[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004107112A - Low dielectric constant low dielectric dissipation factor glass fiber - Google Patents

Low dielectric constant low dielectric dissipation factor glass fiber Download PDF

Info

Publication number
JP2004107112A
JP2004107112A JP2002269418A JP2002269418A JP2004107112A JP 2004107112 A JP2004107112 A JP 2004107112A JP 2002269418 A JP2002269418 A JP 2002269418A JP 2002269418 A JP2002269418 A JP 2002269418A JP 2004107112 A JP2004107112 A JP 2004107112A
Authority
JP
Japan
Prior art keywords
glass
low dielectric
dielectric constant
loss tangent
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269418A
Other languages
Japanese (ja)
Inventor
Toru Kawamoto
河本 徹
Shinji Shimomura
下村 真司
Yoshifumi Sato
佐藤 能史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002269418A priority Critical patent/JP2004107112A/en
Publication of JP2004107112A publication Critical patent/JP2004107112A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass fiber for a printed wiring board which is free from the occurrence of work defects in the work of component holes even when UV-YAG third higher harmonic laser of 355 nm wavelength is used. <P>SOLUTION: The low dielectric constant low dielectric dissipation factor glass fiber is composed of glass having a dielectric constant of ≤5.0 at 1 MHz and ≤10% light transmittance at 0.5 mm thickness and 355 nm wavelength. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高周波を利用する電子機器用回路部品のプリント配線基板の樹脂強化材として用いられる低誘電率低誘電正接ガラス繊維に関する。
【0002】
【従来の技術】
プリント配線基板は、樹脂、ガラス繊維、改質剤等からなる複合材料である。この中、ガラス繊維は樹脂の強化材として使用されるが、従来、プリント配線基板用のガラス繊維としてEガラスが用いられてきた。
【0003】
ところで、近年、コンピュータや携帯電話等の情報通信機器の小型化、高性能化が進み、信号の高速処理のために使用される電波も高周波化している。
【0004】
このような動きに伴って、情報通信機器の回路部品として用いられるプリント配線基板にも高密度化や高周波特性の向上等の要求がなされている。
【0005】
信号の高速処理は、信号の伝播遅延を小さくするということがあるが、信号伝播遅延時間は、下記の数式に示されるように、プリント配線基板の誘電率と相関があり、プリント配線基板の誘電率の値が小さいほど信号伝播遅延が小さくなることが知られている。
【0006】
【数1】

Figure 2004107112
【0007】
Tdは導体の単位長さ当たりの信号伝播遅延時間、kは定数、εはプリント配線基板の誘電率を示す。
【0008】
また、信号の高速処理化のために高周波を使用すると、通常のプリント配線基板にあっては熱損失が生じ、これが発熱の原因となってプリント配線基板の熱劣化が問題となる。さらに、このような熱損失を見込んで、信号の発振にも高出力が必要となる。この熱損失は、下記の数式で示されるように、プリント配線基板の誘電率と誘電正接の積に比例し、この値が大きいほど熱損失も大きくなる。
【0009】
【数2】
Figure 2004107112
【0010】
Wは熱損失、kは定数、fは周波数、vは電位傾度、εはプリント配線基板の誘電率、tanδはプリント配線基板の誘電正接を示す。
【0011】
上記の数式から、プリント配線基板の誘電率および誘電正接のそれぞれの値が大きいほど熱損失が増大することが判る。
【0012】
信号伝播遅延や熱損失の抑制のために、プリント配線基板に、誘電率(ε)および誘電正接(tanδ)がEガラスよりそれぞれ小さいDガラスやSiO−Al−B−RO系ガラスからなるガラス繊維を使用することが開示されている(例えば、特許文献1、特許文献2参照。)。
【0013】
Dガラスは、例えば、質量%で、SiO 76.0%、Al 0.2%、B 19.4%、MgO 0.3%、CaO 0.6%、LiO 0.9%、NaO 1.5%、KO 1.1%の組成からなるガラスであり、その誘電率(ε)は4.3、誘電正接(tanδ)は10×10−4である。
【0014】
SiO−Al−B−RO系ガラスは、例えば、質量%で、SiO54.6%、Al 12.9%、B 23.5%、MgO 2.4%、CaO 5.3%、TiO 1.0%、LiO 0.2%、NaO 0.1%、KO 0.2%の組成からなるガラスであり、その誘電率(ε)は4.7、誘電正接(tanδ)は10×10−4である。因みにEガラスの誘電率(ε)は6.6、誘電正接(tanδ)は15×10−4である。
【0015】
また、他のプリント配線基板用のガラス繊維組成物として、写真焼き付け法によるソルダーレジストパターンを形成するのに適した紫外線遮蔽性を有するガラス繊維組成物が開示されている(例えば、特許文献3、特許文献4参照。)。
【0016】
【特許文献1】
特公平6−39338号公報
【特許文献2】
特許第第3228945号公報
【特許文献3】
特開平3−261632号公報
【特許文献4】
特開平4−104920号公報
【0017】
【発明が解決しようとする課題】
プリント配線基板には、IC、トランジスタ等の電子デバイスや抵抗器やコンデンサ等の電子部品等の部品類を取付けるために、部品穴があけられる。従来は、この穴開け加工は、機械的にドリル加工で行っていた。しかし、携帯電話・パソコン等、近年の情報通信機器を中心とした電子機器の小型軽量化もしくは高機能化に伴い、プリント配線基板の高密度化が進み、部品穴の径も非常に小さく(穴径:50μm未満)しなければならなくなり、ドリル加工では50μmの穴径をあけることができない。そのため、355nmの波長のUV−YAG3倍高調波レーザ(以下、紫外線レーザとよぶ。)を使用する技術が開発され、50μm未満の非常に小さい径の穴加工ができるようになった。
【0018】
しかしながら、Dガラス(特許文献1)やSiO−Al−B−RO系ガラス(特許文献2)は、355nmの波長の透過率が高いため、これらのガラスを用いたプリント配線基板に、紫外線レーザを用いて穴あけ加工しようとしても、レーザ光がガラスを透過してしまう。そのため、レーザ光のエネルギーを高くすれば、なんとか穴あけ加工ができるが、レーザ光のエネルギーが高くなりすぎて、DガラスもしくはSiO−Al−B−RO系ガラスからなるガラス繊維布に含浸した樹脂が劣化し、もしくは樹脂が焼き飛ばされ、部品穴の径が大きく、もしくは部品穴の壁に空洞ができるといった加工不良が発生し、導通不良やショートを起こしやすくなるという問題を有する。
【0019】
本発明は、上記の問題に鑑みてなされたものであって、その目的とするところは、紫外線レーザを使用しても、部品穴の加工不良が発生しないプリント配線基板用のガラス繊維を提供することである。
【0020】
【課題を解決するための手段】
本発明者等は、上記の目的を達成するべく実験を重ねた結果、355nmの光線透過率の低いガラスからなる低誘電率低誘電正接ガラス繊維を用いることによって、紫外線レーザを使用しても、部品穴の加工不良が発生しないことを見出し、本発明を提案するに至った。
【0021】
すなわち、本発明の低誘電率低誘電正接ガラス繊維は、1MHzでの誘電率が5.0以下で、肉厚0.5mmで、355nmの波長の光線透過率が10%以下であるガラスからなることを特徴とする。
【0022】
【作用】
本発明の低誘電率低誘電正接ガラス繊維は、肉厚0.5mmで、355nmの波長の光線透過率が10%以下、好ましくは8%以下であるガラスからなるため、紫外線レーザ光がほとんどガラスに吸収され、レーザ光のエネルギーを高くすることなく、穴加工が可能となる。したがって、ガラス繊維布に含浸した樹脂が紫外線レーザ光による穴加工の際、劣化しにくく、もしくは樹脂が焼き飛ばされにくいため、部品穴の径が大きく、もしくは部品穴の壁に空洞ができるといった加工不良が発生しにくく、導通不良やショートを起こしにくくなる。
【0023】
また、1MHzでの誘電率が5.0以下であるガラスからなるため、プリント配線基板の補強材として使用すると、信号伝播遅延を抑制することができる。
【0024】
また、本発明の低誘電率低誘電正接ガラス繊維は、質量%で、Feを1.8〜4.9%、TiOを0〜4.9、Fe+TiOを6.7%以下含有するガラスからなると、肉厚0.5mmで、355nmの波長の光線透過率が10%以下になりやすく、誘電率や誘電正接が低くなるため好ましい。すなわち、Feが1.8%よりも少ないと、肉厚0.5mmで、355nmの波長の光線透過率が10%以下になりにくく、4.9%よりも多いと、誘電率や誘電正接が高くなるため好ましくない。Fe含有量の好ましい範囲は、1.8〜4.0%、さらに好ましくは1.8〜3.0%である。また、TiOが4.9%よりも多いと、誘電率が高くなるため好ましくない。TiO含有量の好ましい範囲は、0〜3.0%、さらに好ましくは0〜2.0%である。また、FeとTiOの合量が6.7%よりも多いと、誘電率や誘電正接が高くなるため好ましくない。FeとTiOの合量の好ましい範囲は、4.9%以下である。
【0025】
本発明の低誘電率低誘電正接ガラス繊維は、誘電正接tanδが0.0010以下のガラスからなると、熱損失が小さくなるため好ましい。
【0026】
上記した355nmの波長の光線透過率、誘電率及び誘電正接の特性を有する具体的なガラスとして、質量%で、SiO 50.0〜62.0%、Al8.0〜20.0%、B 15.0〜30.0%、CaO 0〜12%、MgO 0〜12.0%、LiO+NaO+KO≦0.5%、Fe 1.8〜4.9%、TiO 0〜4.9%、Fe+TiO 1.8〜6.7%の組成を有するガラスが挙げられる。このガラスは、紫外線レーザによる穴あけ加工の加工性だけでなく、ドリルによる穴あけ加工の加工性にも優れるため好ましい。
【0027】
Fe及びTiO以外の成分について上記のように含有量を限定した理由を詳細に述べる。
【0028】
SiOはガラスの骨格を形成する成分であり、かつガラスの誘電率及び誘電正接を小さくする作用がある。その含有量は、質量%で50〜62%、好ましくは、51〜61%である。含有量が50%より少ないと、誘電率及び誘電正接が大きくなりやすく、62%よりも多いと、ガラスの高温粘度が高くなるためガラスの溶融性が悪化し、また、このプリント配線基板を作製する際、ドリル加工性が悪化する。
【0029】
Alは、誘電率や誘電正接を上げることなく、ガラスの失透性を改善する成分であり、その含有量は、質量%で8〜20%、好ましくは10〜19%である。含有量が8%よりも少なくても、20%よりも多くても、ガラスの失透性が悪化する。
【0030】
は、ガラスの高温粘度を下げる成分であり、融剤として作用するとともに、ガラスの誘電率及び誘電正接を小さくする作用をも有し、その含有量は、質量%で15〜30%、好ましくは17〜28%である。含有量が15%よりも少ないと、上記効果を得にくく、30%よりも多いと、ガラスの溶融時及び紡糸時に揮発量が増大し、生産性の悪化を招き、またガラスの耐水性が悪化する。
【0031】
CaO又はMgOは、他の2価酸化物に比べ、誘電率や誘電正接を高くする作用が小さく、ガラスの高温粘度や液相温度を低下させる成分であり、含有量は、いずれも0〜12%である。含有量が12%よりも多いと、誘電率が高くなるため好ましくない。
【0032】
アルカリ金属酸化物(LiO、NaO、KO)は、誘電正接を大幅に上昇させる成分であるため、実質的に含まれるべきではない。これらの成分は、原料中の不純物として混入するが、質量%で0.5%以下であれば、誘電正接が0.0010以下を保つことができるため、差し支えない。
【0033】
本発明においては、さらに、上記成分以外にも所期のガラス特性を損なわない程度に、BaO、ZnO、SrO、P、SO、As、MoO、F2等の成分を、合量で3質量%まで含有することが可能である。
【0034】
【実施例】
以下、本発明の低誘電率低誘電正接ガラス繊維を実施例により説明する。
【0035】
表1は、本発明の実施例1〜5を示し、表2は、比較例1〜4を示す。尚、比較例1はDガラスであり、比較例3はEガラスである。
【0036】
【表1】
Figure 2004107112
【0037】
【表2】
Figure 2004107112
【0038】
表中の各試料の作製方法は以下の通りである。
【0039】
まず、それぞれ所定の組成になるように調合したガラス原料500gを白金製のルツボに入れ、電気炉で約1580℃、4時間保持の条件で溶融した。次いで、この溶融ガラスをカーボン板の上に流し出して板状に成形した後、徐冷して歪を除去し、試料を作製した。
【0040】
このようにして作製した上記の各試料の誘電率(ε)、誘電正接(tanδ)、紫外線透過率を、表に示した。
【0041】
表1から明らかなように、実施例1〜5は、いずれも、355nmでの透過率が10%以下であり、また、誘電率が5.0以下、誘電正接が10×10−4以下と小さかった。
【0042】
上記実施例に対して、比較例1〜3は、FeやTiOを含まないため、もしくは含有してもその量が少ないため、355nmでの紫外線透過率が高かった。また、比較例3は、CaOが多く、Bが少ないため、誘電率や誘電正接が高かった。また、比較例4は、FeとTiOの合量が多く、355nmでの光線は全く透過しないものの、誘電率や誘電正接が高かった。
【0043】
なお、表中の誘電率および誘電正接は、50mm×50mm×3mmの寸法に切断し、両面を1000番サンドペーパーで研磨を施したガラスで、インピーダンスアナライザを用いて室温下において周波数1MHzで測定した。
【0044】
355nmでの紫外線透過率は、肉厚を0.5mmにし、両面光学研磨したガラスで、分光光度計を用いて測定した。
【0045】
【発明の効果】
以上のように、本発明の低誘電率低誘電正接ガラス繊維は、誘電率が5.0以下で、肉厚0.5mmでの355nmでの光線透過率が10%以下であるガラスからなり、355nmの波長のUV−YAG3倍高調波レーザを使用しても、部品穴の加工不良が発生せず、また、紫外線レーザによる穴あけ加工だけでなくドリルによる穴あけ加工も良好であるため、信号の高速処理化への対応が要求されるプリント配線基板の樹脂強化材として好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a low dielectric constant and low dielectric loss tangent glass fiber used as a resin reinforcing material for a printed wiring board of a circuit component for electronic equipment using high frequency.
[0002]
[Prior art]
The printed wiring board is a composite material including a resin, glass fiber, a modifier, and the like. Among them, glass fiber is used as a reinforcing material for resin, and E glass has been conventionally used as glass fiber for printed wiring boards.
[0003]
By the way, in recent years, information communication devices such as computers and mobile phones have been reduced in size and performance, and radio waves used for high-speed processing of signals have been increasing in frequency.
[0004]
Along with such a movement, demands have been made for a printed wiring board used as a circuit component of an information communication device, for example, to have higher density and improved high frequency characteristics.
[0005]
In some cases, high-speed processing of a signal reduces the signal propagation delay, but the signal propagation delay time is correlated with the dielectric constant of the printed wiring board, as shown in the following equation. It is known that the smaller the value of the ratio, the smaller the signal propagation delay.
[0006]
(Equation 1)
Figure 2004107112
[0007]
Td is the signal propagation delay time per unit length of the conductor, k is a constant, and ε is the permittivity of the printed wiring board.
[0008]
In addition, when a high frequency is used for high-speed processing of a signal, heat loss occurs in a normal printed circuit board, which causes heat generation, which causes a problem of thermal deterioration of the printed circuit board. Further, in view of such heat loss, high output is required for signal oscillation. This heat loss is proportional to the product of the dielectric constant and the dielectric loss tangent of the printed wiring board, as shown by the following formula, and the larger this value is, the larger the heat loss is.
[0009]
(Equation 2)
Figure 2004107112
[0010]
W is heat loss, k is a constant, f is the frequency, v 2 is the dielectric constant of the potential gradient, epsilon printed wiring board, tan [delta denotes the dielectric loss tangent of the printed wiring board.
[0011]
From the above equation, it is understood that the larger the respective values of the dielectric constant and the dielectric loss tangent of the printed wiring board, the greater the heat loss.
[0012]
In order to suppress signal propagation delay and heat loss, a printed circuit board is provided with D glass or SiO 2 —Al 2 O 3 —B 2 O 3 — having a dielectric constant (ε) and a dielectric loss tangent (tan δ) smaller than those of E glass. It is disclosed that glass fibers made of RO glass are used (see, for example, Patent Documents 1 and 2).
[0013]
D glass is, for example, 76.0% of SiO 2 , 0.2% of Al 2 O 3 , 19.4% of B 2 O 3 , 0.3% of MgO, 0.6% of CaO, and Li 2 O in mass%. It is a glass having a composition of 0.9%, 1.5% Na 2 O, and 1.1% K 2 O, and has a dielectric constant (ε) of 4.3 and a dielectric loss tangent (tan δ) of 10 × 10 −4. It is.
[0014]
The SiO 2 —Al 2 O 3 —B 2 O 3 —RO glass is, for example, 54.6% of SiO 2 , 12.9% of Al 2 O 3 , 23.5% of B 2 O 3 , and MgO in mass%. It is a glass having a composition of 2.4%, CaO 5.3%, TiO 2 1.0%, Li 2 O 0.2%, Na 2 O 0.1% and K 2 O 0.2%. The dielectric constant (ε) is 4.7 and the dielectric loss tangent (tan δ) is 10 × 10 −4 . Incidentally, E glass has a dielectric constant (ε) of 6.6 and a dielectric loss tangent (tan δ) of 15 × 10 −4 .
[0015]
Further, as another glass fiber composition for a printed wiring board, a glass fiber composition having an ultraviolet shielding property suitable for forming a solder resist pattern by a photographic printing method is disclosed (for example, Patent Document 3, See Patent Document 4.).
[0016]
[Patent Document 1]
Japanese Patent Publication No. 6-39338 [Patent Document 2]
Japanese Patent No. 3228945 [Patent Document 3]
JP-A-3-261632 [Patent Document 4]
JP-A-4-104920
[Problems to be solved by the invention]
Component holes are formed in the printed wiring board for mounting electronic devices such as ICs and transistors and electronic components such as resistors and capacitors. Conventionally, this drilling has been performed mechanically by drilling. However, as electronic devices such as mobile phones and personal computers have recently become smaller, lighter, and more sophisticated, mainly for information and communication devices, the density of printed wiring boards has increased, and the diameter of component holes has become very small. (Diameter: less than 50 μm), and a hole diameter of 50 μm cannot be formed by drilling. For this reason, a technique using a UV-YAG third harmonic laser (hereinafter, referred to as an ultraviolet laser) having a wavelength of 355 nm has been developed, and a hole having a very small diameter of less than 50 μm can be formed.
[0018]
However, D glass (Patent Document 1) and SiO 2 —Al 2 O 3 —B 2 O 3 —RO glass (Patent Document 2) have a high transmittance at a wavelength of 355 nm, so that printing using these glasses is performed. Even if an attempt is made to drill a hole in a wiring board using an ultraviolet laser, the laser light will pass through the glass. For this reason, if the energy of the laser beam is increased, the drilling process can be managed, but the energy of the laser beam becomes too high, and D glass or glass made of SiO 2 —Al 2 O 3 —B 2 O 3 —RO glass is used. Degradation of the resin impregnated in the fiber cloth or burning out of the resin, resulting in processing defects such as large component hole diameters or voids in the component hole walls, which tend to cause poor conduction and short circuits Having.
[0019]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a glass fiber for a printed wiring board that does not cause processing defects in component holes even when an ultraviolet laser is used. That is.
[0020]
[Means for Solving the Problems]
The present inventors have conducted experiments to achieve the above object, and as a result of using an ultraviolet laser by using a low dielectric constant low dielectric loss tangent glass fiber made of glass having a low light transmittance of 355 nm, The present inventors have found that machining defects in component holes do not occur, and have proposed the present invention.
[0021]
That is, the low dielectric constant low dielectric loss tangent glass fiber of the present invention is made of glass having a dielectric constant at 1 MHz of 5.0 or less, a wall thickness of 0.5 mm, and a light transmittance of 10% or less at a wavelength of 355 nm. It is characterized by the following.
[0022]
[Action]
The low dielectric constant and low dielectric loss tangent glass fiber of the present invention is made of glass having a thickness of 0.5 mm and a light transmittance of 10% or less, preferably 8% or less at a wavelength of 355 nm. And the hole can be drilled without increasing the energy of the laser beam. Therefore, when the resin impregnated in the glass fiber cloth is hardly deteriorated or the resin is hard to be burned out when the hole is formed by the ultraviolet laser beam, the processing is performed such that the diameter of the component hole is large or a cavity is formed in the wall of the component hole. Failures are less likely to occur, and conduction failures and short circuits are less likely to occur.
[0023]
In addition, since it is made of glass whose dielectric constant at 1 MHz is 5.0 or less, when used as a reinforcing material for a printed wiring board, signal propagation delay can be suppressed.
[0024]
The low dielectric constant low dielectric loss tangent glass fibers of the present invention, in mass%, the Fe 2 O 3 1.8~4.9%, TiO 2 and 0 to 4.9, the Fe 2 O 3 + TiO 2 6 A glass containing 0.7% or less is preferable because the light transmittance at a wavelength of 355 nm is easily reduced to 10% or less at a thickness of 0.5 mm and the dielectric constant and the dielectric loss tangent are reduced. That is, when the content of Fe 2 O 3 is less than 1.8%, the light transmittance at a wavelength of 355 nm with a thickness of 0.5 mm is difficult to be 10% or less, and when the content is more than 4.9%, the dielectric constant or It is not preferable because the dielectric loss tangent becomes high. The preferred range of the Fe 2 O 3 content is 1.8 to 4.0%, more preferably 1.8 to 3.0%. On the other hand, if TiO 2 is more than 4.9%, the dielectric constant becomes high, which is not preferable. The preferred range of TiO 2 content is 0 to 3.0%, more preferably 0 to 2.0%. Further, when the total amount of Fe 2 O 3 and TiO 2 is more than 6.7%, the dielectric constant and the dielectric loss tangent increase, which is not preferable. The preferable range of the total amount of Fe 2 O 3 and TiO 2 is 4.9% or less.
[0025]
The low dielectric constant low dielectric loss tangent glass fiber of the present invention is preferably made of glass having a dielectric loss tangent tan δ of 0.0010 or less, since heat loss is reduced.
[0026]
Light transmittance at a wavelength of 355nm as described above, as a specific glass having the properties of dielectric constant and dielectric loss tangent, in mass%, SiO 2 50.0~62.0%, Al 2 O 3 8.0~20. 0%, B 2 O 3 15.0 to 30.0%, CaO 0 to 12%, MgO 0 to 12.0%, Li 2 O + Na 2 O + K 2 O ≦ 0.5%, Fe 2 O 3 1.8 ~4.9%, TiO 2 0~4.9%, include glass having a composition of Fe 2 O 3 + TiO 2 1.8~6.7 %. This glass is preferable because it is excellent not only in the workability of drilling with an ultraviolet laser but also in the workability of drilling with a drill.
[0027]
The reason why the contents of the components other than Fe 2 O 3 and TiO 2 are limited as described above will be described in detail.
[0028]
SiO 2 is a component that forms the skeleton of glass, and has an effect of reducing the dielectric constant and dielectric loss tangent of glass. The content is 50-62% by mass%, preferably 51-61%. When the content is less than 50%, the dielectric constant and the dielectric loss tangent tend to increase, and when the content is more than 62%, the high-temperature viscosity of the glass increases, so that the melting property of the glass deteriorates. In doing so, drill workability deteriorates.
[0029]
Al 2 O 3 is a component that improves the devitrification of the glass without increasing the dielectric constant or the dielectric loss tangent, and its content is 8 to 20% by mass%, preferably 10 to 19%. If the content is less than 8% or more than 20%, the devitrification of the glass deteriorates.
[0030]
B 2 O 3 is a component that lowers the high-temperature viscosity of the glass, acts as a flux, and also has a function of reducing the dielectric constant and the dielectric loss tangent of the glass, and its content is 15 to 30% by mass. %, Preferably 17 to 28%. If the content is less than 15%, it is difficult to obtain the above-mentioned effects, and if it is more than 30%, the amount of volatilization increases during melting and spinning of the glass, resulting in deterioration of productivity and deterioration of water resistance of the glass. I do.
[0031]
CaO or MgO is a component that has a small effect of increasing the dielectric constant and the dielectric loss tangent and lowers the high-temperature viscosity and the liquidus temperature of glass as compared with other divalent oxides. %. If the content is more than 12%, the dielectric constant increases, which is not preferable.
[0032]
Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) should not be substantially contained because they are components that greatly increase the dielectric loss tangent. These components are mixed as impurities in the raw material. However, if the content is 0.5% or less by mass%, the dielectric loss tangent can be maintained at 0.0010 or less, so that there is no problem.
[0033]
In the present invention, components such as BaO, ZnO, SrO, P 2 O 5 , SO 3 , As 2 O 3 , MoO 2 , and F 2 other than the above components are also added to the extent that the desired glass properties are not impaired. And up to 3% by mass in total.
[0034]
【Example】
Hereinafter, the low dielectric constant and low dielectric loss tangent glass fiber of the present invention will be described with reference to examples.
[0035]
Table 1 shows Examples 1 to 5 of the present invention, and Table 2 shows Comparative Examples 1 to 4. Note that Comparative Example 1 is D glass, and Comparative Example 3 is E glass.
[0036]
[Table 1]
Figure 2004107112
[0037]
[Table 2]
Figure 2004107112
[0038]
The method for producing each sample in the table is as follows.
[0039]
First, 500 g of glass raw materials each prepared to have a predetermined composition were put into a platinum crucible and melted in an electric furnace at about 1580 ° C. for 4 hours. Next, the molten glass was poured out onto a carbon plate, formed into a plate shape, and then gradually cooled to remove a strain, thereby preparing a sample.
[0040]
The dielectric constant (ε), dielectric loss tangent (tan δ), and ultraviolet transmittance of each of the samples thus prepared are shown in the table.
[0041]
As is clear from Table 1, all of Examples 1 to 5 have a transmittance at 355 nm of 10% or less, a dielectric constant of 5.0 or less, and a dielectric loss tangent of 10 × 10 −4 or less. It was small.
[0042]
Compared to the above examples, Comparative Examples 1 to 3 did not contain Fe 2 O 3 or TiO 2 , or even if they did, the amounts thereof were small, so that the ultraviolet transmittance at 355 nm was high. In Comparative Example 3, CaO many, because less B 2 O 3, had a higher dielectric constant and dielectric loss tangent. In Comparative Example 4, although the total amount of Fe 2 O 3 and TiO 2 was large and the light at 355 nm was not transmitted at all, the dielectric constant and the dielectric loss tangent were high.
[0043]
The dielectric constant and the dielectric loss tangent in the table were measured at a frequency of 1 MHz at room temperature using an impedance analyzer with glass cut to dimensions of 50 mm × 50 mm × 3 mm and polished on both sides with a # 1000 sandpaper. .
[0044]
The ultraviolet transmittance at 355 nm was measured with a spectrophotometer using glass having a thickness of 0.5 mm and optically polished on both sides.
[0045]
【The invention's effect】
As described above, the low dielectric constant low dielectric loss tangent glass fiber of the present invention is made of glass having a dielectric constant of 5.0 or less and a light transmittance of 10% or less at 355 nm with a thickness of 0.5 mm, Even if a UV-YAG 3rd harmonic laser having a wavelength of 355 nm is used, processing defects in component holes do not occur, and since not only drilling with an ultraviolet laser but also drilling with a drill are good, high-speed signals can be obtained. It is suitable as a resin reinforcing material for a printed wiring board which needs to cope with processing.

Claims (3)

1MHzでの誘電率が5.0以下で、肉厚0.5mmで、355nmの波長の光線透過率が10%以下であるガラスからなる低誘電率低誘電正接ガラス繊維。Low dielectric constant and low dielectric loss tangent glass fibers made of glass having a dielectric constant at 1 MHz of 5.0 or less, a wall thickness of 0.5 mm, and a light transmittance of 10% or less at a wavelength of 355 nm at 355 nm. 質量%で、Feを1.8〜4.9%、TiOを0〜4.9、Fe+TiOを6.7%以下含有するガラスからなる請求項1に記載の低誘電率低誘電正接ガラス繊維。In mass%, the Fe 2 O 3 1.8~4.9%, the TiO 2 from 0 to 4.9, according to claim 1 comprising a glass containing Fe 2 O 3 + TiO 2 or less 6.7% Low dielectric constant low dielectric loss tangent glass fiber. 質量%で、SiO 50.0〜62.0%、Al 8.0〜20.0%、B 15.0〜30.0%、CaO 0〜12%、MgO 0〜12.0%、LiO+NaO+KO≦0.5%、Fe 1.8〜4.9%、TiO 0〜4.9%、Fe+TiO 1.8〜6.7%の組成を有するガラスからなる請求項1又は2に記載の低誘電率低誘電正接ガラス繊維。By mass%, SiO 2 50.0~62.0%, Al 2 O 3 8.0~20.0%, B 2 O 3 15.0~30.0%, CaO 0~12%, MgO 0~ 12.0%, Li 2 O + Na 2 O + K 2 O ≦ 0.5%, Fe 2 O 3 1.8 to 4.9%, TiO 2 0 to 4.9%, Fe 2 O 3 + TiO 2 1.8 to 3. The low dielectric constant and low dielectric loss tangent glass fiber according to claim 1, which is made of glass having a composition of 6.7%.
JP2002269418A 2002-09-17 2002-09-17 Low dielectric constant low dielectric dissipation factor glass fiber Pending JP2004107112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269418A JP2004107112A (en) 2002-09-17 2002-09-17 Low dielectric constant low dielectric dissipation factor glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269418A JP2004107112A (en) 2002-09-17 2002-09-17 Low dielectric constant low dielectric dissipation factor glass fiber

Publications (1)

Publication Number Publication Date
JP2004107112A true JP2004107112A (en) 2004-04-08

Family

ID=32267343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269418A Pending JP2004107112A (en) 2002-09-17 2002-09-17 Low dielectric constant low dielectric dissipation factor glass fiber

Country Status (1)

Country Link
JP (1) JP2004107112A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026158A (en) * 2009-07-23 2011-02-10 Nitto Boseki Co Ltd Glass composition for glass fiber, glass fiber, glass fabric, glass fiber reinforced resin, metal foil-clad laminate and printed circuit board
JP2012166998A (en) * 2011-02-16 2012-09-06 Panasonic Corp Transparent film
CN104529174A (en) * 2015-01-08 2015-04-22 台嘉玻璃纤维有限公司 Glass with low dielectric constant
CN107498955A (en) * 2017-09-21 2017-12-22 电子科技大学 A kind of transparent combined glass of wideband electromagnetic
JP2018518440A (en) * 2015-05-13 2018-07-12 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Use of MgO, ZnO, and rare earth oxides to make improved low dielectric constant fibers with improved low thermal expansion coefficient for high boron aluminosilicate composition
WO2018216637A1 (en) * 2017-05-26 2018-11-29 日本板硝子株式会社 Glass composition, glass fiber, glass cloth, and method for manufacturing glass fiber
US10329186B2 (en) 2015-12-21 2019-06-25 Corning Incorporated Borosilicate glasses with low alkali content
CN110171929A (en) * 2019-06-14 2019-08-27 泰山玻璃纤维有限公司 Low bubble dielectric glass fibre composition and its production technology
JP2020093959A (en) * 2018-12-14 2020-06-18 日本電気硝子株式会社 Glass fiber and method for manufacturing the same
CN112250311A (en) * 2020-10-26 2021-01-22 辽宁新洪源环保材料有限公司 Low-dielectric glass fiber composition, low-dielectric glass fiber and preparation method thereof
JP6927463B1 (en) * 2020-04-10 2021-09-01 日東紡績株式会社 Glass composition for glass fiber, glass fiber, glass fiber woven fabric and glass fiber reinforced resin composition
CN113396189A (en) * 2019-02-05 2021-09-14 住友化学株式会社 Resin composition
WO2021205698A1 (en) * 2020-04-10 2021-10-14 日東紡績株式会社 Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
WO2021205699A1 (en) * 2020-04-10 2021-10-14 日東紡績株式会社 Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
WO2021251399A1 (en) * 2020-06-10 2021-12-16 日本板硝子株式会社 Glass composition, glass filler and production method therefor, and resin composition containing glass filler
JP2022060313A (en) * 2014-04-03 2022-04-14 日本電気硝子株式会社 Glass
CN114933418A (en) * 2022-05-10 2022-08-23 河北光兴半导体技术有限公司 Low dielectric constant and low dielectric loss glass fiber composition, glass fiber and application thereof
WO2022181334A1 (en) * 2021-02-24 2022-09-01 日東紡績株式会社 Glass composition for glass fiber, glass fiber, glass fiber fabric, and glass fiber-reinforced resin composition

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026158A (en) * 2009-07-23 2011-02-10 Nitto Boseki Co Ltd Glass composition for glass fiber, glass fiber, glass fabric, glass fiber reinforced resin, metal foil-clad laminate and printed circuit board
JP2012166998A (en) * 2011-02-16 2012-09-06 Panasonic Corp Transparent film
JP2022060313A (en) * 2014-04-03 2022-04-14 日本電気硝子株式会社 Glass
JP7472925B2 (en) 2014-04-03 2024-04-23 日本電気硝子株式会社 Glass
CN104529174A (en) * 2015-01-08 2015-04-22 台嘉玻璃纤维有限公司 Glass with low dielectric constant
JP6995626B2 (en) 2015-05-13 2022-01-14 エレクトリック グラス ファイバー アメリカ, エルエルシー Use of MgO, ZnO, and rare earth oxides to make improved low dielectric constant fibers with improved low coefficient of thermal expansion for the composition of high boron aluminosilicates.
JP2018518440A (en) * 2015-05-13 2018-07-12 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Use of MgO, ZnO, and rare earth oxides to make improved low dielectric constant fibers with improved low thermal expansion coefficient for high boron aluminosilicate composition
US11577988B2 (en) 2015-12-21 2023-02-14 Corning Incorporated Borosilicate glasses with low alkali content
US10329186B2 (en) 2015-12-21 2019-06-25 Corning Incorporated Borosilicate glasses with low alkali content
TWI730232B (en) * 2017-05-26 2021-06-11 日商日本板硝子股份有限公司 Glass composition, glass fiber, glass cloth and glass fiber manufacturing method
CN110770182A (en) * 2017-05-26 2020-02-07 日本板硝子株式会社 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
EP3632863A4 (en) * 2017-05-26 2021-03-24 Nippon Sheet Glass Company, Limited Glass composition, glass fiber, glass cloth, and method for manufacturing glass fiber
US11174191B2 (en) 2017-05-26 2021-11-16 Nippon Sheet Glass Company, Limited Glass composition, glass fibers, glass cloth, and method for producing glass fibers
JPWO2018216637A1 (en) * 2017-05-26 2019-11-07 日本板硝子株式会社 Glass composition, glass fiber, glass cloth, and method for producing glass fiber
WO2018216637A1 (en) * 2017-05-26 2018-11-29 日本板硝子株式会社 Glass composition, glass fiber, glass cloth, and method for manufacturing glass fiber
CN107498955A (en) * 2017-09-21 2017-12-22 电子科技大学 A kind of transparent combined glass of wideband electromagnetic
JP2020093959A (en) * 2018-12-14 2020-06-18 日本電気硝子株式会社 Glass fiber and method for manufacturing the same
WO2020121761A1 (en) * 2018-12-14 2020-06-18 日本電気硝子株式会社 Glass fiber and method for manufacturing same
JP7410450B2 (en) 2018-12-14 2024-01-10 日本電気硝子株式会社 Glass fiber and its manufacturing method
CN113195422A (en) * 2018-12-14 2021-07-30 日本电气硝子株式会社 Glass fiber and method for producing same
TWI761735B (en) * 2018-12-14 2022-04-21 日商日本電氣硝子股份有限公司 Glass fiber and method of making the same
CN113396189A (en) * 2019-02-05 2021-09-14 住友化学株式会社 Resin composition
CN110171929B (en) * 2019-06-14 2021-01-22 泰山玻璃纤维有限公司 Low-bubble low-dielectric glass fiber composition and production process thereof
CN110171929A (en) * 2019-06-14 2019-08-27 泰山玻璃纤维有限公司 Low bubble dielectric glass fibre composition and its production technology
WO2021205699A1 (en) * 2020-04-10 2021-10-14 日東紡績株式会社 Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
WO2021205698A1 (en) * 2020-04-10 2021-10-14 日東紡績株式会社 Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
JP6927463B1 (en) * 2020-04-10 2021-09-01 日東紡績株式会社 Glass composition for glass fiber, glass fiber, glass fiber woven fabric and glass fiber reinforced resin composition
JP7560761B2 (en) 2020-04-10 2024-10-03 日東紡績株式会社 Glass composition for glass fiber, glass fiber, glass fiber fabric, and glass fiber reinforced resin composition
US11565967B2 (en) 2020-04-10 2023-01-31 Nitto Boseki Co., Ltd. Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
JP7576091B2 (en) 2020-06-10 2024-10-30 日本板硝子株式会社 Glass composition, glass filler and its manufacturing method, and resin composition containing glass filler
CN115697931A (en) * 2020-06-10 2023-02-03 日本板硝子株式会社 Glass composition, glass filler and method for producing same, and resin composition containing glass filler
WO2021251399A1 (en) * 2020-06-10 2021-12-16 日本板硝子株式会社 Glass composition, glass filler and production method therefor, and resin composition containing glass filler
CN112250311A (en) * 2020-10-26 2021-01-22 辽宁新洪源环保材料有限公司 Low-dielectric glass fiber composition, low-dielectric glass fiber and preparation method thereof
JP7131733B1 (en) * 2021-02-24 2022-09-06 日東紡績株式会社 Glass composition for glass fiber, glass fiber, glass fiber fabric and glass fiber reinforced resin composition
WO2022181334A1 (en) * 2021-02-24 2022-09-01 日東紡績株式会社 Glass composition for glass fiber, glass fiber, glass fiber fabric, and glass fiber-reinforced resin composition
CN114933418A (en) * 2022-05-10 2022-08-23 河北光兴半导体技术有限公司 Low dielectric constant and low dielectric loss glass fiber composition, glass fiber and application thereof

Similar Documents

Publication Publication Date Title
JP2004107112A (en) Low dielectric constant low dielectric dissipation factor glass fiber
JP3269937B2 (en) Low dielectric constant glass fiber
JP4269194B2 (en) Low dielectric constant glass fiber
JP3228945B2 (en) Low dielectric constant glass fiber
EP0163548A2 (en) Method for producing multilayer ceramic circuit board
CA1320507C (en) Thermal writing on glass or glass-ceramic substrates and copper-exuding glasses
US11479498B2 (en) Glass composition and glass fiber having the same
TW200837034A (en) Low dielectric glass and fiber glass for electronic applications
JPH06219780A (en) Glass fiber of low dielectric constant
JP2003171143A (en) Glass composition for glass fiber
JP4695066B2 (en) Glass strand capable of reinforcing organic and / or inorganic materials, method for producing said strand and composition used
JPH0710598A (en) Low dielectric constant glass fiber
JP2009280487A (en) Glass composition, glass fiber, insulation layer for printed circuit substrate, and printed circuit substrate
US7015160B2 (en) Glass ceramic dielectric material suitable for production of a microwave circuit component
CN110395912A (en) A kind of low-k electronic-grade glass and preparation method thereof
EP0532842A1 (en) Low dielectric inorganic composition for multilayer ceramic package
JPH10167759A (en) Low dielectric constant glass fiber
JP2002137937A (en) Glass fiber having low dielectric constant and low dielectric tangent
CN111003935A (en) Glass material and preparation method thereof
JP2002137938A (en) Glass fiber having low dielectric constant and low dielectric tangent
JPH06211543A (en) Glass fiber
CN107298531A (en) Glass fiber with low dielectric constant and preparation method thereof
Que et al. Effects of CaO additive on sintering behaviour and properties of CaO–B2O3–SiO2 glass-ceramics for LTCC applications
JPS62278145A (en) Sintered material of glass ceramic
JP3678260B2 (en) Glass ceramic composition