3923962B2 (en) | Marine steel with excellent corrosion resistance | |
JP2009209412A (en) | Steel for ship having excellent corrosion resistance | |
JP4119941B2 (en) | Marine steel with excellent crevice corrosion resistance in humid air | |
JP2007069265A (en) | Welded joint and welded structure excellent in corrosion resistance | |
JP2012149296A (en) | Steel produce for structural member with superior corrosion resistance | |
JP4444924B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP4763468B2 (en) | Marine steel with excellent corrosion resistance and fatigue crack growth resistance | |
JP2007197757A (en) | High tensile strength marine steel having excellent corrosion resistance and base metal toughness | |
JP4502948B2 (en) | Marine steel with excellent corrosion resistance and brittle fracture characteristics | |
JP2006118002A (en) | Steel material for oil tank | |
JP4728129B2 (en) | Marine steel with excellent corrosion resistance and toughness | |
JP4476928B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP4786995B2 (en) | Marine steel with excellent weldability and corrosion resistance | |
JP4476926B2 (en) | Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding | |
JP4476927B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP5143707B2 (en) | Marine steel | |
JP5284769B2 (en) | Steel tank for crude oil tank with excellent corrosion resistance, upper deck of crude oil tank and crude oil tanker | |
KR20060048364A (en) | Steel excellent in corrosion-resistance, for shipbuilding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091013 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4393291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |