[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3938721B1 - Cryostat - Google Patents

Cryostat Download PDF

Info

Publication number
EP3938721B1
EP3938721B1 EP20711533.8A EP20711533A EP3938721B1 EP 3938721 B1 EP3938721 B1 EP 3938721B1 EP 20711533 A EP20711533 A EP 20711533A EP 3938721 B1 EP3938721 B1 EP 3938721B1
Authority
EP
European Patent Office
Prior art keywords
cooling
levels
cold plates
cold plate
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20711533.8A
Other languages
German (de)
French (fr)
Other versions
EP3938721A1 (en
Inventor
Jens HÖHNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pressure Wave Systems GmbH
Original Assignee
Pressure Wave Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pressure Wave Systems GmbH filed Critical Pressure Wave Systems GmbH
Publication of EP3938721A1 publication Critical patent/EP3938721A1/en
Application granted granted Critical
Publication of EP3938721B1 publication Critical patent/EP3938721B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/50Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1894Cooling means; Cryo cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Definitions

  • the present invention relates to a cryostat according to claim 1 for experiments at temperatures in the range of less than 2 K.
  • cryostats and in particular demixing cryostats for temperatures in the range of less than 2 K are currently mainly required and built for the development of quantum computers and quantum communication devices.
  • the arrangement of the individual temperature levels or cold plates and thus also the arrangement of experimental stations is given by the vertical arrangement of conventional cryostats.
  • Fig. 7a and 7b show schematically a state-of-the-art demixing cryostat with a suspended, vertical structure.
  • the demixing cryostat according to Fig.7 comprises six cooling stages 2-1 to 2-6 with four experimental stations 4-1 to 4-4.
  • the room temperature area is not equipped as an experimental station.
  • the temperature levels of the six cooling stages 2-i are provided by three unspecified cooling devices.
  • a first cooling device (not shown in detail), e.g. a first stage of a GM cooler, comprises a first cold plate 8-1 with the first experimental station 4-1 arranged under the first cold plate 8-1.
  • the first cooling stage 2-1 provides a temperature level of approximately 50 K for the first experimental station 4-1.
  • a second cooling device (not shown in detail), e.g. a second stage of the GM cooler, comprises a second cooling device arranged under the first experimental station 4-1.
  • the second cold plate 8-2 or the second cooling stage 2-2 is at a temperature level of approximately 4 K.
  • the second experimental station 4-2 is arranged under the second cold plate 8-2 at the temperature level of the second cooling stage 2-2.
  • a third cold plate 8-3 of a third cooling stage 2-3 with a temperature level of approximately 1 K is arranged under the second experimental station 4-2, which is cooled by a third cooling device (not shown in detail), e.g. a Joule-Thomson stage.
  • a fourth cooling device (not shown in detail), e.g. a 3 He/ 4 He demixing cooler, provides the temperature levels of the fourth, fifth and sixth cooling stages 2-4, 2-5 and 2-6.
  • the third experimental station 4-3 is provided on the fourth cooling stage 2-4 between the fourth cold plate 8-4 and the fifth cold plate 8-5.
  • a sixth cold plate 8-6, the lowest cooling stage 2-6, is provided below the third experimental station 4-3 and below the fifth cold plate 8-5.
  • the temperature level of the fourth cold plate 8-4 is in the range between 500 and 700 mK
  • the temperature level of the fifth cold plate 8-5 is between 100 and 200 mK
  • the lowest temperature level of the sixth cold plate 8-6 and the fourth experimental station 4-4 arranged below it is in the range ⁇ 100 mK.
  • the entire arrangement is arranged in a vacuum container 10.
  • all six cooling stages 2-1 to 2-6 are enclosed by a first heat shield 12-1.
  • the second to sixth cooling stages 6-2 to 6-6 are enclosed by a second heat shield 12-2.
  • the fourth to sixth cooling stages 2-4 to 2-6 are enclosed by a third heat shield 12-3.
  • the deepest, sixth cooling stage 2-6 is shielded by a fourth heat shield 12-4.
  • WO2010/106309 A2 is a cryostat with an experimental area accessible only from above and from the WO 2009/000629 A2 A cryostat with only one experimental station accessible from the side is known.
  • the experiment stations are arranged next to each other rather than one below the other, they are accessible from above and from the side after removing the respective heat shields, whereas with the current technology they are only accessible from the side. This simplifies various experiments and generally the handling of the cryostat in use.
  • the height of the cryostat is also significantly reduced and it is possible to operate the cryostat in laboratory rooms with a standard height, which is not possible with cryostats with a vertically hanging arrangement.
  • this disadvantage increased cooling capacity of the various coolers is necessary for operation
  • the advantageous embodiment of the invention according to claim 7 represents a simple juxtaposition of the experimental stations, whereby these are still at different temperature levels.
  • the advantageous embodiment of the invention according to claim 8 provides experimental stations arranged next to one another, which are located at approximately the same height.
  • the Figures 1a and 1b show schematically the basic principle of the present invention, the juxtaposition of five experimental stations 4-1 to 4-5 on the cold plates 8-1 to 8-5 in one plane.
  • the five experimental stations 4-1 to 4-5 are located on the cooling stages 2-1 to 2-5 with the associated temperatures, room temperature 50 K, 4 K, 700 mK and 100 mK.
  • Fig. 1a shows the experiment stations arranged next to each other from the side and thus the volume of the experiment stations 4-1 to 4-5 above the respective cold plate 8-1 to 8-5 and Fig. 1b shows a top view of the representation according to Fig.1 .
  • Fig. 2a and 2b show a first embodiment of the invention, in which the cryostat according to the invention has a rectangular cross-sectional shape and the individual experimental stations 4-1 to 4-5 are arranged next to each other on one level and are nested in an L-shape; with the fifth experimental station 4-5 as a cube.
  • Fig.3 shows a second embodiment of the invention, in which the basic structure is circular or cylindrical and the individual experimental stations 4-1 to 4-5 surround each other.
  • Fig.4 represents a possible arrangement of four heat shields 32-1 to 32-4 for the individual embodiments according to Fig. 2 and 3 represents.
  • Fig.5 shows a third embodiment of the invention.
  • the individual components of the cryostat are arranged in a vacuum container 10.
  • the vacuum container 10 comprises a base plate 20 on which a side border 22 is arranged, resulting in a tub 24.
  • a pulse tube cooler 26 extends into the tub 24.
  • the right side of the side border 22 supports a first partial cold plate 30-1 at room temperature.
  • a first experimental station 4-1 is arranged on the first partial cold plate 30-1.
  • the first experimental station 4-1 is surrounded by a first heat shield 32-1 and is at room temperature.
  • the entire vacuum container 10 represents the first heat shield 32-1.
  • a second cold plate 8-2 is provided at a distance from the base plate 20 by support elements 28, which is in thermal contact with the pulse tube cooler 26 and also has a lateral border 22.
  • a support element 28 supports a second partial cold plate 30-2 which is offset upwards and is located in the plane of the first partial cold plate 30-1.
  • the second cold plate 8-2 and the second partial cold plate 30-2 are at a second temperature level of approximately 50 K.
  • a second experimental station 4-2 is located on or above the second partial cold plate 30-2. Starting from the second cold plate 8-2, a second heat shield 32-2 encloses the second experimental station 4-2.
  • a third cold plate 8-3 is arranged on the second cold plate 8-2, which in turn is thermally coupled to the pulse tube cooler 26 and provides a temperature level of approximately 4 K.
  • a support element 28 on the right side of the third cold plate 8-3 carries a third partial cold plate 30-3 offset upwards.
  • the third partial cold plate 30-3 is located in the plane of the second and first partial cold plates 30-1 and 30-2.
  • a third experimental station 4-3 with a temperature level of approximately 4 K is arranged on or above the third partial cold plate 30-3.
  • a third heat shield 32-3 encloses the third experimental station 4-3.
  • a fourth cold plate 8-4 is arranged above the third cold plate 8-3, on which the components of a 3 He/ 4 He demixing cooler 34 are arranged.
  • a support element 28 supports a fourth partial cold plate 30-4 offset upwards at the height level of the other partial cold plates 30-1 to 30-3.
  • a fifth cold plate 8-5 is arranged above the fourth cold plate 8-4 at the same height as the partial cold plates 30-i at the lowest temperature level of approximately 30 mK.
  • a fifth experimental station 4-5 is arranged above or on the fifth cold plate 8-5.
  • a fifth heat shield 32-5 encloses the fifth experimental station 8-5.
  • the 3 He/ 4 He demixing cooler 34 between the fourth and fifth cold plates 8-4, 8-5 comprises a still 36 with concentric heat exchanger 38, a mixing chamber 40 and connections 42.
  • the still is thermally coupled to the fourth cold plate 8-4 and the fourth partial cold plate 30-4.
  • the mixing chamber 40 is thermally coupled to the fifth cold plate 8-5.
  • the thermal coupling of the individual cold plates 8-i with the partial cold plates 30-i and the pulse tube cooler 26 or the 3 He/ 4 He demixing cooler 34 is achieved via heat conductors 44.
  • the pulse tube cooler 26 is mounted in the vacuum vessel 10 via a vibration decoupling device 46.
  • Fig.6 shows a fourth embodiment of the invention, which differs from the third embodiment according to Fig.5 differs in that instead of a pulse tube cooler that penetrates the vacuum container 10 from the side, a GM cooler 48 penetrates the vacuum container 10 from below approximately in the middle of the fifth cold plate 8-5. The GM cooler 48 also penetrates an opening in the second cold plate 8-2 so that the thermal coupling with the third heat plate can take place. By installing the GM cooler 48 from below, a somewhat narrower, but somewhat higher design is obtained.
  • the arrangement of the experiment stations 4-i next to each other enables a significantly lower design.
  • the low height of the cryostat makes it possible to operate the cryostat in standard height laboratory rooms, which is not possible with cryostats with a vertically hanging arrangement.
  • the arrangement of the experiment stations next to each other can lead to larger heat shields, this disadvantage (increased cooling capacity of the various coolers is necessary for operation) is accepted by the possibility of use in standard height laboratory rooms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft einen Kryostaten nach Anspruch 1 für Experimente bei Temperaturen im Bereich von kleiner 2 K.The present invention relates to a cryostat according to claim 1 for experiments at temperatures in the range of less than 2 K.

Kryostaten und insbesondere Entmischungskryostaten für Temperaturen im Bereich von kleiner 2 K werden zurzeit im Wesentlichen für die Entwicklung von Quantencomputern und Quantenkommunikationsgeräten benötigt und gebaut. Dabei ist die Anordnung der einzelnen Temperaturniveaus bzw. Kälteplatten und damit auch die Anordnung von Experimentierplätze durch die vertikale Anordnung herkömmlicher Kryostate gegeben.Cryostats and in particular demixing cryostats for temperatures in the range of less than 2 K are currently mainly required and built for the development of quantum computers and quantum communication devices. The arrangement of the individual temperature levels or cold plates and thus also the arrangement of experimental stations is given by the vertical arrangement of conventional cryostats.

Fig. 7a und 7b zeigen schematisch einen Entmischungskryostaten nach dem Stand der Technik mit hängendem, vertikalem Aufbau. Der Entmischungskryostat nach Fig. 7 umfasst sechs Kühlstufen 2-1 bis 2-6 mit vier Experimentierplätzen 4-1 bis 4-4. Der Bereich der Raumtemperatur ist nicht als Experimentierplatz ausgestattet. Die Temperaturniveaus der sechs Kühlstufen 2-i werden durch drei nicht näher spezifizierte Kühleinrichtungen bereitgestellt. Fig. 7a and 7b show schematically a state-of-the-art demixing cryostat with a suspended, vertical structure. The demixing cryostat according to Fig.7 comprises six cooling stages 2-1 to 2-6 with four experimental stations 4-1 to 4-4. The room temperature area is not equipped as an experimental station. The temperature levels of the six cooling stages 2-i are provided by three unspecified cooling devices.

Eine nicht näher dargestellte erste Kühleinrichtung, z. B. eine erste Stufe eines GM-Kühlers, umfasst eine erste Kälteplatte 8-1 mit dem unter der ersten Kälteplatte 8-1 angeordneten erstem Experimentierplatz 4-1. Die erste Kühlstufe 2-1 stellt ein Temperaturniveau von ca. 50 K für den ersten Experimentierplatz 4-1 bereit.A first cooling device (not shown in detail), e.g. a first stage of a GM cooler, comprises a first cold plate 8-1 with the first experimental station 4-1 arranged under the first cold plate 8-1. The first cooling stage 2-1 provides a temperature level of approximately 50 K for the first experimental station 4-1.

Eine nicht näher dargestellte, zweite Kühleinrichtung, z. B. eine zweite Stufe des GM-Kühlers, umfasst eine unter dem ersten Experimentierplatz 4-1 angeordnet, zweite Kälteplatte 8-2. Die zweite Kälteplatte 8-2 bzw. die zweiten Kühlstufe 2-2 befindet sich auf einem Temperaturniveau von ca. 4 K. Unter der zweiten Kälteplatte 8-2 ist der zweite Experimentierplatz 4-2 auf dem Temperaturniveau der zweiten Kühlstufe 2-2 angeordnet. Unter dem zweiten Experimentierplatz 4-2 ist eine dritte Kälteplatte 8-3 einer dritten Kühlstufe 2-3 mit einem Temperaturniveau von ca. 1 K angeordnet, die von einer nicht näher dargestellten, dritten Kühleinrichtung, z. B. einer Joule-Thomson-Stufe, gekühlt wird.A second cooling device (not shown in detail), e.g. a second stage of the GM cooler, comprises a second cooling device arranged under the first experimental station 4-1. Cold plate 8-2. The second cold plate 8-2 or the second cooling stage 2-2 is at a temperature level of approximately 4 K. The second experimental station 4-2 is arranged under the second cold plate 8-2 at the temperature level of the second cooling stage 2-2. A third cold plate 8-3 of a third cooling stage 2-3 with a temperature level of approximately 1 K is arranged under the second experimental station 4-2, which is cooled by a third cooling device (not shown in detail), e.g. a Joule-Thomson stage.

Eine nicht näher dargestellte, vierte Kühleinrichtung, z. B. ein 3He/4He-Entmischungskühler, stellt die Temperaturniveaus der vierten, fünften und sechsten Kühlstufe 2-4, 2-5 und 2-6 bereit. Zwischen der vierten Kälteplatte 8-4 und der fünften Kälteplatte 8-5 ist der dritte Experimentierplatz 4-3 auf der vierten Kühlstufe 2-4 vorgesehen. Unter dem dritten Experimentierplatz 4-3 und unter der fünften Kälteplatte 8-5 ist eine sechste Kälteplatte 8-6, der tiefsten Kühlstufe 2-6 vorgesehen. Das Temperaturniveau der vierten Kälteplatte 8-4 liegt im Bereich zwischen 500 und 700 mK, das Temperaturniveau der fünften Kälteplatte 8-5 liegt zwischen 100 und 200 mK und das tiefste Temperaturniveau der sechsten Kälteplatte 8-6 und dem darunter angeordneten vierten Experimentierplatz 4-4 liegt im Bereich <100 mK.A fourth cooling device (not shown in detail), e.g. a 3 He/ 4 He demixing cooler, provides the temperature levels of the fourth, fifth and sixth cooling stages 2-4, 2-5 and 2-6. The third experimental station 4-3 is provided on the fourth cooling stage 2-4 between the fourth cold plate 8-4 and the fifth cold plate 8-5. A sixth cold plate 8-6, the lowest cooling stage 2-6, is provided below the third experimental station 4-3 and below the fifth cold plate 8-5. The temperature level of the fourth cold plate 8-4 is in the range between 500 and 700 mK, the temperature level of the fifth cold plate 8-5 is between 100 and 200 mK and the lowest temperature level of the sixth cold plate 8-6 and the fourth experimental station 4-4 arranged below it is in the range <100 mK.

Die gesamte Anordnung ist in einem Vakuumbehälter 10 angeordnet. In dem Vakuumbehälter 10 werden alle sechs Kühlstufen 2-1 bis 2-6 von einem ersten Wärmeschild 12-1 umhüllt. Innerhalb des ersten Wärmeschilds 12-1 werden die zweite bis sechste Kühlstufe 6-2 bis 6-6 von einem zweiten Wärmeschild 12-2 umhüllt. Innerhalb des zweiten Wärmeschilds 12-2 werden die vierte bis sechste Kühlstufe 2-4 bis 2-6 von einem dritten Wärmeschild 12-3 umhüllt. Die tiefste, sechste Kühlstufe 2-6 wird von einem vierten Wärmeschild 12-4 abgeschirmt.The entire arrangement is arranged in a vacuum container 10. In the vacuum container 10, all six cooling stages 2-1 to 2-6 are enclosed by a first heat shield 12-1. Within the first heat shield 12-1, the second to sixth cooling stages 6-2 to 6-6 are enclosed by a second heat shield 12-2. Within the second heat shield 12-2, the fourth to sixth cooling stages 2-4 to 2-6 are enclosed by a third heat shield 12-3. The deepest, sixth cooling stage 2-6 is shielded by a fourth heat shield 12-4.

Diese herkömmliche Anordnung hat den Vorteil, dass die einzelnen Temperaturniveaus wie Zwiebelschalen ineinander liegen und einfach herzustellen sind - siehe Fig. 7b. Allerdings werden diese bekannten Kryostaten durch die steigenden Anforderungen in Bezug auf Experimentierplatz auf den einzelnen Stufen relativ groß und vor allem hoch bzw. lang. Dies hat zur Folge, dass die Wärmeschilde immer länger werden und man muss diese entweder teilen oder man muss unterhalb des Apparates sehr viel Platz vorsehen, um diese Wärmeschilde abnehmen zu können, um an die Experimentierplätze zu kommen. Weiterhin müssen alle Aufbauten auf den einzelnen Stufen hängend vorgenommen werden, da innerhalb der Wärmeschilder unter der Kälteplatte des entsprechenden Temperaturniveaus Experimentierplätze vorgesehen sind.This conventional arrangement has the advantage that the individual temperature levels lie inside each other like onion skins and are easy to manufacture - see Fig. 7b However, due to the increasing requirements in terms of experimental space on the individual stages, these known cryostats are becoming relatively large and, above all, high and long. This means that the heat shields are becoming longer and longer and you either have to split them or you have to install a heat shield underneath the device. A lot of space must be provided to be able to remove these heat shields in order to access the experiment stations. Furthermore, all structures on the individual levels must be suspended, as experiment stations are provided within the heat shields under the cold plate of the corresponding temperature level.

Aus der WO 2010/106309 A2 ist ein Kryostat mit einem nur von oben zugänglichen Experimentierpatz und aus der WO 2009/000629 A2 ist ein Kryostat mit nur einem von der Seite zugänglichen Experimentierplatz bekannt.From the WO2010/106309 A2 is a cryostat with an experimental area accessible only from above and from the WO 2009/000629 A2 A cryostat with only one experimental station accessible from the side is known.

Aus dem Artikel von Kurt Uhlig "Concepts for a low-vibration and cryogen-free tabletop dilution refrigerator" in Cryogencis 87 (2017) 29-34 ist ein sogenannter Tabletop-Entmischungskryostat beschrieben, der durch die Anordnung von Still und Mischkammer ein geringeres Bauvolumen ermöglicht, jedoch den gleichen Nachteil wie der Stand der Technik nach Fig. 7 aufweist, nämlich, dass die einzelnen Kälteplatten bzw. Experimentierplätze nur seitlich zugänglich sind.From the article by Kurt Uhlig "Concepts for a low-vibration and cryogen-free tabletop dilution refrigerator" in Cryogencis 87 (2017) 29-34 A so-called tabletop demixing cryostat is described, which allows a smaller construction volume due to the arrangement of the still and mixing chamber, but has the same disadvantage as the state of the art according to Fig.7 namely that the individual cold plates or experimental stations are only accessible from the side.

Aus der DE 102014015665B4 ist ein optischer Tisch bekannt, der eine einzelne in die Tischplatte integrierte Kälteplatte aufweist.From the EN 102014015665B4 An optical table is known which has a single cold plate integrated into the table top.

Aus der DE102016214731B3 , der DE102005041383A1 und auch der DE102011115303A1 sind NMR-Apparaturen bzw. Tieftemperaturvorrichtungen bekannt, bei denen Probenkopfkomponenten auf unterschiedlichen Temperaturniveaus von oben betrachtet unter- bzw. übereinander angeordnet sind. Aus der DE102011115303A1 ist der Zeichnung zu entnehmen, dass zwei Probenköpfe horizontal und vertikal versetzt zueinander angeordnet sind. DE102016214731 B3 offenbart ein Kryostat gemäß dem Oberbegriff des Anspruchs 1.From the DE102016214731B3 , the DE102005041383A1 and also the DE102011115303A1 NMR apparatuses or cryogenic devices are known in which probe head components are arranged one above the other or below one another at different temperature levels when viewed from above. DE102011115303A1 It can be seen from the drawing that two probe heads are arranged horizontally and vertically offset from each other. DE102016214731 B3 discloses a cryostat according to the preamble of claim 1.

Es ist daher Aufgabe der vorliegenden Erfindung einen Kryostaten anzugeben, der eine verbesserte Zugänglichkeit der Experimentierplätze ermöglicht und gleichzeitig ein geringeres Bauvolumen benötigt.It is therefore an object of the present invention to provide a cryostat which enables improved accessibility of the experimental stations and at the same time requires a smaller construction volume.

Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1.This problem is solved by the features of claim 1.

Dadurch, dass die Experimentierplätze nicht untereinander, sondern nebeneinander angeordnet sind, sind diese nach Abnahme der jeweiligen Wärmeschilde von oben und von der Seite zugänglich, während sie beim Stand der Technik nur von der Seite zugänglich sind. Dies vereinfacht verschiedene Experimente und im Allgemeinen die Handhabung des Kryostaten im Einsatz. Durch die Nebeinanderanordung der Experimentierplätze verringert sich auch die Bauhöhe des Kryostaten erheblich und es ist möglich den Kryostaten in Laborräumen mit Standardhöhe zu betreiben, was bei Kryostaten mit vertikal hängender Anordnung nicht möglich ist. Zwar kann die Nebeneinanderanordnung der Experimentierplätze zu großflächigeren Wärmeschildern führen, jedoch wird dieser Nachteil (zum Betrieb erhöhte Kühlleistung der verschiedenen Kühler notwendig) durch die Möglichkeit des Einsatzes in Laborräumen mit Standardhöhe in Kauf genommen.Because the experiment stations are arranged next to each other rather than one below the other, they are accessible from above and from the side after removing the respective heat shields, whereas with the current technology they are only accessible from the side. This simplifies various experiments and generally the handling of the cryostat in use. By arranging the experiment stations next to each other, the height of the cryostat is also significantly reduced and it is possible to operate the cryostat in laboratory rooms with a standard height, which is not possible with cryostats with a vertically hanging arrangement. Although arranging the experiment stations next to each other can lead to larger heat shields, this disadvantage (increased cooling capacity of the various coolers is necessary for operation) is accepted by the possibility of use in laboratory rooms with a standard height.

Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 2 oder 3 werden durch einen Mischungskühler mehrere Kühlstufen bedient.According to the advantageous embodiment of the invention according to claim 2 or 3, several cooling stages are served by a mixing cooler.

Die vorteilhaften Ausgestaltungen der Erfindung nach Anspruch 4 bis 6 betreffen geeignete Kühleinrichtungen für den Kryostaten.The advantageous embodiments of the invention according to claims 4 to 6 relate to suitable cooling devices for the cryostat.

Die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 7 stellt eine einfache Nebeneinanderordnung der Experimentierplätze dar wobei diese sich noch auf unterschiedlichem Temperaturniveau befinden.The advantageous embodiment of the invention according to claim 7 represents a simple juxtaposition of the experimental stations, whereby these are still at different temperature levels.

Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 8 werden nebeneinander angeordnete Experimentierplätze bereitgestellt, die sich in etwa auf demselben Höhenniveau befinden.The advantageous embodiment of the invention according to claim 8 provides experimental stations arranged next to one another, which are located at approximately the same height.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung.Further details, features and advantages of the invention will become apparent from the following description of preferred embodiments of the invention.

Kurzbeschreibung der FigurenShort description of the characters

  • Fig. 1a und 1b zeigen schematisch den Grundgedanken der vorliegenden Erfindung; Fig. 1a and 1b show schematically the basic idea of the present invention;
  • Fig. 2a und 2b zeigen die geometrische Struktur einer ersten Ausführungsform der Erfindung; Fig. 2a and 2b show the geometric structure of a first embodiment of the invention;
  • Fig. 3 zeigt die geometrische Struktur einer zweiten Ausführungsform der Erfindung; Fig.3 shows the geometric structure of a second embodiment of the invention;
  • Fig. 4 zeigt die Anordnung der Wärmeschilder bei den Ausführungsformen nach Fig. 2 und 3; Fig.4 shows the arrangement of the heat shields in the embodiments according to Fig. 2 and 3 ;
  • Fig. 5 zeigt eine dritte Ausführungsform der Erfindung mit den nebeneinander angeordneten Experimentierplätzen in einer Ebene; Fig.5 shows a third embodiment of the invention with the experimental stations arranged next to each other on one level;
  • Fig. 6 zeigt eine vierte Ausführungsform der Erfindung, bei der ein GM-Kühler den Vakuumbehälter von unten durchsetzt, und Fig.6 shows a fourth embodiment of the invention in which a GM cooler penetrates the vacuum vessel from below, and
  • Fig. 7a und 7b zeigen einen Kryostaten nach dem Stand der Technik. Fig. 7a and 7b show a state-of-the-art cryostat.

Die Figuren 1a und 1b zeigen schematisch das Grundprinzip der vorliegenden Erfindung, die Nebeneinanderanordnung von fünf Experimentierplätze 4-1 bis 4-5 auf den Kälteplatten 8-1 bis 8-5 in einer Ebene. Die fünf Experimentierplatze 4-1 bis 4-5, befinden sich auf den Kühlstufen 2-1 bis 2-5 mit den zugehörigen Temperaturen, Raumtemperatur 50 K, 4 K, 700 mK und 100 mK.The Figures 1a and 1b show schematically the basic principle of the present invention, the juxtaposition of five experimental stations 4-1 to 4-5 on the cold plates 8-1 to 8-5 in one plane. The five experimental stations 4-1 to 4-5 are located on the cooling stages 2-1 to 2-5 with the associated temperatures, room temperature 50 K, 4 K, 700 mK and 100 mK.

Fig. 1a zeigt die nebeneinander angeordneten Experimentierplätze von der Seite und damit quasi das Volumen der Experimentierplätze 4-1 bis 4-5 über der jeweiligen Kälteplatte 8-1 bis 8-5 und Fig. 1b zeigt eine Aufsicht auf die Darstellung nach Fig. 1. Fig. 1a shows the experiment stations arranged next to each other from the side and thus the volume of the experiment stations 4-1 to 4-5 above the respective cold plate 8-1 to 8-5 and Fig. 1b shows a top view of the representation according to Fig.1 .

Fig. 2a und 2b zeigen eine erste Ausführungsform der Erfindung, bei der der erfindungsgemäße Kryostat eine rechteckige Querschnittsform aufweist und die einzelnen, nebeneinander in einer Ebene angeordneten Experimentierplätze 4-1 bis 4-5 L-förmig ineinander geschachtelt sind; mit dem fünften Experimentierplatz 4-5 als Kubus. Fig. 2a and 2b show a first embodiment of the invention, in which the cryostat according to the invention has a rectangular cross-sectional shape and the individual experimental stations 4-1 to 4-5 are arranged next to each other on one level and are nested in an L-shape; with the fifth experimental station 4-5 as a cube.

Fig. 3 zeigt eine zweite Ausführungsform der Erfindung, bei der die Grundstruktur kreisförmig bzw. zylindrisch ist und die einzelnen Experimentierplätze 4-1 bis 4-5 einander umgeben. Fig.3 shows a second embodiment of the invention, in which the basic structure is circular or cylindrical and the individual experimental stations 4-1 to 4-5 surround each other.

Fig. 4 stellt eine mögliche Anordnung von vier Wärmeschilden 32-1 bis 32-4 zu den einzelnen Ausführungsformen nach Fig. 2 und 3 dar. Fig.4 represents a possible arrangement of four heat shields 32-1 to 32-4 for the individual embodiments according to Fig. 2 and 3 represents.

Fig. 5 zeigt eine dritte Ausführungsform der Erfindung. Die einzelnen Komponenten des Kryostats sind in einem Vakuumbehälter 10 angeordnet. Der Vakuumbehälter 10 umfasst eine Grundplatte 20 auf der eine seitliche Umrandung 22 angeordnet ist, wodurch sich eine Wanne 24 ergibt. Auf der linken Seite der Wanne 24 erstreckt sich ein Pulsrohrkühler 26 in die Wanne 24 hinein. Die rechte Seite der seitlichen Umrandung 22 stützt eine erste Teilkälteplatte 30-1 auf Raumtemperatur. Auf der ersten Teilkälteplatte 30-1 ist ein erster Experimentierplatz 4-1 angeordnet. Der erste Experimentierplatz 4-1 wird durch einen ersten Wärmeschild 32-1 umhüllt und befindet sich auf Raumtemperatur. Der gesamte Vakuumbehälter 10 stellt den ersten Wärmeschild 32-1 dar. Fig.5 shows a third embodiment of the invention. The individual components of the cryostat are arranged in a vacuum container 10. The vacuum container 10 comprises a base plate 20 on which a side border 22 is arranged, resulting in a tub 24. On the left side of the tub 24, a pulse tube cooler 26 extends into the tub 24. The right side of the side border 22 supports a first partial cold plate 30-1 at room temperature. A first experimental station 4-1 is arranged on the first partial cold plate 30-1. The first experimental station 4-1 is surrounded by a first heat shield 32-1 and is at room temperature. The entire vacuum container 10 represents the first heat shield 32-1.

Durch Stützelemente 28 beabstandet von der Grundplatte 20 ist eine zweite Kälteplatte 8-2 vorgesehen, die im thermischen Kontakt zu dem Pulsrohrkühler 26 steht und ebenfalls eine seitliche Umrandung 22 aufweist. Im rechten Randbereich der zweiten Kälteplatte 8-2 stützt ein Stützelement 28 eine nach oben versetzte zweite Teilkälteplatte 30-2 die sich in der Ebene der ersten Teilkälteplatte 30-1 befindet. Die zweite Kälteplatte 8-2 und die zweite Teilkälteplatte 30-2 befinden sich auf einem zweiten Temperaturniveau von ca. 50 K. Auf bzw. über der zweiten Teilkälteplatte 30-2 befindet sich ein zweiter Experimentierplatz 4-2. Ausgehend von der zweiten Kälteplatte 8-2 umschließt ein zweiter Wärmeschild 32-2 den zweiten Experimentierplatz 4-2.A second cold plate 8-2 is provided at a distance from the base plate 20 by support elements 28, which is in thermal contact with the pulse tube cooler 26 and also has a lateral border 22. In the right edge area of the second cold plate 8-2, a support element 28 supports a second partial cold plate 30-2 which is offset upwards and is located in the plane of the first partial cold plate 30-1. The second cold plate 8-2 and the second partial cold plate 30-2 are at a second temperature level of approximately 50 K. A second experimental station 4-2 is located on or above the second partial cold plate 30-2. Starting from the second cold plate 8-2, a second heat shield 32-2 encloses the second experimental station 4-2.

Wiederum durch Stützelemente 28 beabstandet ist auf der zweiten Kälteplatte 8-2 eine dritte Kälteplatte 8-3 angeordnet, die wiederum thermisch mit dem Pulsrohrkühler 26 gekoppelt ist und ein Temperaturniveau von ca. 4 K bereitstellt. Ein Stützelement 28 an der rechten Seite der dritten Kälteplatte 8-3 trägt eine dritte nach oben versetzte Teilkälteplatte 30-3. Die dritte Teilkälteplatte 30-3 befindet sich in der Ebene der zweiten und ersten Teilkälteplatten 30-1 und 30-2. Auf bzw. über der dritten Teilkälteplatte 30-3 ist ein dritter Experimentierplatz 4-3 mit einem Temperaturniveau von ca. 4 K angeordnet. Ausgehend von der dritten Kälteplatte 8-3 umschließt ein dritter Wärmeschild 32-3 den dritten Experimentierplatz 4-3.Again spaced apart by support elements 28, a third cold plate 8-3 is arranged on the second cold plate 8-2, which in turn is thermally coupled to the pulse tube cooler 26 and provides a temperature level of approximately 4 K. A support element 28 on the right side of the third cold plate 8-3 carries a third partial cold plate 30-3 offset upwards. The third partial cold plate 30-3 is located in the plane of the second and first partial cold plates 30-1 and 30-2. A third experimental station 4-3 with a temperature level of approximately 4 K is arranged on or above the third partial cold plate 30-3. Starting from the third cold plate 8-3, a third heat shield 32-3 encloses the third experimental station 4-3.

Wiederum beabstandet durch Stützelemente 28 ist über der dritten Kälteplatte 8-3 ist eine vierte Kälteplatte 8-4 angeordnet, auf der die Komponenten eines 3He/4He-Entmischungskühlers 34 angeordnet sind. Auf der rechten Seite der der vierten Kälteplatte 8-4 stützt ein Stützelement 28 eine nach oben versetzte vierte Teilkälteplatte 30-4 auf dem Höhenniveau der anderen Teilkälteplatten 30-1 bis 30-3.Again spaced apart by support elements 28, a fourth cold plate 8-4 is arranged above the third cold plate 8-3, on which the components of a 3 He/ 4 He demixing cooler 34 are arranged. On the right side of the fourth cold plate 8-4, a support element 28 supports a fourth partial cold plate 30-4 offset upwards at the height level of the other partial cold plates 30-1 to 30-3.

Durch weitere Stützelemente bzw. Stützwände 28 ist über der vierten Kälteplatte 8-4 eine fünfte Kälteplatte 8-5 auf dem Höhenniveau der Teilkälteplatten 30-i auf dem tiefsten Temperaturniveau von ca. 30 mK angeordnet. Über bzw. auf der fünften Kälteplatte 8-5 ist ein fünfter Experimentierplatz 4-5 angeordnet. Ausgehend von der fünften Kälteplatte 8-5 umschließt ein fünfter Wärmeschild 32-5 den fünften Experimentierplatz 8-5.By means of further support elements or support walls 28, a fifth cold plate 8-5 is arranged above the fourth cold plate 8-4 at the same height as the partial cold plates 30-i at the lowest temperature level of approximately 30 mK. A fifth experimental station 4-5 is arranged above or on the fifth cold plate 8-5. Starting from the fifth cold plate 8-5, a fifth heat shield 32-5 encloses the fifth experimental station 8-5.

Der 3He/4He-Entmischungskühler 34 zwischen der vierten und fünften Kälteplatte 8-4, 8-5 umfasst eine Still 36 mit konzentrischem Wärmetauscher 38, eine Mischkammer 40 und Anschlüsse 42. Die Still ist thermisch mit der vierten Kälteplatte 8-4 und der vierten Teilkälteplatte 30-4 gekoppelt. Die Mischkammer 40 ist thermisch mit der fünften Kälteplatte 8-5 gekoppelt.The 3 He/ 4 He demixing cooler 34 between the fourth and fifth cold plates 8-4, 8-5 comprises a still 36 with concentric heat exchanger 38, a mixing chamber 40 and connections 42. The still is thermally coupled to the fourth cold plate 8-4 and the fourth partial cold plate 30-4. The mixing chamber 40 is thermally coupled to the fifth cold plate 8-5.

Die thermische Kopplung der einzelnen Kälteplatten 8-i mit den Teilkälteplatten 30-i und dem Pulsrohrkühler 26 bzw. dem 3He/4He-Entmischungskühler 34 erfolgt über Wärmeleiter 44. Der Pulsrohrkühler 26 ist über eine Vibrationsentkopplung 46 in dem Vakuumbehälter 10 montiert.The thermal coupling of the individual cold plates 8-i with the partial cold plates 30-i and the pulse tube cooler 26 or the 3 He/ 4 He demixing cooler 34 is achieved via heat conductors 44. The pulse tube cooler 26 is mounted in the vacuum vessel 10 via a vibration decoupling device 46.

Fig. 6 zeigt eine vierte Ausführungsform der Erfindung, die sich von der dritten Ausführungsform nach Fig. 5 dadurch unterscheidet, dass anstelle eines Pulsrohrkühlers, der den Vakuumbehälter 10 seitlich von durchsetzt, ein GM-Kühler 48 von unten in etwa mittig zur fünften Kälteplatte 8-5 den Vakuumbehälter 10 durchsetzt. Der GM-Kühler 48 durchsetzt auch eine Öffnung in der zweiten Kälteplatte 8-2, so dass die thermische Kopplung mit der dritten Wärmeplatte erfolgen kann. Durch den Einbau des GM-Kühlers 48 von unten ergibt sich eine etwas schmälere, dafür aber etwas höhere Bauform. Fig.6 shows a fourth embodiment of the invention, which differs from the third embodiment according to Fig.5 differs in that instead of a pulse tube cooler that penetrates the vacuum container 10 from the side, a GM cooler 48 penetrates the vacuum container 10 from below approximately in the middle of the fifth cold plate 8-5. The GM cooler 48 also penetrates an opening in the second cold plate 8-2 so that the thermal coupling with the third heat plate can take place. By installing the GM cooler 48 from below, a somewhat narrower, but somewhat higher design is obtained.

Wie aus den Schnittdarstellungen in Fig. 5 und 6 zu ersehen ist, ermöglicht die Nebeneinanderanordnung der Experimentierplätze 4-i eine wesentlich niedrige Bauform. Durch die geringe Bauhöhe des Kryostaten ist es möglich den Kryostaten in Laborräumen mit Standardhöhe zu betreiben, was bei Kryostaten mit vertikal hängender Anordnung nicht möglich ist. Zwar kann die Nebeneinanderanordung der Experimentierplätze zu großflächigeren Wärmeschildern führen, jedoch wird dieser Nachteil (zum Betrieb erhöhte Kühlleistung der verschiedenen Kühler notwendig) durch die Möglichkeit des Einsatzes in Laborräumen mit Standardhöhe in Kauf genommen.As can be seen from the sectional views in Fig.5 and 6 As can be seen, the arrangement of the experiment stations 4-i next to each other enables a significantly lower design. The low height of the cryostat makes it possible to operate the cryostat in standard height laboratory rooms, which is not possible with cryostats with a vertically hanging arrangement. Although the arrangement of the experiment stations next to each other can lead to larger heat shields, this disadvantage (increased cooling capacity of the various coolers is necessary for operation) is accepted by the possibility of use in standard height laboratory rooms.

Bezugszeichenliste:List of reference symbols:

2-i2-i
KühlstufenCooling levels
4-i4-i
ExperimentierplätzeExperimental areas
8-i8-i
KälteplattenCold plates
1010
VakuumbehälterVacuum container
12-i12-i
WärmeschilderHeat shields
2020
GrundplatteBase plate
2222
seitliche Umrandung von 20, 8-2side border of 20, 8-2
2424
WanneTub
2626
PulsrohrkühlerPulse tube cooler
2828
StützelementeSupport elements
30-i30-i
TeilkälteplattePartial cold plate
32-i32-i
WärmeschildHeat shield
3434
3He/4He-Entmischungskühler 3 He/ 4 He demixing cooler
3636
StillStill
3838
konzentrischer Wärmetauscherconcentric heat exchanger
4040
MischkammerMixing chamber
4242
Anschlüsse von 34Connections of 34
4444
WärmeleiterHeat conductor
4646
VibrationsentkopplungVibration decoupling
4848
GM-KühlerGM Radiator

Claims (8)

  1. A cryostat, comprising
    a plurality of cooling levels (2-i) having different temperature levels, having cooling devices (26, 34) associated therewith,
    a plurality of experimentation places (4-i) at the temperature levels of the cooling levels (2-i),
    a plurality of heat shields (32-i) for the cooling levels (2-i) enclosing the experimentation places (4-i), and
    a vacuum chamber (10) in which the plurality of cooling levels (2-i) are arranged, characterized in that the experimentation places (4-i) are arranged side by side when viewed from above, and
    in that the experimentation places (4-i) are arranged side by side in such a way that they are each accessible from above and from the side.
  2. The cryostat according to claim 1, characterized in that a cooling device (26, 34) is associated with several cooling levels (2-i).
  3. The cryostat according to claim 2, characterized in that the cooling device for the cooling levels (2-4, 2-5) with the two lowest temperature levels is a 3He/4He dilution refrigerator (34) comprising a still (36) and a mixing chamber (40).
  4. The cryostat according to one of claims 1 to 2, characterized in that the cooling device for the cooling level (2-4, 2-5) with the lowest temperature level is a Joule-Thomson cooler, a 1-K pot, and/or a 3He level.
  5. The cryostat according to one of claims 1 to 2, characterized in that the cooling device for the cooling level (2-4, 2-5) with the lowest temperature level is an ADR cooler.
  6. The cryostat according to one of the preceding claims, characterized in that the cooling devices for the cooling levels (2-1, 2-2, 2-3) with higher temperature levels are pulse tube refrigerators, GM coolers, Stirling coolers, and/or Joule-Thomson coolers.
  7. The cryostat according to one of the preceding claims, characterized in that
    at least two of the cooling levels (2-i) comprise a cold plate (8-i) at the temperature level of the respective cooling level (2-i),
    in that the individual cold plates (8-i) are designed on top of each other and protruding laterally over each other, so that the laterally protruding part of the cold plates (8-i) is accessible from above, and
    in that experimentation places (4-i) are formed above the laterally protruding parts of the cold plates (8-i).
  8. The cryostat according to claim 7, characterized in that
    on the laterally protruding parts of the cold plates, partial cold plates (30-i) which are offset upwards are provided, which are mechanically supported on the protruding parts of the cold plates,
    in that the vertically offset partial cold plates (30-i) are connected by thermal couplings (44) to the protruding parts of the cold plates at the respective temperature level, and
    in that the experimentation places (4-i) are formed above the cold plate (8-5) at the lowest temperature level and the partial cold plates (30-i).
EP20711533.8A 2019-03-12 2020-03-06 Cryostat Active EP3938721B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019203341.5A DE102019203341A1 (en) 2019-03-12 2019-03-12 Cryostat
PCT/EP2020/056053 WO2020182671A1 (en) 2019-03-12 2020-03-06 Cryostat

Publications (2)

Publication Number Publication Date
EP3938721A1 EP3938721A1 (en) 2022-01-19
EP3938721B1 true EP3938721B1 (en) 2024-09-18

Family

ID=69844798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20711533.8A Active EP3938721B1 (en) 2019-03-12 2020-03-06 Cryostat

Country Status (6)

Country Link
US (1) US20210402407A1 (en)
EP (1) EP3938721B1 (en)
JP (1) JP7434349B2 (en)
CN (1) CN113631878B (en)
DE (1) DE102019203341A1 (en)
WO (1) WO2020182671A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008279A1 (en) 2021-07-08 2023-01-12 Maybell Quantum Industries, Inc. Integrated dilution refrigerators
US11913714B2 (en) * 2021-11-02 2024-02-27 Anyon Systems Inc. Dilution refrigerator with continuous flow helium liquefier
EP4184081A1 (en) * 2021-11-18 2023-05-24 Bluefors Oy Modular cryogenic cooling system
US11480299B1 (en) 2022-03-22 2022-10-25 Anyon Systems Inc. Cryostat and quantum computing system having same
WO2023196979A2 (en) * 2022-04-08 2023-10-12 Isthmus Cryotech, Inc. Cryogenic cooling apparatus and related methods
EP4265987A1 (en) * 2022-04-21 2023-10-25 Bluefors Oy Cryostat, and method for cooling a cryostat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115303B4 (en) * 2011-09-29 2013-06-27 Entropy GmbH Cryogenic device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7117037A (en) * 1971-12-13 1973-06-15
US5597035A (en) * 1995-08-18 1997-01-28 Dell Usa, L.P. For use with a heatsink a shroud having a varying cross-sectional area
JP2001248927A (en) 2000-03-07 2001-09-14 Sumitomo Heavy Ind Ltd Low-temperature device using pulse tube refrigeration unit
DE102004053973B3 (en) 2004-11-09 2006-07-20 Bruker Biospin Ag NMR spectrometer with refrigerator cooling
DE102005041383B4 (en) * 2005-09-01 2007-09-27 Bruker Biospin Ag NMR apparatus with co-cooled probe head and cryocontainer and method of operation thereof
DE102007028865B3 (en) * 2007-06-22 2009-01-29 Vericold Technologies Gmbh Cryogenic device
GB0904500D0 (en) * 2009-03-16 2009-04-29 Oxford Instr Superconductivity Cryofree cooling apparatus and method
DE102014015665B4 (en) 2014-10-23 2016-05-19 Attocube Systems Ag Optical table
CN105350069A (en) * 2015-12-24 2016-02-24 洛阳西格马炉业股份有限公司 Sapphire crystal growing furnace and method for preparing sapphire crystal
DE102016214731B3 (en) * 2016-08-09 2017-07-27 Bruker Biospin Ag NMR apparatus with superconducting magnet arrangement and cooled probe components
US11205133B2 (en) * 2018-01-12 2021-12-21 IonQ, Inc. Vibrationally isolated cryogenic shield for local high-quality vacuum
GB2592380A (en) * 2020-02-25 2021-09-01 Oxford Instruments Nanotechnology Tools Ltd Gas gap heat switch configuration
US20230008279A1 (en) * 2021-07-08 2023-01-12 Maybell Quantum Industries, Inc. Integrated dilution refrigerators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115303B4 (en) * 2011-09-29 2013-06-27 Entropy GmbH Cryogenic device

Also Published As

Publication number Publication date
WO2020182671A1 (en) 2020-09-17
DE102019203341A1 (en) 2020-09-17
US20210402407A1 (en) 2021-12-30
CN113631878A (en) 2021-11-09
EP3938721A1 (en) 2022-01-19
JP7434349B2 (en) 2024-02-20
JP2022524818A (en) 2022-05-10
CN113631878B (en) 2023-11-14

Similar Documents

Publication Publication Date Title
EP3938721B1 (en) Cryostat
DE60207688T2 (en) HEAT EXCHANGER FOR SAMPLE CONTAINING TITRATION PLATES
DE19821194B4 (en) Semiconductor device tester
DE3621562A1 (en) REFRIGERATOR
DE19804902C2 (en) switch cabinet
DE1751585A1 (en) Multi-fluid heat exchanger
DE2255646A1 (en) OIL COOLED ELECTRIC DEVICE
DE3928572A1 (en) ELECTRIC COOKING DEVICE
DE112017007048T5 (en) MAGNETICALLY SHIELDED CHAMBER
DE4129547C2 (en) Cryostat
WO2004090430A1 (en) Recirculation cooling system
DE69308592T2 (en) GAS-COOLED TUBE IN CRYOTANKS FOR SUPER LADDER APPLICATIONS
DE102010012920A1 (en) Apparatus for the cryogenic separation of air
DE1490832B1 (en) Micro-module circuit unit
EP2843436B1 (en) NMR spectrometer with ergonomically favourable sample exchanger
DE2344790A1 (en) VOLTAGE MULTIPLIER ASSEMBLY WITH DIELECTRIC SEPARATING LAYERS MADE OF AIR AND MATTER
EP4310867A1 (en) Load bank
DE3328431C2 (en) Electric heater for a hot isostatic press device
CH710730B1 (en) Cooling device with a base part divided into a warm area and a cold area.
DE2008800A1 (en) Converter cabinet or rack
DE866220C (en) High-performance roast pot with electric floor heating
DE3609083A1 (en) Electronic apparatus
WO2015028290A1 (en) Data processing system
DE2613640C3 (en)
DE946468C (en) Heavy current phase-shifting capacitor consisting of box-shaped partial capacitors

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020009268

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN