JP2005223867A - Stepup pulse power supply using magnetic energy regeneration switch - Google Patents
Stepup pulse power supply using magnetic energy regeneration switch Download PDFInfo
- Publication number
- JP2005223867A JP2005223867A JP2004059769A JP2004059769A JP2005223867A JP 2005223867 A JP2005223867 A JP 2005223867A JP 2004059769 A JP2004059769 A JP 2004059769A JP 2004059769 A JP2004059769 A JP 2004059769A JP 2005223867 A JP2005223867 A JP 2005223867A
- Authority
- JP
- Japan
- Prior art keywords
- current
- load
- voltage
- pulse
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008929 regeneration Effects 0.000 title abstract 3
- 238000011069 regeneration method Methods 0.000 title abstract 3
- 239000003990 capacitor Substances 0.000 claims abstract description 30
- 230000001172 regenerating effect Effects 0.000 claims description 20
- 238000004146 energy storage Methods 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims 2
- 238000007599 discharging Methods 0.000 abstract 2
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本発明は、パルス電流を供給する電源に関する。 The present invention relates to a power supply for supplying a pulse current.
電流の電磁力を応用して駆動されるソレノイド、電磁弁、モータにおいて、電源よりの電圧を半導体スイッチでオン・オフすることで駆動コイルを励磁し電流をインダクタンスLと抵抗Rの回路と見なせる負荷に流すことで磁界を発生させ、コイルに磁気エネルギーを蓄積するとともに駆動力が生じ外部に機械的仕事をさせていた。 In a solenoid, solenoid valve, or motor driven by applying electromagnetic force of current, a load that excites the drive coil by turning on and off the voltage from the power source with a semiconductor switch, and the current can be regarded as a circuit of inductance L and resistance R The magnetic field is generated by flowing in the magnetic field, the magnetic energy is accumulated in the coil, and the driving force is generated to perform mechanical work outside.
しかし、インダクタンスがあるため電流の立ち上がりに時間がかかり、それを早くするためには高電圧を印加する必要がある。これをフォーシング電圧と呼んで、定常電流を維持する電圧の数倍を印加して、これをフォーシング率と呼んでいる。また仕事が終わり、その駆動力を維持し、静止している場合、例えば電流は3分の1で維持されれば良いのだが、電流を下げる手段が無いため、電流は流れ続けると消費電力の増加と、コイルの発熱の問題が生じる。 However, since there is an inductance, it takes time for the current to rise, and in order to speed it up, it is necessary to apply a high voltage. This is called the forcing voltage, and several times the voltage that maintains the steady current is applied, and this is called the forcing rate. In addition, when the work is finished and the driving force is maintained and the motor is stationary, for example, the current should be maintained at one third, but since there is no means for reducing the current, if the current continues to flow, Increases and coil heating problems arise.
インダクタンスのある回路にパルス電流を流す電源において、電流遮断時にインダクタンスに流れる電流のエネルギーをコンデンサに蓄積して、次回投入時に、コンデンサのエネルギーを負荷に回生して電流を回復することができる磁気エネルギー回生スイッチがある。必要な電圧をインダクタンスから自動的に回生して発生するので、設備の電源は抵抗分の電圧だけあればよいので、電源の力率が良いと言える。回生電圧が蓄積されるのは次回以降で、電圧は回路の時定数程度の時間で徐々に上昇するため、パルスの初回は期待される効果が不十分であった。
発明が解決しようとする問題点は、電流の電磁力を応用して駆動されるソレノイド、電磁弁、モータなどにおいて、始動時の駆動力は、静止摩擦を超えることに加えて慣性モーメントに抗する力を出す必要があり、電磁駆動システムとして、スピード、効率とともに重要な設計で、電源にも始動時の駆動力の増大が求められている。 The problem to be solved by the invention is that, in a solenoid, a solenoid valve, a motor, etc. driven by applying an electromagnetic force of current, the driving force at the start time exceeds the static friction and resists the moment of inertia. As an electromagnetic drive system, it is important to design speed and efficiency as an electromagnetic drive system, and the power source is also required to increase the drive force at the start.
直流電源に磁気エネルギー回生スイッチを直列にして、インダクタンスのある負荷を駆動する際に、回生電圧がインダクタンス分の電圧を補償するのは、パルスの次回目以降であり、初回は、コンデンサに蓄積された電圧が加わり電源電圧の2倍であった。 When a magnetic energy regenerative switch is connected in series with a DC power supply to drive a load with inductance, the regenerative voltage compensates the voltage for the inductance after the next pulse, and the first time is accumulated in the capacitor. It was twice the power supply voltage.
本発明は、磁気エネルギー回生スイッチを電源と負荷の中間に直列接続して、遮断投入の際に電流エネルギーを蓄積して負荷に回生を無損失で行なうが、小電流をオン・オフすると電源からのエネルギーが流れ込みコンデンサの直流電圧が際限なく上昇する効果を利用したものである。 In the present invention, a magnetic energy regenerative switch is connected in series between the power source and the load, and current energy is accumulated at the time of turning on and off, and the load is regenerated without loss. This utilizes the effect that the energy flows in and the DC voltage of the capacitor rises indefinitely.
磁気エネルギー回生スイッチは電源とインダクタンスのある負荷との間に直列接続して、超短パルスによるオン・オフ動作を繰り返すことにより蓄積コンデンサに電圧が蓄積されて最終的に負荷の抵抗を電源電圧で割った電流値になるまで、コンデンサ電圧は電源電圧より高く上昇する現象を利用したものである。 The magnetic energy regenerative switch is connected in series between the power supply and the load with inductance, and the voltage is stored in the storage capacitor by repeating the on / off operation by ultrashort pulses, and finally the resistance of the load is changed to the power supply voltage. The capacitor voltage takes advantage of the phenomenon that the capacitor voltage rises higher than the power supply voltage until the divided current value is reached.
その理由は、ここで磁気エネルギー回生スイッチのオンのパルス時間幅を小さくすると、電流が上昇する間にオフになってしまい抵抗で決まる電流値になることができない。 The reason for this is that if the pulse time width of turning on the magnetic energy regenerative switch is made small here, the magnetic energy regenerative switch is turned off while the current rises, and the current value determined by the resistance cannot be obtained.
すると抵抗で決まる電流値になるまで蓄積コンデンサの電圧はさらに上昇をすることになり、ここでは従来、磁気エネルギー回生スイッチの役割を蓄積コンデンサが電流の磁気エネルギーを吸収し、そして放電するという役割から、力率を1に補償するための電圧を自動発生する力率改善装置として考えられる。 Then, the voltage of the storage capacitor further increases until the current value determined by the resistance is reached. Here, conventionally, the role of the magnetic energy regenerative switch is that the storage capacitor absorbs the magnetic energy of the current and discharges it. It can be considered as a power factor correction device that automatically generates a voltage for compensating the power factor to 1.
すなわち、磁気エネルギー回生スイッチは短時間のオンパルスを連続して発生すると負荷のインダクタンスと抵抗にわずかな電流パルスが流れて、オフにより蓄積コンデンサには電圧が上昇するがこのとき、電源からのエネルギーが流れ込む。 In other words, when the magnetic energy regenerative switch continuously generates a short on-pulse, a slight current pulse flows through the inductance and resistance of the load, and the voltage increases in the storage capacitor due to the off-state. Flows in.
フライバック方式の電圧上昇回路の動作に似ているがフライバック方式はコイルの励磁に電源電圧以上の電圧は印加されないが、この方法は回路に直列にスイッチがあり、蓄積コンデンサの電圧が電源電圧とともに回路の電流を上昇させるのに加わり、電圧が貯まるにしたがってますます電圧の上昇が加速される。 Similar to the operation of a flyback voltage raising circuit, the flyback method does not apply a voltage higher than the power supply voltage to the coil excitation, but this method has a switch in series with the circuit and the voltage of the storage capacitor is the power supply voltage. At the same time, it increases the current in the circuit, and as the voltage accumulates, the voltage rise is increasingly accelerated.
発生した電圧が次回のパルス発生に使われてますます発生電圧が増加するフィードフォワード効果、ブートストラップ(靴紐を引っ張りながら空を歩く方法として有名なブートストラップ)回路になっている。 The generated voltage is used for the next pulse generation. It has a feed-forward effect in which the generated voltage increases, and a bootstrap (a bootstrap famous as a method of walking in the sky while pulling a shoelace) circuit.
電源と負荷の間に直列接続された磁気エネルギー回生スイッチを、システムの待機時間に連続的に短いオンパルス列をスイッチに与えて、しかも負荷はそれでは動かない程度の電流で徐々に蓄積コンデンサに電圧を上昇させる。その後、負荷となる電磁駆動装置を実際に動かしたいときに、長いオンパルスを与えることでコンデンサの放電の大きな電流が負荷に流れ、コンデンサの電圧がゼロになったあとは電源電圧で決まる定常電流が流れる。コンデンサの放電電流により大きな駆動力が得られ、その後定常の駆動力になる。 A magnetic energy regenerative switch connected in series between the power supply and the load is applied to the switch with a short on-pulse train continuously during the system standby time, and the load gradually applies a voltage to the storage capacitor with a current that does not move. Raise. After that, when you want to actually move the electromagnetic drive device that becomes the load, applying a long on-pulse causes a large discharge current of the capacitor to flow to the load, and after the capacitor voltage becomes zero, the steady current determined by the power supply voltage is Flowing. A large driving force is obtained by the discharge current of the capacitor, and then a steady driving force is obtained.
一般の電磁駆動力は始動時大きなものが要求され以後はそれより低いものが多いので、磁気エネルギー回生スイッチによる始動電流が得られので、定常電流は維持の駆動力に対応した低電流になるものを用意しておけば、それだけ消費電力の削減と駆動コイルの発熱量削減になる。 Since general electromagnetic driving force is required to be large at the time of starting and is often lower than that after that, starting current by magnetic energy regenerative switch can be obtained, so steady current becomes low current corresponding to the driving force of maintenance If it prepares, it will reduce the power consumption and the heat generation amount of the drive coil.
図1に実施例をしめすが、直流電圧電源1が電磁リレー2を駆動する回路に直列の磁気回生スイッチ3が挿入され、スイッチとなっている。制御回路4は、半導体スイッチにオン・オフのゲート信号を発生する。実施例の場合はオンパルスを図1に示すように短パルスの列を連続的に出しておく。 FIG. 1 shows an embodiment, in which a DC
短パルスの連続で蓄積コンデンサには電源電圧の数倍の電圧が蓄積されるが、十分電圧が発生したところで、長パルスに切り替えることにより、電流値は上昇してコンデンサは放電するとともに負荷にも大きな電流が流れて大きな駆動力が発生する。 The storage capacitor accumulates several times the power supply voltage in a continuous short pulse, but when sufficient voltage is generated, switching to the long pulse causes the current value to rise and the capacitor to discharge and load the load. A large current flows and a large driving force is generated.
図1は電源電圧5Vで負荷のインダクタンス1mH、抵抗5オームを負荷とした場合の実施例を示す。磁気エネルギー回生スイッチは、電流が一方向であるので、方極はダイオード33で代用でき、P−MOSFET31を使用する場合は、外付けのダイオードが省かれる利点があるが、IGBTやGTOのような逆導通半導体スイッチにダイオードを外付けしても良い。短いオンパルス列は30マイクロ秒で周波数は10kHzである。 FIG. 1 shows an embodiment in which the load is 1 mH and the resistance is 5 ohms with a power supply voltage of 5 V. In the magnetic energy regenerative switch, since the current is unidirectional, the diode can be substituted for the
この回路の計算機によるシミュレーション計算した結果を図2に示すが、蓄積コンデンサ100マイクロファラッドに電圧が45m秒で15V付近まで上昇する。電圧が十分目標まで上がったところで15マイクロ秒だった短いオンパルスを長い10ミリ秒にするとコンデンサが全放電し、従来に較べてピーク2.5倍の大きな電流が負荷に流れることがわかる。 FIG. 2 shows the result of the simulation calculation by the computer of this circuit, and the voltage rises to about 15 V in the storage capacitor 100 microfarad in 45 milliseconds. It can be seen that when the short on-pulse, which was 15 microseconds when the voltage has sufficiently increased to the target, is changed to 10 milliseconds long, the capacitor is fully discharged, and a current that is 2.5 times larger than the conventional current flows to the load.
放電が終わると電流は電圧と抵抗で決まる値である約1Aになって、パルスが終わるまで続く。長パルス導通が終わると短パルス連続導通モードになり、再びコンデンサの充電が行なわれる。 When the discharge ends, the current becomes about 1 A, which is a value determined by the voltage and resistance, and continues until the pulse ends. When the long pulse conduction ends, the short pulse continuous conduction mode is set, and the capacitor is charged again.
負荷のインダクタンスと抵抗がこの動作に不十分の場合、図3に示すように追加インダクタンスと追加スイッチP−MOSFET3を追加することでさらに効果を増すことができる。スイッチはコンデンサの充電時にオンされ、放電時にはオフするように制御される。 If the inductance and resistance of the load are insufficient for this operation, the effect can be further increased by adding an additional inductance and an additional switch P-
これにより、負荷のインダクタンスと抵抗のどのような場合でも、コンデンサの充電時間や充電電圧を決めるパルス幅、間隔を決めることができて、効果的である。 As a result, in any case of the inductance and resistance of the load, the pulse width and interval for determining the charging time and charging voltage of the capacitor can be determined, which is effective.
図4に計算機によるシミュレーション計算の結果を示すが、短パルス連続による電圧は50Vまで上昇し、長パルス放電によるピーク電流は Aまで上昇している。 FIG. 4 shows the result of the simulation calculation by the computer. The voltage due to the continuous short pulse rises to 50 V, and the peak current due to the long pulse discharge rises to A.
パルス駆動の電磁力利用機器に応用すると始動時の引っ張り力の増大、回転力の増大に利用可能であるが、実施例2のように構成すれば、負荷はどのような場合でも、電源電圧よりはるかに高い電圧を印加することができるので、放電応用電源などの始動の最初に高電圧が必要な機器をスイッチという簡単な構成で駆動することができる。 When applied to an apparatus using pulsed electromagnetic force, it can be used to increase the pulling force at the start and increase the rotational force. However, if configured as in the second embodiment, the load can be determined from the power supply voltage in any case. Since a much higher voltage can be applied, a device that requires a high voltage at the beginning of starting, such as a discharge applied power supply, can be driven with a simple configuration called a switch.
リレー回路の駆動電源とすれば、供給電圧を下げても、十分な動作スピードが得られるので消費電力を削減することができる。 If the power supply for the relay circuit is used, even if the supply voltage is lowered, sufficient operation speed can be obtained, so that power consumption can be reduced.
10 昇圧パルス電源
20 直流電圧源
30 磁気エネルギー回生スイッチ
31 半導体スイッチ(P−MOSFET)
32 磁気エネルギー蓄積コンデンサ
33 ダイオード
40 制御手段
50 負荷のインダクタンス
60 負荷の抵抗
70 追加インダクタンス
71 追加半導体スイッチ(P−MOSFET)10 Boost
32 Magnetic
Claims (2)
該パルス電源は、電圧源と負荷と直列に接続される磁気エネルギー回生スイッチとスイッチをオン/オフ制御するゲートに信号をおくる制御手段を備えて、負荷動作休止期間中に弱い電流の短時間通電を繰り返すことによって、磁気エネルギー回生スイッチのエネルギー蓄積コンデンサに高電圧を発生、負荷の動作時には発生した電圧を一機に通電をすることを特徴とする、昇圧機能付きパルス電源装置A magnetic power regenerative switch that supplies a pulse current to an inductive load is connected in series, and is a pulse power source that is used as a supply current to the inductive load that switches the current,
The pulse power supply comprises a magnetic energy regenerative switch connected in series with a voltage source and a load, and a control means for sending a signal to a gate for on / off control of the switch, so that a weak current is energized for a short time during a load operation pause period. By repeating the above, a high voltage is generated in the energy storage capacitor of the magnetic energy regenerative switch, and the generated voltage is energized as a unit during the operation of the load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004059769A JP2005223867A (en) | 2004-02-03 | 2004-02-03 | Stepup pulse power supply using magnetic energy regeneration switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004059769A JP2005223867A (en) | 2004-02-03 | 2004-02-03 | Stepup pulse power supply using magnetic energy regeneration switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005223867A true JP2005223867A (en) | 2005-08-18 |
Family
ID=34999131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004059769A Pending JP2005223867A (en) | 2004-02-03 | 2004-02-03 | Stepup pulse power supply using magnetic energy regeneration switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005223867A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008044512A1 (en) | 2006-10-05 | 2008-04-17 | Tokyo Institute Of Technology | Power supply for induction heating |
WO2008106546A3 (en) * | 2007-02-27 | 2008-10-23 | Stangenes Ind Inc | High voltage pulsed power supply using solid state switches with voltage cell isolation |
JP2009095160A (en) * | 2007-10-10 | 2009-04-30 | Mitsubishi Electric Corp | Power converter |
GB2455569A (en) * | 2007-12-14 | 2009-06-17 | Renium Ltd | An electromagnetic actuator remotely controlled and powered via a telephone line |
US7554221B2 (en) | 2004-05-04 | 2009-06-30 | Stangenes Industries, Inc. | High voltage pulsed power supply using solid state switches with droop compensation |
WO2010067467A1 (en) * | 2008-12-12 | 2010-06-17 | 三菱電機株式会社 | Power conversion device |
WO2010113218A1 (en) * | 2009-04-01 | 2010-10-07 | 三菱電機株式会社 | Power conversion apparatus |
US7898113B2 (en) | 2002-08-19 | 2011-03-01 | MERTHTech, Inc. | Pulse power supply device |
WO2012176338A1 (en) * | 2011-06-24 | 2012-12-27 | 株式会社MERSTech | Electrical power conversion device, electrical power conversion control device, electrical power conversion method, and program |
CN103490661A (en) * | 2013-09-12 | 2014-01-01 | 复旦大学 | All-solid-state high voltage pulse current source with positive and negative pulse output |
US8754549B2 (en) | 2008-07-24 | 2014-06-17 | Mitsubishi Electric Corporation | Power conversion device |
CN106160562A (en) * | 2015-04-13 | 2016-11-23 | 中南大学 | A kind of numerical control pulse power source system for solenoid excitation |
-
2004
- 2004-02-03 JP JP2004059769A patent/JP2005223867A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7898113B2 (en) | 2002-08-19 | 2011-03-01 | MERTHTech, Inc. | Pulse power supply device |
US7919887B2 (en) | 2002-08-19 | 2011-04-05 | Merstech, Inc. | High repetitous pulse generation and energy recovery system |
US7554221B2 (en) | 2004-05-04 | 2009-06-30 | Stangenes Industries, Inc. | High voltage pulsed power supply using solid state switches with droop compensation |
US7550876B2 (en) | 2004-05-04 | 2009-06-23 | Stangenes Industries, Inc. | High voltage pulsed power supply using solid state switches with voltage cell isolation |
WO2008044512A1 (en) | 2006-10-05 | 2008-04-17 | Tokyo Institute Of Technology | Power supply for induction heating |
US7974113B2 (en) | 2006-10-05 | 2011-07-05 | Tokyo Institute Of Technology | Electric power unit for induction heating |
WO2008106546A3 (en) * | 2007-02-27 | 2008-10-23 | Stangenes Ind Inc | High voltage pulsed power supply using solid state switches with voltage cell isolation |
JP2009095160A (en) * | 2007-10-10 | 2009-04-30 | Mitsubishi Electric Corp | Power converter |
GB2455569B (en) * | 2007-12-14 | 2010-02-17 | Renium Ltd | Electro-mechanical actuator |
GB2455569A (en) * | 2007-12-14 | 2009-06-17 | Renium Ltd | An electromagnetic actuator remotely controlled and powered via a telephone line |
US8754549B2 (en) | 2008-07-24 | 2014-06-17 | Mitsubishi Electric Corporation | Power conversion device |
DE112009001793B4 (en) * | 2008-07-24 | 2020-08-13 | Mitsubishi Electric Corporation | Power conversion device |
WO2010067467A1 (en) * | 2008-12-12 | 2010-06-17 | 三菱電機株式会社 | Power conversion device |
JP5254357B2 (en) * | 2008-12-12 | 2013-08-07 | 三菱電機株式会社 | Power converter |
US8659924B2 (en) | 2008-12-12 | 2014-02-25 | Mitsubishi Electric Corporation | Power conversion apparatus |
CN102379081B (en) * | 2009-04-01 | 2014-03-05 | 三菱电机株式会社 | Power conversion apparatus |
CN102379081A (en) * | 2009-04-01 | 2012-03-14 | 三菱电机株式会社 | Power conversion apparatus |
US9197126B2 (en) | 2009-04-01 | 2015-11-24 | Mitsubishi Electric Corporation | Power converting apparatus |
WO2010113218A1 (en) * | 2009-04-01 | 2010-10-07 | 三菱電機株式会社 | Power conversion apparatus |
WO2012176338A1 (en) * | 2011-06-24 | 2012-12-27 | 株式会社MERSTech | Electrical power conversion device, electrical power conversion control device, electrical power conversion method, and program |
CN103490661A (en) * | 2013-09-12 | 2014-01-01 | 复旦大学 | All-solid-state high voltage pulse current source with positive and negative pulse output |
CN106160562A (en) * | 2015-04-13 | 2016-11-23 | 中南大学 | A kind of numerical control pulse power source system for solenoid excitation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9314291B2 (en) | RF surgical generator and method for driving an RF surgical generator | |
JP4359855B2 (en) | Solenoid valve drive circuit and solenoid valve | |
JP4573197B2 (en) | Solenoid valve drive control device | |
US8008898B2 (en) | Switching regulator with boosted auxiliary winding supply | |
JP2005223867A (en) | Stepup pulse power supply using magnetic energy regeneration switch | |
JP2009526392A (en) | Solenoid drive circuit | |
JP2000083374A (en) | Switching regulator | |
JP2002101645A (en) | Voltage booster switching power supply | |
EP1592027A2 (en) | Switch mode gun driver and method | |
US9806249B2 (en) | Methods and systems for applying charge to a piezoelectric element | |
RU2398247C1 (en) | Pulsed drive of electromagnetic seismic source | |
JP5075775B2 (en) | Power supply for pulse laser | |
JP6446340B2 (en) | Electromagnetic device driving apparatus and vehicle | |
US20240428973A1 (en) | Regenerative solenoid drive arrangement | |
JPH0855720A (en) | Dc-operated switch controller | |
RU2262764C1 (en) | High-speed electromagnetic operating mechanism of switching device | |
KR102282353B1 (en) | A low power energy conversion apparatus for a triboelectric nanogenerator | |
JPH10252930A (en) | Solenoid valve drive device | |
JP5190857B2 (en) | Piezoelectric element driving device | |
JP4206637B2 (en) | Discharge lamp lighting device | |
JP3477351B2 (en) | Thyratron drive circuit | |
RU41537U1 (en) | FAST ELECTROMAGNETIC ACTUATOR SWITCHING UNIT | |
JP2001215573A (en) | Stroboscope charging circuit | |
JP6463595B2 (en) | Pulse motor drive circuit | |
JPH10225104A (en) | Dc-dc converter |