EP3938721B1 - Cryostat - Google Patents
Cryostat Download PDFInfo
- Publication number
- EP3938721B1 EP3938721B1 EP20711533.8A EP20711533A EP3938721B1 EP 3938721 B1 EP3938721 B1 EP 3938721B1 EP 20711533 A EP20711533 A EP 20711533A EP 3938721 B1 EP3938721 B1 EP 3938721B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- levels
- cold plates
- cold plate
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 42
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 description 11
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/50—Cryostats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
- F17C3/085—Cryostats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/02—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/10—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/12—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1894—Cooling means; Cryo cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/13—Vibrations
Definitions
- the present invention relates to a cryostat according to claim 1 for experiments at temperatures in the range of less than 2 K.
- cryostats and in particular demixing cryostats for temperatures in the range of less than 2 K are currently mainly required and built for the development of quantum computers and quantum communication devices.
- the arrangement of the individual temperature levels or cold plates and thus also the arrangement of experimental stations is given by the vertical arrangement of conventional cryostats.
- Fig. 7a and 7b show schematically a state-of-the-art demixing cryostat with a suspended, vertical structure.
- the demixing cryostat according to Fig.7 comprises six cooling stages 2-1 to 2-6 with four experimental stations 4-1 to 4-4.
- the room temperature area is not equipped as an experimental station.
- the temperature levels of the six cooling stages 2-i are provided by three unspecified cooling devices.
- a first cooling device (not shown in detail), e.g. a first stage of a GM cooler, comprises a first cold plate 8-1 with the first experimental station 4-1 arranged under the first cold plate 8-1.
- the first cooling stage 2-1 provides a temperature level of approximately 50 K for the first experimental station 4-1.
- a second cooling device (not shown in detail), e.g. a second stage of the GM cooler, comprises a second cooling device arranged under the first experimental station 4-1.
- the second cold plate 8-2 or the second cooling stage 2-2 is at a temperature level of approximately 4 K.
- the second experimental station 4-2 is arranged under the second cold plate 8-2 at the temperature level of the second cooling stage 2-2.
- a third cold plate 8-3 of a third cooling stage 2-3 with a temperature level of approximately 1 K is arranged under the second experimental station 4-2, which is cooled by a third cooling device (not shown in detail), e.g. a Joule-Thomson stage.
- a fourth cooling device (not shown in detail), e.g. a 3 He/ 4 He demixing cooler, provides the temperature levels of the fourth, fifth and sixth cooling stages 2-4, 2-5 and 2-6.
- the third experimental station 4-3 is provided on the fourth cooling stage 2-4 between the fourth cold plate 8-4 and the fifth cold plate 8-5.
- a sixth cold plate 8-6, the lowest cooling stage 2-6, is provided below the third experimental station 4-3 and below the fifth cold plate 8-5.
- the temperature level of the fourth cold plate 8-4 is in the range between 500 and 700 mK
- the temperature level of the fifth cold plate 8-5 is between 100 and 200 mK
- the lowest temperature level of the sixth cold plate 8-6 and the fourth experimental station 4-4 arranged below it is in the range ⁇ 100 mK.
- the entire arrangement is arranged in a vacuum container 10.
- all six cooling stages 2-1 to 2-6 are enclosed by a first heat shield 12-1.
- the second to sixth cooling stages 6-2 to 6-6 are enclosed by a second heat shield 12-2.
- the fourth to sixth cooling stages 2-4 to 2-6 are enclosed by a third heat shield 12-3.
- the deepest, sixth cooling stage 2-6 is shielded by a fourth heat shield 12-4.
- WO2010/106309 A2 is a cryostat with an experimental area accessible only from above and from the WO 2009/000629 A2 A cryostat with only one experimental station accessible from the side is known.
- the experiment stations are arranged next to each other rather than one below the other, they are accessible from above and from the side after removing the respective heat shields, whereas with the current technology they are only accessible from the side. This simplifies various experiments and generally the handling of the cryostat in use.
- the height of the cryostat is also significantly reduced and it is possible to operate the cryostat in laboratory rooms with a standard height, which is not possible with cryostats with a vertically hanging arrangement.
- this disadvantage increased cooling capacity of the various coolers is necessary for operation
- the advantageous embodiment of the invention according to claim 7 represents a simple juxtaposition of the experimental stations, whereby these are still at different temperature levels.
- the advantageous embodiment of the invention according to claim 8 provides experimental stations arranged next to one another, which are located at approximately the same height.
- the Figures 1a and 1b show schematically the basic principle of the present invention, the juxtaposition of five experimental stations 4-1 to 4-5 on the cold plates 8-1 to 8-5 in one plane.
- the five experimental stations 4-1 to 4-5 are located on the cooling stages 2-1 to 2-5 with the associated temperatures, room temperature 50 K, 4 K, 700 mK and 100 mK.
- Fig. 1a shows the experiment stations arranged next to each other from the side and thus the volume of the experiment stations 4-1 to 4-5 above the respective cold plate 8-1 to 8-5 and Fig. 1b shows a top view of the representation according to Fig.1 .
- Fig. 2a and 2b show a first embodiment of the invention, in which the cryostat according to the invention has a rectangular cross-sectional shape and the individual experimental stations 4-1 to 4-5 are arranged next to each other on one level and are nested in an L-shape; with the fifth experimental station 4-5 as a cube.
- Fig.3 shows a second embodiment of the invention, in which the basic structure is circular or cylindrical and the individual experimental stations 4-1 to 4-5 surround each other.
- Fig.4 represents a possible arrangement of four heat shields 32-1 to 32-4 for the individual embodiments according to Fig. 2 and 3 represents.
- Fig.5 shows a third embodiment of the invention.
- the individual components of the cryostat are arranged in a vacuum container 10.
- the vacuum container 10 comprises a base plate 20 on which a side border 22 is arranged, resulting in a tub 24.
- a pulse tube cooler 26 extends into the tub 24.
- the right side of the side border 22 supports a first partial cold plate 30-1 at room temperature.
- a first experimental station 4-1 is arranged on the first partial cold plate 30-1.
- the first experimental station 4-1 is surrounded by a first heat shield 32-1 and is at room temperature.
- the entire vacuum container 10 represents the first heat shield 32-1.
- a second cold plate 8-2 is provided at a distance from the base plate 20 by support elements 28, which is in thermal contact with the pulse tube cooler 26 and also has a lateral border 22.
- a support element 28 supports a second partial cold plate 30-2 which is offset upwards and is located in the plane of the first partial cold plate 30-1.
- the second cold plate 8-2 and the second partial cold plate 30-2 are at a second temperature level of approximately 50 K.
- a second experimental station 4-2 is located on or above the second partial cold plate 30-2. Starting from the second cold plate 8-2, a second heat shield 32-2 encloses the second experimental station 4-2.
- a third cold plate 8-3 is arranged on the second cold plate 8-2, which in turn is thermally coupled to the pulse tube cooler 26 and provides a temperature level of approximately 4 K.
- a support element 28 on the right side of the third cold plate 8-3 carries a third partial cold plate 30-3 offset upwards.
- the third partial cold plate 30-3 is located in the plane of the second and first partial cold plates 30-1 and 30-2.
- a third experimental station 4-3 with a temperature level of approximately 4 K is arranged on or above the third partial cold plate 30-3.
- a third heat shield 32-3 encloses the third experimental station 4-3.
- a fourth cold plate 8-4 is arranged above the third cold plate 8-3, on which the components of a 3 He/ 4 He demixing cooler 34 are arranged.
- a support element 28 supports a fourth partial cold plate 30-4 offset upwards at the height level of the other partial cold plates 30-1 to 30-3.
- a fifth cold plate 8-5 is arranged above the fourth cold plate 8-4 at the same height as the partial cold plates 30-i at the lowest temperature level of approximately 30 mK.
- a fifth experimental station 4-5 is arranged above or on the fifth cold plate 8-5.
- a fifth heat shield 32-5 encloses the fifth experimental station 8-5.
- the 3 He/ 4 He demixing cooler 34 between the fourth and fifth cold plates 8-4, 8-5 comprises a still 36 with concentric heat exchanger 38, a mixing chamber 40 and connections 42.
- the still is thermally coupled to the fourth cold plate 8-4 and the fourth partial cold plate 30-4.
- the mixing chamber 40 is thermally coupled to the fifth cold plate 8-5.
- the thermal coupling of the individual cold plates 8-i with the partial cold plates 30-i and the pulse tube cooler 26 or the 3 He/ 4 He demixing cooler 34 is achieved via heat conductors 44.
- the pulse tube cooler 26 is mounted in the vacuum vessel 10 via a vibration decoupling device 46.
- Fig.6 shows a fourth embodiment of the invention, which differs from the third embodiment according to Fig.5 differs in that instead of a pulse tube cooler that penetrates the vacuum container 10 from the side, a GM cooler 48 penetrates the vacuum container 10 from below approximately in the middle of the fifth cold plate 8-5. The GM cooler 48 also penetrates an opening in the second cold plate 8-2 so that the thermal coupling with the third heat plate can take place. By installing the GM cooler 48 from below, a somewhat narrower, but somewhat higher design is obtained.
- the arrangement of the experiment stations 4-i next to each other enables a significantly lower design.
- the low height of the cryostat makes it possible to operate the cryostat in standard height laboratory rooms, which is not possible with cryostats with a vertically hanging arrangement.
- the arrangement of the experiment stations next to each other can lead to larger heat shields, this disadvantage (increased cooling capacity of the various coolers is necessary for operation) is accepted by the possibility of use in standard height laboratory rooms.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
Description
Die vorliegende Erfindung betrifft einen Kryostaten nach Anspruch 1 für Experimente bei Temperaturen im Bereich von kleiner 2 K.The present invention relates to a cryostat according to claim 1 for experiments at temperatures in the range of less than 2 K.
Kryostaten und insbesondere Entmischungskryostaten für Temperaturen im Bereich von kleiner 2 K werden zurzeit im Wesentlichen für die Entwicklung von Quantencomputern und Quantenkommunikationsgeräten benötigt und gebaut. Dabei ist die Anordnung der einzelnen Temperaturniveaus bzw. Kälteplatten und damit auch die Anordnung von Experimentierplätze durch die vertikale Anordnung herkömmlicher Kryostate gegeben.Cryostats and in particular demixing cryostats for temperatures in the range of less than 2 K are currently mainly required and built for the development of quantum computers and quantum communication devices. The arrangement of the individual temperature levels or cold plates and thus also the arrangement of experimental stations is given by the vertical arrangement of conventional cryostats.
Eine nicht näher dargestellte erste Kühleinrichtung, z. B. eine erste Stufe eines GM-Kühlers, umfasst eine erste Kälteplatte 8-1 mit dem unter der ersten Kälteplatte 8-1 angeordneten erstem Experimentierplatz 4-1. Die erste Kühlstufe 2-1 stellt ein Temperaturniveau von ca. 50 K für den ersten Experimentierplatz 4-1 bereit.A first cooling device (not shown in detail), e.g. a first stage of a GM cooler, comprises a first cold plate 8-1 with the first experimental station 4-1 arranged under the first cold plate 8-1. The first cooling stage 2-1 provides a temperature level of approximately 50 K for the first experimental station 4-1.
Eine nicht näher dargestellte, zweite Kühleinrichtung, z. B. eine zweite Stufe des GM-Kühlers, umfasst eine unter dem ersten Experimentierplatz 4-1 angeordnet, zweite Kälteplatte 8-2. Die zweite Kälteplatte 8-2 bzw. die zweiten Kühlstufe 2-2 befindet sich auf einem Temperaturniveau von ca. 4 K. Unter der zweiten Kälteplatte 8-2 ist der zweite Experimentierplatz 4-2 auf dem Temperaturniveau der zweiten Kühlstufe 2-2 angeordnet. Unter dem zweiten Experimentierplatz 4-2 ist eine dritte Kälteplatte 8-3 einer dritten Kühlstufe 2-3 mit einem Temperaturniveau von ca. 1 K angeordnet, die von einer nicht näher dargestellten, dritten Kühleinrichtung, z. B. einer Joule-Thomson-Stufe, gekühlt wird.A second cooling device (not shown in detail), e.g. a second stage of the GM cooler, comprises a second cooling device arranged under the first experimental station 4-1. Cold plate 8-2. The second cold plate 8-2 or the second cooling stage 2-2 is at a temperature level of approximately 4 K. The second experimental station 4-2 is arranged under the second cold plate 8-2 at the temperature level of the second cooling stage 2-2. A third cold plate 8-3 of a third cooling stage 2-3 with a temperature level of approximately 1 K is arranged under the second experimental station 4-2, which is cooled by a third cooling device (not shown in detail), e.g. a Joule-Thomson stage.
