[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005223867A - Stepup pulse power supply using magnetic energy regeneration switch - Google Patents

Stepup pulse power supply using magnetic energy regeneration switch Download PDF

Info

Publication number
JP2005223867A
JP2005223867A JP2004059769A JP2004059769A JP2005223867A JP 2005223867 A JP2005223867 A JP 2005223867A JP 2004059769 A JP2004059769 A JP 2004059769A JP 2004059769 A JP2004059769 A JP 2004059769A JP 2005223867 A JP2005223867 A JP 2005223867A
Authority
JP
Japan
Prior art keywords
current
load
voltage
pulse
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004059769A
Other languages
Japanese (ja)
Inventor
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004059769A priority Critical patent/JP2005223867A/en
Publication of JP2005223867A publication Critical patent/JP2005223867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply of a large pulse current which increases a starting current by generating a voltage higher than a power supply voltage in a charge storing capacitor and discharging it, using a magnetic energy regeneration switch. <P>SOLUTION: When a magnetic energy regeneration switch is driven with a continued on-pulse string which a pulse width is narrowed so as to supply a minor pulse current to a load with inductance connected to a power supply in series, during quiescent time of the load, a voltage develops and is stored in the charge storing capacitor. When the voltage is fully stepped up, a large current pulse is generated by driving the switch with a long on-pulse of the switch and discharging from the capacitor to the load quickly, and large power is obtained at the time of starting a device driven by electromagnetic force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パルス電流を供給する電源に関する。  The present invention relates to a power supply for supplying a pulse current.

電流の電磁力を応用して駆動されるソレノイド、電磁弁、モータにおいて、電源よりの電圧を半導体スイッチでオン・オフすることで駆動コイルを励磁し電流をインダクタンスLと抵抗Rの回路と見なせる負荷に流すことで磁界を発生させ、コイルに磁気エネルギーを蓄積するとともに駆動力が生じ外部に機械的仕事をさせていた。  In a solenoid, solenoid valve, or motor driven by applying electromagnetic force of current, a load that excites the drive coil by turning on and off the voltage from the power source with a semiconductor switch, and the current can be regarded as a circuit of inductance L and resistance R The magnetic field is generated by flowing in the magnetic field, the magnetic energy is accumulated in the coil, and the driving force is generated to perform mechanical work outside.

しかし、インダクタンスがあるため電流の立ち上がりに時間がかかり、それを早くするためには高電圧を印加する必要がある。これをフォーシング電圧と呼んで、定常電流を維持する電圧の数倍を印加して、これをフォーシング率と呼んでいる。また仕事が終わり、その駆動力を維持し、静止している場合、例えば電流は3分の1で維持されれば良いのだが、電流を下げる手段が無いため、電流は流れ続けると消費電力の増加と、コイルの発熱の問題が生じる。  However, since there is an inductance, it takes time for the current to rise, and in order to speed it up, it is necessary to apply a high voltage. This is called the forcing voltage, and several times the voltage that maintains the steady current is applied, and this is called the forcing rate. In addition, when the work is finished and the driving force is maintained and the motor is stationary, for example, the current should be maintained at one third, but since there is no means for reducing the current, if the current continues to flow, Increases and coil heating problems arise.

インダクタンスのある回路にパルス電流を流す電源において、電流遮断時にインダクタンスに流れる電流のエネルギーをコンデンサに蓄積して、次回投入時に、コンデンサのエネルギーを負荷に回生して電流を回復することができる磁気エネルギー回生スイッチがある。必要な電圧をインダクタンスから自動的に回生して発生するので、設備の電源は抵抗分の電圧だけあればよいので、電源の力率が良いと言える。回生電圧が蓄積されるのは次回以降で、電圧は回路の時定数程度の時間で徐々に上昇するため、パルスの初回は期待される効果が不十分であった。
特許公開2000−358359
In a power supply that sends a pulse current to a circuit with inductance, magnetic energy that can store the energy of the current that flows in the inductance when the current is cut off in the capacitor and recover the current by regenerating the capacitor energy to the load the next time it is turned on There is a regenerative switch. Since the necessary voltage is automatically regenerated from the inductance, it can be said that the power source of the equipment has only a voltage corresponding to the resistance, so that the power factor of the power source is good. The regenerative voltage is accumulated after the next time, and the voltage gradually rises in a time equivalent to the time constant of the circuit. Therefore, the expected effect is insufficient at the first pulse.
Patent Publication 2000-358359

発明が解決しようとする問題点は、電流の電磁力を応用して駆動されるソレノイド、電磁弁、モータなどにおいて、始動時の駆動力は、静止摩擦を超えることに加えて慣性モーメントに抗する力を出す必要があり、電磁駆動システムとして、スピード、効率とともに重要な設計で、電源にも始動時の駆動力の増大が求められている。  The problem to be solved by the invention is that, in a solenoid, a solenoid valve, a motor, etc. driven by applying an electromagnetic force of current, the driving force at the start time exceeds the static friction and resists the moment of inertia. As an electromagnetic drive system, it is important to design speed and efficiency as an electromagnetic drive system, and the power source is also required to increase the drive force at the start.

直流電源に磁気エネルギー回生スイッチを直列にして、インダクタンスのある負荷を駆動する際に、回生電圧がインダクタンス分の電圧を補償するのは、パルスの次回目以降であり、初回は、コンデンサに蓄積された電圧が加わり電源電圧の2倍であった。  When a magnetic energy regenerative switch is connected in series with a DC power supply to drive a load with inductance, the regenerative voltage compensates the voltage for the inductance after the next pulse, and the first time is accumulated in the capacitor. It was twice the power supply voltage.

本発明は、磁気エネルギー回生スイッチを電源と負荷の中間に直列接続して、遮断投入の際に電流エネルギーを蓄積して負荷に回生を無損失で行なうが、小電流をオン・オフすると電源からのエネルギーが流れ込みコンデンサの直流電圧が際限なく上昇する効果を利用したものである。  In the present invention, a magnetic energy regenerative switch is connected in series between the power source and the load, and current energy is accumulated at the time of turning on and off, and the load is regenerated without loss. This utilizes the effect that the energy flows in and the DC voltage of the capacitor rises indefinitely.

磁気エネルギー回生スイッチは電源とインダクタンスのある負荷との間に直列接続して、超短パルスによるオン・オフ動作を繰り返すことにより蓄積コンデンサに電圧が蓄積されて最終的に負荷の抵抗を電源電圧で割った電流値になるまで、コンデンサ電圧は電源電圧より高く上昇する現象を利用したものである。  The magnetic energy regenerative switch is connected in series between the power supply and the load with inductance, and the voltage is stored in the storage capacitor by repeating the on / off operation by ultrashort pulses, and finally the resistance of the load is changed to the power supply voltage. The capacitor voltage takes advantage of the phenomenon that the capacitor voltage rises higher than the power supply voltage until the divided current value is reached.

その理由は、ここで磁気エネルギー回生スイッチのオンのパルス時間幅を小さくすると、電流が上昇する間にオフになってしまい抵抗で決まる電流値になることができない。  The reason for this is that if the pulse time width of turning on the magnetic energy regenerative switch is made small here, the magnetic energy regenerative switch is turned off while the current rises, and the current value determined by the resistance cannot be obtained.

すると抵抗で決まる電流値になるまで蓄積コンデンサの電圧はさらに上昇をすることになり、ここでは従来、磁気エネルギー回生スイッチの役割を蓄積コンデンサが電流の磁気エネルギーを吸収し、そして放電するという役割から、力率を1に補償するための電圧を自動発生する力率改善装置として考えられる。  Then, the voltage of the storage capacitor further increases until the current value determined by the resistance is reached. Here, conventionally, the role of the magnetic energy regenerative switch is that the storage capacitor absorbs the magnetic energy of the current and discharges it. It can be considered as a power factor correction device that automatically generates a voltage for compensating the power factor to 1.

すなわち、磁気エネルギー回生スイッチは短時間のオンパルスを連続して発生すると負荷のインダクタンスと抵抗にわずかな電流パルスが流れて、オフにより蓄積コンデンサには電圧が上昇するがこのとき、電源からのエネルギーが流れ込む。  In other words, when the magnetic energy regenerative switch continuously generates a short on-pulse, a slight current pulse flows through the inductance and resistance of the load, and the voltage increases in the storage capacitor due to the off-state. Flows in.

フライバック方式の電圧上昇回路の動作に似ているがフライバック方式はコイルの励磁に電源電圧以上の電圧は印加されないが、この方法は回路に直列にスイッチがあり、蓄積コンデンサの電圧が電源電圧とともに回路の電流を上昇させるのに加わり、電圧が貯まるにしたがってますます電圧の上昇が加速される。  Similar to the operation of a flyback voltage raising circuit, the flyback method does not apply a voltage higher than the power supply voltage to the coil excitation, but this method has a switch in series with the circuit and the voltage of the storage capacitor is the power supply voltage. At the same time, it increases the current in the circuit, and as the voltage accumulates, the voltage rise is increasingly accelerated.

発生した電圧が次回のパルス発生に使われてますます発生電圧が増加するフィードフォワード効果、ブートストラップ(靴紐を引っ張りながら空を歩く方法として有名なブートストラップ)回路になっている。  The generated voltage is used for the next pulse generation. It has a feed-forward effect in which the generated voltage increases, and a bootstrap (a bootstrap famous as a method of walking in the sky while pulling a shoelace) circuit.

電源と負荷の間に直列接続された磁気エネルギー回生スイッチを、システムの待機時間に連続的に短いオンパルス列をスイッチに与えて、しかも負荷はそれでは動かない程度の電流で徐々に蓄積コンデンサに電圧を上昇させる。その後、負荷となる電磁駆動装置を実際に動かしたいときに、長いオンパルスを与えることでコンデンサの放電の大きな電流が負荷に流れ、コンデンサの電圧がゼロになったあとは電源電圧で決まる定常電流が流れる。コンデンサの放電電流により大きな駆動力が得られ、その後定常の駆動力になる。  A magnetic energy regenerative switch connected in series between the power supply and the load is applied to the switch with a short on-pulse train continuously during the system standby time, and the load gradually applies a voltage to the storage capacitor with a current that does not move. Raise. After that, when you want to actually move the electromagnetic drive device that becomes the load, applying a long on-pulse causes a large discharge current of the capacitor to flow to the load, and after the capacitor voltage becomes zero, the steady current determined by the power supply voltage is Flowing. A large driving force is obtained by the discharge current of the capacitor, and then a steady driving force is obtained.

一般の電磁駆動力は始動時大きなものが要求され以後はそれより低いものが多いので、磁気エネルギー回生スイッチによる始動電流が得られので、定常電流は維持の駆動力に対応した低電流になるものを用意しておけば、それだけ消費電力の削減と駆動コイルの発熱量削減になる。  Since general electromagnetic driving force is required to be large at the time of starting and is often lower than that after that, starting current by magnetic energy regenerative switch can be obtained, so steady current becomes low current corresponding to the driving force of maintenance If it prepares, it will reduce the power consumption and the heat generation amount of the drive coil.

図1に実施例をしめすが、直流電圧電源1が電磁リレー2を駆動する回路に直列の磁気回生スイッチ3が挿入され、スイッチとなっている。制御回路4は、半導体スイッチにオン・オフのゲート信号を発生する。実施例の場合はオンパルスを図1に示すように短パルスの列を連続的に出しておく。  FIG. 1 shows an embodiment, in which a DC regenerative switch 3 is inserted into a circuit in which a DC voltage power source 1 drives an electromagnetic relay 2 to form a switch. The control circuit 4 generates an on / off gate signal for the semiconductor switch. In the case of the embodiment, as shown in FIG. 1, a series of short pulses are continuously output as on pulses.

短パルスの連続で蓄積コンデンサには電源電圧の数倍の電圧が蓄積されるが、十分電圧が発生したところで、長パルスに切り替えることにより、電流値は上昇してコンデンサは放電するとともに負荷にも大きな電流が流れて大きな駆動力が発生する。  The storage capacitor accumulates several times the power supply voltage in a continuous short pulse, but when sufficient voltage is generated, switching to the long pulse causes the current value to rise and the capacitor to discharge and load the load. A large current flows and a large driving force is generated.

図1は電源電圧5Vで負荷のインダクタンス1mH、抵抗5オームを負荷とした場合の実施例を示す。磁気エネルギー回生スイッチは、電流が一方向であるので、方極はダイオード33で代用でき、P−MOSFET31を使用する場合は、外付けのダイオードが省かれる利点があるが、IGBTやGTOのような逆導通半導体スイッチにダイオードを外付けしても良い。短いオンパルス列は30マイクロ秒で周波数は10kHzである。  FIG. 1 shows an embodiment in which the load is 1 mH and the resistance is 5 ohms with a power supply voltage of 5 V. In the magnetic energy regenerative switch, since the current is unidirectional, the diode can be substituted for the diode 33. When the P-MOSFET 31 is used, there is an advantage that an external diode is omitted. A diode may be externally attached to the reverse conducting semiconductor switch. A short on-pulse train has 30 microseconds and a frequency of 10 kHz.

この回路の計算機によるシミュレーション計算した結果を図2に示すが、蓄積コンデンサ100マイクロファラッドに電圧が45m秒で15V付近まで上昇する。電圧が十分目標まで上がったところで15マイクロ秒だった短いオンパルスを長い10ミリ秒にするとコンデンサが全放電し、従来に較べてピーク2.5倍の大きな電流が負荷に流れることがわかる。  FIG. 2 shows the result of the simulation calculation by the computer of this circuit, and the voltage rises to about 15 V in the storage capacitor 100 microfarad in 45 milliseconds. It can be seen that when the short on-pulse, which was 15 microseconds when the voltage has sufficiently increased to the target, is changed to 10 milliseconds long, the capacitor is fully discharged, and a current that is 2.5 times larger than the conventional current flows to the load.

放電が終わると電流は電圧と抵抗で決まる値である約1Aになって、パルスが終わるまで続く。長パルス導通が終わると短パルス連続導通モードになり、再びコンデンサの充電が行なわれる。  When the discharge ends, the current becomes about 1 A, which is a value determined by the voltage and resistance, and continues until the pulse ends. When the long pulse conduction ends, the short pulse continuous conduction mode is set, and the capacitor is charged again.

負荷のインダクタンスと抵抗がこの動作に不十分の場合、図3に示すように追加インダクタンスと追加スイッチP−MOSFET3を追加することでさらに効果を増すことができる。スイッチはコンデンサの充電時にオンされ、放電時にはオフするように制御される。  If the inductance and resistance of the load are insufficient for this operation, the effect can be further increased by adding an additional inductance and an additional switch P-MOSFET 3 as shown in FIG. The switch is controlled to be turned on when the capacitor is charged and turned off when the capacitor is discharged.

これにより、負荷のインダクタンスと抵抗のどのような場合でも、コンデンサの充電時間や充電電圧を決めるパルス幅、間隔を決めることができて、効果的である。  As a result, in any case of the inductance and resistance of the load, the pulse width and interval for determining the charging time and charging voltage of the capacitor can be determined, which is effective.

図4に計算機によるシミュレーション計算の結果を示すが、短パルス連続による電圧は50Vまで上昇し、長パルス放電によるピーク電流は Aまで上昇している。  FIG. 4 shows the result of the simulation calculation by the computer. The voltage due to the continuous short pulse rises to 50 V, and the peak current due to the long pulse discharge rises to A.

パルス駆動の電磁力利用機器に応用すると始動時の引っ張り力の増大、回転力の増大に利用可能であるが、実施例2のように構成すれば、負荷はどのような場合でも、電源電圧よりはるかに高い電圧を印加することができるので、放電応用電源などの始動の最初に高電圧が必要な機器をスイッチという簡単な構成で駆動することができる。  When applied to an apparatus using pulsed electromagnetic force, it can be used to increase the pulling force at the start and increase the rotational force. However, if configured as in the second embodiment, the load can be determined from the power supply voltage in any case. Since a much higher voltage can be applied, a device that requires a high voltage at the beginning of starting, such as a discharge applied power supply, can be driven with a simple configuration called a switch.

リレー回路の駆動電源とすれば、供給電圧を下げても、十分な動作スピードが得られるので消費電力を削減することができる。  If the power supply for the relay circuit is used, even if the supply voltage is lowered, sufficient operation speed can be obtained, so that power consumption can be reduced.

本発明に係る昇圧パルス電源の実施例1を示すものである。1 shows Example 1 of a step-up pulse power supply according to the present invention. 本発明に係る昇圧パルス電源実施例1の電流電圧波形のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the current voltage waveform of the pressure | voltage rise pulse power supply Example 1 which concerns on this invention. 本発明に係る昇圧パルス電源の実施例2を示すものである。2 shows a step-up pulse power supply according to a second embodiment of the present invention. 本発明に係る昇圧パルス電源実施例2の電流電圧波形のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the current voltage waveform of the pressure | voltage rise pulse power supply Example 2 which concerns on this invention.

符号の説明Explanation of symbols

10 昇圧パルス電源
20 直流電圧源
30 磁気エネルギー回生スイッチ
31 半導体スイッチ(P−MOSFET)
32 磁気エネルギー蓄積コンデンサ
33 ダイオード
40 制御手段
50 負荷のインダクタンス
60 負荷の抵抗
70 追加インダクタンス
71 追加半導体スイッチ(P−MOSFET)
10 Boost Pulse Power Supply 20 DC Voltage Source 30 Magnetic Energy Regenerative Switch 31 Semiconductor Switch (P-MOSFET)
32 Magnetic energy storage capacitor 33 Diode 40 Control means 50 Load inductance 60 Load resistance 70 Additional inductance 71 Additional semiconductor switch (P-MOSFET)

Claims (2)

誘導性負荷にパルス電流を供給する磁気エネルギー回生スイッチを直列に接続して、電流をスイッチする前記誘導性負荷への供給電流として利用するパルス電源であって、
該パルス電源は、電圧源と負荷と直列に接続される磁気エネルギー回生スイッチとスイッチをオン/オフ制御するゲートに信号をおくる制御手段を備えて、負荷動作休止期間中に弱い電流の短時間通電を繰り返すことによって、磁気エネルギー回生スイッチのエネルギー蓄積コンデンサに高電圧を発生、負荷の動作時には発生した電圧を一機に通電をすることを特徴とする、昇圧機能付きパルス電源装置
A magnetic power regenerative switch that supplies a pulse current to an inductive load is connected in series, and is a pulse power source that is used as a supply current to the inductive load that switches the current,
The pulse power supply comprises a magnetic energy regenerative switch connected in series with a voltage source and a load, and a control means for sending a signal to a gate for on / off control of the switch, so that a weak current is energized for a short time during a load operation pause period. By repeating the above, a high voltage is generated in the energy storage capacitor of the magnetic energy regenerative switch, and the generated voltage is energized as a unit during the operation of the load.
前記、磁気エネルギー回生スイッチと負荷との間に直列に補助インダクタンスを接続し、かつ負荷と並列に補助スイッチを設けて、磁気エネルギー蓄積コンデンサに高電圧を発生する休止期間は補助スイッチをオンして、負荷に電流を流さないと同時に、そのあいだに補助インダクタンスに流れる電流をオン/オフすることで、前記記載の昇圧のための短時間通電の繰り返しによる磁気エネルギー蓄積コンデンサの昇圧をする請求項1に記載の昇圧機能付きパルス電源装置。The auxiliary inductance is connected in series between the magnetic energy regenerative switch and the load, and the auxiliary switch is provided in parallel with the load, and the auxiliary switch is turned on during the idle period in which a high voltage is generated in the magnetic energy storage capacitor. 2. The magnetic energy storage capacitor is boosted by repeating short-time energization for boosting as described above by turning on / off the current flowing through the auxiliary inductance while not passing the current through the load. A pulse power supply device with a boosting function described in 1.
JP2004059769A 2004-02-03 2004-02-03 Stepup pulse power supply using magnetic energy regeneration switch Pending JP2005223867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059769A JP2005223867A (en) 2004-02-03 2004-02-03 Stepup pulse power supply using magnetic energy regeneration switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059769A JP2005223867A (en) 2004-02-03 2004-02-03 Stepup pulse power supply using magnetic energy regeneration switch

Publications (1)

Publication Number Publication Date
JP2005223867A true JP2005223867A (en) 2005-08-18

Family

ID=34999131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059769A Pending JP2005223867A (en) 2004-02-03 2004-02-03 Stepup pulse power supply using magnetic energy regeneration switch

Country Status (1)

Country Link
JP (1) JP2005223867A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044512A1 (en) 2006-10-05 2008-04-17 Tokyo Institute Of Technology Power supply for induction heating
WO2008106546A3 (en) * 2007-02-27 2008-10-23 Stangenes Ind Inc High voltage pulsed power supply using solid state switches with voltage cell isolation
JP2009095160A (en) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp Power converter
GB2455569A (en) * 2007-12-14 2009-06-17 Renium Ltd An electromagnetic actuator remotely controlled and powered via a telephone line
US7554221B2 (en) 2004-05-04 2009-06-30 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with droop compensation
WO2010067467A1 (en) * 2008-12-12 2010-06-17 三菱電機株式会社 Power conversion device
WO2010113218A1 (en) * 2009-04-01 2010-10-07 三菱電機株式会社 Power conversion apparatus
US7898113B2 (en) 2002-08-19 2011-03-01 MERTHTech, Inc. Pulse power supply device
WO2012176338A1 (en) * 2011-06-24 2012-12-27 株式会社MERSTech Electrical power conversion device, electrical power conversion control device, electrical power conversion method, and program
CN103490661A (en) * 2013-09-12 2014-01-01 复旦大学 All-solid-state high voltage pulse current source with positive and negative pulse output
US8754549B2 (en) 2008-07-24 2014-06-17 Mitsubishi Electric Corporation Power conversion device
CN106160562A (en) * 2015-04-13 2016-11-23 中南大学 A kind of numerical control pulse power source system for solenoid excitation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898113B2 (en) 2002-08-19 2011-03-01 MERTHTech, Inc. Pulse power supply device
US7919887B2 (en) 2002-08-19 2011-04-05 Merstech, Inc. High repetitous pulse generation and energy recovery system
US7554221B2 (en) 2004-05-04 2009-06-30 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with droop compensation
US7550876B2 (en) 2004-05-04 2009-06-23 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with voltage cell isolation
WO2008044512A1 (en) 2006-10-05 2008-04-17 Tokyo Institute Of Technology Power supply for induction heating
US7974113B2 (en) 2006-10-05 2011-07-05 Tokyo Institute Of Technology Electric power unit for induction heating
WO2008106546A3 (en) * 2007-02-27 2008-10-23 Stangenes Ind Inc High voltage pulsed power supply using solid state switches with voltage cell isolation
JP2009095160A (en) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp Power converter
GB2455569B (en) * 2007-12-14 2010-02-17 Renium Ltd Electro-mechanical actuator
GB2455569A (en) * 2007-12-14 2009-06-17 Renium Ltd An electromagnetic actuator remotely controlled and powered via a telephone line
US8754549B2 (en) 2008-07-24 2014-06-17 Mitsubishi Electric Corporation Power conversion device
DE112009001793B4 (en) * 2008-07-24 2020-08-13 Mitsubishi Electric Corporation Power conversion device
WO2010067467A1 (en) * 2008-12-12 2010-06-17 三菱電機株式会社 Power conversion device
JP5254357B2 (en) * 2008-12-12 2013-08-07 三菱電機株式会社 Power converter
US8659924B2 (en) 2008-12-12 2014-02-25 Mitsubishi Electric Corporation Power conversion apparatus
CN102379081B (en) * 2009-04-01 2014-03-05 三菱电机株式会社 Power conversion apparatus
CN102379081A (en) * 2009-04-01 2012-03-14 三菱电机株式会社 Power conversion apparatus
US9197126B2 (en) 2009-04-01 2015-11-24 Mitsubishi Electric Corporation Power converting apparatus
WO2010113218A1 (en) * 2009-04-01 2010-10-07 三菱電機株式会社 Power conversion apparatus
WO2012176338A1 (en) * 2011-06-24 2012-12-27 株式会社MERSTech Electrical power conversion device, electrical power conversion control device, electrical power conversion method, and program
CN103490661A (en) * 2013-09-12 2014-01-01 复旦大学 All-solid-state high voltage pulse current source with positive and negative pulse output
CN106160562A (en) * 2015-04-13 2016-11-23 中南大学 A kind of numerical control pulse power source system for solenoid excitation

Similar Documents

Publication Publication Date Title
US9314291B2 (en) RF surgical generator and method for driving an RF surgical generator
JP4359855B2 (en) Solenoid valve drive circuit and solenoid valve
JP4573197B2 (en) Solenoid valve drive control device
US8008898B2 (en) Switching regulator with boosted auxiliary winding supply
JP2005223867A (en) Stepup pulse power supply using magnetic energy regeneration switch
JP2009526392A (en) Solenoid drive circuit
JP2000083374A (en) Switching regulator
JP2002101645A (en) Voltage booster switching power supply
EP1592027A2 (en) Switch mode gun driver and method
US9806249B2 (en) Methods and systems for applying charge to a piezoelectric element
RU2398247C1 (en) Pulsed drive of electromagnetic seismic source
JP5075775B2 (en) Power supply for pulse laser
JP6446340B2 (en) Electromagnetic device driving apparatus and vehicle
US20240428973A1 (en) Regenerative solenoid drive arrangement
JPH0855720A (en) Dc-operated switch controller
RU2262764C1 (en) High-speed electromagnetic operating mechanism of switching device
KR102282353B1 (en) A low power energy conversion apparatus for a triboelectric nanogenerator
JPH10252930A (en) Solenoid valve drive device
JP5190857B2 (en) Piezoelectric element driving device
JP4206637B2 (en) Discharge lamp lighting device
JP3477351B2 (en) Thyratron drive circuit
RU41537U1 (en) FAST ELECTROMAGNETIC ACTUATOR SWITCHING UNIT
JP2001215573A (en) Stroboscope charging circuit
JP6463595B2 (en) Pulse motor drive circuit
JPH10225104A (en) Dc-dc converter