EP3961127A1 - Klimaanlage und verfahren zu deren steuerung - Google Patents
Klimaanlage und verfahren zu deren steuerung Download PDFInfo
- Publication number
- EP3961127A1 EP3961127A1 EP20193681.2A EP20193681A EP3961127A1 EP 3961127 A1 EP3961127 A1 EP 3961127A1 EP 20193681 A EP20193681 A EP 20193681A EP 3961127 A1 EP3961127 A1 EP 3961127A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- heat exchanger
- heat transfer
- phex
- phase change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000012782 phase change material Substances 0.000 claims abstract description 64
- 238000001816 cooling Methods 0.000 claims abstract description 43
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000003507 refrigerant Substances 0.000 claims description 34
- 239000002002 slurry Substances 0.000 claims description 26
- 239000012071 phase Substances 0.000 claims description 20
- 230000003247 decreasing effect Effects 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 7
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 101100230900 Arabidopsis thaliana HEXO1 gene Proteins 0.000 description 2
- 101100230901 Arabidopsis thaliana HEXO2 gene Proteins 0.000 description 2
- 101100412393 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) REG1 gene Proteins 0.000 description 2
- 101100310405 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SLX5 gene Proteins 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- JCHOVTKTIUCYQR-UHFFFAOYSA-M tetrabutylazanium;bromide;hydrate Chemical compound O.[Br-].CCCC[N+](CCCC)(CCCC)CCCC JCHOVTKTIUCYQR-UHFFFAOYSA-M 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
Definitions
- the air conditioning system comprises a heating and/or cooling part and a heat transfer circuit, wherein a first heat exchanger thermally connects the heating and/or cooling part with the heat transfer circuit.
- the heat transfer circuit comprises a pump configured to circulate a heat transfer medium in the heat transfer circuit, a second heat exchanger configured to transfer heat between the heat transfer medium of the heat transfer circuit and an indoor space, and a bypass line bypassing the second heat exchanger, wherein the bypass line comprises a bypass valve between a first and a second end of the bypass line, wherein the bypass valve is configured to control a flow through the bypass line and wherein the heat transfer circuit comprises a heat transfer medium containing a phase change material.
- a controller of the system is configured to control an opening degree of the bypass valve.
- the presented air conditioning system has an increased coefficient of performance.
- PCM slurry a phase change material
- the main challenge for PCM slurry based systems to control the system operation is to guarantee the operation temperature range is suitable for specific PCM material and concentration as well as to deliver the correct amount of cooling capacity to the indoor space.
- the degree of freedom of the system is increased due to the phase change temperature variable which is related to the concentration of PCM.
- the problem with the prior art systems and methods is that the temperature of the medium containing a phase change material (PCM) cannot be controlled satisfactorily to be in the desired range around the phase change temperature of the PCM.
- the cooling capacity at an indoor unit can vary and a desired higher cooling capacity can often only be achieved by increasing the flow rate of the medium containing the PCM to very high flow rates, which consumes much electrical energy.
- COP coefficient of performance
- CN 104 673 191 A discloses a tetrabutylammonium bromide (TBAB) aqueous solution which is in heat exchange with the refrigerant and uses a cooled refrigerant to obtain a TBAB aqueous solution containing a TBAB hydrate slurry, wherein concentration of solid TBAB in the TBAB hydrate slurry and that of dissolved TBAB in the TBAB aqueous solution is the same.
- TBAB tetrabutylammonium bromide
- US 6,237,346 B1 discloses a method for transporting cold latent-heat which is characterized in that a cold transporting medium for use in the method is a semi-clathrate hydrate (liquid-liquid clathrate) capable of crystallization when an onium salt having C 4 H 9 -group and iso-C 5 H 11 -group is included as a guest into basket-like clathrate lattices consisting of water molecules.
- a cold transporting medium for use in the method is a semi-clathrate hydrate (liquid-liquid clathrate) capable of crystallization when an onium salt having C 4 H 9 -group and iso-C 5 H 11 -group is included as a guest into basket-like clathrate lattices consisting of water molecules.
- US 2017/0307263 A1 discloses a heat transfer system that includes a heat exchanger comprising an inlet, an outlet, and a flow path through the heat exchanger between the inlet and the outlet, wherein the system also includes a fluid circulation loop external to the heat exchanger connecting the outlet to the inlet, wherein a phase change composition is disposed in the system flowing through the fluid circulation loop and the flow path through the heat exchanger.
- an air conditioning system comprising a heating and/or cooling part comprising a first part of a first heat exchanger, wherein the first heat exchanger comprises the first part and a second part and is configured to exchange heat between the first and second part, a heat transfer circuit comprising the second part of the first heat exchanger and further comprising
- the advantage of the air conditioning system according to the invention is that it is has an increased coefficient of performance (COP) compared to known air conditioning systems.
- This advantage is achieved by the controller of the system which is configured to control an opening degree of the bypass valve.
- the controller can ensure that the temperature of the heat transfer medium, which comprises the phase change material (PCM), is essentially identical to the phase change temperature of the PCM, which is related to the concentration of PCM.
- PCM phase change material
- This allows to achieve a minimum flow rate in the heat transfer circuit (slurry circuit) and energy efficiency to be improved.
- the present system and method achieves a COP which is 4.5% higher which is mainly due to the pumping power reduction in the slurry circuit.
- the air conditioning system can be characterized in that the heating and/or cooling part is a refrigerant circuit comprising a compressor, a condenser, an expansion device, a liquid separator and a refrigerant.
- the bypass line of the system can branch off from a main circuit of the heat transfer circuit between the pump and the second heat exchanger on its first end and branches of the main circuit between the second part of the first heat exchanger and the second heat exchanger on its second end.
- the heat transfer circuit can further comprise a third heat exchanger which is configured to transfer heat between the heat transfer medium and an indoor space. Furthermore, the heat transfer circuit can further comprise a storage device for storing the phase change material.
- the heat transfer medium can contain the phase change material in the form of a dispersion of solid phase change material in a liquid, preferably in the form of a slurry. Furthermore, the heat transfer medium can contain the phase change material in a concentration of 5 to 20 wt.-%, preferably 7 to 15 wt.-%, more preferably 8 to 12 wt.-%, especially 10 wt.-%, relative to the total weight of the heat transfer medium. Moreover, the heat transfer medium can contain a phase change material which has a phase change temperature in the range of -5 °C to 5 °C.
- the heat transfer circuit can comprise a temperature sensor at a first end of the second part of the first heat exchanger. Furthermore, the heat transfer circuit can comprise a (further) temperature sensor at a second end of the second part of the first heat exchanger. Moreover, the refrigerant circuit can comprise a temperature sensor and a pressure sensor at the discharge line of a compressor of the refrigerant circuit.
- the controller can be configured to control an opening degree of an expansion device of the heating and/or cooling part based on a degree of superheat determined from a temperature sensor and a pressure sensor at the discharge line of a compressor of the refrigerant circuit.
- the control is preferably such that if the determined degree of superheat is higher than a predetermined value, the opening degree of the expansion device is increased and/or if the determined degree of superheat is lower than a predetermined value, the opening degree of the expansion device is decreased.
- the controller can be configured to control the speed of a compressor of the system based on the temperature of the heat transfer medium.
- the control is preferably such that the speed of the compressor is increased if the temperature of the phase change material is higher than the phase change temperature of the phase change material and/or the speed of the compressor is decreased if the temperature of the phase change material is lower than the phase change temperature of the phase change material.
- the temperature of the phase change material is preferably obtained from a temperature sensor at an inlet of the first heat exchanger.
- the controller can be configured to control the opening degree of the bypass valve based on a differential temperature of the heat transfer medium between an inlet of the first heat exchanger and an outlet of the first heat exchanger.
- the control is preferably such that the opening degree of the bypass valve is increased if the differential temperature is lower than a predetermined set point and/or the opening degree of the bypass valve is decreased if the differential temperature is higher than a predetermined set point.
- the differential temperature is preferably calculated from a temperature obtained from a temperature sensor at an inlet of the first heat exchanger and from a temperature obtained from a temperature sensor at an outlet of the first heat exchanger.
- the controller can be configured to control the conveying speed of the pump based on a cooling capacity determined from the current flow rate of the heat transfer medium and determined from a differential temperature of the heat transfer medium between an inlet of the first heat exchanger and an outlet of the first heat exchanger.