Eine nicht näher dargestellte, vierte Kühleinrichtung, z. B. ein 3He/4He-Entmischungskühler, stellt die Temperaturniveaus der vierten, fünften und sechsten Kühlstufe 2-4, 2-5 und 2-6 bereit. Zwischen der vierten Kälteplatte 8-4 und der fünften Kälteplatte 8-5 ist der dritte Experimentierplatz 4-3 auf der vierten Kühlstufe 2-4 vorgesehen. Unter dem dritten Experimentierplatz 4-3 und unter der fünften Kälteplatte 8-5 ist eine sechste Kälteplatte 8-6, der tiefsten Kühlstufe 2-6 vorgesehen. Das Temperaturniveau der vierten Kälteplatte 8-4 liegt im Bereich zwischen 500 und 700 mK, das Temperaturniveau der fünften Kälteplatte 8-5 liegt zwischen 100 und 200 mK und das tiefste Temperaturniveau der sechsten Kälteplatte 8-6 und dem darunter angeordneten vierten Experimentierplatz 4-4 liegt im Bereich <100 mK.A fourth cooling device (not shown in detail), e.g. a 3 He/ 4 He demixing cooler, provides the temperature levels of the fourth, fifth and sixth cooling stages 2-4, 2-5 and 2-6. The third experimental station 4-3 is provided on the fourth cooling stage 2-4 between the fourth cold plate 8-4 and the fifth cold plate 8-5. A sixth cold plate 8-6, the lowest cooling stage 2-6, is provided below the third experimental station 4-3 and below the fifth cold plate 8-5. The temperature level of the fourth cold plate 8-4 is in the range between 500 and 700 mK, the temperature level of the fifth cold plate 8-5 is between 100 and 200 mK and the lowest temperature level of the sixth cold plate 8-6 and the fourth experimental station 4-4 arranged below it is in the range <100 mK.
Die gesamte Anordnung ist in einem Vakuumbehälter 10 angeordnet. In dem Vakuumbehälter 10 werden alle sechs Kühlstufen 2-1 bis 2-6 von einem ersten Wärmeschild 12-1 umhüllt. Innerhalb des ersten Wärmeschilds 12-1 werden die zweite bis sechste Kühlstufe 6-2 bis 6-6 von einem zweiten Wärmeschild 12-2 umhüllt. Innerhalb des zweiten Wärmeschilds 12-2 werden die vierte bis sechste Kühlstufe 2-4 bis 2-6 von einem dritten Wärmeschild 12-3 umhüllt. Die tiefste, sechste Kühlstufe 2-6 wird von einem vierten Wärmeschild 12-4 abgeschirmt.The entire arrangement is arranged in a
Diese herkömmliche Anordnung hat den Vorteil, dass die einzelnen Temperaturniveaus wie Zwiebelschalen ineinander liegen und einfach herzustellen sind - siehe
Aus der
Aus dem Artikel von
Aus der
Aus der
Es ist daher Aufgabe der vorliegenden Erfindung einen Kryostaten anzugeben, der eine verbesserte Zugänglichkeit der Experimentierplätze ermöglicht und gleichzeitig ein geringeres Bauvolumen benötigt.It is therefore an object of the present invention to provide a cryostat which enables improved accessibility of the experimental stations and at the same time requires a smaller construction volume.
Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1.This problem is solved by the features of claim 1.
Dadurch, dass die Experimentierplätze nicht untereinander, sondern nebeneinander angeordnet sind, sind diese nach Abnahme der jeweiligen Wärmeschilde von oben und von der Seite zugänglich, während sie beim Stand der Technik nur von der Seite zugänglich sind. Dies vereinfacht verschiedene Experimente und im Allgemeinen die Handhabung des Kryostaten im Einsatz. Durch die Nebeinanderanordung der Experimentierplätze verringert sich auch die Bauhöhe des Kryostaten erheblich und es ist möglich den Kryostaten in Laborräumen mit Standardhöhe zu betreiben, was bei Kryostaten mit vertikal hängender Anordnung nicht möglich ist. Zwar kann die Nebeneinanderanordnung der Experimentierplätze zu großflächigeren Wärmeschildern führen, jedoch wird dieser Nachteil (zum Betrieb erhöhte Kühlleistung der verschiedenen Kühler notwendig) durch die Möglichkeit des Einsatzes in Laborräumen mit Standardhöhe in Kauf genommen.Because the experiment stations are arranged next to each other rather than one below the other, they are accessible from above and from the side after removing the respective heat shields, whereas with the current technology they are only accessible from the side. This simplifies various experiments and generally the handling of the cryostat in use. By arranging the experiment stations next to each other, the height of the cryostat is also significantly reduced and it is possible to operate the cryostat in laboratory rooms with a standard height, which is not possible with cryostats with a vertically hanging arrangement. Although arranging the experiment stations next to each other can lead to larger heat shields, this disadvantage (increased cooling capacity of the various coolers is necessary for operation) is accepted by the possibility of use in laboratory rooms with a standard height.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 2 oder 3 werden durch einen Mischungskühler mehrere Kühlstufen bedient.According to the advantageous embodiment of the invention according to claim 2 or 3, several cooling stages are served by a mixing cooler.
Die vorteilhaften Ausgestaltungen der Erfindung nach Anspruch 4 bis 6 betreffen geeignete Kühleinrichtungen für den Kryostaten.The advantageous embodiments of the invention according to claims 4 to 6 relate to suitable cooling devices for the cryostat.
Die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 7 stellt eine einfache Nebeneinanderordnung der Experimentierplätze dar wobei diese sich noch auf unterschiedlichem Temperaturniveau befinden.The advantageous embodiment of the invention according to claim 7 represents a simple juxtaposition of the experimental stations, whereby these are still at different temperature levels.
Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 8 werden nebeneinander angeordnete Experimentierplätze bereitgestellt, die sich in etwa auf demselben Höhenniveau befinden.The advantageous embodiment of the invention according to claim 8 provides experimental stations arranged next to one another, which are located at approximately the same height.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung.Further details, features and advantages of the invention will become apparent from the following description of preferred embodiments of the invention.
-
Fig. 1a und 1b zeigen schematisch den Grundgedanken der vorliegenden Erfindung;Fig. 1a and 1b show schematically the basic idea of the present invention; -
Fig. 2a und 2b zeigen die geometrische Struktur einer ersten Ausführungsform der Erfindung;Fig. 2a and 2b show the geometric structure of a first embodiment of the invention; -
Fig. 3 zeigt die geometrische Struktur einer zweiten Ausführungsform der Erfindung;Fig.3 shows the geometric structure of a second embodiment of the invention; -
Fig. 4 zeigt die Anordnung der Wärmeschilder bei den Ausführungsformen nachFig. 2 und3 ;Fig.4 shows the arrangement of the heat shields in the embodiments according toFig. 2 and3 ; -
Fig. 5 zeigt eine dritte Ausführungsform der Erfindung mit den nebeneinander angeordneten Experimentierplätzen in einer Ebene;Fig.5 shows a third embodiment of the invention with the experimental stations arranged next to each other on one level; -
Fig. 6 zeigt eine vierte Ausführungsform der Erfindung, bei der ein GM-Kühler den Vakuumbehälter von unten durchsetzt, undFig.6 shows a fourth embodiment of the invention in which a GM cooler penetrates the vacuum vessel from below, and -
Fig. 7a und 7b zeigen einen Kryostaten nach dem Stand der Technik.Fig. 7a and 7b show a state-of-the-art cryostat.
Die
Durch Stützelemente 28 beabstandet von der Grundplatte 20 ist eine zweite Kälteplatte 8-2 vorgesehen, die im thermischen Kontakt zu dem Pulsrohrkühler 26 steht und ebenfalls eine seitliche Umrandung 22 aufweist. Im rechten Randbereich der zweiten Kälteplatte 8-2 stützt ein Stützelement 28 eine nach oben versetzte zweite Teilkälteplatte 30-2 die sich in der Ebene der ersten Teilkälteplatte 30-1 befindet. Die zweite Kälteplatte 8-2 und die zweite Teilkälteplatte 30-2 befinden sich auf einem zweiten Temperaturniveau von ca. 50 K. Auf bzw. über der zweiten Teilkälteplatte 30-2 befindet sich ein zweiter Experimentierplatz 4-2. Ausgehend von der zweiten Kälteplatte 8-2 umschließt ein zweiter Wärmeschild 32-2 den zweiten Experimentierplatz 4-2.A second cold plate 8-2 is provided at a distance from the base plate 20 by
Wiederum durch Stützelemente 28 beabstandet ist auf der zweiten Kälteplatte 8-2 eine dritte Kälteplatte 8-3 angeordnet, die wiederum thermisch mit dem Pulsrohrkühler 26 gekoppelt ist und ein Temperaturniveau von ca. 4 K bereitstellt. Ein Stützelement 28 an der rechten Seite der dritten Kälteplatte 8-3 trägt eine dritte nach oben versetzte Teilkälteplatte 30-3. Die dritte Teilkälteplatte 30-3 befindet sich in der Ebene der zweiten und ersten Teilkälteplatten 30-1 und 30-2. Auf bzw. über der dritten Teilkälteplatte 30-3 ist ein dritter Experimentierplatz 4-3 mit einem Temperaturniveau von ca. 4 K angeordnet. Ausgehend von der dritten Kälteplatte 8-3 umschließt ein dritter Wärmeschild 32-3 den dritten Experimentierplatz 4-3.Again spaced apart by
Wiederum beabstandet durch Stützelemente 28 ist über der dritten Kälteplatte 8-3 ist eine vierte Kälteplatte 8-4 angeordnet, auf der die Komponenten eines 3He/4He-Entmischungskühlers 34 angeordnet sind. Auf der rechten Seite der der vierten Kälteplatte 8-4 stützt ein Stützelement 28 eine nach oben versetzte vierte Teilkälteplatte 30-4 auf dem Höhenniveau der anderen Teilkälteplatten 30-1 bis 30-3.Again spaced apart by
Durch weitere Stützelemente bzw. Stützwände 28 ist über der vierten Kälteplatte 8-4 eine fünfte Kälteplatte 8-5 auf dem Höhenniveau der Teilkälteplatten 30-i auf dem tiefsten Temperaturniveau von ca. 30 mK angeordnet. Über bzw. auf der fünften Kälteplatte 8-5 ist ein fünfter Experimentierplatz 4-5 angeordnet. Ausgehend von der fünften Kälteplatte 8-5 umschließt ein fünfter Wärmeschild 32-5 den fünften Experimentierplatz 8-5.By means of further support elements or
Der 3He/4He-Entmischungskühler 34 zwischen der vierten und fünften Kälteplatte 8-4, 8-5 umfasst eine Still 36 mit konzentrischem Wärmetauscher 38, eine Mischkammer 40 und Anschlüsse 42. Die Still ist thermisch mit der vierten Kälteplatte 8-4 und der vierten Teilkälteplatte 30-4 gekoppelt. Die Mischkammer 40 ist thermisch mit der fünften Kälteplatte 8-5 gekoppelt.The 3 He/ 4 He demixing cooler 34 between the fourth and fifth cold plates 8-4, 8-5 comprises a still 36 with
Die thermische Kopplung der einzelnen Kälteplatten 8-i mit den Teilkälteplatten 30-i und dem Pulsrohrkühler 26 bzw. dem 3He/4He-Entmischungskühler 34 erfolgt über Wärmeleiter 44. Der Pulsrohrkühler 26 ist über eine Vibrationsentkopplung 46 in dem Vakuumbehälter 10 montiert.The thermal coupling of the individual cold plates 8-i with the partial cold plates 30-i and the pulse tube cooler 26 or the 3 He/ 4 He demixing cooler 34 is achieved via
Wie aus den Schnittdarstellungen in
- 2-i2-i
- KühlstufenCooling levels
- 4-i4-i
- ExperimentierplätzeExperimental areas
- 8-i8-i
- KälteplattenCold plates
- 1010
- VakuumbehälterVacuum container
- 12-i12-i
- WärmeschilderHeat shields
- 2020
- GrundplatteBase plate
- 2222
- seitliche Umrandung von 20, 8-2side border of 20, 8-2
- 2424
- WanneTub
- 2626
- PulsrohrkühlerPulse tube cooler
- 2828
- StützelementeSupport elements
- 30-i30-i
- TeilkälteplattePartial cold plate
- 32-i32-i
- WärmeschildHeat shield
- 3434
- 3He/4He-Entmischungskühler 3 He/ 4 He demixing cooler
- 3636
- StillStill
- 3838
- konzentrischer Wärmetauscherconcentric heat exchanger
- 4040
- MischkammerMixing chamber
- 4242
- Anschlüsse von 34Connections of 34
- 4444
- WärmeleiterHeat conductor
- 4646
- VibrationsentkopplungVibration decoupling
- 4848
- GM-KühlerGM Radiator
Claims (8)
- A cryostat, comprisinga plurality of cooling levels (2-i) having different temperature levels, having cooling devices (26, 34) associated therewith,a plurality of experimentation places (4-i) at the temperature levels of the cooling levels (2-i),a plurality of heat shields (32-i) for the cooling levels (2-i) enclosing the experimentation places (4-i), anda vacuum chamber (10) in which the plurality of cooling levels (2-i) are arranged, characterized in that the experimentation places (4-i) are arranged side by side when viewed from above, andin that the experimentation places (4-i) are arranged side by side in such a way that they are each accessible from above and from the side.
- The cryostat according to claim 1, characterized in that a cooling device (26, 34) is associated with several cooling levels (2-i).
- The cryostat according to claim 2, characterized in that the cooling device for the cooling levels (2-4, 2-5) with the two lowest temperature levels is a 3He/4He dilution refrigerator (34) comprising a still (36) and a mixing chamber (40).
- The cryostat according to one of claims 1 to 2, characterized in that the cooling device for the cooling level (2-4, 2-5) with the lowest temperature level is a Joule-Thomson cooler, a 1-K pot, and/or a 3He level.
- The cryostat according to one of claims 1 to 2, characterized in that the cooling device for the cooling level (2-4, 2-5) with the lowest temperature level is an ADR cooler.
- The cryostat according to one of the preceding claims, characterized in that the cooling devices for the cooling levels (2-1, 2-2, 2-3) with higher temperature levels are pulse tube refrigerators, GM coolers, Stirling coolers, and/or Joule-Thomson coolers.
- The cryostat according to one of the preceding claims, characterized in thatat least two of the cooling levels (2-i) comprise a cold plate (8-i) at the temperature level of the respective cooling level (2-i),in that the individual cold plates (8-i) are designed on top of each other and protruding laterally over each other, so that the laterally protruding part of the cold plates (8-i) is accessible from above, andin that experimentation places (4-i) are formed above the laterally protruding parts of the cold plates (8-i).
- The cryostat according to claim 7, characterized in thaton the laterally protruding parts of the cold plates, partial cold plates (30-i) which are offset upwards are provided, which are mechanically supported on the protruding parts of the cold plates,in that the vertically offset partial cold plates (30-i) are connected by thermal couplings (44) to the protruding parts of the cold plates at the respective temperature level, andin that the experimentation places (4-i) are formed above the cold plate (8-5) at the lowest temperature level and the partial cold plates (30-i).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019203341.5A DE102019203341A1 (en) | 2019-03-12 | 2019-03-12 | Cryostat |
PCT/EP2020/056053 WO2020182671A1 (en) | 2019-03-12 | 2020-03-06 | Cryostat |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3938721A1 EP3938721A1 (en) | 2022-01-19 |
EP3938721B1 true EP3938721B1 (en) | 2024-09-18 |
Family
ID=69844798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20711533.8A Active EP3938721B1 (en) | 2019-03-12 | 2020-03-06 | Cryostat |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210402407A1 (en) |
EP (1) | EP3938721B1 (en) |
JP (1) | JP7434349B2 (en) |
CN (1) | CN113631878B (en) |
DE (1) | DE102019203341A1 (en) |
WO (1) | WO2020182671A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230008279A1 (en) | 2021-07-08 | 2023-01-12 | Maybell Quantum Industries, Inc. | Integrated dilution refrigerators |
US11913714B2 (en) * | 2021-11-02 | 2024-02-27 | Anyon Systems Inc. | Dilution refrigerator with continuous flow helium liquefier |
EP4184081A1 (en) * | 2021-11-18 | 2023-05-24 | Bluefors Oy | Modular cryogenic cooling system |
US11480299B1 (en) | 2022-03-22 | 2022-10-25 | Anyon Systems Inc. | Cryostat and quantum computing system having same |
WO2023196979A2 (en) * | 2022-04-08 | 2023-10-12 | Isthmus Cryotech, Inc. | Cryogenic cooling apparatus and related methods |
EP4265987A1 (en) * | 2022-04-21 | 2023-10-25 | Bluefors Oy | Cryostat, and method for cooling a cryostat |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115303B4 (en) * | 2011-09-29 | 2013-06-27 | Entropy GmbH | Cryogenic device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7117037A (en) * | 1971-12-13 | 1973-06-15 | ||
US5597035A (en) * | 1995-08-18 | 1997-01-28 | Dell Usa, L.P. | For use with a heatsink a shroud having a varying cross-sectional area |
JP2001248927A (en) | 2000-03-07 | 2001-09-14 | Sumitomo Heavy Ind Ltd | Low-temperature device using pulse tube refrigeration unit |
DE102004053973B3 (en) | 2004-11-09 | 2006-07-20 | Bruker Biospin Ag | NMR spectrometer with refrigerator cooling |
DE102005041383B4 (en) * | 2005-09-01 | 2007-09-27 | Bruker Biospin Ag | NMR apparatus with co-cooled probe head and cryocontainer and method of operation thereof |
DE102007028865B3 (en) * | 2007-06-22 | 2009-01-29 | Vericold Technologies Gmbh | Cryogenic device |
GB0904500D0 (en) * | 2009-03-16 | 2009-04-29 | Oxford Instr Superconductivity | Cryofree cooling apparatus and method |
DE102014015665B4 (en) | 2014-10-23 | 2016-05-19 | Attocube Systems Ag | Optical table |
CN105350069A (en) * | 2015-12-24 | 2016-02-24 | 洛阳西格马炉业股份有限公司 | Sapphire crystal growing furnace and method for preparing sapphire crystal |
DE102016214731B3 (en) * | 2016-08-09 | 2017-07-27 | Bruker Biospin Ag | NMR apparatus with superconducting magnet arrangement and cooled probe components |
US11205133B2 (en) * | 2018-01-12 | 2021-12-21 | IonQ, Inc. | Vibrationally isolated cryogenic shield for local high-quality vacuum |
GB2592380A (en) * | 2020-02-25 | 2021-09-01 | Oxford Instruments Nanotechnology Tools Ltd | Gas gap heat switch configuration |
US20230008279A1 (en) * | 2021-07-08 | 2023-01-12 | Maybell Quantum Industries, Inc. | Integrated dilution refrigerators |
-
2019
- 2019-03-12 DE DE102019203341.5A patent/DE102019203341A1/en active Pending
-
2020
- 2020-03-06 JP JP2021554745A patent/JP7434349B2/en active Active
- 2020-03-06 CN CN202080020221.9A patent/CN113631878B/en active Active
- 2020-03-06 EP EP20711533.8A patent/EP3938721B1/en active Active
- 2020-03-06 WO PCT/EP2020/056053 patent/WO2020182671A1/en unknown
-
2021
- 2021-09-13 US US17/474,021 patent/US20210402407A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115303B4 (en) * | 2011-09-29 | 2013-06-27 | Entropy GmbH | Cryogenic device |
Also Published As
Publication number | Publication date |
---|---|
WO2020182671A1 (en) | 2020-09-17 |
DE102019203341A1 (en) | 2020-09-17 |
US20210402407A1 (en) | 2021-12-30 |
CN113631878A (en) | 2021-11-09 |
EP3938721A1 (en) | 2022-01-19 |
JP7434349B2 (en) | 2024-02-20 |
JP2022524818A (en) | 2022-05-10 |
CN113631878B (en) | 2023-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3938721B1 (en) | Cryostat | |
DE60207688T2 (en) | HEAT EXCHANGER FOR SAMPLE CONTAINING TITRATION PLATES | |
DE19821194B4 (en) | Semiconductor device tester | |
DE3621562A1 (en) | REFRIGERATOR | |
DE19804902C2 (en) | switch cabinet | |
DE1751585A1 (en) | Multi-fluid heat exchanger | |
DE2255646A1 (en) | OIL COOLED ELECTRIC DEVICE | |
DE3928572A1 (en) | ELECTRIC COOKING DEVICE | |
DE112017007048T5 (en) | MAGNETICALLY SHIELDED CHAMBER | |
DE4129547C2 (en) | Cryostat | |
WO2004090430A1 (en) | Recirculation cooling system | |
DE69308592T2 (en) | GAS-COOLED TUBE IN CRYOTANKS FOR SUPER LADDER APPLICATIONS | |
DE102010012920A1 (en) | Apparatus for the cryogenic separation of air | |
DE1490832B1 (en) | Micro-module circuit unit | |
EP2843436B1 (en) | NMR spectrometer with ergonomically favourable sample exchanger | |
DE2344790A1 (en) | VOLTAGE MULTIPLIER ASSEMBLY WITH DIELECTRIC SEPARATING LAYERS MADE OF AIR AND MATTER | |
EP4310867A1 (en) | Load bank | |
DE3328431C2 (en) | Electric heater for a hot isostatic press device | |
CH710730B1 (en) | Cooling device with a base part divided into a warm area and a cold area. | |
DE2008800A1 (en) | Converter cabinet or rack | |
DE866220C (en) | High-performance roast pot with electric floor heating | |
DE3609083A1 (en) | Electronic apparatus | |
WO2015028290A1 (en) | Data processing system | |
DE2613640C3 (en) | ||
DE946468C (en) | Heavy current phase-shifting capacitor consisting of box-shaped partial capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210920 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240410 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020009268 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |