[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004115316A - Apparatus and method for sintering glass base material - Google Patents

Apparatus and method for sintering glass base material Download PDF

Info

Publication number
JP2004115316A
JP2004115316A JP2002281411A JP2002281411A JP2004115316A JP 2004115316 A JP2004115316 A JP 2004115316A JP 2002281411 A JP2002281411 A JP 2002281411A JP 2002281411 A JP2002281411 A JP 2002281411A JP 2004115316 A JP2004115316 A JP 2004115316A
Authority
JP
Japan
Prior art keywords
glass
concave groove
core tube
base material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002281411A
Other languages
Japanese (ja)
Inventor
Haruyoshi Tanada
棚田 治良
Nobuyuki Hirano
平野 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002281411A priority Critical patent/JP2004115316A/en
Publication of JP2004115316A publication Critical patent/JP2004115316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

【課題】炉心管フランジ部での密封性を高め、炉心管外部へのガス漏れ発生を防止することができるガラス母材の焼結装置及び焼結方法を提供する。
【解決手段】分割形成された炉心管1をフランジ部2a,3aで連結し、炉心管内に収納したガラス微粒子堆積体7を炉心管外周に配したヒータ4により加熱し、脱水・透明ガラス化するガラス母材の焼結装置及び焼結方法であって、フランジ部2a,3aの接合面外周を取り囲む凹溝9を有する押圧部材10と、押圧部材10を内径方向に付勢する付勢手段とを有し、凹溝9はフランジ部2a,3aを楔作用で封止する形状としたものである。
【選択図】    図1
An object of the present invention is to provide a sintering apparatus and a sintering method for a glass base material capable of improving the sealing performance of a furnace tube flange portion and preventing gas leakage to the outside of the furnace tube.
SOLUTION: A furnace core tube 1 formed in a divided manner is connected by flange portions 2a, 3a, and a glass fine particle stack 7 housed in the furnace core tube is heated by a heater 4 arranged on the outer periphery of the furnace core tube to be dehydrated and transparent vitrified. A sintering apparatus and a sintering method for a glass base material, comprising: a pressing member 10 having a concave groove 9 surrounding an outer periphery of a joining surface of flange portions 2a and 3a; And the concave groove 9 is shaped so as to seal the flange portions 2a and 3a by wedge action.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス微粒子堆積体を脱水・透明ガラス化するガラス母材の焼結装置及びガラス母材の焼結方法に関する。
【0002】
【従来の技術】
従来、ガラス光ファイバ等の製造に用いるガラス母材を製造するには、ガラス原料ガスを火炎加水分解させてガラス微粒子を生成し、これを出発ガラスロッド等に堆積させてガラス微粒子堆積体(多孔質ガラス母材)とし、これを脱水、燒結して透明ガラス化することが知られている。また、ガラス微粒子堆積体の製造には、VAD法(気相軸付法)、OVD法(外付け気相蒸着法)等が知られている。
【0003】
OVD法は、例えば、反応炉内で回転する出発ガラスロッドの外周に、SiCl等のガラス原料ガスを、Hガス,Oガス等の燃焼用ガスとともにバーナで吹き付け、火炎加水分解反応によりガラス微粒子を生成して堆積させ、ガラス微粒子堆積体を作製する。VAD法は、回転する出発ガラスロッドの下方にバーナを配して、ガラス原料ガスと燃焼用ガスを吹き付け、火炎加水分解反応により生成されるガラス微粒子を軸方向に堆積させてガラス微粒子堆積体を作製する。
【0004】
ガラス微粒子堆積体の脱水・透明ガラス化は、一般的には、ガラス微粒子堆積体をカーボン又は石英等の耐熱材で形成された炉心管の外周にヒータを配した焼結装置を用いて行なわれる。透明ガラス化の方法には種々の方法があるが、例えば、炉心管内を塩素含有雰囲気にして、脱水と透明ガラス化の加熱処理を同時に行なう方法がある。また、塩素ガスとヘリウムガスで脱水加熱を行なった後に、温度を上げてヘリウムガスのみで加熱し透明ガラス化するなどの方法も知られている。これらの加熱処理を行なうための焼結装置には、今までに種々の構成のものが提案されている。
【0005】
図4は、従来の焼結装置の一例(例えば、特許文献1参照)を示す概略図である。図中、20はガラス微粒子堆積体、21はガラスロッド、22は炉心管、23は接合部、24はヒータ、25は断熱材、26は炉体、27はガス供給口、28はガス排気口を示す。
【0006】
図において、ガラス微粒子堆積体20は、SiO粒子生成の出発棒とされたガラスロッド21により、炉心管22の貫通部および炉体26の貫通部を通じて、炉心管22内の炉心室の中央部に吊り下げ支持されている。炉心管22は、高純度のカーボンで形成され、長尺の大型のガラス微粒子堆積体20を収納するために、複数に分割したものを多段に積重ねて構成されている。炉心管22の積重ね部分の接合部23の具体構造は明らかでないが、カーボン製のパッキン等を装填して封止している。炉心管22と炉体26との間には、ヒータ24と断熱部材25が配されている。
【0007】
炉心管27内には、ガラス微粒子堆積体20を脱水、焼結処理するためのガスがガス供給口27から供給され、ガス排気口28から排出される。脱水、焼結処理用のガスとしては、例えば、ヘリウムと塩素ガスが用いられる。また、炉体26にもガス供給口とガス排出口が設けられていて、ヒータ24および断熱材25が酸化による劣化を生じないように、アルゴンガス等の不活性ガスを供給し、排気するようになっている。
【0008】
【特許文献1】
特開2002−68770号公報
【0009】
【発明が解決しようとする課題】
炉心管22内は1500℃前後の高温に加熱され、また、有害な塩素ガスを用いて使用されるため炉心管22には、通常、耐熱性・耐食性に優れたカーボン又は石英等の材料で形成される。しかし、これらの材料は、材質的には密封性は備えているものの硬質で脆いという性質がある。このため、分割されて積重ねられる炉心管22の接合部23を、ネジ、ボルト等を用いて直接締め付けて連結することができず密封が難しい。密封の精度を向上させるために接合部の接合面を平滑にし、また、シール部材を強固なものに変更する等を試みても、密封状態を向上させることは困難であった。この結果、炉心管内のガスが漏洩し、作製されるガラス母材の品質不良や炉体の腐食を引き起こす恐れがあった。
【0010】
本発明は、上述した実情に鑑みてなされたもので、炉心管の接合部での密封性を高め、炉心管外部へのガス漏れ発生を防止することができるガラス母材の焼結装置及び焼結方法の提供を課題とする。
【0011】
【課題を解決するための手段】
本発明によるガラス母材の焼結装置は、分割形成された炉心管をフランジ部で連結し、炉心管内に収納したガラス微粒子堆積体を炉心管外周に配したヒータにより加熱し、脱水・透明ガラス化するガラス母材の焼結装置であって、フランジ部の接合面外周を取り囲む凹溝を有する押圧部材と、押圧部材を内径方向に付勢する付勢手段とを有し、凹溝はフランジ部を楔作用で封止する形状としたものである。
【0012】
また、本発明によるガラス母材の焼結方法は、分割形成された炉心管をフランジ部で連結し、炉心管内に収納したガラス微粒子堆積体を炉心管外周に配したヒータにより加熱し、脱水・透明ガラス化するガラス母材の焼結方法であって、フランジの接合部外周を押圧部材の凹溝で取り囲み、押圧部材を内径方向に付勢し、フランジ部を凹溝の楔作用で封止して焼結を行なうようにしたものである。
【0013】
【発明の実施の形態】
図1及び図2により実施の形態を説明する。図1は焼結装置主要部の概略図を示す図、図2はフランジ部の封止構造の一例を示す図である。図中、1は炉心管、2は本体部、2aはフランジ部、3は蓋部、3aはフランジ部、4はヒータ、5はガス導入部、6はガス排気部、7はガラス微粒子堆積体、8はガラスロッド、10,10a,10bは押圧部材、11は凹溝、11aは凹溝側壁、11bは凹溝底壁、12は間隙、13はシールガス供給部、14はシールガス排出部、15はエアシリンダ機構を示す。
【0014】
本発明は、炉心管1は、耐熱性、耐食性に優れたカーボン又は石英で形成し、少なくとも本体部2と蓋部3の二つに分割され、分割された炉心管のつなぎ目はそれぞれに一体に設けたフランジ部2aと3bで連結される。炉心管1の下部側にはガス導入部5が設けられ、上部側にはガス排気部6が設けられ、脱水・透明ガラス化に必要な塩素ガス、ヘリウムガス等が導入される。蓋部3側には、ガラス微粒子堆積体7の端部から延びているガラスロッド8を貫通する孔を有し、ガラスロッド上端を吊下げ支持装置(図示せず)に連結させている。前記蓋の孔付近に吸引装置(図示せず)を配置し、孔から漏れたガスは、この吸引装置で吸引排除する。炉心管1の外周には、リング状の複数のヒータ4を配し、炉心管内に収納されたガラス微粒子堆積体7を加熱する。
【0015】
本体部2と蓋部3を連結するフランジ部2a,3aには、内側に凹溝11を有する環状の押圧部材10がフランジ部外周を囲うように配される。この押圧部材10は、例えば、図2に示すように、フランジ部2a,3aの外側から取付けられるように、2分割した半円形状の押圧部材10a,10bで形成する。しかし、3以上の複数に分割形成してもよいものである。
【0016】
押圧部材10a,10bは、内側に形成された凹溝11でフランジ部2aと3aとを上下から挟むようにして組み付けられる。凹溝11は側壁11aと底壁11bとからなる断面U字状で形成され、側壁11aは、楔作用でフランジ部2a,3aの外周エッジを押圧する開口側が拡開した傾斜面で形成される。押圧部材10a,10bの外側には、押圧部材10a,10aを内方に付勢する付勢手段が配される。この付勢手段としては、例えば、流体駆動を用いたエアシリンダ機構15を用いることができる。
【0017】
以上のように構成された焼結装置で、ガラス微粒子堆積体7を炉心管1内に収納した後、炉心管本体部2のフランジ部2aと炉心管蓋部3のフランジ部3aの位置を一致させる。次いで、エアシリンダ機構15を作動させて押圧部材10a,10bを内径方向に押圧する。エアシリンダ機構15は、過度の押圧力が生じないように一定の押圧力に制御され、押圧部材10a,10bに過度の力が加わらないようにされ、炉心管が割れないようにされる。
【0018】
押圧部材10a,10bが内径方向に押圧され移動することにより、凹溝11がフランジ部2a,3aの外周を取り囲み、凹溝側壁11aがフランジ部2a,3aの外周エッジに当たって、楔作用でフランジ部2a,3aの接合面を互いに密接させる。フランジ部2a,3aは、外周部を押圧部材10a,10bによって直接押圧され、接合面の隙間を効果的に狭めることができる。この結果、単に本体部と蓋部を軸方向に押圧する構成と比べて密封性を飛躍的に向上させることができる。
【0019】
また、押圧部材10a,10bを内径方向に押し込んだ際に、フランジ部2a,3aの外周面と凹溝11の底壁11bとの間に間隙12が生じる。ガス供給部13とガス排出部14をこの間隙12に連通させ、この間隙12に不活性ガス等のシールガスを供給、排出する。これにより、フランジ部2aと3a間の微小な隙間からガスが漏れたとしても、間隙に供給されるシールガスとともにガス排出部より排出される。こうして、炉心管内のガスがつなぎ目から炉心管外部に拡散するのを完全に防止することができる。
【0020】
シールガスのガス供給部13とガス排出部14は、押圧部材10a,10bの任意の位置に設けることができるが、前記の押圧部材10aと10bとが接する端部分に設けるのが好ましい。これは、ガス供給部13またはガス排出部14を覆うハウジングが、押圧部材10aとが接する部分を覆うことで、この部分のシールを兼ねることができるからである。
【0021】
図3は押圧部材を内径方向に付勢する付勢手段の他の例を示す図である。図中、16は締め付けバンド、16aは端部片、17はボルト、18はスプリング、19はナットを示し、その他の符号は、図1,図2で用いた符号を用いることにより説明を省略する。
【0022】
この図3に示す付勢手段は、押圧部材10a,10bの外周を締め付ける締め付けバンド16を用いることにより、押圧部材10a,10bを内径方向に付勢するようにしたものである。締め付けバンド16は2つに分割した半円構造の例を示したが、単一の環状構造のものであってもよく、3以上に分割した構造のものであってもよい。径方向への締め付けは、例えば、締め付けバンド16の両端に設けた端部片16aを、ボルト17にスプリング18を介在させてナット19で締めることにより行なうことができる。
【0023】
締め付けバンド16の径を縮小する締め付けにより、押圧部材10a,10bは内径方向に付勢され移動される。締め付けバンド16の過度の締め付けは、スプリング18により緩和され、押圧部材10a,10bに過度の力が加わらないようにされる。押圧部材10a,10bが内径方向に付勢され移動することにより、図2の例と同様に、凹溝11がフランジ部2a,3aの外周を取り囲み、凹溝側壁11aがフランジ部2a,3aの外周エッジに当たって、楔作用でフランジ部2a,3aの接合面を互いに密接させる。
【0024】
なお、締め付けバンド16と押圧部材10a,10bとの間に、断熱部材等を介在させることにより、締め付けバンド16が炉心管からの熱伝導を低減し、熱膨張歪で締め付け力が低下するのを防止することができる。締め付けバンド16による付勢は、金属バンドを用いた簡単な構成であるので、図2の例と比べ安価に実現することができる。また、フランジ部2aと3aの接合面の間に、多孔質カーボン製の緩衝材をいれてもよい。この緩衝材は、パッキン材としても作用する。
【0025】
【発明の効果】
上述したように、本発明によれば、炉心管の分割接合部分から管内の有害ガスが外部に拡散するのを効率よく大幅に抑制することができる。また、封止部に形成される間隙を利用してシールガスを流すことにより、炉心管内のガスが外部に漏れるのを完全に防止することができる。また、本発明により、ガラス母材の品質不良や炉体の腐食が抑えられて、人的安全性を高めることができる。
【図面の簡単な説明】
【図1】本発明によるガラス母材の焼結装置主要部の概略を示す図である。
【図2】本発明による炉心管フランジ部の封止構造の一例を示す図である。
【図3】本発明による炉心管フランジ部の封止構造の他の例を示す図である。
【図4】従来の技術を説明する図である。
【符号の説明】
1…炉心管、2…本体部、2a…フランジ部、3…蓋部、3a…フランジ部、4…ヒータ、5…ガス導入部、6…ガス排気部、7…ガラス微粒子堆積体、8…ガラスロッド、10,10a,10b…押圧部材、11…凹溝、11a…凹溝側壁、11b…凹溝底壁、12…間隙、13…シールガス供給部、14…シールガス排出部、15…エアシリンダ機構、16…締め付けバンド、16…端部片、17…締め付けネジ、18…スプリング、19…ナット。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass base material sintering apparatus and a glass base material sintering method for dehydrating and transparently vitrifying a glass fine particle deposit.
[0002]
[Prior art]
Conventionally, to produce a glass preform used for producing glass optical fibers and the like, a glass raw material gas is flame-hydrolyzed to produce glass fine particles, which are deposited on a starting glass rod or the like to form a glass fine particle deposit (porous material). It is known that a transparent glass is obtained by dehydrating and sintering the base material. In addition, a VAD method (a gas-phase shaping method), an OVD method (an external gas-phase vapor deposition method), and the like are known as methods for manufacturing a glass fine particle deposit.
[0003]
In the OVD method, for example, a glass raw material gas such as SiCl 4 is sprayed on a periphery of a starting glass rod rotating in a reaction furnace together with a combustion gas such as H 2 gas and O 2 gas by a burner, and a flame hydrolysis reaction is performed. Glass particles are generated and deposited to produce a glass particle deposit. In the VAD method, a burner is arranged below a rotating starting glass rod, a glass raw material gas and a combustion gas are blown, and glass fine particles generated by a flame hydrolysis reaction are deposited in an axial direction to form a glass fine particle deposit. Make it.
[0004]
Dehydration and vitrification of the glass fine particle deposit are generally performed using a sintering apparatus in which a heater is arranged around a furnace tube formed of a heat-resistant material such as carbon or quartz. . There are various methods for transparent vitrification. For example, there is a method in which the inside of a furnace tube is made into a chlorine-containing atmosphere and dehydration and heat treatment for transparent vitrification are performed simultaneously. There is also known a method of performing dehydration heating with chlorine gas and helium gas, increasing the temperature, and heating with helium gas alone to form a transparent glass. Various types of sintering apparatuses have been proposed for performing these heat treatments.
[0005]
FIG. 4 is a schematic view showing an example of a conventional sintering apparatus (for example, see Patent Document 1). In the figure, reference numeral 20 denotes a glass particle deposit, 21 denotes a glass rod, 22 denotes a furnace tube, 23 denotes a joint, 24 denotes a heater, 25 denotes a heat insulating material, 26 denotes a furnace body, 27 denotes a gas supply port, and 28 denotes a gas exhaust port. Is shown.
[0006]
In the figure, a glass particle deposit body 20 is formed by a glass rod 21 used as a starting rod for the generation of SiO 2 particles, through a penetrating portion of a furnace tube 22 and a penetrating portion of a furnace body 26, at a central portion of a core chamber in the furnace tube 22. It is suspended and supported. The furnace tube 22 is formed of high-purity carbon, and is formed by stacking a plurality of divided pieces in multiple stages in order to accommodate the long and large glass particle deposit body 20. Although the specific structure of the joint portion 23 in the stacked portion of the furnace tube 22 is not clear, it is sealed by loading a packing made of carbon or the like. A heater 24 and a heat insulating member 25 are provided between the furnace tube 22 and the furnace body 26.
[0007]
In the furnace tube 27, a gas for dehydrating and sintering the glass particle deposit body 20 is supplied from a gas supply port 27 and discharged from a gas exhaust port 28. As the gas for the dehydration and sintering treatment, for example, helium and chlorine gas are used. The furnace body 26 is also provided with a gas supply port and a gas discharge port, and supplies and exhausts an inert gas such as argon gas so that the heater 24 and the heat insulating material 25 do not deteriorate due to oxidation. It has become.
[0008]
[Patent Document 1]
JP-A-2002-68770
[Problems to be solved by the invention]
Since the inside of the furnace tube 22 is heated to a high temperature of about 1500 ° C. and is used using harmful chlorine gas, the furnace tube 22 is usually formed of a material such as carbon or quartz having excellent heat resistance and corrosion resistance. Is done. However, these materials have a sealing property but are hard and brittle. For this reason, the joint portion 23 of the core tube 22 that is divided and stacked cannot be directly tightened and connected using screws, bolts, or the like, and sealing is difficult. It has been difficult to improve the sealing state even if an attempt is made to smooth the joining surface of the joining portion in order to improve the sealing accuracy and to change the sealing member to a stronger one. As a result, the gas in the furnace tube leaks, and there is a possibility that the quality of the glass base material to be produced is deteriorated or the furnace body is corroded.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a glass base material sintering apparatus and a sintering apparatus capable of improving the hermeticity at a joint portion of a furnace tube and preventing gas leakage to the outside of the furnace tube. The task is to provide a knotting method.
[0011]
[Means for Solving the Problems]
The sintering apparatus for a glass base material according to the present invention is characterized in that the divided core tube is connected by a flange portion, and the glass fine particle deposit housed in the core tube is heated by a heater disposed on the outer periphery of the core tube, and the dewatered and transparent glass is heated. An apparatus for sintering a glass base material to be formed, comprising: a pressing member having a concave groove surrounding the outer periphery of a joining surface of a flange portion; and urging means for urging the pressing member in an inner diameter direction. The part is shaped to be sealed by wedge action.
[0012]
Further, in the method of sintering a glass preform according to the present invention, the divided core furnace tubes are connected by a flange portion, and the glass fine particle deposit housed in the furnace core tube is heated by a heater arranged on the outer periphery of the furnace core tube to perform dehydration / dehydration. A method of sintering a glass base material to be made into a transparent glass, wherein the outer periphery of a joint portion of a flange is surrounded by a concave groove of a pressing member, the pressing member is urged in an inner diameter direction, and the flange portion is sealed by a wedge action of the concave groove. Then, sintering is performed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment will be described with reference to FIGS. FIG. 1 is a diagram schematically showing a main part of a sintering apparatus, and FIG. 2 is a diagram showing an example of a sealing structure of a flange portion. In the figure, 1 is a furnace tube, 2 is a main body, 2a is a flange, 3 is a lid, 3a is a flange, 4 is a heater, 5 is a gas introduction unit, 6 is a gas exhaust unit, and 7 is a glass particulate deposit. , 8 are glass rods, 10, 10a, and 10b are pressing members, 11 is a concave groove, 11a is a concave groove side wall, 11b is a concave groove bottom wall, 12 is a gap, 13 is a seal gas supply unit, and 14 is a seal gas discharge unit. , 15 indicate an air cylinder mechanism.
[0014]
According to the present invention, the furnace tube 1 is made of carbon or quartz having excellent heat resistance and corrosion resistance, and is divided into at least two parts, a main body 2 and a lid 3, and the joints of the divided furnace tubes are integrally formed with each other. They are connected by the provided flange portions 2a and 3b. A gas inlet 5 is provided on the lower side of the furnace tube 1, and a gas exhauster 6 is provided on the upper side. Chlorine gas, helium gas and the like necessary for dehydration and vitrification are introduced. The lid 3 has a hole that penetrates a glass rod 8 extending from an end of the glass fine particle stack 7, and the upper end of the glass rod is connected to a suspension support device (not shown). A suction device (not shown) is arranged near the hole of the lid, and gas leaked from the hole is removed by suction with the suction device. A plurality of ring-shaped heaters 4 are arranged on the outer periphery of the furnace tube 1 to heat the glass particle deposit 7 stored in the furnace tube.
[0015]
An annular pressing member 10 having a concave groove 11 inside is arranged on the flange portions 2a and 3a connecting the main body portion 2 and the lid portion 3 so as to surround the outer periphery of the flange portion. As shown in FIG. 2, for example, the pressing member 10 is formed of semi-circular pressing members 10a and 10b divided into two so as to be attached from outside the flange portions 2a and 3a. However, it may be divided into three or more parts.
[0016]
The pressing members 10a and 10b are assembled so as to sandwich the flange portions 2a and 3a from above and below by the concave grooves 11 formed inside. The concave groove 11 is formed in a U-shaped cross section composed of a side wall 11a and a bottom wall 11b. The side wall 11a is formed by an inclined surface whose opening side for pressing the outer peripheral edges of the flange portions 2a, 3a by wedge action is expanded. . An urging means for urging the pressing members 10a, 10a inward is disposed outside the pressing members 10a, 10b. As the urging means, for example, an air cylinder mechanism 15 using fluid drive can be used.
[0017]
With the sintering apparatus configured as described above, after the glass fine particle deposit 7 is stored in the furnace tube 1, the positions of the flange portion 2 a of the furnace tube main body 2 and the flange portion 3 a of the furnace tube cover 3 match. Let it. Next, the air cylinder mechanism 15 is operated to press the pressing members 10a and 10b in the inner diameter direction. The air cylinder mechanism 15 is controlled to a constant pressing force so as not to generate an excessive pressing force, so that an excessive force is not applied to the pressing members 10a and 10b, and the core tube is not broken.
[0018]
When the pressing members 10a and 10b are pressed and moved in the inner diameter direction, the concave groove 11 surrounds the outer periphery of the flange portions 2a and 3a, and the concave groove side wall 11a hits the outer peripheral edge of the flange portions 2a and 3a, and the flange portion is formed by wedge action. The joining surfaces of 2a and 3a are brought into close contact with each other. The outer peripheral portions of the flange portions 2a and 3a are directly pressed by the pressing members 10a and 10b, and the gap between the joining surfaces can be effectively reduced. As a result, compared to a configuration in which the main body and the lid are simply pressed in the axial direction, the sealing performance can be dramatically improved.
[0019]
When the pressing members 10a and 10b are pushed in the inner diameter direction, a gap 12 is formed between the outer peripheral surfaces of the flange portions 2a and 3a and the bottom wall 11b of the concave groove 11. The gas supply unit 13 and the gas discharge unit 14 are communicated with the gap 12, and a seal gas such as an inert gas is supplied to and discharged from the gap 12. Thus, even if gas leaks from the minute gap between the flange portions 2a and 3a, the gas is discharged from the gas discharge section together with the seal gas supplied to the gap. In this way, it is possible to completely prevent the gas in the furnace tube from diffusing from the joint to the outside of the furnace tube.
[0020]
The gas supply section 13 and the gas discharge section 14 for the seal gas can be provided at arbitrary positions of the pressing members 10a and 10b, but are preferably provided at the end portions where the aforementioned pressing members 10a and 10b are in contact. This is because the housing that covers the gas supply unit 13 or the gas discharge unit 14 covers the portion in contact with the pressing member 10a, and can also serve as a seal for this portion.
[0021]
FIG. 3 is a diagram showing another example of the urging means for urging the pressing member in the inner diameter direction. In the drawing, reference numeral 16 denotes a tightening band, 16a denotes an end piece, 17 denotes a bolt, 18 denotes a spring, 19 denotes a nut, and the description of other reference numerals is omitted by using the reference numerals used in FIGS. .
[0022]
The urging means shown in FIG. 3 urges the pressing members 10a and 10b in the inner diameter direction by using a tightening band 16 for tightening the outer periphery of the pressing members 10a and 10b. The example in which the fastening band 16 has a semicircular structure divided into two has been described, but may be a single annular structure or a structure divided into three or more. Tightening in the radial direction can be performed, for example, by tightening end pieces 16a provided at both ends of the tightening band 16 with nuts 19 with bolts 17 interposed with springs 18.
[0023]
By the tightening to reduce the diameter of the tightening band 16, the pressing members 10a and 10b are urged and moved in the inner diameter direction. Excessive tightening of the tightening band 16 is alleviated by the spring 18 so that no excessive force is applied to the pressing members 10a and 10b. When the pressing members 10a and 10b are urged in the inner diameter direction and move, the concave groove 11 surrounds the outer circumferences of the flange portions 2a and 3a, and the concave groove side wall 11a is formed on the flange portions 2a and 3a, as in the example of FIG. At the outer peripheral edge, the joining surfaces of the flange portions 2a and 3a are brought into close contact with each other by a wedge action.
[0024]
By interposing a heat insulating member or the like between the tightening band 16 and the pressing members 10a and 10b, the tightening band 16 reduces the heat conduction from the core tube, and reduces the tightening force due to thermal expansion strain. Can be prevented. Since the urging by the tightening band 16 is a simple configuration using a metal band, it can be realized at a lower cost than in the example of FIG. A cushioning material made of porous carbon may be provided between the joining surfaces of the flange portions 2a and 3a. This cushioning material also functions as a packing material.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to efficiently and drastically suppress the diffusion of harmful gas in the tube from the split joint portion of the core tube to the outside. Further, by flowing the sealing gas using the gap formed in the sealing portion, it is possible to completely prevent the gas in the furnace tube from leaking to the outside. Further, according to the present invention, poor quality of the glass base material and corrosion of the furnace body are suppressed, and human safety can be improved.
[Brief description of the drawings]
FIG. 1 is a view schematically showing a main part of a sintering apparatus for a glass base material according to the present invention.
FIG. 2 is a view showing an example of a sealing structure of a core tube flange portion according to the present invention.
FIG. 3 is a view showing another example of the sealing structure of the core tube flange portion according to the present invention.
FIG. 4 is a diagram illustrating a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Core tube, 2 ... Body part, 2a ... Flange part, 3 ... Cover part, 3a ... Flange part, 4 ... Heater, 5 ... Gas introduction part, 6 ... Gas exhaust part, 7 ... Glass fine particle deposit, 8 ... Glass rods, 10, 10a, 10b: pressing member, 11: concave groove, 11a: concave groove side wall, 11b: concave groove bottom wall, 12: gap, 13: seal gas supply unit, 14: seal gas discharge unit, 15 ... Air cylinder mechanism, 16: tightening band, 16: end piece, 17: tightening screw, 18: spring, 19: nut.

Claims (3)

分割形成された炉心管をフランジ部で連結し、炉心管内に収納したガラス微粒子堆積体を炉心管外周に配したヒータにより加熱し、脱水・透明ガラス化するガラス母材の焼結装置であって、
前記フランジ部の接合面外周を取り囲む凹溝を有する押圧部材と、前記押圧部材を内径方向に付勢する付勢手段とを有し、前記凹溝は前記フランジ部を楔作用で封止する形状に形成されていることを特徴とするガラス母材の焼結装置。
A sintering apparatus for a glass base material in which a divided core tube is connected by a flange portion, and a glass fine particle deposit housed in the core tube is heated by a heater arranged on the outer periphery of the core tube to be dehydrated and transparently vitrified. ,
A pressing member having a concave groove surrounding the outer periphery of the joint surface of the flange portion, and an urging means for urging the pressing member in the inner diameter direction, wherein the concave groove seals the flange portion by wedge action. An apparatus for sintering a glass base material, wherein
前記凹溝の底部と前記フランジの外周面との間に生じる間隙にシールガスを通すように構成したことを特徴とする請求項1に記載のガラス母材の焼結装置。The glass base material sintering apparatus according to claim 1, wherein a seal gas is passed through a gap generated between a bottom portion of the concave groove and an outer peripheral surface of the flange. 分割形成された炉心管をフランジ部で連結し、炉心管内に収納したガラス微粒子堆積体を炉心管外周に配したヒータにより加熱し、脱水・透明ガラス化するガラス母材の焼結方法であって、
前記フランジの接合部外周を押圧部材の凹溝で取り囲み、前記押圧部材を内径方向に付勢し、前記フランジ部を前記凹溝の楔作用で封止することを特徴とするガラス母材の焼結方法。
A method for sintering a glass base material in which a divided core tube is connected by a flange portion, and a glass fine particle deposit housed in the core tube is heated by a heater arranged on the outer periphery of the core tube to be dehydrated and transparently vitrified. ,
Wherein the outer periphery of the joint of the flange is surrounded by a concave groove of a pressing member, the pressing member is urged in the inner diameter direction, and the flange portion is sealed by a wedge action of the concave groove. How to tie.
JP2002281411A 2002-09-26 2002-09-26 Apparatus and method for sintering glass base material Pending JP2004115316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281411A JP2004115316A (en) 2002-09-26 2002-09-26 Apparatus and method for sintering glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281411A JP2004115316A (en) 2002-09-26 2002-09-26 Apparatus and method for sintering glass base material

Publications (1)

Publication Number Publication Date
JP2004115316A true JP2004115316A (en) 2004-04-15

Family

ID=32275857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281411A Pending JP2004115316A (en) 2002-09-26 2002-09-26 Apparatus and method for sintering glass base material

Country Status (1)

Country Link
JP (1) JP2004115316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151715A (en) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd Glass base material manufacturing method and manufacturing apparatus
CN115304254A (en) * 2021-12-06 2022-11-08 苏州东辉光学有限公司 Wire drawing furnace for manufacturing cylindrical lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151715A (en) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd Glass base material manufacturing method and manufacturing apparatus
CN1781863B (en) * 2004-11-26 2010-12-01 住友电气工业株式会社 Apparatus and method for manufacturing glass preforms
CN115304254A (en) * 2021-12-06 2022-11-08 苏州东辉光学有限公司 Wire drawing furnace for manufacturing cylindrical lens
CN115304254B (en) * 2021-12-06 2023-05-09 苏州东辉光学有限公司 Wire drawing furnace for manufacturing cylindrical lens

Similar Documents

Publication Publication Date Title
JP3388742B2 (en) Heat treatment equipment for synthetic vitreous silica moldings
CN107601840A (en) Segmented preform sintering furnace device and corresponding optical wand sintering method
KR20010110296A (en) Hydrocarbon fuel gas reformer assembly for a fuel cell power plant
US6845636B2 (en) Apparatus for dehydrating and consolidating an optical fiber preform and method of the same
CN103626381A (en) Graphite furnace for sintering glass loose mass
CN117247229A (en) Optical fiber drawing furnace and optical fiber drawing method
JP2004115316A (en) Apparatus and method for sintering glass base material
JPH0561209B2 (en)
JPH0386227A (en) Reactor
FR2461912A1 (en) INDUSTRIAL HEAT TREATMENT AND SINTERING FURNACE AND METHOD FOR THE IMPLEMENTATION THEREOF
JP2000044269A (en) Dehydrating and transparent vitrifying apparatus for porous optical fiber preform
US4957431A (en) Heating mantle with a porous radiation wall
KR20180078103A (en) A sealing method
JP3845200B2 (en) Radiant furnace
JP2933144B2 (en) High temperature expansion
JP5774260B2 (en) Exhaust line system for multi-cylinder gasoline and diesel engines
CN206830488U (en) High temperature circulation blower fan
JP4062407B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP3682383B2 (en) Heating furnace for dehydration sintering of porous glass base material
WO1999050197A1 (en) Reaction pipe
JPH02153834A (en) Dehydration sintering furnace
US20060112733A1 (en) Equipment and method for manufacturing a glass preform
CN110386603A (en) A kind of carbide furnace cooling device and assemble method
JP2006124252A (en) Method and apparatus for manufacturing optical fiber preform
JP2006076861A (en) Heating furnace and glass processing method using the same