[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005044583A - Thin secondary battery - Google Patents

Thin secondary battery Download PDF

Info

Publication number
JP2005044583A
JP2005044583A JP2003201804A JP2003201804A JP2005044583A JP 2005044583 A JP2005044583 A JP 2005044583A JP 2003201804 A JP2003201804 A JP 2003201804A JP 2003201804 A JP2003201804 A JP 2003201804A JP 2005044583 A JP2005044583 A JP 2005044583A
Authority
JP
Japan
Prior art keywords
secondary battery
hermetic
battery
sealing
external lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003201804A
Other languages
Japanese (ja)
Inventor
Koichi Kawamura
公一 川村
Hiroshi Shimoyamada
啓 下山田
Fumimasa Yamamoto
文将 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2003201804A priority Critical patent/JP2005044583A/en
Publication of JP2005044583A publication Critical patent/JP2005044583A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

【課題】封止部からの水分侵入を抑制し、内部短絡を防止でき、かつ封止部の占める体積を出来るだけ小さくして電池の体積エネルギー密度を増加させた高信頼性薄型二次電池を提供することを目的とする。
【解決手段】発電要素10を収納するラミネート外装材20と気密絶縁封止された正極11および負極12の外部リード端子14,15の延出部を、ラミネート外装材20の気密絶縁封止領域24で気密絶縁封止部の長手方向と平行に折曲させた構造とすることによって封止部からの水分侵入を抑え、内部短絡を防止し、かつ封止部の占める体積を出来るだけ小さくして電池の体積エネルギー密度を増加させる。
【選択図】 図4
A highly reliable thin secondary battery in which moisture intrusion from a sealing part is suppressed, an internal short circuit is prevented, and the volume energy density of the battery is increased by reducing the volume occupied by the sealing part as much as possible. The purpose is to provide.
An extended portion of an external lead terminal 14 and 15 of a positive electrode 11 and a negative electrode 12 hermetically insulated and sealed, and a hermetic insulating sealing region 24 of the laminate outer material 20 are provided. With a structure that is bent in parallel with the longitudinal direction of the hermetic insulating sealing part, moisture intrusion from the sealing part is suppressed, internal short circuit is prevented, and the volume occupied by the sealing part is made as small as possible. Increase the volumetric energy density of the battery.
[Selection] Figure 4

Description

【0001】
【発明の属する技術分野】
本発明はラミネートフィルムからなる外装材で発電要素を封止した構造を有する薄型二次電池に係り、特に封止部からの水分侵入や内部短絡を防止し、電池の信頼性を確保した上で電池の体積エネルギー密度を高めることが可能な薄型二次電池に関する。
【0002】
【従来の技術】
携帯電話やノートパソコンなど電子機器の急速な進歩に伴い、その駆動電源となる二次電池は、小型化,軽量化,大容量化,高性能化,コストダウンが絶えずに要請されてきた。これら携帯機器内に装着され駆動電源として使用される二次電池としては、従来からニッケルカドミウム電池やニッケル水素二次電池が使用されており、近年ではさらに高エネルギー密度化を実現できるリチウムイオン二次電池の需要が急速に拡大している。
【0003】
また、二次電池の形状についても従来の円筒型,ボタン型の電池よりも収納時の体積効率が優れた角型電池,長円形電池の需要が高まると共に、高容量化,高エネルギー密度化に伴って、正極活物質や負極活物質など電極材料をよりエネルギー密度の高いものに変更したり、セパレータをより薄くしたり、電池の外装缶をステンレス鋼,鉄からアルミニウム合金に代替するなどの工夫改善が図られてきた。
【0004】
しかし、これらの改善後でも技術的要求はさらに高度化し、未だ満足なレベルには到達しておらず、更なる小型化,軽量化,薄型化,大容量化,コストダウンが要請されている。最近では液状電解質,ゲル状電解質または固体高分子電解質等を発電要素中に含有させ、アルミニウム合金箔をバリア層として積層中間部に挟んだ高分子フィルムとのラミネートフィルムからなるラミネート外装材により発電要素を封止することにより、薄型化,小型化,軽量化を図った薄型二次電池が市販され普及しつつある。
【0005】
このようなラミネートフィルム外装材により発電要素を封止した薄型二次電池としては、例えば図11,図12および図13に示すラミネート外装構造を有する非水電解質薄型二次電池が公知である。
【0006】
すなわち、ラミネート外装非水電解質薄型二次電池30は、正極活物質11aを正極集電体11bに塗工した正極11、および負極活物質12aを負極集電体12bに塗工した負極12間にセパレータ13を介在させて正負極集電体の未塗工部分11c,12cに正極および負極外部リード端子14,15をそれぞれ接続させた発電要素10を備える。
【0007】
また、ラミネート外装材20はラミネートフィルムから成り、このフィルム材の張り出し加工または深絞り加工によって前記発電要素10を収納する凹部21を形成し、この凹部の周囲近傍に熱融着にて封止するための開放した周縁部22a,22b,22cと、一辺の周縁部と対向し凹部近傍から折り返して凹部21を覆う平面部22d(図12)とが配置される。発電要素10は、このラミネート外装材20に収納されている。
【0008】
上記ラミネート外装材20は、一般に電解液やガスの透過を防止することが可能な薄く比重が小さいアルミニウムまたはアルミニウム合金箔をバリア材20bとして用い、このアルミニウム合金箔の両面に薄い高分子フィルムを貼り合わせて構成される。すなわち、上記ラミネート外装材20の外装側あるいは表面側には、機械的構造特性を発現する高分子フィルム20aが配置される。一方、上記ラミネート外装材の内装側または裏面側には、熱融着性を有するフィルム(シーラントフィルム)20cが一体に貼り合わされている。
【0009】
また、上記正極および負極の外部リード端子14,15を電池外部に延出し封止される周縁部分22aと、凹部近傍から折り返して凹部21を覆う平面部22dの端部は、熱融着時に正極および負極の外部リード端子14,15と接着して近傍の空隙を埋めるととともに、ラミネート外装材20の端部と上記正極および負極の外部リード端子14,15の短絡を防止する絶縁フィルム16が配置され、相互に気密絶縁封止されている。
【0010】
前記ラミネート外装材の凹部21には、非水電解液(図示せず)が注入され発電要素10に含浸されるとともに、凹部周縁部22a,22b,22cが気密封止される。気密封止された前記凹部周縁部22a,22b,22cは、前記正極および負極の外部リード端子14,15を電池外部に延出して気密絶縁封止される周縁部分22aがテラス状トップシール部24として形成され、それ以外の凹部周縁部22b,22cは凹部に沿う様に折曲させたサイドシール部25a,25bとして形成された構造を有している。
【0011】
上記構造を有するように構成されたラミネート外装薄型二次電池は、一般的に使用電子機器専用の電池パックとして機器パック内に実装して使用される。図14,図15,図16および図17に示すように、電池パック40への加工手順は次のとおりである。すなわち、ラミネート外装薄型二次電池30の外部に延出された正極及び負極の外部リード端子14,15には、二次電池の過充電,過放電等を保護する電子回路(モジュール)42と、使用機器,充電機との電気的接続を可能にする端子台43とが超音波溶接または抵抗溶接等により電気的に接続される。
【0012】
図17に示す電池パック40の一対の外装ケース41a,41bは、一般的に樹脂等により形成された2分割の容器により構成され、二次電池,電子回路,端子台等が所定の位置に配置されるような凸形状のリブを配置している。前記電子回路42と前記端子台43が接続された上記ラミネート外装薄型二次電池30は、前記テラス状トップシール部24側に前記電子回路42および前記端子台43を配置し、電池パックの外装ケースに挿入可能な形状に正極及び負極の外部リード端子14,15に対して折り曲げ加工を実施した後に、図16に示すように、一方の外装ケース41aに挿入して、両面テープや接着剤(図示せず)等で外装ケース内面に固定される。こうして、薄型二次電池,電子回路,端子台等が固定された一方の外装ケース41aに、他方の外装ケース41bを接合,封止することにより、図17に示すような電池パック40が製造されていた。
【0013】
しかしながら、薄型二次電池の高容量化がさらに進展するに伴って、二次電池の体積エネルギー密度の向上が求められている。前述した様な一般的な構造を有するラミネート外装薄型二次電池30では、正極および負極の外部リード端子14,15を電池外部に延出して気密絶縁封止されるテラス状トップシール部24の電池内での占有容積がデットスペースとなり易く、二次電池の体積効率を減少させる大きな要因になっていた。
【0014】
また、薄型二次電池の高性能化が進捗するにつれて、二次電池を過充電や過放電等から保護する電子回路(モジュール)42を必要としない安全性が高いラミネート外装薄型二次電池も製品化されている。この安全性が高いラミネート外装薄型二次電池を内蔵する電池パックには、ラミネート外装薄型二次電池30と端子台43のみが配置されることになり、従来の電子回路および端子台を共に配置する場合と比較して容積を減少させることが可能となった。
【0015】
さらに薄型二次電池の体積効率を向上させる方法として、正極および負極の外部リード端子14,15を電池外部に延出して気密絶縁封止されるテラス状トップシール部24をシール幅方向に減少させる方式がある。しかしながら、この方式では封止機能が不十分となり気密絶縁封止部からの水分の侵入を抑制することが困難であり、満足な電池信頼性を達成することが困難であった。
【0016】
また、発電要素10を収納するラミネート外装材20の凹部(以下、「発電要素を収納した電池凸部」という。)21の根元部において、電池凸部に沿うようにテラス状トップシール部24を折曲することにより、テラス状トップシール部24のデットスペースを抑制する構造が公知技術として存在する(例えば、特許文献1参照。)。
【0017】
しかしながら、上記構造では、電池凸部21の高さ以上の幅でテラス状トップシール部24の気密絶縁封止幅を確保することが不可能であることから気密絶縁封止部からの水分の侵入を抑制することが困難であるとともに、折曲部が電池凸部21の起立端部すなわち気密絶縁封止領域より電池凸部近傍の未封止領域に配置され、正極および負極の外部リード端子14,15の電池内部側に形成される折曲部がラミネート外装材20のシーラントフィルム20cに線状または点状に接触して突き抜け、さらに外力等によりラミネート外装材20のバリア材20bに到達して内部短絡を発生してしまう危険性があり、十分な動作信頼性を達成することが困難であった。
【0018】
また、気密絶縁封止幅を十分に確保すること目的とした構造例として、発電要素10を収納した電池凸部21の根元から電池凸部と対向する平面側に沿うようにテラス状トップシール部24を折曲することにより、テラス状トップシール部24のデットスペースを抑制する構造も公知技術として存在する(例えば、特許文献2参照。)。
【0019】
【特許文献1】
特開2001−256933号公報
【0020】
【特許文献2】
特開2002−141030号公報
【0021】
【発明が解決しようとする課題】
しかしながら、この構造においても、前記の公知技術と同様に折曲部が電池凸部(21)の起立端部すなわち気密絶縁封止領域より電池凸部近傍の未封止領域に配置され、折曲角度も180度近い鋭角なものとなるため、正極および負極の外部リード端子14,15の電池内部側に形成される折曲部がラミネート外装材20のシーラントフィルム20cに線状または点状に接触し、ラミネート外装材20のバリア材20bまでに到達して内部短絡を発生してしまう危険性があった。
【0022】
また、気密絶縁封止領域における折曲方向が平面側であるため、折り曲げた封止領域の一部が電池の厚さ方向に突出し、電池厚さ方向のロスが新たに発生し、電池としての体積効率を必ずしも向上できる構造ではなかった。
【0023】
本発明は上記課題を解決するためになされたものであり、気密絶縁封止された外部リード端子の延出部を、ラミネート外装材の気密絶縁封止領域において、気密絶縁封止部の長手方向と平行に折曲させることによって封止部からの水分侵入を抑制し、かつ封止部の占める体積を可及的に低減して電池の体積エネルギー密度を増加させた高信頼性薄型二次電池を提供することを目的とする。
【0024】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る薄型二次電池は、アルミニウム合金箔と高分子フィルムとのラミネートフィルムからなるラミネート外装材と、このラミネート外装材に挿入される正極および負極とこれら正負極間に介在されたセパレータ或いは固体電解質層とからなる発電要素と、上記正極および負極それぞれに電気的に接続され、上記ラミネート外装材の周辺部を通して外部に延出された正極および負極外部リード端子とを具備し、前記発電要素を挿入したラミネート外装材の周辺部を気密封止し、上記外部リード端子の延出部が気密絶縁封止された薄型二次電池において、上記外部リード端子延出部を前記気密絶縁封止領域内で気密絶縁封止部の長手方向と平行に折曲させたことを特徴とする。
【0025】
また上記薄型二次電池において、前記気密絶縁封止部とそれ以外の気密封止部とが交差する前記ラミネート外装材の角部を切り欠くと共に、この切欠部と発電要素の角部との間に、気密絶縁封止部の幅および気密封止部の幅のいずれか小さい幅以上の幅で封止部を残すように上記切欠部を形成することが好ましい。
【0026】
上記構成に係る薄型二次電池によれば、外部リード端子延出部を前記気密絶縁封止領域内で気密絶縁封止部の長手方向と平行に折曲させているため、気密絶縁封止部の電池内での占有容積が大幅に低減され、二次電池の体積効率を大幅に向上させることができる。一方、電池内部側に形成される外部リード端子の折曲部がラミネート外装材のシーラントフィルムに接触する恐れは無く、またラミネート外装材のバリア材までに到達して内部短絡を発生させる危険性も少ないため、信頼性が高い二次電池が得られる。
【0027】
また曲折部を含めて広い幅で封止部を形成することができるため、封止機能が十分に確保され、気密絶縁封止部からの水分の侵入を効果的に抑制することが可能になり、電池特性の劣化が少なく、高い信頼性を有する二次電池が得られる。
【0028】
さらに、前記気密絶縁封止部とそれ以外の気密封止部とが交差する前記ラミネート外装材の角部を切り欠くことにより、このラミネート外装材の周縁部を電池の厚さ方向に折り曲げた場合においても、電池の高さ方向に折り曲げ片が突出することが無く、厚さ方向へ電池部品容積が増大する悪影響を回避することができる。
【0029】
また、上記切欠部を形成するに際して、切欠部と発電要素の角部との間に、気密絶縁封止部の幅および気密封止部の幅のいずれか小さい幅以上の幅で封止部を残すように上記切欠部を形成することにより、封止幅を十分に確保でき、切欠部からの水分の侵入を効果的に抑制することが可能になり、電池特性の劣化が少なく、高い信頼性を有する二次電池が得られる。
【0030】
【発明の実施の形態】
以下、本発明に係る薄型二次電池の実施形態として、ラミネート外装材を使用した薄型リチウムイオン二次電池を例にとり、添付図面を参照して詳細に説明する。図1は本発明に係る薄型二次電池の一実施例の斜視図であり、図2はその展開斜視図であり,図3は外部リード端子を挿通した絶縁気密封止領域およびその他の気密封止領域を表す平面図であり,図4は気密絶縁封止部の折曲部の断面模式図であり,図5(a),図5(b),図5(c),図5(d)は、絶縁気密封止部と気密封止部との交差部における角部の切欠き加工の形状例をそれぞれ表す平面図であり,図6は比較例1に係る二次電池の気密絶縁封止部の断面模式図であり,図7は比較例2に係る二次電池の気密絶縁封止部の断面模式図であり,図8は比較例3に係る二次電池における気密絶縁封止部の折曲部の断面模式図であり,図9は比較例4に係る二次電池における気密絶縁封止部の折曲部の断面模式図であり,図10は比較例5に係る二次電池における気密絶縁封止部の折曲部の断面模式図である。
【0031】
【実施例1】
<正極の作製>
正極活物質として組成式がLiCoOで表されるリチウムコバルト複合酸化物と、導電材と、結着材とを混合しペースト化した後、外形寸法50mm×390mm,厚さ30μmのアルミニウム箔からなる正極集電体11b上に、片側のエッジ部分が23mmの未塗工部分11cと、他方の未塗工部(図示せず)を残して両面に上記ペーストを塗布し、乾燥,加圧プレスした後、前記未塗工部分11cに厚さ0.1mm,幅4mm,長さ50mmのアルミニウム製の正極外部リード端子14を溶接により取り付けた。この正極外部リード端子14は、厚さ0.1mm,幅4mm,長さ60mmの純アルミニウム系合金条(日本工業規格:JIS H 4160 A1N30)の完全焼鈍材(調質:O)を使用した。
【0032】
<負極の作製>
負極活物質としてメソフェーズピッチ系炭素繊維を粉砕後に熱処理した粉末と、結着材とを混合しペースト化した後、外形寸法51.5mm×400mm,厚さ15μmの銅箔からなる負極集電体12b上に、片側のエッジ部分が46mmの未塗工部分12cと、他方の未塗工部(図示せず)を残して両面に上記ペーストを塗布し、乾燥,加圧プレスした後、前記未塗工部分12cに厚さ0.1mm,幅4mm,長さ53mmのニッケル層(図示せず)の間に純銅層(図示せず)を配置した負極外部リード端子15を溶接により取り付けた。この負極外部リード端子15の外形は、厚さ0.1mm,幅4mm,長さ60mmであり、厚さ比率で純ニッケル25:純銅50:純ニッケル25の層構成比率でクラッド法により積層形成された完全焼鈍材(調質:O)を使用した。
【0033】
<発電要素の形成>
正極外部リード端子(14)が溶接された前記帯状正極(11)と、負極外部リード端子(15)が溶接された前記帯状負極(12)とを、厚さ25μm×幅54mm×長さ445mmのポリエチレン製微多孔膜からなるセパレータ(13)を介して、正極/セパレータ/負極/セパレータの順に積層し、扁平状の巻芯で渦巻き状に捲回し、更に油圧式プレスで圧縮し、外部リード端子を除く外形寸法が高さ54mm,幅33mm,厚さ3.4mmの扁平状の発電要素10を作製した。
【0034】
<外装材の作製>
厚さ25μmの延伸ナイロンフィルムと、厚さ40μmのアルミニウム合金箔(JIS H 4160 A8079材)と、厚さ30μmの直鎖状低密度ポリエチレン(シーラントフィルム)とをこの順序でウレタン系接着材を介して積層接着したラミネート外装フィルムを作製した。このラミネート外装フィルムを外形寸法170mm×130mmに切り出し、シーラントフィルム側から張り出し加工または深絞り加工を実施することにより、長さ55mm,幅34mm,深さ3.4mmであり、前記発電要素10を収容するための凹部(電池凸部)21を形成した。凹部21の周縁には、陵部から水平方向に延出された幅5mmの3箇所の周縁部(22a),(22b),(22c)と、幅60mmの1箇所の平面部(22d)とを裁断形成したラミネート外装材20を作製した。
【0035】
<非水電解液の調製>
エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とを体積比が1:2となる割合で混合して、非水溶媒に電解質としての四フッ化硼酸リチウム(LiBF)をその濃度が1.5モル/Lになるように溶解させて、液状非水電解質を調製した。
【0036】
<薄型電池の作製>
図1〜図4に示すように、前記発電要素10を前記ラミネート外装材20の凹部21に収納すると共に、前記外部リード端子14,15をラミネート外装材20の幅5mmの周縁部22aを通して外部に延出した。前記正極および負極の外部リード端子14,15を延出した周縁部22aと反対側の幅60mmの平面部22dを折返し部23から180°折り返し、前記正極および負極の外部リード端子14,15を延出した側の周縁部22aに重ね合わせた。前記正極および負極の外部リード端子14,15を電池外部に延出し、封止される周縁部分22aには、ヒートシール時に前記正極および負極の外部リード端子14,15と接着して近傍の空隙を埋めるととともに、前記ラミネート外装材20の端部に露出するアルミニウム合金箔のバリア材20bと前記正極および負極の外部リード端子14,15の短絡を防止する絶縁フィルム16が配置されている。
【0037】
この絶縁フィルム16は上記正極および負極の外部リード端子14,15の幅よりも大きく、かつ気密絶縁封止幅よりも広い大きさに形成され、前記ラミネート外装材20の端部から1mm延出し、封止される周縁部分22aと折返し部23から180°だけ折り返した平面部22d側の両面に配置した。このような構成とした外部リード端子の延出部22aについて、前記正極および負極の外部リード端子14,15を挟みながら、180°折り返した幅60mmの平面部22dとの重なり部分(以下、「テラス状トップシール部24」という。)を4mm幅で熱融着により気密絶縁封止した。
【0038】
上記正極および負極の外部リード端子14,15の延出量は、テラス状トップシール端部から8mmとしている。次に上記テラス状トップシール部24と垂直方向に配置される一方の幅5mmの周縁部22bまたは22Cを熱融着により気密封止し、サイドシール部25aを形成し1箇所の気密絶縁封止部と、1箇所の気密封止部と、1箇所の折り返し部23と、1箇所の開口した周縁部を形成した。
【0039】
続いて開口している1箇所の周縁部を通して、前記非水電解液(図示せず)を上記ラミネート外装材20の凹部21に注入し、内部に収納されている発電要素10に前記非水電解液(図示せず)を含浸させた。続いて上記ラミネート外装材20の開口周縁部を熱融着により気密封止して、もう一方のサイドシール部25bを形成した。続いて2つのサイドシール部25a,25bを、幅3mmを残して切断し、テラス状トップシール部幅(W24)が5mmでサイドシール部幅(W25)が3mmであるラミネート外装薄型リチウムイオン二次電池を得た。
【0040】
<気密絶縁封止部および気密封止部の加工>
このようにして作成された薄型二次電池は、この形態のままでは電池外方に延びた3箇所の封止部が電池としての体積効率を低下させることになる。そこで図4に示すように、この薄型二次電池について、上記テラス状トップシール部24から延出した前記正極および負極の外部リード端子14,15を上記ラミネート外装材20の端部から延出した絶縁フィルム16と共に、上記テラス状トップシール部24の前記平面部22d側に折り返した。次に気密絶縁封止した前記テラス状トップシール部24の上端部から3mm内側を絶縁気密封止部の長手方向と平行にラミネート外装材20の発電要素10を収納する凹部(発電要素を収納した電池凸部)21側に折曲させ、気密絶縁封止折曲部26を形成した。
【0041】
なお、上記凹部21の端部から上記気密絶縁封止折曲部26までの平坦部の幅は、封止機能および折り曲げ加工性を良好にする観点から1.5mm以上、好ましくは2mm以上に設定することが好ましい。
【0042】
前記テラス状トップシール部24両端とサイドシール部25a,25bとを電池凸部側に折り曲げることにより、外形寸法35.0mm×58.0mm×3.8mmで、放電容量770mAhのラミネート外装薄型リチウムイオン二次電池を作製した。
【0043】
【実施例2】
前記実施例1において説明した薄形二次電池の構成の内、下記の構成を変えて実施例2に係る薄形二次電池を調製した。すなわち、図5aに示すようにテラス状トップシール部24とサイドシール部25a,25bが交差する封止領域の角部に切り欠き部27を設けた。切り欠き部27は、この切り欠き部と発電要素10の角部との間に、気密絶縁封止部(テラス状トップシール部)24の幅(W24)および気密封止部(サイドシール部)の幅(W25)のいずれか小さい幅以上の幅(W27)で封止部を残すように形成した。具体的には残す封止部の幅(W27)を3mmとし、トップシール部24の端部から70度の傾斜角度で切り欠いて上記切り欠き部27を形成した。
【0044】
なお、上記実施例2では角部の切り欠き形状は、図5aに示すように直線状に切り欠いているが、切り欠き部と発電要素10の角部との間に、テラス状トップシール部幅(W24)とサイドシール幅(W25)との何れか少ない方と同じかそれ以上の封止幅(W27)が確保できる限りは、切り欠き角度や形状は実施例2と異なっても構わず、特に限定されない。具体的には、図5bに示すように,切欠角度を45度にした直線状の切り欠き部27でも良い。また、図5cに示すように、曲線状に切断して形成した切り欠き部27でも良い。さらに、図5dに示すように矩形状に切断して形成した切り欠き部27でも良い。
【0045】
上記切り欠き部27を形成した以降の処理および加工は、実施例1に記述した気密絶縁封止部および気密封止部の加工内容と同様とすることにより、外形寸法が35.0mm×58.0mm×3.8mmであり、放電容量が770mAhである実施例2に係るラミネート外装薄型リチウムイオン二次電池を作製した。
【0046】
上記実施例2に係るラミネート外装薄型リチウムイオン二次電池によれば、テラス状トップシール部24とサイドシール部25a,25bとが交差する封止部領域の角部に切り欠き部27を設けているため、テラス状トップシール部24の両端とサイドシール部25a,25bの交差部分が電池の厚さ方向に突出することがなく、折り曲げ加工を容易に実施することが可能である。
【0047】
【比較例1】
前記実施例1において説明した薄形二次電池の構成の内、下記の構成を変えて比較例1に係る薄形二次電池を調製した。すなわち、図1に示すように、気密絶縁封止部および気密封止部の加工をサイドシール部25a,25bを電池凸部側に折り曲げるのみとする一方、テラス状トップシール部(24)についての折り曲げ加工は実施しないことにより、外形寸法が35mm×60.5mm×3.8mmであり、放電容量が770mAhである比較例1に係るラミネート外装薄型リチウムイオン二次電池を作製した。
【0048】
【比較例2】
前記比較例1において説明した薄形二次電池の構成の内、下記の構成を変えて比較例2に係る薄形二次電池を調製した。すなわち、ラミネート外装材の凹部21の周縁に延出する周辺部を、幅3mmである1箇所の周縁部22aと、幅5mmである2箇所の周縁部22b,22cと、幅58mmである1箇所の周縁部22dとして裁断形成した。このラミネート外装材のトップシール部24を2mm幅で熱融着した。図7に示すように、テラス状トップシール部24と直角方向に配置した2つのサイドシール部25a,25bを幅3mmだけ残して切断し、テラス状トップシール部の幅(W24)を3mmとし、サイドシール部の幅(W25)を3mmとした。続いて図1に示すようにサイドシール部25a,25bを電池凸部側に折り曲げることにより、外形寸法が35.0mm×58.0mm×3.8mmであり、放電容量が770mAhである比較例2に係るラミネート外装薄型リチウムイオン二次電池を作製した。
【0049】
【比較例3】
前記実施例1において説明した薄形二次電池の構成の内、下記の構成を変えて比較例3に係る薄形二次電池を調製した。すなわち、図8に示すように、気密絶縁封止したテラス状トップシール部を電池凸部21の根元から絶縁気密封止部の長手方向と平行にラミネート外装材20の電池凸部21側に折曲させ、封止根元折曲部28を形成した。続いてテラス状トップシール部24両端とサイドシール部25a,25bを電池凸部側に折り曲げ加工した。この時、テラス状トップシール部24両端とサイドシール部25a,25bの交差部は、双方向からの曲げ加工で角状に突出するので、突出部を再度トップシール部側に折り畳む加工を実施することにより、外形寸法が35.0mm×56.5mm×4.5mmであり、放電容量が770mAhである比較例3に係るラミネート外装薄型リチウムイオン二次電池を作製した。
【0050】
上記比較例3に係る薄形二次電池において、電池厚さが実施例より大きくなった理由は下記の通りである。すなわち、テラス状トップシール部の幅(W24)が5mmであるため、根元から折り曲げたテラス状トップシール部は電池凸部より電池厚さ方向に突出してしまったためである。
【0051】
【比較例4】
前記比較例3において説明した薄形二次電池の構成の内、下記の構成を変えて比較例4に係る薄形二次電池を調製した。すなわち、図9に示すように、ラミネート外装材の凹部21の周縁に延出する周辺部を、比較例2と同様に幅が3mmである1箇所の周縁部(22a)と、幅が5mmである2箇所の周縁部22b,22cと、幅が58mmである1箇所の周縁部22dとして裁断形成した。それ以降の処理および加工は比較例3にて実施した気密絶縁封止部および気密封止部の加工内容と同様とすることにより、外形寸法が35.0mm×56.5mm×3.8mmであり、放電容量が770mAhである比較例4に係るラミネート外装薄型リチウムイオン二次電池を作製した。
【0052】
【比較例5】
前記比較例3において説明した薄形二次電池の構成の内、下記の構成を変えて比較例5に係る薄形二次電池を調製した。すなわち、図10に示すように、気密絶縁封止したテラス状トップシール部を根元から絶縁気密封止部の長手方向と平行に電池凸部21の根元から絶縁気密封止部の長手方向と平行にラミネート外装材20の電池凸部21と対向する平面側に沿うように180度の折り曲げ角度で折曲させ、封止根元折曲部28を形成した。正極および負極の外部リード端子14,15をラミネート外装材20の端部から延出した絶縁フィルム16と共に封止根元折曲部側に折り返した。続いてテラス状トップシール部24両端とサイドシール部25a,25bとを電池凸部側に折り曲げ加工を施すことにより、外形寸法が36.0mm×55.5mm×4.5mmであり、放電容量が770mAhである比較例5に係るラミネート外装薄型リチウムイオン二次電池を作製した。
【0053】
上記比較例5に係る薄形二次電池において、電池厚さおよび電池幅が実施例より大きくなった理由は下記の通りである。すなわち、テラス状トップシール部を電池凸部と対向する平面側に沿うように折曲させたことにより、電池凸部の厚さにテラス状トップシール部の厚さが加算されてしまう結果、厚さ方向の容積損失が大きくなること、およびサイドシール部の折り曲げがテラス状トップシール部と二重に重なる部位(両シール部の交差領域)が存在することで幅方向の損失も大きくなってしまうためである。
【0054】
上記のように調製した実施例1〜2および比較例1〜5に係る各ラミネート外装薄型リチウムイオン二次電池の比較パラメーター(気密絶縁封止幅,折曲位置,折曲方向,角部の切欠の有無)について下記表1にまとめて示す。
【0055】
【表1】

Figure 2005044583
【0056】
上記の実施例1〜2および比較例1〜5に係る各ラミネート外装薄型リチウムイオン二次電池を評価するために、以下の特性項目について比較調査を実施した。
【0057】
<封止部からの水分透過量の比較>
実施例1〜2および比較例1〜5に係るラミネート外装薄形リチウムイオン二次電池を各3個ずつサンプリングし、未充電状態の状態で温度が65℃であり、相対湿度RHが90%に調整した環境に30日間放置した。その後、電池内から非水電解液をマイクロシリンジで0.5cc抽出し、非水電解液中の水分量をカールフィッシャー水分量測定装置で測定した。なお各電池の水分透過量は比較例1に係る二次電池の水分透過量を基準値(100%)として、相対値として算出した。測定算出結果を表2に示す。
【0058】
<外力による内部短絡発生比較>
実施例1〜2および比較例1〜5に係るラミネート外装薄形リチウムイオン二次電池の各10個について、室温において1Cで4.2Vまで定電流・定電圧充電を実施した。その後、室温において1Cで3.0Vまで放電し、基準放電容量を測定し、さらに室温において1Cで3.85Vまで定電流・定電圧充電を実施した。この状態の各ラミネート外装薄形リチウムイオン二次電池をダミーパックのケースに実装し、高さ1.5mから樫の木材表面に自然落下させるという過酷な条件設定のもとに実施した。
【0059】
各二次電池を落下させる方向は、外部リード端子,テラス状トップシール部および気密絶縁封止折曲部に引張り・圧縮方向の落下衝撃が加わるように電池の縦方向の姿勢をとった落下とし、上下方向を逆にした落下の繰り返しを1サイクルとして100サイクルまで実施した。10サイクル毎に内部短絡が発生しているか否かについてダミーパックに設けた端子穴から外部リード端子の電圧を測定することにより確認した。落下試験後の内部短絡発生回数と発生個数について測定し、比較例1の二次電池の内部短絡発生回数と発生個数を基準値(100%)として、相対値として算出した。測定算出結果を表2に示す。
【0060】
<電池寸法(体積効率)比較>
実施例1〜2および比較例1〜5に係る各ラミネート外装薄形リチウムイオン二次電池について、電池高さ,電池幅,電池厚さの各寸法から電池体積を算出し、それぞれの電池の放電容量から体積容量密度を算出し比較した。なお各二次電池の体積容量密度は比較例1に係る二次電池の体積容量密度を基準値(100%)として、相対値として算出した。測定算出結果を下記表2にまとめて示す。
【0061】
【表2】
Figure 2005044583
【0062】
上記表1および表2に示す結果から明らかなように、外部リード端子延出部を気密絶縁封止領域内で気密絶縁封止部の長手方向と平行に折曲させた各実施例1〜2に係る二次電池においては、気密絶縁封止部の電池内での占有容積が低減されるため、体積容量密度が増加し、二次電池の体積効率を向上させることができた。
【0063】
また、外部リード端子延出部を気密絶縁封止領域内で折曲させているため、電池内部側に位置する外部リード端子がラミネート外装材に接触する恐れは無く、またラミネート外装材のバリア材までに到達して内部短絡を発生させる危険性も少ないため、信頼性が高い二次電池が得られた。
【0064】
また曲折部を含めて広い幅で封止部を形成することができるため、封止機能が十分に確保され、水分透過量は増加せず、気密絶縁封止部からの水分の侵入を効果的に抑制することが可能になり、電池特性の劣化が少なく、高い信頼性を有する二次電池が得られた。
【0065】
さらに、前記気密絶縁封止部とそれ以外の気密封止部とが交差する前記ラミネート外装材の角部を切り欠いて切り欠き部27を形成した実施例2に係る電池においては、このラミネート外装材の周縁部を電池の厚さ方向に折り曲げた場合においても、電池の高さ方向に折り曲げ片が突出することが無く、厚さ方向へ電池部品容積が増大する悪影響を回避することができた。
【0066】
また、上記切り欠き部27を形成するに際して、この切り欠き部27と発電要素10の角部との間に、気密絶縁封止部の幅(W−24)および気密封止部の幅(W−25)のいずれか小さい幅以上の幅で封止部を残すように上記切欠部を形成することにより、封止幅を十分に確保でき、切り欠き部27からの水分の侵入を効果的に抑制することが可能になり、電池特性の劣化が少なく、高い信頼性を有する二次電池が得られた。
【0067】
一方、外部リード端子延出部を折曲していない比較例1に係る二次電池においては、端子端部の体積ロスが大きくなった。また、気密絶縁封止部の幅を小さくした比較例2に係る二次電池においては、体積容量密度は増加するが、水分侵入の抑止効果が不十分であった。さらに、比較例3のように、外部リード端子延出部を、気密絶縁封止領域外である封止根元で折曲した二次電池においては、端子材が曲折部方向に引っ張られて内部短絡の発生率が上昇すると共に、折曲部が電池の厚さ方向に突出するため、体積容量密度が低下した。
【0068】
また、比較例4のように、気密絶縁封止部の幅を小さくする一方、外部リード端子延出部を封止部の根元で折曲した二次電池においては、体積容量密度は増加するが、封止機能が不十分であり、水分侵入の抑止効果が不十分であった。また、外部リード端子延出部を、気密絶縁封止領域外である封止根元で折曲しているため、端子材が曲折部方向に引っ張られて内部短絡の発生率が上昇した。さらに、比較例5のように、外部リード端子延出部を、気密絶縁封止領域外である封止根元で裏側に折曲しているため、端子材が曲折部方向に引っ張られて内部短絡の発生率が上昇した。さらに、裏側に折曲した曲折部の厚さが電池厚さに加算されて電池全体に厚さとなるため、体積効率は大幅に悪化した。
【0069】
【発明の効果】
以上詳述したように、本発明に係る薄型二次電池によれば、発電要素を収納するラミネート外装材と気密絶縁封止された正極および負極の外部リード端子延出部を、ラミネート外装材の気密絶縁封止領域内で気密絶縁封止部の長手方向と平行に折曲させた構造とすることによって気密絶縁封止幅を十分に確保することができ、封止部からの水分侵入を抑え、折曲部が気密絶縁封止領域内であることにより折曲部の正極および負極外部リード端子とラミネート外装材間の内部短絡を防止し、かつ封止部の占める体積を出来るだけ小さくして電池の体積エネルギー密度を増加させた薄型二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る薄型二次電池の斜視図。
【図2】本発明に係る薄型二次電池の展開斜視図。
【図3】本発明に係る薄型二次電池の絶縁気密封止領域および気密封止領域を表す平面図。
【図4】本発明に係る薄型二次電池の気密絶縁封止部の折曲部を模式的に示す部分断面図。
【図5】本発明に係る薄型二次電池の絶縁気密封止部と気密封止部との交差部である角部に形成する切り欠き部の形状を示す平面図であり、(a)は実施例2に係る二次電池に形成した切欠部(切断角度:70度)を示す平面図、(b)は45度の切断角度で切り欠いて形成した切り欠き部の形状を示す平面図、(c)は封止部を曲線状に切断して形成した切り欠き部の形状を示す平面図、(d)は封止部を矩形状に切断して形成した切り欠き部の形状を示す平面図。
【図6】比較例1に係る薄型二次電池の気密絶縁封止部を模式的に示す部分断面図。
【図7】比較例2に係る薄型二次電池の気密絶縁封止部を模式的に示す部分断面図。
【図8】比較例3に係る薄型二次電池の気密絶縁封止部を模式的に示す部分断面図。
【図9】比較例4に係る薄型二次電池の気密絶縁封止部を模式的に示す部分断面図。
【図10】比較例5に係る薄型二次電池の気密絶縁封止部を模式的に示す部分断面図。
【図11】従来の薄型二次電池の構成を示す斜視図。
【図12】従来の薄型二次電池の構造を示す展開斜視図。
【図13】従来の薄型二次電池の気密絶縁封止部を模式的に示す部分断面図。
【図14】外部リード端子、電子回路および端子台の接合状態を示す斜視図。
【図15】外部リード端子の折り曲げ加工状態を示す斜視図。
【図16】電池パックの構成を示す展開斜視図。
【図17】電池パックの組立て状態を示す斜視図。
【符号の説明】
10 発電要素
11 正極
11a 正極活物質
11b 正極集電体
11c 正極未塗工部分
12 負極
12a 負極活物質
12b 負極集電体
12c 負極未塗工部分
13 セパレータ
14 正極外部リード端子
15 負極外部リード端子
16 絶縁フィルム
20 ラミネート外装材
20a 表面側樹脂フィルム
20b バリア材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin secondary battery having a structure in which a power generation element is sealed with an exterior material made of a laminate film, and in particular, after preventing moisture intrusion and internal short circuit from the sealing portion and ensuring the reliability of the battery. The present invention relates to a thin secondary battery capable of increasing the volumetric energy density of the battery.
[0002]
[Prior art]
With the rapid advancement of electronic devices such as mobile phones and notebook computers, secondary batteries that serve as the driving power source have been constantly required to be smaller, lighter, larger in capacity, higher in performance, and lower in cost. Conventionally, nickel cadmium batteries and nickel metal hydride secondary batteries have been used as secondary batteries that are mounted in these portable devices and used as drive power sources. In recent years, lithium ion secondary batteries that can achieve higher energy density have been used. Battery demand is expanding rapidly.
[0003]
As for the shape of secondary batteries, the demand for prismatic batteries and oval batteries with higher volumetric efficiency during storage than conventional cylindrical and button batteries will increase, and the capacity and energy density will increase. At the same time, the electrode materials such as the positive electrode active material and the negative electrode active material are changed to those with higher energy density, the separator is made thinner, and the battery cans are replaced with stainless steel or iron instead of aluminum alloy. Improvements have been made.
[0004]
However, even after these improvements, technical requirements have become more advanced and have not yet reached a satisfactory level, and further miniaturization, weight reduction, thinning, large capacity, and cost reduction are required. Recently, a power generation element is made of a laminate outer material made of a polymer film containing a liquid electrolyte, gel electrolyte, solid polymer electrolyte, etc. in a power generation element, and a polymer film sandwiched between aluminum laminate foils as a barrier layer and laminated in the middle. By sealing the battery, thin secondary batteries that are thin, small, and light are being marketed and spreading.
[0005]
As a thin secondary battery in which a power generation element is sealed with such a laminate film exterior material, for example, a nonaqueous electrolyte thin secondary battery having a laminate exterior structure shown in FIGS. 11, 12 and 13 is known.
[0006]
That is, the laminated outer non-aqueous electrolyte thin secondary battery 30 includes a positive electrode 11 in which the positive electrode active material 11a is applied to the positive electrode current collector 11b, and a negative electrode 12 in which the negative electrode active material 12a is applied to the negative electrode current collector 12b. A power generating element 10 is provided in which positive and negative electrode external lead terminals 14 and 15 are connected to uncoated portions 11c and 12c of a positive and negative electrode current collector through a separator 13, respectively.
[0007]
The laminate exterior material 20 is made of a laminate film, and a recess 21 for housing the power generation element 10 is formed by overhanging or deep drawing of the film material, and sealing is performed in the vicinity of the periphery of the recess by heat sealing. An open peripheral portion 22a, 22b, and 22c for opening, and a flat portion 22d (FIG. 12) that faces the peripheral portion of one side and is folded back from the vicinity of the concave portion to cover the concave portion 21 are arranged. The power generation element 10 is accommodated in the laminate exterior material 20.
[0008]
The laminate outer material 20 is generally made of aluminum or aluminum alloy foil having a small specific gravity capable of preventing permeation of electrolyte and gas as the barrier material 20b, and thin polymer films are pasted on both surfaces of the aluminum alloy foil. It is configured together. That is, on the exterior side or the surface side of the laminate exterior material 20, a polymer film 20a that exhibits mechanical structural characteristics is disposed. On the other hand, a film (sealant film) 20c having heat-fusibility is integrally bonded to the interior side or the back side of the laminate exterior material.
[0009]
The positive and negative external lead terminals 14 and 15 are extended to the outside of the battery and sealed, and the end portion of the flat portion 22d that is folded back from the vicinity of the concave portion and covers the concave portion 21 is positive during thermal fusion. The insulating film 16 is disposed so as to adhere to the external lead terminals 14 and 15 of the negative electrode and fill the gap in the vicinity, and to prevent a short circuit between the end portion of the laminate exterior material 20 and the external lead terminals 14 and 15 of the positive and negative electrodes. And hermetically sealed with each other.
[0010]
A nonaqueous electrolyte (not shown) is injected into the concave portion 21 of the laminate outer packaging material and impregnated in the power generation element 10, and the peripheral portions 22 a, 22 b, and 22 c of the concave portion are hermetically sealed. The recessed peripheral portions 22a, 22b, and 22c that are hermetically sealed are extended from the positive and negative external lead terminals 14 and 15 to the outside of the battery, and the peripheral portion 22a that is hermetically insulated and sealed is a terrace-shaped top seal portion 24. The other recess peripheral portions 22b and 22c are formed as side seal portions 25a and 25b bent along the recess.
[0011]
The laminated exterior thin secondary battery configured to have the above structure is generally used by being mounted in a device pack as a battery pack dedicated to the electronic device used. As shown in FIGS. 14, 15, 16 and 17, the processing procedure for the battery pack 40 is as follows. In other words, the external lead terminals 14 and 15 of the positive electrode and the negative electrode extended to the outside of the laminated exterior thin secondary battery 30 have an electronic circuit (module) 42 for protecting the secondary battery from overcharge, overdischarge, etc. The terminal block 43 that enables electrical connection with the equipment used and the charger is electrically connected by ultrasonic welding or resistance welding.
[0012]
A pair of outer cases 41a and 41b of the battery pack 40 shown in FIG. 17 is generally composed of a two-divided container formed of resin or the like, and a secondary battery, an electronic circuit, a terminal block, etc. are arranged at predetermined positions. Convex-shaped ribs are arranged. In the laminated exterior thin secondary battery 30 to which the electronic circuit 42 and the terminal block 43 are connected, the electronic circuit 42 and the terminal block 43 are arranged on the terrace-shaped top seal portion 24 side, and an exterior case of a battery pack is provided. After the positive and negative external lead terminals 14 and 15 are bent into a shape that can be inserted into the external case, as shown in FIG. 16, it is inserted into one outer case 41a and double-sided tape or adhesive (see FIG. (Not shown) or the like. Thus, the battery pack 40 as shown in FIG. 17 is manufactured by joining and sealing the other outer case 41b to the one outer case 41a to which the thin secondary battery, the electronic circuit, the terminal block, etc. are fixed. It was.
[0013]
However, as the capacity of thin secondary batteries further increases, improvement in the volume energy density of secondary batteries is required. In the laminated exterior thin secondary battery 30 having the general structure as described above, the battery of the terrace-like top seal portion 24 in which the positive and negative external lead terminals 14 and 15 are extended to the outside of the battery and hermetically insulated and sealed. The occupied volume tends to be a dead space, which is a major factor for reducing the volume efficiency of the secondary battery.
[0014]
In addition, as the performance of thin secondary batteries progresses, a highly safe laminated exterior thin secondary battery that does not require an electronic circuit (module) 42 that protects the secondary battery from overcharge and overdischarge is also a product. It has become. In the battery pack containing the laminated outer thin type secondary battery with high safety, only the laminated outer thin type secondary battery 30 and the terminal block 43 are arranged, and the conventional electronic circuit and the terminal block are arranged together. The volume can be reduced compared to the case.
[0015]
Further, as a method for improving the volumetric efficiency of the thin secondary battery, the terrace-shaped top seal portion 24 which extends the positive and negative external lead terminals 14 and 15 to the outside of the battery and is hermetically insulated and sealed is reduced in the seal width direction. There is a method. However, in this method, the sealing function is insufficient, and it is difficult to suppress the intrusion of moisture from the hermetic insulating sealing portion, and it is difficult to achieve satisfactory battery reliability.
[0016]
In addition, a terrace-shaped top seal portion 24 is formed along the battery convex portion at the base portion of the concave portion (hereinafter referred to as “battery convex portion accommodating the power generating element”) 21 of the laminate exterior member 20 that houses the power generating element 10. A structure that suppresses the dead space of the terrace-like top seal portion 24 by bending exists as a known technique (for example, see Patent Document 1).
[0017]
However, in the above structure, since it is impossible to ensure the hermetic insulating sealing width of the terrace-shaped top seal portion 24 with a width equal to or higher than the height of the battery convex portion 21, moisture enters from the hermetic insulating sealing portion. The bent portion is disposed in the standing end portion of the battery convex portion 21, that is, in the unsealed region near the battery convex portion from the airtight insulating sealing region, and the external lead terminal 14 of the positive electrode and the negative electrode 15, the bent portion formed on the inner side of the battery contacts the sealant film 20 c of the laminate exterior material 20 in a linear or dotted manner, and further reaches the barrier material 20 b of the laminate exterior material 20 by an external force or the like. There is a risk of causing an internal short circuit, and it has been difficult to achieve sufficient operation reliability.
[0018]
In addition, as an example of a structure intended to ensure a sufficient hermetic insulation sealing width, a terrace-shaped top seal portion extends from the base of the battery convex portion 21 housing the power generation element 10 to the plane side facing the battery convex portion. A structure that suppresses the dead space of the terrace-shaped top seal portion 24 by bending 24 is also known in the art (see, for example, Patent Document 2).
[0019]
[Patent Document 1]
JP 2001-256933 A
[0020]
[Patent Document 2]
JP 2002-141030 A
[0021]
[Problems to be solved by the invention]
However, also in this structure, the bent portion is arranged in the unsealed region near the battery convex portion from the standing end portion of the battery convex portion (21), that is, the airtight insulating sealed region, as in the above-described known technique. Since the angle is also an acute angle close to 180 degrees, the bent portions formed on the battery inner side of the positive and negative external lead terminals 14 and 15 contact the sealant film 20c of the laminate exterior material 20 in a linear or dotted manner. However, there was a risk of reaching the barrier material 20b of the laminate exterior material 20 and causing an internal short circuit.
[0022]
In addition, since the folding direction in the hermetic insulating sealing region is the plane side, a part of the bent sealing region protrudes in the thickness direction of the battery, and a loss in the battery thickness direction is newly generated. The volume efficiency was not necessarily improved.
[0023]
The present invention has been made in order to solve the above-described problem, and the extended portion of the external lead terminal that is hermetically insulated and sealed is arranged in the longitudinal direction of the hermetic insulating and sealed portion in the hermetic insulating and sealed region of the laminate exterior material Highly reliable thin secondary battery that suppresses moisture intrusion from the sealing part by bending in parallel with the battery and reduces the volume occupied by the sealing part as much as possible to increase the volume energy density of the battery The purpose is to provide.
[0024]
[Means for Solving the Problems]
In order to achieve the above object, a thin secondary battery according to the present invention includes a laminate outer package made of a laminate film of an aluminum alloy foil and a polymer film, a positive electrode and a negative electrode inserted into the laminate outer package, and these positive and negative electrodes A power generation element composed of a separator or a solid electrolyte layer interposed between the positive electrode and the negative electrode, and a positive electrode and a negative electrode external lead terminal that are electrically connected to the positive electrode and the negative electrode, respectively, and extend to the outside through the peripheral portion of the laminate exterior material; A thin secondary battery in which the peripheral portion of the laminate exterior material into which the power generating element is inserted is hermetically sealed, and the extended portion of the external lead terminal is hermetically insulated and sealed, the external lead terminal extending portion Is bent in parallel with the longitudinal direction of the hermetic insulating sealing portion in the hermetic insulating sealing region.
[0025]
Further, in the thin secondary battery, a corner portion of the laminate exterior material where the hermetic insulating sealing portion and the other hermetic sealing portion intersect is cut out, and between the cutout portion and the corner of the power generation element. In addition, it is preferable to form the notch so as to leave the sealing part with a width equal to or larger than one of the width of the hermetic insulating sealing part and the width of the hermetic sealing part.
[0026]
According to the thin secondary battery having the above-described configuration, the external lead terminal extension is bent in the airtight insulating sealing region in parallel with the longitudinal direction of the hermetic insulating sealing portion. The volume occupied in the battery is greatly reduced, and the volume efficiency of the secondary battery can be greatly improved. On the other hand, there is no risk that the bent part of the external lead terminal formed on the battery inner side will come into contact with the sealant film of the laminate exterior material, and it may reach the barrier material of the laminate exterior material to cause an internal short circuit. Therefore, a highly reliable secondary battery can be obtained.
[0027]
In addition, since the sealing portion can be formed with a wide width including the bent portion, the sealing function is sufficiently secured, and it is possible to effectively suppress the intrusion of moisture from the hermetic insulating sealing portion. Thus, a secondary battery with little deterioration in battery characteristics and high reliability can be obtained.
[0028]
Further, when the peripheral portion of the laminate exterior material is folded in the thickness direction of the battery by cutting out the corner of the laminate exterior material where the hermetic insulation seal portion and the other airtight seal portion intersect. However, the bent piece does not protrude in the height direction of the battery, and the adverse effect of increasing the battery component volume in the thickness direction can be avoided.
[0029]
Further, when forming the cutout portion, the sealing portion is formed between the cutout portion and the corner portion of the power generation element with a width equal to or larger than one of the width of the hermetic insulating sealing portion and the width of the hermetic sealing portion. By forming the cutout part so that it remains, it is possible to ensure a sufficient sealing width, effectively suppress the intrusion of moisture from the cutout part, reduce battery characteristics, and have high reliability. A secondary battery having
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, as an embodiment of a thin secondary battery according to the present invention, a thin lithium ion secondary battery using a laminate exterior material will be described as an example and described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view of an embodiment of a thin secondary battery according to the present invention, FIG. 2 is a developed perspective view thereof, and FIG. 3 is an insulating hermetic seal region through which external lead terminals are inserted and other hermetic seals. FIG. 4 is a schematic cross-sectional view of the bent portion of the hermetic insulating sealing portion, and FIG. 5 (a), FIG. 5 (b), FIG. 5 (c), FIG. FIG. 6 is a plan view showing an example of the shape of notch processing at the corners at the intersection between the insulating hermetic sealing portion and the hermetic sealing portion, and FIG. 6 shows the hermetic sealing of the secondary battery according to Comparative Example 1. FIG. 7 is a schematic cross-sectional view of a stopper, FIG. 7 is a schematic cross-sectional view of a hermetic insulating sealing part of a secondary battery according to Comparative Example 2, and FIG. 8 is an hermetic insulating sealing part of a secondary battery according to Comparative Example 3. 9 is a schematic cross-sectional view of the bent portion of FIG. 9, FIG. 9 is a schematic cross-sectional view of the bent portion of the hermetic insulating sealing portion in the secondary battery according to Comparative Example 4, and FIG. Of a rechargeable battery according to 5 are cross-sectional schematic view of a bent portion of the hermetic insulating sealing portion.
[0031]
[Example 1]
<Preparation of positive electrode>
The composition formula is LiCoO as the positive electrode active material. 3 After mixing the lithium cobalt composite oxide represented by the above, a conductive material, and a binder into a paste, one side is placed on the positive electrode current collector 11b made of an aluminum foil having an outer dimension of 50 mm × 390 mm and a thickness of 30 μm. The above-mentioned paste is applied to both sides, leaving an uncoated portion 11c having an edge portion of 23 mm and the other uncoated portion (not shown), dried and pressed, and then applied to the uncoated portion 11c. A positive electrode external lead terminal 14 made of aluminum having a thickness of 0.1 mm, a width of 4 mm, and a length of 50 mm was attached by welding. This positive external lead terminal 14 was made of a pure annealing material (tempered: O) of a pure aluminum alloy strip (Japanese Industrial Standard: JIS H 4160 A1N30) having a thickness of 0.1 mm, a width of 4 mm, and a length of 60 mm.
[0032]
<Production of negative electrode>
A powder obtained by pulverizing mesophase pitch-based carbon fibers as a negative electrode active material and a binder are mixed to form a paste, and then a negative electrode current collector 12b made of copper foil having an outer dimension of 51.5 mm × 400 mm and a thickness of 15 μm. On top, the above-mentioned paste is applied on both sides, leaving an uncoated portion 12c with an edge portion of 46 mm on one side and the other uncoated portion (not shown), dried and pressed, and then the uncoated portion A negative electrode external lead terminal 15 in which a pure copper layer (not shown) is disposed between nickel layers (not shown) having a thickness of 0.1 mm, a width of 4 mm, and a length of 53 mm was attached to the processed portion 12c by welding. The negative electrode external lead terminal 15 has an outer shape of a thickness of 0.1 mm, a width of 4 mm, and a length of 60 mm. The negative electrode external lead terminal 15 is laminated by a clad method at a thickness ratio of pure nickel 25: pure copper 50: pure nickel 25. A completely annealed material (tempering: O) was used.
[0033]
<Formation of power generation elements>
The belt-like positive electrode (11) to which the positive external lead terminal (14) is welded and the belt-like negative electrode (12) to which the negative external lead terminal (15) is welded are 25 μm thick × 54 mm wide × 445 mm long. Laminated in the order of positive electrode / separator / negative electrode / separator through a separator (13) made of polyethylene microporous membrane, wound in a spiral shape with a flat core, and further compressed with a hydraulic press, external lead terminal A flat power generating element 10 having outer dimensions of 54 mm in height, 33 mm in width, and 3.4 mm in thickness was prepared.
[0034]
<Production of exterior material>
A stretched nylon film having a thickness of 25 μm, an aluminum alloy foil having a thickness of 40 μm (JIS H 4160 A8079 material), and a linear low-density polyethylene (sealant film) having a thickness of 30 μm in this order via a urethane-based adhesive. A laminated exterior film was laminated and adhered. The laminate outer film is cut out to an outer dimension of 170 mm × 130 mm and subjected to overhanging processing or deep drawing processing from the sealant film side, so that the length is 55 mm, the width is 34 mm, and the depth is 3.4 mm. A concave portion (battery convex portion) 21 was formed. On the periphery of the recess 21 are three peripheral portions (22a), (22b), (22c) having a width of 5 mm extending in a horizontal direction from the ridge portion, and one flat portion (22d) having a width of 60 mm. A laminate exterior material 20 was cut and formed.
[0035]
<Preparation of non-aqueous electrolyte>
Ethylene carbonate (EC) and γ-butyrolactone (GBL) are mixed at a volume ratio of 1: 2, and lithium tetrafluoroborate (LiBF) as an electrolyte in a non-aqueous solvent. 4 ) Was dissolved to a concentration of 1.5 mol / L to prepare a liquid non-aqueous electrolyte.
[0036]
<Production of thin battery>
As shown in FIGS. 1 to 4, the power generation element 10 is housed in the concave portion 21 of the laminate exterior member 20, and the external lead terminals 14 and 15 are exposed to the outside through a peripheral portion 22 a having a width of 5 mm of the laminate exterior member 20. Extended. A flat surface portion 22d having a width of 60 mm opposite to the peripheral edge portion 22a from which the positive and negative external lead terminals 14 and 15 are extended is folded back 180 ° from the folded portion 23, and the positive and negative external lead terminals 14 and 15 are extended. It overlapped with the peripheral portion 22a on the protruding side. The positive and negative external lead terminals 14 and 15 are extended to the outside of the battery, and the peripheral portion 22a to be sealed is bonded to the positive and negative external lead terminals 14 and 15 at the time of heat sealing to form a gap in the vicinity. In addition, an insulating film 16 for preventing a short circuit between the barrier member 20b made of an aluminum alloy foil and the external lead terminals 14 and 15 of the positive electrode and the negative electrode, which are exposed at the end of the laminate outer material 20, is disposed.
[0037]
The insulating film 16 is formed to have a size larger than the width of the external lead terminals 14 and 15 of the positive electrode and the negative electrode and wider than the hermetic insulating sealing width, and extends 1 mm from the end of the laminate outer packaging material 20. It arrange | positioned on both surfaces by the side of the plane part 22d turned back 180 degrees from the peripheral part 22a and the turned-up part 23 to be sealed. The extended portion 22a of the external lead terminal having such a configuration overlaps with the flat portion 22d (hereinafter referred to as “terrace”) that is folded back by 180 ° while sandwiching the positive and negative external lead terminals 14 and 15 therebetween. The shape-like top seal portion 24 ") was hermetically insulated and sealed by heat sealing with a width of 4 mm.
[0038]
The extension amount of the external lead terminals 14 and 15 of the positive electrode and the negative electrode is 8 mm from the end of the terrace top seal. Next, the peripheral portion 22b or 22C having a width of 5 mm, which is arranged in a direction perpendicular to the terrace-shaped top seal portion 24, is hermetically sealed by thermal fusion, and a side seal portion 25a is formed to form a single hermetic insulating seal. Part, one hermetic sealing part, one folding part 23, and one opened peripheral part.
[0039]
Subsequently, the non-aqueous electrolyte (not shown) is injected into the concave portion 21 of the laminate exterior material 20 through one peripheral edge portion that is open, and the non-aqueous electrolysis is applied to the power generation element 10 housed inside. A liquid (not shown) was impregnated. Subsequently, the peripheral edge of the opening of the laminate exterior material 20 was hermetically sealed by heat sealing to form another side seal portion 25b. Subsequently, the two side seal portions 25a and 25b are cut leaving a width of 3 mm, and a laminated exterior thin lithium ion secondary having a terrace-like top seal portion width (W24) of 5 mm and a side seal portion width (W25) of 3 mm. A battery was obtained.
[0040]
<Processing of hermetic insulating sealing part and hermetic sealing part>
If the thin secondary battery produced in this way remains in this form, the three sealing portions extending outward from the battery will reduce the volume efficiency of the battery. Therefore, as shown in FIG. 4, in the thin secondary battery, the positive and negative external lead terminals 14 and 15 extending from the terrace-shaped top seal portion 24 are extended from the end portion of the laminate exterior material 20. Together with the insulating film 16, the terrace-shaped top seal portion 24 was folded back toward the flat surface portion 22 d. Next, a recess (containing the power generation element) is stored 3 mm from the upper end of the terrace-shaped top seal portion 24 hermetically insulated and sealed in parallel with the longitudinal direction of the insulating hermetic seal portion. (Battery convex part) 21 was bent to the airtight insulating sealing bent part 26.
[0041]
Note that the width of the flat portion from the end of the recess 21 to the hermetic insulating sealed bent portion 26 is set to 1.5 mm or more, preferably 2 mm or more from the viewpoint of improving the sealing function and bending workability. It is preferable to do.
[0042]
By folding the both ends of the terrace-shaped top seal portion 24 and the side seal portions 25a and 25b toward the battery convex portion side, a laminated exterior thin lithium ion having an outer dimension of 35.0 mm × 58.0 mm × 3.8 mm and a discharge capacity of 770 mAh. A secondary battery was produced.
[0043]
[Example 2]
A thin secondary battery according to Example 2 was prepared by changing the following configuration among the configurations of the thin secondary battery described in Example 1. That is, as shown in FIG. 5a, a notch 27 is provided at the corner of the sealing region where the terrace-shaped top seal portion 24 and the side seal portions 25a and 25b intersect. The notch 27 has a width (W24) of the hermetic insulating sealing part (terrace top seal part) 24 and an hermetic sealing part (side seal part) between the notch and the corner of the power generation element 10. It was formed so that the sealing portion was left with a width (W27) equal to or larger than any one of the widths (W25). Specifically, the width (W27) of the remaining sealing portion was 3 mm, and the cutout portion 27 was formed by cutting out from the end portion of the top seal portion 24 at an inclination angle of 70 degrees.
[0044]
In Example 2 described above, the cutout shape of the corner is notched linearly as shown in FIG. 5 a, but the terrace-shaped top seal portion is provided between the cutout and the corner of the power generation element 10. As long as a sealing width (W27) equal to or greater than the smaller one of the width (W24) and the side seal width (W25) can be secured, the notch angle and shape may be different from those of the second embodiment. There is no particular limitation. Specifically, as shown in FIG. 5b, a linear notch 27 having a notch angle of 45 degrees may be used. Further, as shown in FIG. 5c, a cutout portion 27 formed by cutting in a curved shape may be used. Further, as shown in FIG. 5d, a cutout portion 27 formed by cutting into a rectangular shape may be used.
[0045]
The processing and processing after forming the cutout portion 27 are the same as the processing contents of the hermetic insulating sealing portion and the hermetic sealing portion described in the first embodiment, so that the outer dimensions are 35.0 mm × 58. A laminate-packaged thin lithium ion secondary battery according to Example 2 having a size of 0 mm × 3.8 mm and a discharge capacity of 770 mAh was produced.
[0046]
According to the laminated exterior thin lithium ion secondary battery according to Example 2, the notch 27 is provided at the corner of the sealing portion region where the terrace-like top seal portion 24 and the side seal portions 25a and 25b intersect. Therefore, the intersection of the both ends of the terrace-like top seal portion 24 and the side seal portions 25a and 25b does not protrude in the thickness direction of the battery, and the bending process can be easily performed.
[0047]
[Comparative Example 1]
A thin secondary battery according to Comparative Example 1 was prepared by changing the following configuration among the configurations of the thin secondary battery described in Example 1. That is, as shown in FIG. 1, the processing of the hermetic insulating sealing portion and the hermetic sealing portion is only to bend the side seal portions 25a and 25b to the battery convex portion side, while the terrace-shaped top seal portion (24) is By not performing the bending process, a laminated exterior thin lithium ion secondary battery according to Comparative Example 1 having an outer dimension of 35 mm × 60.5 mm × 3.8 mm and a discharge capacity of 770 mAh was produced.
[0048]
[Comparative Example 2]
A thin secondary battery according to Comparative Example 2 was prepared by changing the following configuration among the configurations of the thin secondary battery described in Comparative Example 1. That is, the peripheral part extending to the peripheral edge of the concave portion 21 of the laminate exterior material is composed of one peripheral part 22a having a width of 3 mm, two peripheral parts 22b and 22c having a width of 5 mm, and one part having a width of 58 mm. It was cut and formed as the peripheral portion 22d. The top seal portion 24 of this laminate exterior material was heat-sealed with a width of 2 mm. As shown in FIG. 7, two side seal portions 25a and 25b arranged in a direction perpendicular to the terrace-shaped top seal portion 24 are cut leaving a width of 3 mm, and the width (W24) of the terrace-shaped top seal portion is set to 3 mm. The width (W25) of the side seal part was 3 mm. Subsequently, as shown in FIG. 1, the side seal portions 25a and 25b are bent toward the battery convex portion, so that the outer dimensions are 35.0 mm × 58.0 mm × 3.8 mm, and the discharge capacity is 770 mAh. A laminated exterior thin lithium ion secondary battery according to the present invention was produced.
[0049]
[Comparative Example 3]
A thin secondary battery according to Comparative Example 3 was prepared by changing the following configuration among the configurations of the thin secondary battery described in Example 1. That is, as shown in FIG. 8, the terrace-shaped top seal portion that is hermetically insulated and sealed is folded from the root of the battery convex portion 21 toward the battery convex portion 21 side of the laminate exterior member 20 in parallel with the longitudinal direction of the insulating hermetic sealed portion. It was made to bend and the sealing root bending part 28 was formed. Subsequently, both ends of the terrace-like top seal portion 24 and the side seal portions 25a and 25b were bent to the battery convex portion side. At this time, the intersections between the both ends of the terrace-like top seal portion 24 and the side seal portions 25a and 25b project in a square shape by bi-directional bending, so that the projecting portion is again folded to the top seal portion side. Thus, a laminate-coated thin lithium ion secondary battery according to Comparative Example 3 having an outer dimension of 35.0 mm × 56.5 mm × 4.5 mm and a discharge capacity of 770 mAh was produced.
[0050]
In the thin secondary battery according to the comparative example 3, the reason why the battery thickness is larger than that of the example is as follows. That is, since the width (W24) of the terrace-shaped top seal portion is 5 mm, the terrace-shaped top seal portion bent from the base protrudes in the battery thickness direction from the battery convex portion.
[0051]
[Comparative Example 4]
A thin secondary battery according to Comparative Example 4 was prepared by changing the following configuration among the configurations of the thin secondary battery described in Comparative Example 3. That is, as shown in FIG. 9, the peripheral portion extending to the peripheral edge of the concave portion 21 of the laminate exterior material is the same peripheral portion (22a) having a width of 3 mm as in Comparative Example 2, and the width is 5 mm. Two peripheral edges 22b and 22c and one peripheral edge 22d having a width of 58 mm were cut and formed. Subsequent processing and processing are the same as the processing contents of the hermetic insulating sealing portion and the hermetic sealing portion performed in Comparative Example 3, so that the outer dimensions are 35.0 mm × 56.5 mm × 3.8 mm. A laminate-packaged thin lithium ion secondary battery according to Comparative Example 4 having a discharge capacity of 770 mAh was produced.
[0052]
[Comparative Example 5]
A thin secondary battery according to Comparative Example 5 was prepared by changing the following configuration among the configurations of the thin secondary battery described in Comparative Example 3. That is, as shown in FIG. 10, the terrace-shaped top seal portion hermetically insulated and sealed is parallel to the longitudinal direction of the insulating hermetic sealing portion from the root and parallel to the longitudinal direction of the insulating hermetic sealing portion from the root of the battery protrusion 21. Were folded at a folding angle of 180 degrees along the plane side facing the battery convex portion 21 of the laminate outer packaging material 20 to form a sealing root bent portion 28. The external lead terminals 14 and 15 of the positive electrode and the negative electrode were folded back together with the insulating film 16 extending from the end portion of the laminate outer packaging material 20 toward the sealing root bent portion. Subsequently, by bending the both ends of the terrace-shaped top seal portion 24 and the side seal portions 25a and 25b to the battery convex portion side, the outer dimensions are 36.0 mm × 55.5 mm × 4.5 mm, and the discharge capacity is A laminate-packaged thin lithium ion secondary battery according to Comparative Example 5 having 770 mAh was produced.
[0053]
In the thin secondary battery according to the comparative example 5, the reason why the battery thickness and the battery width are larger than those of the example is as follows. That is, as a result of the terrace-shaped top seal portion being bent along the flat surface facing the battery convex portion, the thickness of the terrace-shaped top seal portion is added to the thickness of the battery convex portion. The volume loss in the vertical direction increases, and the loss in the width direction also increases due to the presence of a portion where the side seal portion is bent and overlapped with the terrace-shaped top seal portion (intersection region of both seal portions). Because.
[0054]
Comparative parameters of each laminated exterior thin lithium ion secondary battery according to Examples 1 and 2 and Comparative Examples 1 to 5 prepared as described above (airtight insulating sealing width, bending position, bending direction, corner notch) The presence or absence) is summarized in Table 1 below.
[0055]
[Table 1]
Figure 2005044583
[0056]
In order to evaluate each laminate-sheathed thin lithium ion secondary battery according to Examples 1-2 and Comparative Examples 1-5, a comparative survey was performed on the following characteristic items.
[0057]
<Comparison of moisture permeation from the sealing part>
Sampling each of three laminated exterior thin lithium ion secondary batteries according to Examples 1 and 2 and Comparative Examples 1 to 5, the temperature is 65 ° C. in an uncharged state, and the relative humidity RH is 90%. It was left in the adjusted environment for 30 days. Thereafter, 0.5 cc of the non-aqueous electrolyte was extracted from the battery with a microsyringe, and the water content in the non-aqueous electrolyte was measured with a Karl Fischer water content measuring device. The water permeation amount of each battery was calculated as a relative value with the water permeation amount of the secondary battery according to Comparative Example 1 as a reference value (100%). Table 2 shows the measurement calculation results.
[0058]
<Comparison of internal short circuit occurrence due to external force>
For each of the 10 laminated outer thin lithium ion secondary batteries according to Examples 1-2 and Comparative Examples 1-5, constant current / constant voltage charging was performed at room temperature up to 4.2 V at 1C. Then, it discharged to 3.0V at 1C at room temperature, measured the reference discharge capacity, and further carried out constant current / constant voltage charging to 1.85V at 1C at room temperature. Each laminated outer thin lithium-ion secondary battery in this state was mounted on a dummy pack case, and it was carried out under severe conditions such as allowing it to fall naturally from a height of 1.5 m onto a wood surface of a firewood.
[0059]
The direction in which each secondary battery is dropped is a drop that takes the vertical orientation of the battery so that a drop impact in the tension / compression direction is applied to the external lead terminal, terrace-shaped top seal part, and hermetic insulation sealing bent part. The repetition of dropping with the up and down direction reversed was carried out up to 100 cycles. Whether or not an internal short circuit occurred every 10 cycles was confirmed by measuring the voltage of the external lead terminal from the terminal hole provided in the dummy pack. The number of occurrences of internal short circuit and the number of occurrences after the drop test were measured, and the number of occurrences of internal short circuit and the number of occurrences of the secondary battery of Comparative Example 1 were calculated as relative values using the reference value (100%). Table 2 shows the measurement calculation results.
[0060]
<Comparison of battery dimensions (volumetric efficiency)>
For each laminated exterior thin lithium ion secondary battery according to Examples 1-2 and Comparative Examples 1-5, the battery volume is calculated from the dimensions of battery height, battery width, and battery thickness, and the discharge of each battery is calculated. The volume capacity density was calculated from the capacity and compared. The volume capacity density of each secondary battery was calculated as a relative value using the volume capacity density of the secondary battery according to Comparative Example 1 as a reference value (100%). The measurement calculation results are summarized in Table 2 below.
[0061]
[Table 2]
Figure 2005044583
[0062]
As is clear from the results shown in Tables 1 and 2 above, Examples 1 to 2 in which the external lead terminal extension portion was bent in the airtight insulating sealing region in parallel with the longitudinal direction of the airtight insulating sealing portion. In the secondary battery according to the invention, since the occupied volume of the hermetic insulating sealing portion in the battery is reduced, the volume capacity density is increased, and the volume efficiency of the secondary battery can be improved.
[0063]
In addition, since the external lead terminal extension is bent in the hermetic insulation sealing region, there is no possibility that the external lead terminal located inside the battery contacts the laminate exterior material, and the barrier material for the laminate exterior material A secondary battery with high reliability was obtained because there was little risk of reaching an internal short circuit and causing an internal short circuit.
[0064]
In addition, since the sealing part can be formed with a wide width including the bent part, the sealing function is sufficiently ensured, the moisture permeation amount does not increase, and the intrusion of moisture from the hermetic insulating sealing part is effective. Thus, a secondary battery having high reliability and little deterioration in battery characteristics was obtained.
[0065]
Furthermore, in the battery according to Example 2 in which the cutout portion 27 is formed by cutting out the corner portion of the laminate outer covering material where the hermetic insulating sealing portion and the other hermetic sealing portion intersect, this laminate outer covering is formed. Even when the peripheral part of the material was folded in the thickness direction of the battery, the bent piece did not protrude in the height direction of the battery, and the adverse effect of increasing the battery component volume in the thickness direction could be avoided. .
[0066]
Moreover, when forming the said notch part 27, between this notch part 27 and the corner | angular part of the electric power generation element 10, the width | variety (W-24) of an airtight insulation sealing part and the width | variety (W of an airtight sealing part) −25) By forming the cutout portion so as to leave the sealing portion with a width equal to or smaller than any one of the smaller widths, it is possible to secure a sufficient sealing width and effectively prevent moisture from entering through the cutout portion 27. Thus, a secondary battery having high reliability and little deterioration in battery characteristics can be obtained.
[0067]
On the other hand, in the secondary battery according to Comparative Example 1 in which the external lead terminal extension portion was not bent, the volume loss at the terminal end portion was large. Further, in the secondary battery according to Comparative Example 2 in which the width of the hermetic insulating sealing portion was reduced, the volume capacity density was increased, but the effect of suppressing moisture penetration was insufficient. Further, in the secondary battery in which the external lead terminal extension portion is bent at the sealing root outside the hermetic insulating sealing region as in Comparative Example 3, the terminal material is pulled in the direction of the bending portion, and the internal short circuit is caused. The volume capacity density decreased because the bent portion protruded in the thickness direction of the battery.
[0068]
Further, as in Comparative Example 4, in the secondary battery in which the width of the hermetic insulating sealing portion is reduced while the external lead terminal extension portion is bent at the root of the sealing portion, the volume capacity density increases. In addition, the sealing function is insufficient, and the effect of preventing moisture penetration is insufficient. In addition, since the external lead terminal extension portion is bent at the sealing root that is outside the hermetic insulating sealing region, the terminal material is pulled in the direction of the bent portion, thereby increasing the incidence of internal short circuit. Further, as in Comparative Example 5, the external lead terminal extension is bent to the back side at the sealing base outside the hermetic insulating sealing region, so that the terminal material is pulled in the direction of the bent portion, causing an internal short circuit. The incidence of has increased. Furthermore, since the thickness of the bent portion bent to the back side is added to the battery thickness and becomes the thickness of the entire battery, the volume efficiency is greatly deteriorated.
[0069]
【The invention's effect】
As described above in detail, according to the thin secondary battery according to the present invention, the laminate outer packaging material for housing the power generation element and the external lead terminal extending portions of the positive and negative electrodes sealed in an airtight insulating manner are connected to the laminated outer packaging material. By making the structure bent in parallel with the longitudinal direction of the hermetic insulating sealing part in the hermetic insulating sealing region, a sufficient width of the hermetic insulating sealing can be secured, and moisture intrusion from the sealing part is suppressed. In addition, since the bent portion is in the hermetic insulating sealing region, internal short circuit between the positive and negative electrode external lead terminals of the bent portion and the laminate exterior material is prevented, and the volume occupied by the sealing portion is made as small as possible. A thin secondary battery in which the volumetric energy density of the battery is increased can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a thin secondary battery according to the present invention.
FIG. 2 is an exploded perspective view of a thin secondary battery according to the present invention.
FIG. 3 is a plan view showing an insulating hermetic sealing region and a hermetic sealing region of a thin secondary battery according to the present invention.
FIG. 4 is a partial cross-sectional view schematically showing a bent portion of an airtight insulating sealing portion of a thin secondary battery according to the present invention.
FIG. 5 is a plan view showing a shape of a notch formed at a corner portion that is an intersection of an insulating hermetic sealing portion and an hermetic sealing portion of a thin secondary battery according to the present invention, FIG. The top view which shows the notch part (cutting angle: 70 degree | times) formed in the secondary battery which concerns on Example 2, (b) is a top view which shows the shape of the notch part formed by notching with the cutting angle of 45 degree | times, (C) is a plan view showing the shape of a cutout portion formed by cutting the sealing portion into a curved shape, and (d) is a plane showing the shape of the cutout portion formed by cutting the sealing portion into a rectangular shape. Figure.
6 is a partial cross-sectional view schematically showing an airtight insulating sealing portion of a thin secondary battery according to Comparative Example 1. FIG.
7 is a partial cross-sectional view schematically showing an airtight insulating sealing portion of a thin secondary battery according to Comparative Example 2. FIG.
8 is a partial cross-sectional view schematically showing an airtight insulating sealing portion of a thin secondary battery according to Comparative Example 3. FIG.
9 is a partial cross-sectional view schematically showing an airtight insulating sealing portion of a thin secondary battery according to Comparative Example 4. FIG.
10 is a partial cross-sectional view schematically showing an airtight insulating sealing portion of a thin secondary battery according to Comparative Example 5. FIG.
FIG. 11 is a perspective view showing a configuration of a conventional thin secondary battery.
FIG. 12 is an exploded perspective view showing a structure of a conventional thin secondary battery.
FIG. 13 is a partial cross-sectional view schematically showing a hermetic insulating sealing part of a conventional thin secondary battery.
FIG. 14 is a perspective view showing a joined state of an external lead terminal, an electronic circuit, and a terminal block.
FIG. 15 is a perspective view showing a bent state of an external lead terminal.
FIG. 16 is an exploded perspective view showing the configuration of the battery pack.
FIG. 17 is a perspective view showing an assembled state of the battery pack.
[Explanation of symbols]
10 Power generation elements
11 Positive electrode
11a Cathode active material
11b Positive electrode current collector
11c Positive electrode uncoated part
12 Negative electrode
12a Negative electrode active material
12b Negative electrode current collector
12c Negative electrode uncoated part
13 Separator
14 Positive external lead terminal
15 Negative external lead terminal
16 Insulating film
20 Laminate exterior material
20a Surface side resin film
20b Barrier material

Claims (2)

アルミニウム合金箔と高分子フィルムとのラミネートフィルムからなるラミネート外装材と、このラミネート外装材に挿入される正極および負極とこれら正負極間に介在されたセパレータ或いは固体電解質層とからなる発電要素と、上記正極および負極それぞれに電気的に接続され、上記ラミネート外装材の周辺部を通して外部に延出された正極および負極外部リード端子とを具備し、前記発電要素を挿入したラミネート外装材の周辺部を気密封止し、上記外部リード端子の延出部が気密絶縁封止された薄型二次電池において、
上記外部リード端子延出部を上記気密絶縁封止領域内で気密絶縁封止部の長手方向と平行に折曲させたことを特徴とする薄型二次電池。
A power generation element composed of a laminate exterior material composed of a laminate film of an aluminum alloy foil and a polymer film, a positive electrode and a negative electrode inserted into the laminate exterior material, and a separator or a solid electrolyte layer interposed between the positive and negative electrodes; A positive electrode and a negative electrode external lead terminal electrically connected to each of the positive electrode and the negative electrode and extending to the outside through the peripheral part of the laminate outer material; and a peripheral part of the laminate outer material in which the power generation element is inserted In a thin secondary battery that is hermetically sealed and the extended portion of the external lead terminal is hermetically insulated and sealed,
A thin secondary battery, wherein the external lead terminal extension is bent in the hermetic insulation sealing region in parallel with the longitudinal direction of the hermetic insulation sealing.
前記気密絶縁封止部とそれ以外の気密封止部とが交差する前記ラミネート外装材の角部を切り欠くと共に、この切欠部と発電要素の角部との間に、気密絶縁封止部の幅および気密封止部の幅のいずれか小さい幅以上の幅で封止部を残すように上記切欠部を形成したことを特徴とする請求項1に記載の薄型二次電池。Cut out the corner of the laminate exterior material where the hermetic insulating sealing part and the other hermetic sealing part intersect, and between the notch and the corner of the power generation element, 2. The thin secondary battery according to claim 1, wherein the cutout portion is formed so as to leave the sealing portion with a width equal to or larger than any one of the width and the width of the hermetic sealing portion.
JP2003201804A 2003-07-25 2003-07-25 Thin secondary battery Pending JP2005044583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003201804A JP2005044583A (en) 2003-07-25 2003-07-25 Thin secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201804A JP2005044583A (en) 2003-07-25 2003-07-25 Thin secondary battery

Publications (1)

Publication Number Publication Date
JP2005044583A true JP2005044583A (en) 2005-02-17

Family

ID=34261761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201804A Pending JP2005044583A (en) 2003-07-25 2003-07-25 Thin secondary battery

Country Status (1)

Country Link
JP (1) JP2005044583A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242411A (en) * 2006-03-08 2007-09-20 Sony Corp Battery and electrolyte composition
JP2009543289A (en) * 2006-07-14 2009-12-03 ビーピーエス.カンパニー、リミテッド Battery manufacturing method using aluminum multilayer film as appearance
KR101130046B1 (en) 2009-04-01 2012-03-28 주식회사 엘지화학 Middle or Large-sized Battery Module of Improved Safety
JP2013502675A (en) * 2009-08-18 2013-01-24 リ−テック・バッテリー・ゲーエムベーハー Electrochemical battery
JP2017010856A (en) * 2015-06-24 2017-01-12 日立マクセル株式会社 Laminate battery
JP2017079192A (en) * 2015-10-22 2017-04-27 日立マクセル株式会社 Electrochemical element and card including the same
JP2018085214A (en) * 2016-11-22 2018-05-31 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of electrochemical cell
CN109671983A (en) * 2017-10-16 2019-04-23 东莞新能德科技有限公司 Battery unit
JP2020518970A (en) * 2017-11-24 2020-06-25 エルジー・ケム・リミテッド Battery module with improved electrical connection safety
CN113471637A (en) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 Battery, battery module and electronic device
CN113611986A (en) * 2021-07-30 2021-11-05 东莞新能德科技有限公司 Battery cell, battery and electronic equipment
JP2022520014A (en) * 2019-06-25 2022-03-28 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing it
US11362389B2 (en) 2017-04-25 2022-06-14 Lg Energy Solution, Ltd. Reusable pouch type secondary battery, battery module comprising the same and method of reusing battery module
CN115101722A (en) * 2022-06-28 2022-09-23 晖阳(贵州)新能源材料有限公司 Preparation method for preparing porous silver coated hard carbon composite material by magnetron sputtering method
WO2023245350A1 (en) * 2022-06-20 2023-12-28 宁德新能源科技有限公司 Electrochemical device and electric device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242411A (en) * 2006-03-08 2007-09-20 Sony Corp Battery and electrolyte composition
JP2009543289A (en) * 2006-07-14 2009-12-03 ビーピーエス.カンパニー、リミテッド Battery manufacturing method using aluminum multilayer film as appearance
KR101130046B1 (en) 2009-04-01 2012-03-28 주식회사 엘지화학 Middle or Large-sized Battery Module of Improved Safety
JP2013502675A (en) * 2009-08-18 2013-01-24 リ−テック・バッテリー・ゲーエムベーハー Electrochemical battery
JP2017010856A (en) * 2015-06-24 2017-01-12 日立マクセル株式会社 Laminate battery
JP2017079192A (en) * 2015-10-22 2017-04-27 日立マクセル株式会社 Electrochemical element and card including the same
US10622592B2 (en) 2016-11-22 2020-04-14 Seiko Instruments Inc. Electrochemical cell and manufacturing method of the electrochemical cell
JP2018085214A (en) * 2016-11-22 2018-05-31 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of electrochemical cell
US11616250B2 (en) 2017-04-25 2023-03-28 Lg Energy Solution, Ltd. Reusable pouch type secondary battery, battery module comprising the same and method of reusing battery module
US12062751B2 (en) 2017-04-25 2024-08-13 Lg Energy Solution, Ltd. Reusable pouch type secondary battery, battery module comprising the same and method of reusing battery module
US11362389B2 (en) 2017-04-25 2022-06-14 Lg Energy Solution, Ltd. Reusable pouch type secondary battery, battery module comprising the same and method of reusing battery module
CN109671983A (en) * 2017-10-16 2019-04-23 东莞新能德科技有限公司 Battery unit
CN109671983B (en) * 2017-10-16 2024-06-07 东莞新能德科技有限公司 Battery cell
JP2020518970A (en) * 2017-11-24 2020-06-25 エルジー・ケム・リミテッド Battery module with improved electrical connection safety
JP2022520014A (en) * 2019-06-25 2022-03-28 エルジー エナジー ソリューション リミテッド Battery module and battery pack containing it
JP7282434B2 (en) 2019-06-25 2023-05-29 エルジー エナジー ソリューション リミテッド Battery modules and battery packs containing the same
US12237539B2 (en) 2019-06-25 2025-02-25 Lg Energy Solution, Ltd. Battery module and battery pack including the same
CN113471637B (en) * 2021-06-30 2024-01-09 东莞新能安科技有限公司 Battery, battery module and electronic device
CN113471637A (en) * 2021-06-30 2021-10-01 东莞新能安科技有限公司 Battery, battery module and electronic device
CN113611986A (en) * 2021-07-30 2021-11-05 东莞新能德科技有限公司 Battery cell, battery and electronic equipment
WO2023245350A1 (en) * 2022-06-20 2023-12-28 宁德新能源科技有限公司 Electrochemical device and electric device
CN115101722A (en) * 2022-06-28 2022-09-23 晖阳(贵州)新能源材料有限公司 Preparation method for preparing porous silver coated hard carbon composite material by magnetron sputtering method

Similar Documents

Publication Publication Date Title
US20230006311A1 (en) Electrochemical device and electronic device containing same
JP4863636B2 (en) Spiral electrode square battery
KR100496305B1 (en) Pouched-type lithium secondary battery and the fabrication method thereof
JP5094215B2 (en) Battery and battery pack
CN1330019C (en) Nonaqueous secondary electrolytic battery
US20040121231A1 (en) Pouch-type lithium secondary battery
US20050100784A1 (en) Laminated battery
TW201203655A (en) Battery and method for producing same
JP2005044583A (en) Thin secondary battery
CN107887565B (en) Square secondary battery
JP2002203534A (en) Thin secondary batteries and battery packs
KR20230092267A (en) Secondary Battery
JP4432146B2 (en) Nonaqueous electrolyte secondary battery
CN100464444C (en) Non-aqueous electrolytic secondary cell
JP2000277066A5 (en)
US8039144B2 (en) Electrochemical cell with singular coupling and method for making same
JP3632062B2 (en) Thin polymer battery
JP2010244865A (en) Laminated battery
CN114365330B (en) Secondary battery and method for manufacturing same
KR101308242B1 (en) Pouch type secondary battery
JPH11144691A (en) Thin battery and manufacture thereof
JP3601283B2 (en) Non-aqueous electrolyte battery
JPH11102673A (en) Thin secondary battery
KR20040107868A (en) Pouched-type lithium secondary battery
JPH11162436A (en) Thin secondary battery