- the control is preferably such that the conveying speed of the pump is increased if the cooling capacity is lower than a predetermined set point and/or the conveying speed of the pump (P) is decreased if the cooling capacity is higher than a predetermined set point.
- the current flow of the heat transfer medium is preferably obtained from the pump and the differential temperature is preferably calculated from a temperature obtained from a temperature sensor at an inlet of the first heat exchanger and from a temperature obtained from a temperature sensor at an outlet of the first heat exchanger.
- a method for controlling an air conditioning system according to the invention, wherein the method comprises a step of controlling an opening degree of the bypass valve based on a differential temperature of the heat transfer medium between an inlet of the first heat exchanger and an outlet of the first heat exchanger.
- the method can be characterized in that an opening degree of an expansion device of the heating and/or cooling part is controlled based on a degree of superheat determined from a temperature sensor and a pressure sensor at the discharge line of a compressor of the refrigerant circuit.
- the control is preferably such that if the determined degree of superheat is higher than a predetermined value, the opening degree of the expansion device is increased and/or if the determined degree of superheat is lower than a predetermined value, the opening degree of the expansion device is decreased.
- the speed of a compressor of the system can be controlled based on the temperature of the heat transfer medium.
- the control is preferably such that the speed of the compressor is increased if the temperature of the phase change material is higher than the phase change temperature of the phase change material and/or the speed of the compressor is decreased if the temperature of the phase change material is lower than the phase change temperature of the phase change material.
- the temperature of the phase change material is preferably obtained from a temperature sensor at an inlet of the first heat exchanger.
- the opening degree of the bypass valve can be controlled based on a differential temperature of the heat transfer medium between an inlet of the first heat exchanger and an outlet of the first heat exchanger.
- the control is preferably such that the opening degree of the bypass valve is increased if the differential temperature is lower than a predetermined set point and/or the opening degree of the bypass valve is decreased if the differential temperature is higher than a predetermined set point.
- the differential temperature is preferably calculated from a temperature obtained from a temperature sensor at an inlet of the first heat exchanger and from a temperature obtained from a temperature sensor at an outlet of the first heat exchanger.
- a conveying speed of the pump can be controlled based on a cooling capacity determined from the current flow rate of the heat transfer medium and determined from a differential temperature of the heat transfer medium between an inlet of the first heat exchanger and an outlet of the first heat exchanger.
- the control is preferably such that the conveying speed of the pump is increased if the cooling capacity is lower than a predetermined set point and/or the conveying speed of the pump (P) is decreased if the cooling capacity is higher than a predetermined set point.
- the current flow of the heat transfer medium is preferably obtained from the pump and the differential temperature is preferably calculated from a temperature obtained from a temperature sensor at an inlet of the first heat exchanger and from a temperature obtained from a temperature sensor at an outlet of the first heat exchanger.
- a bypass line is present in the heat transfer circuit of the system to bypass at least one indoor heat exchanger (second heat exchanger and optionally third heat exchanger).
- the flow rate of the medium containing the phase change material (PCM) can be controlled by the controller of the system.
- the functions of the following parts of the system is highlighted:
- the expansion device of the refrigerant circuit mainly ensures the superheat (SH) at the suction line of the compressor has a predetermined value, so the compressor will be running safely.
- the measured superheat will be compared with a setpoint first, then an error value is calculated and then passed to the controller. For example, if the measurement value is higher than the setpoint, the controller will send a control signal to the expansion device in which openness of the expansion device will increase so that more refrigerant flow will be present in the evaporator then the super heat will reduce.
- the compressor of the refrigerant circuit mainly keeps the temperature of the PCS at the inlet of the first heat exchanger slightly higher than the melting (equilibrium) temperature of the PCM.
- the controller is using the compressor to control the inlet temperature of the medium containing the PCM at the inlet of the first heat exchanger on the side of the heat transfer circuit.
- the measured medium temperature is compared with a setpoint, an error is calculated and then a value is feed to the controller.
- the controller will output a signal to the compressor based on the error value. For example, if the measurement is lower than the setpoint, the controller will output an increased frequency value to the compressor in which compressor will operate harder and bring down the evaporation temperature. Then, the inlet temperature of the medium containing PCM will lower towards the setpoint.
- the pump of the heat transfer circuit modulates the flow rate of the medium containing PCM to set said medium to a predetermined temperature (preferably essentially the phase change temperature of the heat medium) at an exit of the first heat exchanger, so that the PCM material in the medium has its maximum cooling capacity (melting enthalpy of the PCM material).
- the cooling capacity is calculated based on the flow rate of the medium containing the PCM and a differential temperature of the medium containing the PCM, the measurement is compared with a setpoint, then an error value is obtained and a value fed to the controller.
- the controller will output the pump speed signal accordingly.
- the controller will increase pump speed so more medium containing PCM will be pumped to the indoor unit heat exchanger to increase the cooling capacity toward to its setpoint.
- the indoor temperature is used as CV the measurement is taken at a constant interval and then compared with the setpoint. An error value is calculated and then fed into the controller. The controller then outputs a control signal to the actuator pump. For example, if the indoor temperature is higher than the setpoint, the controller will increase the pump speed so more medium containing the PCM will be fed into indoor unit to reduce the indoor room temperature.
- the bypass valve in the heat transfer circuit tunes the flow rate of medium containing the PCM to ensure that the system will deliver the right cooling capacity to the indoor heat exchanger and maintains a desired indoor room temperature according to a setpoint.
- the controller is using the bypass valve (e.g. a stepper motorized valve) to control the differential temperature of the medium containing the PCM which flows between the inlet and the outlet of the first heat exchanger.
- ⁇ T PCS is measured by two temperature sensors at the inlet and outlet of the first heat exchanger and then compared with a setpoint so an error value will be calculated and fed to the controller.
- the controller will output the control signal according to the value to the bypass valve. For example, if the measurement value is lower than the setpoint, the bypass valve will increase its openness so more flow will be pumped in the slurry circuit. Then, the differential temperature will reduce towards the setpoint.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20193681.2A EP3961127A1 (de) | 2020-08-31 | 2020-08-31 | Klimaanlage und verfahren zu deren steuerung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20193681.2A EP3961127A1 (de) | 2020-08-31 | 2020-08-31 | Klimaanlage und verfahren zu deren steuerung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3961127A1 true EP3961127A1 (de) | 2022-03-02 |
Family
ID=72292416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20193681.2A Pending EP3961127A1 (de) | 2020-08-31 | 2020-08-31 | Klimaanlage und verfahren zu deren steuerung |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3961127A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115377778A (zh) * | 2022-10-24 | 2022-11-22 | 中国航天三江集团有限公司 | 基于两相流体的光纤激光器热控装置及方法 |
EP4249814A1 (de) * | 2022-03-24 | 2023-09-27 | Mitsubishi Electric Corporation | System und verfahren zum heizen und/oder kühlen mindestens eines raumes |
FR3145206A1 (fr) * | 2023-01-23 | 2024-07-26 | Dynaes | Amélioration de la puissance des machines thermodynamiques |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6237346B1 (en) | 1997-04-14 | 2001-05-29 | Nkk Corporation | Method for transporting cold latent heat and system therefor |
WO2007146050A2 (en) * | 2006-06-07 | 2007-12-21 | Waters Hot, Inc. | Bio-renewable thermal energy heating and cooling system and method |
CN102519097A (zh) * | 2011-12-12 | 2012-06-27 | 上海交通大学 | 温湿独立处理的tbab相变蓄冷/载冷空调系统 |
EP2767773A1 (de) * | 2011-09-30 | 2014-08-20 | Daikin Industries, Ltd. | Heisswasserversorgungssystem, klimaanlage |
US20150047379A1 (en) * | 2012-05-14 | 2015-02-19 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN104673191A (zh) | 2014-08-01 | 2015-06-03 | 上海交通大学 | 一种四丁基溴化铵水溶液 |
US20160061534A1 (en) * | 2014-08-27 | 2016-03-03 | Peter B. Choi | Latent Thermal Energy System (LTES) Bubbling Tank System |
US20170307263A1 (en) | 2014-09-18 | 2017-10-26 | Carrier Corporation | Heat transfer system with phase change composition |
-
2020
- 2020-08-31 EP EP20193681.2A patent/EP3961127A1/de active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6237346B1 (en) | 1997-04-14 | 2001-05-29 | Nkk Corporation | Method for transporting cold latent heat and system therefor |
WO2007146050A2 (en) * | 2006-06-07 | 2007-12-21 | Waters Hot, Inc. | Bio-renewable thermal energy heating and cooling system and method |
EP2767773A1 (de) * | 2011-09-30 | 2014-08-20 | Daikin Industries, Ltd. | Heisswasserversorgungssystem, klimaanlage |
CN102519097A (zh) * | 2011-12-12 | 2012-06-27 | 上海交通大学 | 温湿独立处理的tbab相变蓄冷/载冷空调系统 |
US20150047379A1 (en) * | 2012-05-14 | 2015-02-19 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN104673191A (zh) | 2014-08-01 | 2015-06-03 | 上海交通大学 | 一种四丁基溴化铵水溶液 |
US20160061534A1 (en) * | 2014-08-27 | 2016-03-03 | Peter B. Choi | Latent Thermal Energy System (LTES) Bubbling Tank System |
US20170307263A1 (en) | 2014-09-18 | 2017-10-26 | Carrier Corporation | Heat transfer system with phase change composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4249814A1 (de) * | 2022-03-24 | 2023-09-27 | Mitsubishi Electric Corporation | System und verfahren zum heizen und/oder kühlen mindestens eines raumes |
CN115377778A (zh) * | 2022-10-24 | 2022-11-22 | 中国航天三江集团有限公司 | 基于两相流体的光纤激光器热控装置及方法 |
FR3145206A1 (fr) * | 2023-01-23 | 2024-07-26 | Dynaes | Amélioration de la puissance des machines thermodynamiques |
WO2024156698A1 (fr) * | 2023-01-23 | 2024-08-02 | Dynaes | Amélioration de la puissance des machines thermodynamiques |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11378314B2 (en) | Air cooled chiller with heat recovery | |
EP3961127A1 (de) | Klimaanlage und verfahren zu deren steuerung | |
US20250085036A1 (en) | Air conditioning system with capacity control and controlled hot water generation | |
JP4948374B2 (ja) | 冷凍サイクル装置 | |
EP2716989B1 (de) | Temperaturregelungssystem, klimaanlagensystem und steuerverfahren dafür | |
US6109533A (en) | Air conditioner and refrigerant heater outlet temperature control method | |
KR102004939B1 (ko) | 수냉식냉동기 냉수와 쿨링타워 냉각수를 조합한 공조냉각열원 에너지절약형 항온항습시스템과 그의 제어방법 | |
US11137164B2 (en) | Control systems and methods for heat pump systems | |
US20150253020A1 (en) | Air-conditioning apparatus | |
JP2001091087A (ja) | 冷凍機又は冷温水機の制御方法 | |
CN106152840B (zh) | 热管系统、制冷系统及其控制方法 | |
CN112325494A (zh) | 一种制冷剂循环系统及其控制方法 | |
US20220049886A1 (en) | Methods and systems for controlling working fluid in hvacr systems | |
JP4022383B2 (ja) | 統合型熱源システム | |
CN111033146A (zh) | 膨胀阀控制传感器和使用它的制冷系统 | |
US11353234B2 (en) | Air conditioning system | |
CN112539526A (zh) | 空调器的制冷控制方法及冷凝器 | |
JP2006292329A (ja) | 熱源システムおよびその制御装置ならびにその制御方法 | |
US20230304696A1 (en) | System and method for heating and/or cooling at least one space | |
JP4610688B2 (ja) | 冷暖房給湯装置とその制御方法 | |
KR20180135882A (ko) | 냉매 저장수단을 구비한 히트펌프 | |
US20070137229A1 (en) | Method of obtaining stable conditions for the evaporation temperature of a media to be cooled through evaporation in a refrigerating installation | |
JP2006078048A (ja) | ヒートポンプ加熱装置 | |
JP2008170045A (ja) | 空調システムおよびその運転方法 | |
JP2017141981A5 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220601 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230330 |
|
P02 | Opt-out of the competence of the unified patent court (upc) corrected |
Effective date: 20230513 |