[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3800483B1 - Alignment of a detector of a dircm module relative to a target - Google Patents

Alignment of a detector of a dircm module relative to a target Download PDF

Info

Publication number
EP3800483B1
EP3800483B1 EP20196593.6A EP20196593A EP3800483B1 EP 3800483 B1 EP3800483 B1 EP 3800483B1 EP 20196593 A EP20196593 A EP 20196593A EP 3800483 B1 EP3800483 B1 EP 3800483B1
Authority
EP
European Patent Office
Prior art keywords
target
dircm
detector
range
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20196593.6A
Other languages
German (de)
French (fr)
Other versions
EP3800483A1 (en
Inventor
Markus Mauder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP3800483A1 publication Critical patent/EP3800483A1/en
Application granted granted Critical
Publication of EP3800483B1 publication Critical patent/EP3800483B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/224Deceiving or protecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/02Aiming or laying means using an independent line of sight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target

Definitions

  • the invention relates to DIRCMs (Directed Infrared Counter Measures) or corresponding DIRCM systems.
  • Such a DIRCM system contains at least one DIRCM module. These modules contain a detector for detection, i.e. determining the location of the target. Once the target is detected, the target is tracked and the laser beam is emitted towards the target ("jamming"). The laser beam thus reaches the target with the help of the detector.
  • the detector must be directed towards the target, i.e. roughly oriented towards it, so that the target is in the detection range (target range) of the detector. in which it can then successfully and accurately detect the target.
  • the basis for at least an approximate alignment or guidance of the detector to the target is provided by guidance data from a warning system, e.g. a missile warning system (MWS).
  • a warning system e.g. a missile warning system (MWS).
  • the system includes one or more electro-optical sensors for scanning an area around the aircraft for one or more possible incoming threats and for generating an indication signal when an incoming threat is detected; an integrated unit that combines a Missile Approach Confirmation Sensor (MACS) with Directed Infra-Red Counter Measure (DIRCM) to verify the incoming threat and activate a countermeasure against the verified incoming threat; and a processor for receiving data from the one or more electro-optical sensors and the integrated MACS-DIRCM unit and for selecting a countermeasure technique for use against the incoming threat.
  • MCS Missile Approach Confirmation Sensor
  • DIRCM Directed Infra-Red Counter Measure
  • object classes are provided for classifying objects, which relate to at least one property of objects that can be determined from at least one of the speed- or depth-resolved images, wherein at least one object is assigned one of the object classes and the object is assigned a model type and a value for the corresponding model parameter depending on the assigned object class.
  • the object of the invention is to propose improvements with regard to the guidance of the detector towards the approaching target.
  • the method is used to guide a movable detector of a DIRCM module of a DIRCM system to an approaching target.
  • the invention is based on a DIRCM system that contains an interface to a warning system. The interface is used to receive a guide position for the target from the warning system.
  • the DIRCM system also contains at least one DIRCM module. This contains the detector that is used to detect the target.
  • the detector has a target position for alignment with the target. By moving the detector, in particular pivoting it (e.g. gimbal-mounted), the target position is also pivoted. The target position is therefore firmly connected to the detector and is moved or pivoted together with it.
  • the target position indicates the direction in which the laser beam of the associated DIRCM module is emitted and should therefore be aligned as precisely as possible with the target. Tracking or tracing of the target also takes place at the target position. Or the detector is moved and tracked to the target in such a way that the target is kept in the target position as much as possible.
  • Positions and “ranges” in the sense of the present application are in particular pairs of azimuth and elevation values or ranges.
  • “Target/instruction position”, “target/instruction range”, etc. in this sense therefore refer in particular to values or ranges or areas of azimuth and elevation of a beam, solid angle, etc. emanating from a pivot/pivot point of the detector.
  • the instruction position is first received via the interface.
  • a instruction area is assigned to the instruction position. The reason for this is that the detection itself and the position determined by the warning system of a recognized target are associated with uncertainties.
  • the instruction area therefore describes the area in which the target or a target is actually located with a first minimum probability.
  • the method also assigns a target area to the target position.
  • the detection of a target by the detector is also subject to uncertainty.
  • the target area is the area in which a Detection of a (actually present) target with a second minimum probability.
  • the target area is smaller than the instruction area.
  • the method also provides a search area according to a search strategy.
  • the search area is selected to be larger than the target area.
  • the search area is also selected so that it covers at least the instruction area.
  • the search area is then searched for the target according to the search strategy. To do this, the target position and thus the target area is moved across the search area - by or with the help of the movement of the detector. The target is always searched for in the target area.
  • the search area is searched until either the target has been successfully detected or until the entire search area has been searched unsuccessfully for the target, i.e. no target has been found.
  • the detector is determined to have been successfully directed towards the target.
  • the target can be engaged in the conventional manner by means of target tracking and laser irradiation.
  • the "mobility" of the detector is therefore in particular a pivotability about at least one, in particular two or three axes, which are in particular perpendicular to one another.
  • a "region” in the sense of the present application is therefore in particular a pair of an azimuth interval and an elevation interval. Starting from a central point (pivot point of the detector), these are in particular regions on a concentric spherical surface. The regions in particular have a circular shape or represent a spherical cap.
  • the "inaccuracy” arises as follows: The instruction area in which the target should be located according to the instruction position of the warning system is larger than the target area in which a target can be detected (given a given alignment of the detector to a specific target position). If the target area is concentrically aligned to the instruction position, targets that are located at the edge of the instruction area could therefore be outside the target area and thus no longer be detected.
  • a search area is created that covers at least the instruction area and this search area is "scanned" for the target by moving/swivelling the detector and thus the target area.
  • a target can be detected by the detector within the first and second minimum probabilities in the entire instruction area.
  • search strategies A search strategy is developed in particular in an application-specific manner with regard to the individual object to be protected by the DIRCM system, the individual, expected threat in the form of the target, expected individual tactical measures of the target, etc.
  • a general characteristic of the search strategy is therefore to adapt it as case-specifically / empirically / tactically / etc. as possible to the expected characteristics of a threat from an approaching target and to the object to be protected in order to be able to align the detector to the target as quickly and safely as possible.
  • this unsuccessful guidance is reported to a receiver, in particular the warning system or a higher-level DIRCM control system, etc.
  • a report is also understood to mean, in particular, the request for a new guidance position for the approaching target.
  • the target position is (exactly) aligned with the target using the detector.
  • This is a core property of the detector / DIRCM module: the so-called “tracking", i.e. that the detector aligns itself exactly and centrally, i.e. with the target position, with the target and this Dynamically maintains alignment with the target.
  • targeted irradiation can be carried out while tracking the target.
  • a three-sigma range is selected as the guidance range with regard to the presence of the target in the guidance range.
  • a three-sigma range is selected as the target range with regard to the successful detection of the target in the target range.
  • the ranges are therefore selected to be large enough that a 3-sigma probability (three times the standard deviation) of approximately 99.7% applies to the first and second probability.
  • the target is then located within the guidance range with a sufficiently high probability for practical use and is detected within the target range with an equally high probability. The successful guidance of the detector to a target detected by the warning system will therefore occur with sufficient probability.
  • the search area is formed by combining and/or superimposing the target areas for at least two orientations of the detector to different target positions.
  • the target areas (which are different because they are located in different locations or areas - azimuth/elevation) are searched at least partially or completely at the corresponding fixed orientation of the detector at the respective target position. Only then is the detector moved to a new, different target position and held there. The next target area is then searched again, and so on. This makes it particularly easy to search the search area.
  • a search strategy is selected that avoids multiple searches for the target at the same locations in the search area.
  • the overlap area is only searched once.
  • Target areas are then only partially searched and not in an overlap area with a previously searched (part of) another target area. This speeds up the search for the target overall.
  • a search strategy is selected that takes into account a movement of the target and/or a movement of the DIRCM system. For example, given a certain predicted flight path of the target relative to the DIRCM system, certain sections of the search area in which the target is particularly likely to be found can be searched first in order to be able to detect the target as quickly as possible. This also avoids the target being in a first target area at an initial point in time that is only searched later because the second target area is currently being searched. Later, when the first target area is searched, the target has then moved into the second target area that has already been searched. The target would not be detected simply because of the "wrong" search sequence.
  • a movement of the DIRCM system can occur, for example, if it is attached to a flying aircraft and the aircraft is performing a flight maneuver relative to the target.
  • the movement of the aircraft can be obtained, for example, from sensors or flight computer data of the aircraft. This can also increase the speed and quality of target detection.
  • a search strategy is used that takes into account a distance between the warning system and the detector and/or a relative movement between the warning system and the detector.
  • a corresponding distance arises, for example, by mounting a warning system on the bow and a detector on the tail of an aircraft.
  • a corresponding distance creates a parallax error between the two components, which can then be compensated for in the process.
  • a corresponding relative movement can occur in the same example situation by twisting an aircraft fuselage between the bow and tail.
  • the warning system and detector would then lose their mutually coordinated spatial alignment.
  • Such a corresponding error can also be recorded using data from a flight computer, sensors, etc. and compensated for in the process. This can also increase the speed and quality of target detection.
  • a search strategy is selected according to which the detector is aligned step by step to at least two target positions, and the target area is searched at least partially or completely (in particular depending on the overlap, see above) at the respective fixed target position.
  • the search area is thus processed step by step or successively, alternating between Holding the detector in one position, scanning the target area, changing position, holding, scanning, etc.
  • a favorable local sequence for the search in the search area can be established, for example, searching first in the places where the target is most likely to be found.
  • a search strategy is chosen in which three or four target positions are selected that lie on rays (half-lines) that emanate from the instruction position and are rotated relative to one another on a circle circumference by 120° (with three) or 90° (with four). According to the corresponding formation law (360° divided by the number of rays), more than four or fewer than three rays can also be selected and corresponding target positions distributed across them. This makes it possible to find search areas and search strategies that are particularly effective.
  • the target positions on the rays are spaced apart from the instruction position.
  • the distances between the three or four (or more or fewer) target positions on the beams are chosen to be the same distance from the instruction position. This creates symmetrical search areas in conjunction with the same target areas. The target positions are therefore located on a circle around the instruction position.
  • the object of the invention is also achieved by a DIRCM system according to claim 11.
  • the DIRCM system corresponds to that already explained above and contains the interface to the warning system for receiving the guidance position for the approaching target from the warning system.
  • the DIRCM system also contains at least one DIRCM module with the movable detector for detecting the target, the detector having the target position for alignment with the target.
  • the DIRCM system also contains a control and evaluation unit for carrying out the method according to the invention.
  • the DIRCM system contains a combat module for tracking and combating the target based on the target position provided by the detector.
  • the detector is part of the combat module.
  • the DIRCM module is also designed to track and/or irradiate the target. With such a DIRCM system, in addition to guiding or aiming at the target or detecting it, it is also possible to combat and track it.
  • the object of the invention is also achieved by a DIRCM system according to patent claim 13.
  • the warning system can completely protect an object.
  • the object of the invention is also achieved by such an object according to patent claim 14, with a DIRCM system according to the invention protecting the object, wherein the DIRCM system is mounted on the object.
  • the object is in particular an air, land or water vehicle, an aircraft, airplane, helicopter, ship or land vehicle, but can also be a fixed facility on the ground.
  • the warning system is arranged at a distance from at least one of the DIRCM modules on the object. This causes the above-mentioned parallax, twisting errors, etc. This is especially true if the warning system and DIRCM modules or detectors are distributed over, for example, the front / middle / rear of an aircraft. Tolerances etc. cause alignment errors between the components of the system, so that there are usually comparatively large guidance areas compared to target areas. Using the method/system/system according to the invention, the search area can then still be effectively searched for the target in order to guide the detector to the target.
  • the invention is based on the following findings, observations and considerations and also has the following embodiments.
  • the embodiments are sometimes referred to as "the invention” for the sake of simplicity.
  • the embodiments can also contain parts or combinations of the above-mentioned embodiments or correspond to them and/or possibly also include embodiments not previously mentioned.
  • the invention is based on the consideration that for the DIRCM jamming module (containing the detector) to be successfully locked onto the target, the inaccuracy of the MWS (missile warning system) instruction data (warning system/instruction position/area), quantified by the three-sigma error, must not exceed a certain threshold.
  • the accuracy must be less than a degree (a°) azimuth/elevation, the three-sigma target range of the detector. In a large transport aircraft, this threshold cannot be met under certain conditions, e.g. due to elastic deformation of the aircraft fuselage. Nevertheless, the DIRCM jamming module must be locked onto the threat (target) within a short time with a high degree of probability in order to successfully combat it.
  • the invention is based on the realization that, until now, the instruction of a DIRCM jamming module was only possible with data from an MWS whose sensor (IR camera) is located directly next to the DIRCM jamming module (and thus the detector), so that elastic deformations of the aircraft fuselage cannot cause the MWS data to become too inaccurate.
  • MWS whose sensor (IR camera) is located directly next to the DIRCM jamming module (and thus the detector)
  • a detector operates in a detection range of b degrees (b°; where b° > a°) azimuth / elevation.
  • reliable target detection with 3-sigma probability
  • a warning system usually provides guidance data in the accuracy range of c Degrees (c°; where c° ⁇ a°) (instruction range, three-sigma probability). If the two systems are mounted remotely, for example at the bow and tail of a large aircraft, parallax errors, deformation errors and design adjustment errors worsen this value so that only instruction data in the accuracy range of d degrees (d°; where d° > a°) (instruction range, three-sigma probability) are available. Safe instruction is therefore no longer possible because the required a degrees (a°) (of the target range of the detector in the DIRCM module) are exceeded.
  • the invention is based on the following idea: Instead of aligning the DIRCM jamming module (or its detector / target position of the detector) precisely to the nominal position of the threat (instruction position), which may be so faulty due to excessive inaccuracy of the MWS data that no connection is possible there, the DIRCM jamming module (detector) runs through a search pattern (search strategy).
  • the inaccuracy is known, for example, from the object to be protected (e.g. aircraft or its manufacturer) and is added up in particular from the parallax error, the deformation of the object between the warning system and detector and basic alignment inaccuracies between the warning system and detector.
  • This search pattern is either generated in the DIRCM jamming module itself or by a superimposed DIRCM control software.
  • the search pattern covers a search area around the nominal position of the threat (instruction position), whereby the size of the search area depends on the expected inaccuracy of the MWS data (i.e. it covers at least the instruction area).
  • the search pattern is optimized so that it completely covers the search area resulting from the accuracy of the MWS data with as few search positions as possible, taking into account possible movements of the threat (target) and aircraft (object to be protected) during the processing of the search pattern (processing of the search strategy).
  • the possible movements influence, for example, the order in which the detector is aligned to different target positions.
  • the invention is further based on the following finding: At the moment when the detection of a threat (target) detected by the warning system by the detector at the instruction position transmitted by the warning system fails, the DIRCM module (Jamming Turret) ends its acquisition (search for the target in the target area) without further searching for the target with the help of the detector and reports the failed acquisition to the DIRCM control system.
  • the DIRCM module Joint Turret
  • the invention is therefore also based on the following improvement idea:
  • a threat target
  • the detector jamming turret
  • the detector does not move exactly to the transmitted target position (instruction position), but moves - using a suitable search pattern (search strategy) - in sequence to one or more neighboring positions (target positions for the detector) that surround the transmitted instruction position.
  • search strategy search strategy
  • the detector starts an acquisition, i.e. searches for the target within the target area. If the target is successfully detected, the DIRCM module starts tracking. Otherwise, if the acquisition fails, the detector (jamming turret) moves to the next neighboring position until the target is successfully acquired or all neighboring positions have been processed without successful acquisition. Only in this case does the DIRCM module (jamming turret) report the failed acquisition back to a receiver, e.g. the DIRCM control system.
  • the current search pattern (search strategy, e.g. how many target positions, which order of the target positions, ...) can be defined depending on specific boundary conditions of the DIRCM module (jamming turret) and the data provided by the warning system (instruction data, MWS data).
  • additional boundary conditions can be taken into account, which take into account the possible movement of the aircraft (on which the DIRCM system is mounted) and the approaching threat (target, missile) during the time it takes to process the complete search pattern.
  • the search pattern By applying the search pattern (search strategy), less stringent requirements for the accuracy of the MWS instruction data (instruction position / instruction area) must be met. This means that, for example, despite possible elastic deformations of the aircraft fuselage, instruction of a DIRCM jamming module at the rear of the aircraft is possible using data from an MWS sensor at the front of the aircraft. This is necessary, for example, if the threat approaches from below during the landing approach and is detected by an MWS sensor at the front of the aircraft, but only one DIRCM jamming module at the rear is available for combat. Furthermore, by applying the search pattern (search strategy), lower requirements apply, e.g. for the installation and subsequent measurement and calibration of the MWS sensors and DIRCM jamming modules relative to the aircraft, as well as for the maximum permissible parallax error when transferring between two DIRCM jamming modules at the front and rear of the aircraft.
  • MFS missile warning system
  • FIG. 1 shows an object 2, in this case a military transport aircraft or its fuselage, in a merely symbolic manner.
  • a DIRCM system 4 is attached to the fuselage, in this case at the rear of the aircraft, as well as a warning system 6, in this case a MWS (Missile Warning System), in this case at the bow of the aircraft.
  • the DIRCM system 4 contains two DIRCM modules 8a, b, each of which contains a movable detector 10. Each of the detectors 10 is movable in the sense that it can be rotated around a pivot point 12. can be pivoted gimbal-mounted.
  • the DIRCM system 4 also contains an interface 14 to the warning system 6.
  • Figure 1 shows a situation in which the object 2 is in flight and a threat in the form of a target 16, in this case an enemy surface-to-air missile, is flying towards the object 2 in order to destroy it.
  • a threat in the form of a target 16 in this case an enemy surface-to-air missile
  • the target 16 is to be rendered harmless in the usual way, which is not explained in detail here, i.e. by tracking and illuminating the IR (infrared) seeker head of the missile with a laser beam 18 (jamming).
  • the laser beam 18 must first be aligned with the target 16.
  • the target 16 must be detected or located by the detector 10 and then tracked.
  • the detector 10 must in turn be at least roughly aligned or directed towards the target 16.
  • the target 16 is first noticed and recorded by the warning system 6 and its determined position is transmitted as the instruction position EP from the warning system 6 via the interface 14 to the DIRCM system 4 or received by it.
  • the interface 14 is therefore used by the DIRCM system 4 to receive the instruction position EP for the target 16.
  • the corresponding instruction position EP is subject to inaccuracies. Therefore, the instruction position EP is assigned an instruction area EB.
  • the instruction area ensures that the target 16 is actually located in the instruction area EB with a first minimum probability. This probability is a so-called 3-sigma probability of approximately 99.7%. As in Fig. 1 shown, the target 16 is actually located away from the guidance position EP.
  • the target 16 as well as positions and areas etc. are in Figure 1 symbolically represented in an azimuth (A) / elevation (E) representation of a spherical environment of object 2.
  • a target position ZP is assigned to the detector 10 or the detector 10 has such a target position ZP.
  • the detection by the detector 10 is also subject to uncertainty.
  • This target position ZP is therefore also assigned a target area ZB. If the target 16 is actually located in the target area ZB, it will actually be detected by the detector 10 with a second minimum probability. This probability is also a 3-sigma probability of approximately 99.7%.
  • a search area 20 is now provided.
  • the target 16 is now to be searched for in this search area 20 using the detector 10.
  • the search area 20 is selected to be larger than the target area ZB in order to be able to expand the search compared to the target area ZB.
  • the search area 20 is selected so that it covers or includes at least the instruction area EB. This ensures that the entire instruction area EB is also searched for the target 16.
  • the search strategy consists of executing the search area 20 in a circle with 1.2 times the radius of the instruction area EB concentrically to the instruction position EP.
  • the search area 20 is now searched for the target 16 by moving the target area ZB over the search area 20 by moving the detector 10.
  • the target 16 is searched for within the target area ZB.
  • a first target position ZP1 is initially positioned 45° to the right below the instruction position at 75% of the radius of the instruction area EB. With the target area ZB1 held at this target position ZP1, this is searched for target 16 - in this case unsuccessfully.
  • the next location selected as the second target position ZP2 is a location 45° to the left below the instruction position at 75% of the radius of the instruction area EB. With the corresponding target area ZB2 held, this is searched for target 16 - in this case successfully.
  • the detector 10 at the target position ZP2 is thus successfully guided to target 16, and successful guidance is therefore determined.
  • the usual automatic tracking of target 16 in detector 10 is now activated and this is therefore aligned exactly with target 16 with its target position ZP3.
  • the irradiation of target 16 with laser beam 18 now begins, successfully attacking target 16.
  • the target 16 is not detected by the detector 10 in the entire search area 20 according to the above procedure:
  • the entire search area 20 is searched unsuccessfully for the target 16.
  • the unsuccessful guidance of the detector 10 to the target 16 is determined and reported to the warning system 6.
  • the warning system then supplies a new guidance position EP and the above procedure is repeated.
  • the entire described procedure is carried out with the help of or by a control and evaluation unit 22 of the DIRCM system 4.
  • the tracking and Irradiation or combating of the target 16 takes place with the help of or by a conventional combat module 24 (not shown in detail in the figures) in the DIRCM modules 8a, b.
  • the DIRCM modules 8a, b are therefore also designed to track the target 16 with the detector 10 and irradiate the target 16 with the laser beam 18.
  • the DIRCM system 4 forms a DIRCM system 26.
  • the Figures 2 and 3 show possible alternative search areas 20 or search patterns that result from the superposition of the target areas ZB of three or four target positions ZP, whereby the target positions ZP are adjacent to the instruction position EP. Again, azimuth A and elevation E are shown or - starting from the instruction position EP as the zero point - azimuth and elevation errors during the instruction.
  • Figure 2 assumes three, Figure 3 from four neighboring target positions ZP1-3 / ZP1-4.
  • the guidance position EP and the guidance area EB with radius r around it represent the maximum possible three-sigma error of the ice guidance accuracy of the warning system 6 relative to the installation level of the DIRCM module 8a, b (jamming turret).
  • the three or four target areas ZB1-3 / ZB1-4 around the respectively selected target positions ZP1-3/ZP1-4 have the same radius r.
  • a respective search area 20 results in which the detection of a target 16 is ensured with a three-sigma probability. This means that the interior of the search area 20 is completely covered by target areas ZB around the respective target positions ZP.
  • the three-sigma error range is thus correspondingly increased compared to the target range ZB or the reference range EB.
  • Figure 2 shows an alternative search area 20. This is represented by a total of three target positions ZP1-3 and the associated target areas ZB1-3.
  • the target positions ZP1-3 are adjacent to the instruction position EP or are located on beams 28 at angles of 0°, 120° and 240° on a circle around the instruction position EP.
  • the distances to the instruction position EP are the same and amount to two thirds of the radius of the target area ZB.
  • Figure 2 shows the size of the search area 20 in comparison to the briefing area EB.
  • FIG 3 A total of four target positions ZP1-4 with associated target areas ZB1-4 are selected.
  • the target positions ZP1-4 are located on corresponding beams 28 at 0°, 90°, 180° and 270°. Each at the radius r of the target areas ZB.
  • the size of the search area 20 is shown in comparison to the instruction area EB.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

Die Erfindung betrifft DIRCMs (Directed Infrared Counter Measures) bzw. entsprechende DIRCM-Systeme.The invention relates to DIRCMs (Directed Infrared Counter Measures) or corresponding DIRCM systems.

Aus " https://www.diehl.com/defence/de/presse-und-medien/themen-im-fokus/, 'Laser soll Transportflugzeuge der Bundeswehr schützen', Abruf am 04.02.2019 " ist ein laserbasiertes DIRCM(Directed Infrared Counter Measure)-System zum Schutz taktischer Transportflugzeuge, anderer Flugzeugmuster oder von Hubschraubern vor Raketenangriffen bzw. modernen Lenkflugkörpern bekannt. Das Schutzsystem verwendet Hightech-Sensoren des Herstellers Elbit Systems, um Suchkopf-gesteuerte Lenkflugkörper abwehren zu können. Solche Flugkörper, eingesetzt von tragbaren Luftabwehrsystemen, stellen besonders bei Start und Landung eine große Gefahr dar. Diehl Defence integriert drei der bereits im Einsatz bewährten J-MUSIC(Multi-Spectral Infrared Countermeasure)-Lasergeräte von Elbit zu einem erweiterten Gesamtsystem, um einen kompletten 360°-Rundumschutz für das Flugzeug zu gewährleisten. Das neue DIRCM-System arbeitet in Verbindung mit dem bord-eigenen Flugkörperwarner und fokussiert den hochdynamisch und präzise geführten Laserstrahl direkt auf den Infrarot-Suchkopf des angreifenden Objekts.Out of " https://www.diehl.com/defence/de/presse-und-medien/themen-im-fokus/, 'Laser to protect Bundeswehr transport aircraft', accessed on 04.02.2019 " is a laser-based DIRCM (Directed Infrared Counter Measure) system for protecting tactical transport aircraft, other aircraft types or helicopters from rocket attacks or modern guided missiles. The protection system uses high-tech sensors from the manufacturer Elbit Systems to fend off seeker-controlled guided missiles. Such missiles, used by portable air defense systems, pose a great danger, especially during takeoff and landing. Diehl Defence integrates three of Elbit's already proven J-MUSIC (Multi-Spectral Infrared Countermeasure) laser devices into an expanded overall system to ensure complete 360° all-round protection for the aircraft. The new DIRCM system works in conjunction with the on-board missile warning system and focuses the highly dynamic and precisely guided laser beam directly onto the infrared seeker head of the attacking object.

Ein solches DIRCM-System enthält mindestens ein DIRCM-Modul. Diese Module enthalten einen Detektor zur Detektion, d. h. Ortsbestimmung des Ziels. Ist das Ziel detektiert, erfolgt eine Nachverfolgung ("tracking") des Ziels, und die Aussendung des Laserstrahls zum Ziel hin ("jamming"). So gelangt der Laserstrahl mit Hilfe des Detektors zum Ziel.Such a DIRCM system contains at least one DIRCM module. These modules contain a detector for detection, i.e. determining the location of the target. Once the target is detected, the target is tracked and the laser beam is emitted towards the target ("jamming"). The laser beam thus reaches the target with the help of the detector.

Zunächst muss der Detektor jedoch auf das Ziel hin eingewiesen, d. h. grob auf dieses hin orientiert werden, damit das Ziel im Erfassungsbereich (Zielbereich) des Detektors liegt, in dem dieser das Ziel dann erfolgreich und hochgenau erfassen kann. Basis für eine zumindest ungefähre Ausrichtung bzw. Einweisung des Detektors auf das Ziel hin liefern Einweisungsdaten aus einem Warnsystem, z. B. einem Flugkörperwarner (MWS: Missile Warning System).First, however, the detector must be directed towards the target, i.e. roughly oriented towards it, so that the target is in the detection range (target range) of the detector. in which it can then successfully and accurately detect the target. The basis for at least an approximate alignment or guidance of the detector to the target is provided by guidance data from a warning system, e.g. a missile warning system (MWS).

Aus der EP 2 527 865 A1 ist ein System zum Schützen eines Flugzeugs gegen eine oder mehrere anfliegende Bedrohungen bekannt. Das System umfasst einen oder mehrere elektrooptische Sensoren, um einen Bereich um das Flugzeug herum nach einer oder mehreren möglichen anfliegende Bedrohungen abzutasten und um ein Anzeigesignal zu erzeugen, sobald eine anfliegende Bedrohung erkannt wird; eine integrierte Einheit, die einen Missile Approach Confirmation Sensor (MACS) mit Directed Infra-Red Counter Measure (DIRCM) kombiniert, um die anfliegende Bedrohung zu verifizieren und eine Gegenmaßnahme gegen die verifizierte anfliegende Bedrohung zu aktivieren; und einen Prozessor zum Empfangen von Daten von dem einen oder den mehreren elektrooptischen Sensoren und der integrierten MACS-DIRCM-Einheit und zum Auswählen einer Gegenmaßnahmentechnik zum Einsatz gegen die anfliegende Bedrohung.From the EP 2 527 865 A1 A system for protecting an aircraft against one or more incoming threats is known. The system includes one or more electro-optical sensors for scanning an area around the aircraft for one or more possible incoming threats and for generating an indication signal when an incoming threat is detected; an integrated unit that combines a Missile Approach Confirmation Sensor (MACS) with Directed Infra-Red Counter Measure (DIRCM) to verify the incoming threat and activate a countermeasure against the verified incoming threat; and a processor for receiving data from the one or more electro-optical sensors and the integrated MACS-DIRCM unit and for selecting a countermeasure technique for use against the incoming threat.

Aus der DE 101 48 071 A1 ist ein Verfahren bekannt zur Erkennung und Verfolgung von Objekten auf der Basis von bevorzugt geschwindigkeits- oder tiefenaufgelösten Bildern von Gegenständen in einem Sichtbereich wenigstens eines, insbesondere an einem Fahrzeug angeordneten, Sensors, insbesondere eines Laserscanners, bei dem die Erkennung und Verfolgung unter Verwendung eines jeweils einem der Objekte zugeordneten Modells für die zeitliche Entwicklung von Zustandsparametern erfolgt, die wenigstens eine sensorspezifische Eigenschaft des Objekts beschreiben, wobei das Modell einen Modelltyp hat und durch wenigstens einen Modellparameter parametrisierbar ist. Bei dem Verfahren werden zur Klassifizierung von Objekten mehrere Objektklassen vorgesehen, die wenigstens eine Eigenschaft von Objekten betreffen, die aus wenigstens einem der geschwindigkeits- oder tiefenaufgelösten Bilder bestimmbar ist, wobei mindestens einem Objekt eine der Objektklassen zugeordnet ist und dem Objekt in Abhängigkeit von der zugeordneten Objektklasse ein Modelltyp und ein Wert für den entsprechenden Modellparameter zugeordnet werden.From the DE 101 48 071 A1 A method is known for detecting and tracking objects on the basis of preferably speed- or depth-resolved images of objects in a field of view of at least one sensor, in particular a laser scanner, arranged in particular on a vehicle, in which the detection and tracking takes place using a model assigned to each of the objects for the temporal development of state parameters that describe at least one sensor-specific property of the object, wherein the model has a model type and can be parameterized by at least one model parameter. In the method, several object classes are provided for classifying objects, which relate to at least one property of objects that can be determined from at least one of the speed- or depth-resolved images, wherein at least one object is assigned one of the object classes and the object is assigned a model type and a value for the corresponding model parameter depending on the assigned object class.

Aufgabe der Erfindung ist es, Verbesserungen im Hinblick auf die Einweisung des Detektors auf das anfliegende Ziel hin vorzuschlagen.The object of the invention is to propose improvements with regard to the guidance of the detector towards the approaching target.

Die Aufgabe wird gelöst durch ein Verfahren gemäß Patentanspruch 1.The problem is solved by a method according to patent claim 1.

Bevorzugte oder vorteilhafte Ausführungsformen der Erfindung sowie anderer Erfindungskategorien ergeben sich aus den weiteren Ansprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.Preferred or advantageous embodiments of the invention and other categories of invention emerge from the further claims, the following description and the attached figures.

Das Verfahren dient zur Einweisung eines beweglichen Detektors eines DIRCM-Moduls eines DIRCM-Systems auf ein anfliegendes Ziel. Die Erfindung geht dabei von einem DIRCM-System aus, das eine Schnittstelle zu einem Warnsystem enthält. Die Schnittstelle dient zum Empfang einer Einweisungsposition für das Ziel vom Warnsystem. Das DIRCM-System enthält außerdem mindestens ein DIRCM-Modul. Dieses enthält den Detektor, der zum Detektieren des Ziels dient. Der Detektor weist dabei eine Zielposition für die Ausrichtung auf das Ziel auf. Indem der Detektor bewegt, insbesondere (z. B. kardanisch) verschwenkt wird, wird die Zielposition mit verschwenkt. Die Zielposition ist also fest mit dem Detektor verbunden und wird mit diesem zusammen bewegt bzw. verschwenkt. Die Zielposition gibt diejenige Richtung an, in welcher der Laserstrahl des zugehörigen DIRCM-Moduls ausgesendet wird und sollte daher möglichst exakt auf das Ziel ausgerichtet werden. An der Zielposition findet auch das Tracking bzw. die Verfolgung des Ziels statt. Bzw. wird der Detektor so bewegt und dem Ziel nachgeführt, dass das Ziel möglichst in der Zielposition gehalten wird.The method is used to guide a movable detector of a DIRCM module of a DIRCM system to an approaching target. The invention is based on a DIRCM system that contains an interface to a warning system. The interface is used to receive a guide position for the target from the warning system. The DIRCM system also contains at least one DIRCM module. This contains the detector that is used to detect the target. The detector has a target position for alignment with the target. By moving the detector, in particular pivoting it (e.g. gimbal-mounted), the target position is also pivoted. The target position is therefore firmly connected to the detector and is moved or pivoted together with it. The target position indicates the direction in which the laser beam of the associated DIRCM module is emitted and should therefore be aligned as precisely as possible with the target. Tracking or tracing of the target also takes place at the target position. Or the detector is moved and tracked to the target in such a way that the target is kept in the target position as much as possible.

"Positionen" und "Bereiche" im Sinne der vorliegenden Anmeldung sind insbesondere Paare aus Azimut- und Elevationswerten bzw. -bereichen. "Ziel-/Einweisungsposition", "Ziel- / Einweisungsbereich", usw. bezeichnet in diesem Sinne also insbesondere Werte oder Bereiche bzw. Flächen von Azimut und Elevation eines von einem Dreh- / Schwenkpunkt des Detektors ausgehenden Strahles, Raumwinkels usw."Positions" and "ranges" in the sense of the present application are in particular pairs of azimuth and elevation values or ranges. "Target/instruction position", "target/instruction range", etc. in this sense therefore refer in particular to values or ranges or areas of azimuth and elevation of a beam, solid angle, etc. emanating from a pivot/pivot point of the detector.

Bei dem Verfahren wird zunächst die Einweisungsposition über die Schnittstelle empfangen. Der Einweisungsposition wird ein Einweisungsbereich zugeordnet. Grund hierfür ist, dass die Erkennung an sich und die ermittelte Position eines erkannten Ziels durch das Warnsystem mit Unsicherheiten verbunden ist. Der Einweisungsbereich beschreibt daher denjenigen Bereich, in dem sich das bzw. ein Ziel mit einer ersten Mindestwahrscheinlichkeit tatsächlich befindet.In the process, the instruction position is first received via the interface. A instruction area is assigned to the instruction position. The reason for this is that the detection itself and the position determined by the warning system of a recognized target are associated with uncertainties. The instruction area therefore describes the area in which the target or a target is actually located with a first minimum probability.

Bei dem Verfahren wird außerdem der Zielposition ein Zielbereich zugeordnet. Auch eine Detektion eines Ziels durch den Detektor ist mit Unsicherheiten behaftet. Sinngemäß entsprechend zu oben ist der Zielbereich derjenige Bereich, in dem eine Detektion eines (tatsächlich vorhandenen) Ziels mit einer zweiten Mindestwahrscheinlichkeit erfolgt. Der Zielbereich ist dabei kleiner als der Einweisungsbereich.The method also assigns a target area to the target position. The detection of a target by the detector is also subject to uncertainty. In accordance with the above, the target area is the area in which a Detection of a (actually present) target with a second minimum probability. The target area is smaller than the instruction area.

Bei dem Verfahren wird außerdem gemäß einer Suchstrategie ein Suchbereich bereitgestellt. Der Suchbereich wird größer als der Zielbereich gewählt. Der Suchbereich wird außerdem so gewählt, dass dieser mindestens den Einweisungsbereich abdeckt.The method also provides a search area according to a search strategy. The search area is selected to be larger than the target area. The search area is also selected so that it covers at least the instruction area.

Gemäß der Suchstrategie wird anschließend der Suchbereich nach dem Ziel abgesucht. Hierzu wird die Zielposition und damit der Zielbereich - durch bzw. mit Hilfe der Bewegung des Detektors - über den Suchbereich bewegt. Dabei wird das Ziel jeweils im Zielbereich gesucht.The search area is then searched for the target according to the search strategy. To do this, the target position and thus the target area is moved across the search area - by or with the help of the movement of the detector. The target is always searched for in the target area.

Der Suchbereich wird dabei so lange abgesucht, bis entweder das Ziel erfolgreich detektiert wurde oder bis der gesamte Suchbereich erfolglos nach dem Ziel abgesucht wurde, d. h. kein Ziel aufgefunden wurde.The search area is searched until either the target has been successfully detected or until the entire search area has been searched unsuccessfully for the target, i.e. no target has been found.

Für den Fall, dass das Ziel im Suchbereich detektiert wurde, wird eine erfolgreiche Einweisung des Detektors auf das Ziel festgestellt. Insbesondere kann nun, da das Ziel vom Detektor erfasst ist, in herkömmlich bekannter Weise, mit der Bekämpfung des Ziels durch Zielverfolgung und Laserbestrahlung begonnen werden.If the target is detected in the search area, the detector is determined to have been successfully directed towards the target. In particular, now that the target has been detected by the detector, the target can be engaged in the conventional manner by means of target tracking and laser irradiation.

Alternativ wird, für den Fall, dass der gesamte Suchbereich erfolglos nach dem Ziel abgesucht wurde, eine erfolglose Einweisung des Detektors auf das Ziel festgestellt.Alternatively, if the entire search area has been searched unsuccessfully for the target, an unsuccessful targeting of the detector is detected.

Die "Beweglichkeit" des Detektors ist also insbesondere eine Verschwenkbarkeit um mindestens eine, insbesondere zwei oder drei Achsen, die insbesondere senkrecht aufeinander stehen.The "mobility" of the detector is therefore in particular a pivotability about at least one, in particular two or three axes, which are in particular perpendicular to one another.

Ein "Bereich" im Sinne der vorliegenden Anmeldung ist daher insbesondere ein Paar aus einem Azimut-Intervall und einem Elevations-Intervall. Ausgehend von einem Zentralpunkt (Drehpunkt des Detektors) handelt es sich dabei insbesondere um Bereiche auf einer konzentrischen Kugeloberfläche. Die Bereiche weisen dabei insbesondere eine Kreisform auf bzw. stellen eine Kugelkalotte dar.A "region" in the sense of the present application is therefore in particular a pair of an azimuth interval and an elevation interval. Starting from a central point (pivot point of the detector), these are in particular regions on a concentric spherical surface. The regions in particular have a circular shape or represent a spherical cap.

Gemäß der Erfindung ist somit eine erfolgreiche Ausrichtung bzw. Einweisung des Detektors auf das Ziel auch bei ungenauen Einweisungsdaten / Einweisungsposition möglich. Die "Ungenauigkeit" entsteht dabei wie folgt: Der Einweisungsbereich, in dem sich das Ziel gemäß Einweisungsposition des Warnsystems aufhalten soll, ist größer als der Zielbereich, in dem (bei gegebener Ausrichtung des Detektors auf eine bestimmte Zielposition) ein Ziel erfasst werden kann. Bei konzentrischer Ausrichtung des Zielbereiches auf die Einweisungsposition könnten daher Ziele, die sich am Rand des Einweisungsbereiches aufhalten, außerhalb des Zielbereiches liegen und somit nicht mehr erfasst werden.According to the invention, successful alignment or instruction of the detector to the target is therefore possible even with inaccurate instruction data/instruction position. The "inaccuracy" arises as follows: The instruction area in which the target should be located according to the instruction position of the warning system is larger than the target area in which a target can be detected (given a given alignment of the detector to a specific target position). If the target area is concentrically aligned to the instruction position, targets that are located at the edge of the instruction area could therefore be outside the target area and thus no longer be detected.

Dank des Verfahrens wird ein Suchbereich geschaffen, der mindestens den Einweisungsbereich abdeckt und dieser Suchbereich durch Bewegen / Verschwenken des Detektors und damit des Zielbereiches nach dem Ziel "abgescannt". So kann ein Ziel im Rahmen der ersten und zweiten Mindestwahrscheinlichkeiten im gesamten Einweisungsbereich vom Detektor erfasst werden.Thanks to the method, a search area is created that covers at least the instruction area and this search area is "scanned" for the target by moving/swivelling the detector and thus the target area. In this way, a target can be detected by the detector within the first and second minimum probabilities in the entire instruction area.

Für entsprechende "Suchstrategien" sind verschiedenste Ausführungsformen denkbar. Eine Suchstrategie wird dabei insbesondere anwendungsspezifisch bezüglich des individuellen, durch das DIRCM-System zu schützenden Objekts, der individuellen, zu erwartenden Bedrohung in Form des Ziels, zu erwartender individueller taktischer Maßnahmen des Ziels, usw. entwickelt. Ein generelles Charakteristikum der Suchstrategie ist daher insbesondere, diese möglichst fallspezifisch / empirisch / taktisch / usw. an die zu erwartenden Charakteristiken einer Bedrohung durch ein anfliegendes Ziel sowie an das zu schützende Objekt anzupassen, um den Detektor möglichst schnell und sicher auf das Ziel ausrichten zu können.A wide variety of embodiments are conceivable for corresponding "search strategies". A search strategy is developed in particular in an application-specific manner with regard to the individual object to be protected by the DIRCM system, the individual, expected threat in the form of the target, expected individual tactical measures of the target, etc. A general characteristic of the search strategy is therefore to adapt it as case-specifically / empirically / tactically / etc. as possible to the expected characteristics of a threat from an approaching target and to the object to be protected in order to be able to align the detector to the target as quickly and safely as possible.

In einer bevorzugten Ausführungsform wird - für den Fall, dass die erfolglose Einweisung festgestellt wird - diese erfolglose Einweisung an einen Empfänger, insbesondere das Warnsystem oder ein übergeordnetes DIRCM-Steuersystem usw., gemeldet. Unter einer derartigen Meldung wird insbesondere auch die Anforderung einer neuen Einweisungsposition für das anfliegende Ziel verstanden.In a preferred embodiment, if unsuccessful guidance is detected, this unsuccessful guidance is reported to a receiver, in particular the warning system or a higher-level DIRCM control system, etc. Such a report is also understood to mean, in particular, the request for a new guidance position for the approaching target.

Alternativ oder zusätzlich wird - für den Fall, dass die erfolgreiche Einweisung festgestellt wird (das Ziel liegt also irgendwo im Zielbereich) - die Zielposition mit Hilfe des Detektors (exakt) auf das Ziel ausgerichtet. Dies ist gerade eine Kern-Eigenschaft des Detektors / DIRCM-Moduls: das sogenannte "Tracking", d. h., dass sich der Detektor exakt und zentral, also mit der Zielposition, auf das Ziel ausrichtet und diese Ausrichtung dynamisch auf dem Ziel beibehält. Als Folge hiervon kann eine zielgerichtete Bestrahlung (Jamming) unter Nachverfolgung (Tracking) des Ziels erfolgen.Alternatively or additionally - in the event that the successful guidance is determined (i.e. the target is somewhere in the target area) - the target position is (exactly) aligned with the target using the detector. This is a core property of the detector / DIRCM module: the so-called "tracking", i.e. that the detector aligns itself exactly and centrally, i.e. with the target position, with the target and this Dynamically maintains alignment with the target. As a result, targeted irradiation (jamming) can be carried out while tracking the target.

Somit stehen für beide Varianten (erfolgreiche / erfolglose Einweisung) weiterführende Maßnahmen zur Verfügung.Thus, further measures are available for both variants (successful / unsuccessful admission).

In einer bevorzugten Ausführungsform wird als Einweisungsbereich ein Drei-Sigma-Bereich bezüglich des Vorhandenseins des Ziels im Einweisungsbereich gewählt. Alternativ oder zusätzlich wird, als Zielbereich ein Drei-Sigma-Bereich bezüglich der erfolgreichen Detektion des Ziels im Zielbereich gewählt. Die Bereiche werden also so groß gewählt, dass für die erste bzw. zweite Wahrscheinlichkeit eine 3-Sigma-Wahrscheinlichkeit (dreifache Standardabweichung) von ca. 99,7% gilt. Das Ziel befindet sich dann mit für die Praxis ausreichend großer Wahrscheinlichkeit innerhalb des Einweisungsbereiches und wird mit ebenso großer Wahrscheinlichkeit innerhalb des Zielbereiches detektiert. Die erfolgreiche Einweisung des Detektors auf ein vom Warnsystem erkanntes Ziel wird damit mit ausreichender Wahrscheinlichkeit erfolgen.In a preferred embodiment, a three-sigma range is selected as the guidance range with regard to the presence of the target in the guidance range. Alternatively or additionally, a three-sigma range is selected as the target range with regard to the successful detection of the target in the target range. The ranges are therefore selected to be large enough that a 3-sigma probability (three times the standard deviation) of approximately 99.7% applies to the first and second probability. The target is then located within the guidance range with a sufficiently high probability for practical use and is detected within the target range with an equally high probability. The successful guidance of the detector to a target detected by the warning system will therefore occur with sufficient probability.

In einer bevorzugten Ausführungsform wird der Suchbereich durch eine Zusammenfügung und/oder Überlagerung der Zielbereiche für mindestens zwei Ausrichtungen des Detektors auf verschiedene Zielpositionen gebildet. Die (unterschiedlichen, da an anderen Orten bzw. Bereichen - Azimut / Elevation - gelegenen) Zielbereiche werden dabei an der entsprechend festgehaltenen Ausrichtung des Detektors an der jeweiligen Zielposition zumindest teilweise oder auch ganz abgesucht. Erst anschließend wird der Detektor auf eine neue, andere Zielposition bewegt und dort festgehalten. Sodann wird der nächste Zielbereich wieder abgesucht, usw. Somit kann der Suchbereich besonders einfach abgesucht werden.In a preferred embodiment, the search area is formed by combining and/or superimposing the target areas for at least two orientations of the detector to different target positions. The target areas (which are different because they are located in different locations or areas - azimuth/elevation) are searched at least partially or completely at the corresponding fixed orientation of the detector at the respective target position. Only then is the detector moved to a new, different target position and held there. The next target area is then searched again, and so on. This makes it particularly easy to search the search area.

In einer bevorzugten Ausführungsform wird eine Suchstrategie gewählt, die eine Mehrfachsuche nach dem Ziel an gleichen Orten des Suchbereiches vermeidet. Insbesondere bei Überlappung von Zielbereichen wird dabei der Überlappungsbereich nur einmalig abgesucht. Zielbereiche werden dann insbesondere nur teilweise abgesucht und nicht in einem Überlappungsbereich mit einem bereits vorher abgesuchten (Teil eines) anderen Zielbereich. So wird die Suche nach dem Ziel insgesamt beschleunigt.In a preferred embodiment, a search strategy is selected that avoids multiple searches for the target at the same locations in the search area. In particular, when target areas overlap, the overlap area is only searched once. Target areas are then only partially searched and not in an overlap area with a previously searched (part of) another target area. This speeds up the search for the target overall.

In einer bevorzugten Ausführungsform wird eine Suchstrategie gewählt, die eine Bewegung des Ziels und/oder eine Bewegung des DIRCM-Systems berücksichtigt. So können beispielsweise bei einer bestimmten prognostizierten Flugbahn des Ziels relativ zum DIRCM-System bestimmte Abschnitte des Suchbereiches, in denen das Ziel besonders wahrscheinlich aufzufinden ist, zuerst abgesucht werden, um das Ziel möglichst schnell detektieren zu können. So ist auch zu vermeiden, dass sich das Ziel zu einem ersten Zeitpunkt in einem ersten Zielbereich befindet, der erst später abgesucht wird, da gerade in zweiter Zielberiech abgesucht wird. Später, wenn der erste Zielbereich abgesucht wird, hat sich das Ziel dann aber in den zweiten Zielbereich bewegt, der bereits abgesucht wurde. So würde das Ziel nur aufgrund der "falschen" Suchreihenfolge nicht detektiert. Eine Bewegung des DIRCM-Systems kann zum Beispiel dadurch entstehen, dass dieses an einem fliegenden Flugzeug angebracht ist und das Flugzeug ein Flugmanöver relativ zum Ziel durchführt. Die Bewegung des Flugzeugs kann hierbei zum Beispiel aus Sensoren bzw. Flugrechner-Daten des Flugzeuges gewonnen werden. Auch hierdurch kann die Schnelligkeit bzw. Qualität der Detektion des Ziels erhöht werden.In a preferred embodiment, a search strategy is selected that takes into account a movement of the target and/or a movement of the DIRCM system. For example, given a certain predicted flight path of the target relative to the DIRCM system, certain sections of the search area in which the target is particularly likely to be found can be searched first in order to be able to detect the target as quickly as possible. This also avoids the target being in a first target area at an initial point in time that is only searched later because the second target area is currently being searched. Later, when the first target area is searched, the target has then moved into the second target area that has already been searched. The target would not be detected simply because of the "wrong" search sequence. A movement of the DIRCM system can occur, for example, if it is attached to a flying aircraft and the aircraft is performing a flight maneuver relative to the target. The movement of the aircraft can be obtained, for example, from sensors or flight computer data of the aircraft. This can also increase the speed and quality of target detection.

In einer bevorzugten Ausführungsform wird eine Suchstrategie verwendet, die eine Entfernung zwischen dem Warnsystem und dem Detektor und/oder eine Relativbewegung zwischen dem Warnsystem und dem Detektor berücksichtigt. Eine entsprechende Entfernung entsteht zum Beispiel durch die Montage eines Warnsystems am Bug und eines Detektors am Heck eines Flugzeuges. Durch eine entsprechende Entfernung entsteht ein Parallaxenfehler zwischen beiden Komponenten, der dann im Verfahren kompensiert werden kann. Eine entsprechende Relativbewegung kann in der gleichen Beispielsituation durch eine Verwindung eines Flugzeugrumpfes zwischen Bug und Heck erfolgen. Warnsystem und Detektor verlören dann ihre gegenseitig abgestimmte Raumausrichtung. Auch ein derartiger entsprechender Fehler kann über Daten eines Flugrechners, Sensoren etc. erfasst und im Verfahren kompensiert werden. Auch hierdurch kann die Schnelligkeit bzw. Qualität der Detektion des Ziels erhöht werden.In a preferred embodiment, a search strategy is used that takes into account a distance between the warning system and the detector and/or a relative movement between the warning system and the detector. A corresponding distance arises, for example, by mounting a warning system on the bow and a detector on the tail of an aircraft. A corresponding distance creates a parallax error between the two components, which can then be compensated for in the process. A corresponding relative movement can occur in the same example situation by twisting an aircraft fuselage between the bow and tail. The warning system and detector would then lose their mutually coordinated spatial alignment. Such a corresponding error can also be recorded using data from a flight computer, sensors, etc. and compensated for in the process. This can also increase the speed and quality of target detection.

In einer bevorzugten Ausführungsform wird eine Suchstrategie gewählt, gemäß der der Detektor schrittweise auf mindestens zwei Zielpositionen ausgerichtet wird, und an der jeweiligen festgehaltenen Zielposition der Zielbereich zumindest teilweise oder vollständig (insbesondere je nach Überlappung, siehe oben) abgesucht wird. Das entsprechende Vorgehen wurde sinngemäß bereits oben erläutert. Es erfolgt also eine schrittweise bzw. sukzessive Abarbeitung des Suchbereiches im Wechsel von Festhalten des Detektors an einer Position, Absuchen des Zielbereiches, Positionswechsel, festhalten, absuchen, usw. Insbesondere kann so durch Platzierung / Reihenfolge der Zielpositionen im Suchbereich ein günstiger Ortsablauf für die Suche im Suchbereich etabliert werden, zum Beispiel an den Orten zuerst gesucht werden, an denen das Ziel am wahrscheinlichsten vermutet wird.In a preferred embodiment, a search strategy is selected according to which the detector is aligned step by step to at least two target positions, and the target area is searched at least partially or completely (in particular depending on the overlap, see above) at the respective fixed target position. The corresponding procedure has already been explained above. The search area is thus processed step by step or successively, alternating between Holding the detector in one position, scanning the target area, changing position, holding, scanning, etc. In particular, by placing/ordering the target positions in the search area, a favorable local sequence for the search in the search area can be established, for example, searching first in the places where the target is most likely to be found.

In einer bevorzugten Ausführungsform wird eine Suchstrategie gewählt, bei der drei oder vier Zielpositionen gewählt werden, die auf Strahlen (Halbgeraden) liegen, die von der Einweisungsposition ausgehen und auf einem Kreisumfang um jeweils 120° (bei drei) oder 90° (bei vier) gegeneinander verdreht sind. Nach dem entsprechenden Bildungsgesetz (360° geteilt durch die Anzahl von Strahlen) können auch mehr als vier oder weniger als drei Strahlen gewählt werden und entsprechende Zielpositionen auf diesen verteilt werden. Hierdurch lassen sich Suchbereiche und Suchstrategien finden, die besonders effektiv sind. Die Zielpositionen auf den Strahlen liegen hierbei beabstandet von der Einweisungsposition.In a preferred embodiment, a search strategy is chosen in which three or four target positions are selected that lie on rays (half-lines) that emanate from the instruction position and are rotated relative to one another on a circle circumference by 120° (with three) or 90° (with four). According to the corresponding formation law (360° divided by the number of rays), more than four or fewer than three rays can also be selected and corresponding target positions distributed across them. This makes it possible to find search areas and search strategies that are particularly effective. The target positions on the rays are spaced apart from the instruction position.

In einer bevorzugten Variante dieser Ausführungsform werden die Abstände der drei oder vier (oder mehr oder weniger) Zielpositionen auf den Strahlen gleich weit entfernt von der Einweisungsposition gewählt. Somit entstehen - in Verbindung mit gleichen Zielbereichen) symmetrische Suchbereiche. So liegen die Zielpositionen also auf einem Kreis um die Einweisungsposition.In a preferred variant of this embodiment, the distances between the three or four (or more or fewer) target positions on the beams are chosen to be the same distance from the instruction position. This creates symmetrical search areas in conjunction with the same target areas. The target positions are therefore located on a circle around the instruction position.

Es ist aber auch möglich, dass die Abstände der drei oder vier (oder mehr oder weniger) Zielpositionen auf den Strahlen unterschiedlich weit entfernt von der Einweisungsposition gewählt werden. Somit können auch von der Kreisform abweichende Suchbereiche realisiert werden.However, it is also possible to choose different distances between the three or four (or more or fewer) target positions on the beams from the instruction position. This means that search areas that deviate from the circular shape can also be realized.

Die Aufgabe der Erfindung wird auch gelöst durch ein DIRCM-System gemäß Patentanspruch 11. Das DIRCM-System entspricht dem oben bereits erläuterten und enthält die Schnittstelle zum Warnsystem zum Empfang der Einweisungsposition für das anfliegende Ziel vom Warnsystem. Das DIRCM-System enthält weiterhin das mindestens eine DIRCM-Modul mit dem beweglichen Detektor zum Detektieren des Ziels, wobei der Detektor die Zielposition für die Ausrichtung auf das Ziel aufweist. Das DIRCM-System enthält außerdem eine Steuer- und Auswerteeinheit zur Ausführung des erfindungsgemäßen Verfahrens.The object of the invention is also achieved by a DIRCM system according to claim 11. The DIRCM system corresponds to that already explained above and contains the interface to the warning system for receiving the guidance position for the approaching target from the warning system. The DIRCM system also contains at least one DIRCM module with the movable detector for detecting the target, the detector having the target position for alignment with the target. The DIRCM system also contains a control and evaluation unit for carrying out the method according to the invention.

Das DIRCM-System und zumindest ein Teil dessen Ausführungsformen sowie die jeweiligen Vorteile wurden sinngemäß bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren erläutert.The DIRCM system and at least some of its embodiments as well as the respective advantages have already been explained in connection with the method according to the invention.

In einer bevorzugten Ausführungsform enthält das DIRCM-System ein Bekämpfungsmodul zur Verfolgung und Bekämpfung des Ziels anhand der vom Detektor gelieferten Zielposition. Insbesondere ist der Detektor Teil des Bekämpfungsmoduls. Alternativ oder zusätzlich ist das DIRCM-Modul auch zum Verfolgen und/oder Bestrahlen des Ziels ausgebildet. Mit einem derartigen DIRCM-System ist neben der Einweisung bzw. Ausrichtung auf das Ziel bzw. dessen Detektion auch dessen Bekämpfung und Verfolgung möglich.In a preferred embodiment, the DIRCM system contains a combat module for tracking and combating the target based on the target position provided by the detector. In particular, the detector is part of the combat module. Alternatively or additionally, the DIRCM module is also designed to track and/or irradiate the target. With such a DIRCM system, in addition to guiding or aiming at the target or detecting it, it is also possible to combat and track it.

Die Aufgabe der Erfindung wird auch gelöst durch eine DIRCM-Anlage gemäß Patentanspruch 13. Diese enthält ein erfindungsgemäßes DIRCM-System und das oben genannte Warnsystem.The object of the invention is also achieved by a DIRCM system according to patent claim 13. This contains a DIRCM system according to the invention and the above-mentioned warning system.

Die DIRCM-Anlage und zumindest ein Teil deren Ausführungsformen sowie die jeweiligen Vorteile wurden sinngemäß bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren und dem DIRCM-System erläutert.The DIRCM system and at least some of its embodiments as well as the respective advantages have already been explained in connection with the method according to the invention and the DIRCM system.

Mit dem Warnsystem kann ein Objekt vollständig geschützt werden.The warning system can completely protect an object.

Die Aufgabe der Erfindung wird auch gelöst durch ein solches Objekt gemäß Patentanspruch 14, mit einer das Objekt schützenden erfindungsgemäßen DIRCM-Anlage, wobei die DIRCM-Anlage am Objekt montiert ist. Das Objekt ist insbesondere ein Luft-, Land- oder Wasserfahrzeug, ein Fluggerät, Flugzeug, Hubschrauber, Schiff oder Landfahrzeug, kann aber auch eine feste Einrichtung am Boden sein.The object of the invention is also achieved by such an object according to patent claim 14, with a DIRCM system according to the invention protecting the object, wherein the DIRCM system is mounted on the object. The object is in particular an air, land or water vehicle, an aircraft, airplane, helicopter, ship or land vehicle, but can also be a fixed facility on the ground.

Das Objekt und zumindest ein Teil dessen Ausführungsformen sowie die jeweiligen Vorteile wurden sinngemäß bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren, dem DIRCM-System und der DIRCM-Anlage erläutert.The object and at least some of its embodiments as well as the respective advantages have already been explained in connection with the method according to the invention, the DIRCM system and the DIRCM facility.

In einer bevorzugten Ausführungsform ist das Warnsystem entfernt von wenigstens einem der DIRCM-Module am Objekt angeordnet. Dadurch entstehen die oben genannten Parallaxen-, Verwindungsfehler usw. Dies gilt insbesondere, wenn Warnsystem und DIRCM-Module bzw. Detektoren auf z. B. Bug / Mitte / Heck eines Flugzeuges verteilt sind. Durch Toleranzen etc. entstehen Ausrichtungsfehler zwischen den Komponenten der Anlage, so dass in der Regel vergleichsweise große Einweisungsbereiche im Vergleich zu Zielbereichen vorliegen. Anhand des erfindungsgemäßen Verfahrens / Systems / Anlage kann dann der Suchbereich dennoch effektiv nach dem Ziel abgesucht werden, um den Detektor auf das Ziel einzuweisen.In a preferred embodiment, the warning system is arranged at a distance from at least one of the DIRCM modules on the object. This causes the above-mentioned parallax, twisting errors, etc. This is especially true if the warning system and DIRCM modules or detectors are distributed over, for example, the front / middle / rear of an aircraft. Tolerances etc. cause alignment errors between the components of the system, so that there are usually comparatively large guidance areas compared to target areas. Using the method/system/system according to the invention, the search area can then still be effectively searched for the target in order to guide the detector to the target.

Die Erfindung beruht auf folgenden Erkenntnissen, Beobachtungen bzw. Überlegungen und weist noch die nachfolgenden Ausführungsformen auf. Die Ausführungsformen werden dabei teils vereinfachend auch "die Erfindung" genannt. Die Ausführungsformen können hierbei auch Teile oder Kombinationen der oben genannten Ausführungsformen enthalten oder diesen entsprechen und/oder gegebenenfalls auch bisher nicht erwähnte Ausführungsformen einschließen.The invention is based on the following findings, observations and considerations and also has the following embodiments. The embodiments are sometimes referred to as "the invention" for the sake of simplicity. The embodiments can also contain parts or combinations of the above-mentioned embodiments or correspond to them and/or possibly also include embodiments not previously mentioned.

Die Erfindung beruht auf der Überlegung, dass für ein erfolgreiches Aufschalten (Einweisen) des DIRCM-Störmoduls (enthält den Detektor) auf das Ziel die Ungenauigkeit der MWS-Einweisungsdaten (Missile Warning System / Warnsystem / Einweisungsposition / -bereich), quantifiziert durch den Drei-Sigma-Fehler, eine bestimmte Schwelle nicht überschreiten darf. Beispielsweise muss die Genauigkeit unter a Grad (a°) Azimut / Elevation liegen, dem Drei-Sigma-Zielbereich des Detektors. Bei einem großen Transportflugzeug kann diese Schwelle unter bestimmten Bedingungen nicht eingehalten werden, z. B. aufgrund von elastischen Verformungen des Flugzeugsrumpfs. Trotzdem muss das Aufschalten des DIRCM Störmoduls auf die Bedrohung (Ziel) für eine erfolgreiche Bekämpfung innerhalb kurzer Zeit mit hoher Wahrscheinlichkeit erfolgen.The invention is based on the consideration that for the DIRCM jamming module (containing the detector) to be successfully locked onto the target, the inaccuracy of the MWS (missile warning system) instruction data (warning system/instruction position/area), quantified by the three-sigma error, must not exceed a certain threshold. For example, the accuracy must be less than a degree (a°) azimuth/elevation, the three-sigma target range of the detector. In a large transport aircraft, this threshold cannot be met under certain conditions, e.g. due to elastic deformation of the aircraft fuselage. Nevertheless, the DIRCM jamming module must be locked onto the threat (target) within a short time with a high degree of probability in order to successfully combat it.

Die Erfindung beruht auf der Erkenntnis, dass bisher die Einweisung eines DIRCM-Störmoduls nur mit Daten eines MWS möglich war, dessen Sensor (IR-Kamera) sich direkt neben dem DIRCM-Störmodul (und damit dem Detektor) befindet, so dass durch elastische Verformungen des Flugzeugsrumpfs keine zu große Ungenauigkeit der MWS-Daten entstehen kann. Außerdem galten bisher sehr hohe Anforderungen bzgl. der Montage und der anschließenden Vermessung und Kalibration der MWS-Sensoren und DIRCM-Störmodule (deren Sensoren) relativ zum Flugzeug.The invention is based on the realization that, until now, the instruction of a DIRCM jamming module was only possible with data from an MWS whose sensor (IR camera) is located directly next to the DIRCM jamming module (and thus the detector), so that elastic deformations of the aircraft fuselage cannot cause the MWS data to become too inaccurate. In addition, very high requirements have previously applied with regard to the assembly and subsequent measurement and calibration of the MWS sensors and DIRCM jamming modules (their sensors) relative to the aircraft.

Beispielsweise arbeitet ein Detektor in einem Erfassungsbereich von b Grad (b°; wobei b° > a°) Azimut- / Elevation. Eine sichere Zieldetektion (mit 3-Sigma-Wahrscheinlichkeit) ist jedoch nur innerhalb eines Bereiches von a Grad (a°) gegeben. Ein Warnsystem liefert in der Regel Einweisungsdaten im Genauigkeitsbereich von c Grad (c°; wobei c° < a°) (Einweisungsbereich, Drei-Sigma-Wahrscheinlichkeit). Bei entfernter Montage der beiden Systeme zum Beispiel an Bug und Heck eines großen Flugzeuges verschlechtern Parallaxenfehler, Verformungsfehler und konstruktive Justierungsfehler diesen Wert, sodass nur noch Einweisungsdaten im Genauigkeitsbereich von d Grad (d°; wobei d° > a°) (Einweisungsbereich, Drei-Sigma-Wahrscheinlichkeit) vorliegen. Eine sichere Einweisung ist daher nicht mehr möglich, da die geforderten a Grad (a°) (des Zielbereiches des Detektors im DIRCM-Modul) überschritten sind.For example, a detector operates in a detection range of b degrees (b°; where b° > a°) azimuth / elevation. However, reliable target detection (with 3-sigma probability) is only possible within a range of a degrees (a°). A warning system usually provides guidance data in the accuracy range of c Degrees (c°; where c° < a°) (instruction range, three-sigma probability). If the two systems are mounted remotely, for example at the bow and tail of a large aircraft, parallax errors, deformation errors and design adjustment errors worsen this value so that only instruction data in the accuracy range of d degrees (d°; where d° > a°) (instruction range, three-sigma probability) are available. Safe instruction is therefore no longer possible because the required a degrees (a°) (of the target range of the detector in the DIRCM module) are exceeded.

Die Erfindung beruht nun auf folgender Idee: Statt das DIRCM Störmodul (bzw. dessen Detektor / Zielposition des Detektors) genau auf die nominelle Position der Bedrohung (Einweisungsposition) auszurichten, die aufgrund einer zu hohen Ungenauigkeit der MWS-Daten ggf. so fehlerbehaftet ist, dass dort kein Aufschalten möglich ist, durchläuft das DIRCM Störmodul (Detektor) ein Suchmuster (Suchstrategie). Die Ungenauigkeit ist z. B. vom zu schützenden Objekt (z. B. Flugzeug bzw. dessen Hersteller) her bekannt und addiert sich insbesondere aus dem Parallaxenfehler, der Verformung des Objekts zwischen Warnsystem und Detektor und grundlegenden Ausrichtungsungenauigkeiten zwischen Warnsystem und Detektor. Dieses Suchmuster wird entweder im DIRCM Störmodul selbst erzeugt oder von einer überlagerten DIRCM-Steuersoftware. Das Suchmuster deckt einen Suchbereich um die nominelle Position der Bedrohung (Einweisungsposition) ab, wobei die Größe des Suchbereichs von der zu erwarteten Ungenauigkeit der MWS-Daten abhängt (also mindestens den Einweisungsbereich abdeckt). Das Suchmuster wird dabei so optimiert, dass es den aus der Einweisungsgenauigkeit der MWS-Daten resultierenden Suchbereich mit möglichst wenig Suchpositionen vollständig abdeckt, wobei mögliche Bewegungen von Bedrohung (Ziel) und Flugzeug (zu schützendes Objekt) während der Abarbeitung des Suchmusters (Abarbeitung der Suchstrategie) berücksichtigt werden. Die möglichen Bewegungen beeinflussen z. B. die Reihenfolge der Ausrichtung des Detektors auf verschiedene Zielpositionen.The invention is based on the following idea: Instead of aligning the DIRCM jamming module (or its detector / target position of the detector) precisely to the nominal position of the threat (instruction position), which may be so faulty due to excessive inaccuracy of the MWS data that no connection is possible there, the DIRCM jamming module (detector) runs through a search pattern (search strategy). The inaccuracy is known, for example, from the object to be protected (e.g. aircraft or its manufacturer) and is added up in particular from the parallax error, the deformation of the object between the warning system and detector and basic alignment inaccuracies between the warning system and detector. This search pattern is either generated in the DIRCM jamming module itself or by a superimposed DIRCM control software. The search pattern covers a search area around the nominal position of the threat (instruction position), whereby the size of the search area depends on the expected inaccuracy of the MWS data (i.e. it covers at least the instruction area). The search pattern is optimized so that it completely covers the search area resulting from the accuracy of the MWS data with as few search positions as possible, taking into account possible movements of the threat (target) and aircraft (object to be protected) during the processing of the search pattern (processing of the search strategy). The possible movements influence, for example, the order in which the detector is aligned to different target positions.

Die Erfindung beruht weiterhin auf folgender Erkenntnis: In dem Moment, in dem die Detektion einer vom Warnsystem erkannten Bedrohung (Ziel) durch den Detektor an der vom Warnsystem übermittelten Einweisungsposition fehlschlägt, beendet das DIRCM-Modul (Jamming Turret) seine Akquisition (Suche nach dem Ziel im Zielbereich) ohne weiterhin mit Hilfe des Detektors nach dem Ziel zu suchen und berichtet die fehlgeschlagene Akquisition an das DIRCM Steuersystem.The invention is further based on the following finding: At the moment when the detection of a threat (target) detected by the warning system by the detector at the instruction position transmitted by the warning system fails, the DIRCM module (Jamming Turret) ends its acquisition (search for the target in the target area) without further searching for the target with the help of the detector and reports the failed acquisition to the DIRCM control system.

Die Erfindung beruht damit auch auf folgender Verbesserungs-Idee: Wenn eine Bedrohung (Ziel) an ein DIRCM Modul (Jamming Turret) gemeldet / übergeben wird, bewegt sich der Detektor (Jamming Turret) nicht exakt auf die übermittelte Zielposition (Einweisungsposition), sondern bewegt sich - anhand eines geeigneten Suchmusters (Suchstrategie) - der Reihe nach zu einer oder mehreren benachbarten Positionen (Zielpositionen für den Detektor), welche die übermittelte Einweisungsposition umgeben. Denkbar sind hierbei zum Beispiel drei oder vier benachbarte Zielpositionen, die gleichverteilt auf einer Kreisbahn um die Einweisungsposition liegen.The invention is therefore also based on the following improvement idea: When a threat (target) is reported/transferred to a DIRCM module (jamming turret), the detector (jamming turret) does not move exactly to the transmitted target position (instruction position), but moves - using a suitable search pattern (search strategy) - in sequence to one or more neighboring positions (target positions for the detector) that surround the transmitted instruction position. For example, three or four neighboring target positions that are evenly distributed on a circular path around the instruction position are conceivable.

An jeder dieser benachbarten Positionen (Zielpositionen gemäß Suchmuster) startet der Detektor (Jamming Turret) eine Akquisition, d. h. sucht innerhalb des Zielbereiches nach dem Ziel. Falls das Ziel erfolgreich erfasst wird, startet das DIRCM Modul die Zielverfolgung (Tracking). Andernfalls, falls die Akquisition fehlschlägt, bewegt sich der Detektor (Jamming Turret) zur nächsten benachbarten Position, bis das Ziel erfolgreich akquiriert ist oder alle benachbarten Positionen ohne erfolgreiche Akquisition abgearbeitet sind. Nur in diesem Fall berichtet das DIRCM-Module (Jamming Turret) die fehlgeschlagene Akquisition zurück an einen Empfänger, z. B. das DIRCM-Steuersystem.At each of these neighboring positions (target positions according to the search pattern), the detector (jamming turret) starts an acquisition, i.e. searches for the target within the target area. If the target is successfully detected, the DIRCM module starts tracking. Otherwise, if the acquisition fails, the detector (jamming turret) moves to the next neighboring position until the target is successfully acquired or all neighboring positions have been processed without successful acquisition. Only in this case does the DIRCM module (jamming turret) report the failed acquisition back to a receiver, e.g. the DIRCM control system.

Gemäß der Erfindung kann das aktuelle Suchmuster (Suchstrategie, z. B. wie viele Zielpositionen, welche Reihenfolge der Zielpositionen, ...) abhängig von spezifischen Randbedingungen des DIRCM Moduls (Jamming Turret) und der vom Warnsystem gelieferten Daten (Einweisungsdaten, MWS data) definiert werden. Neben der Maximierung des sich ergebenden Radius (des Suchbereiches) können zusätzliche Randbedingungen berücksichtigt werden, welche die mögliche Bewegung des Flugzeuges (an dem das DIRCM-System montiert ist) und der anfliegenden Bedrohung (Ziel, Rakete) während der Zeit zur Abarbeitung des kompletten Suchmusters berücksichtigen.According to the invention, the current search pattern (search strategy, e.g. how many target positions, which order of the target positions, ...) can be defined depending on specific boundary conditions of the DIRCM module (jamming turret) and the data provided by the warning system (instruction data, MWS data). In addition to maximizing the resulting radius (the search area), additional boundary conditions can be taken into account, which take into account the possible movement of the aircraft (on which the DIRCM system is mounted) and the approaching threat (target, missile) during the time it takes to process the complete search pattern.

Gemäß der Erfindung ergeben sich folgende Vorteile: Durch Anwendung des Suchmusters (Suchstrategie) müssen weniger hohe Anforderungen an die Genauigkeit der MWS-Einweisungsdaten (Einweisungsposition / Einweisungsbereich) erfüllt sein. Damit ist z. B. trotz möglicher elastischer Verformungen des Flugzeugrumpfs eine Einweisung eines DIRCM-Störmoduls am Heck des Flugzeugs mit Daten eines MWS-Sensors vorne am Flugzeug möglich. Dies ist beispielweise dann erforderlich, wenn während des Landeanflugs die Bedrohung von vorne unten anfliegt und von einem MWS-Sensor vorne am Flugzeug detektiert wird, aber nur ein DIRCM Störmodul am Heck für die Bekämpfung verfügbar ist. Weiterhin gelten durch Anwendung des Suchmusters (Suchstrategie) geringere Anforderungen z. B. an die Montage und anschließende Vermessung und Kalibration der MWS-Sensoren und DIRCM-Störmodule relativ zum Flugzeug sowie an den maximal zulässigen Parallaxe-Fehler bei einer Übergabe zwischen zwei DIRCM Störmodulen vorn und hinten am Flugzeug.According to the invention, the following advantages arise: By applying the search pattern (search strategy), less stringent requirements for the accuracy of the MWS instruction data (instruction position / instruction area) must be met. This means that, for example, despite possible elastic deformations of the aircraft fuselage, instruction of a DIRCM jamming module at the rear of the aircraft is possible using data from an MWS sensor at the front of the aircraft. This is necessary, for example, if the threat approaches from below during the landing approach and is detected by an MWS sensor at the front of the aircraft, but only one DIRCM jamming module at the rear is available for combat. Furthermore, by applying the search pattern (search strategy), lower requirements apply, e.g. for the installation and subsequent measurement and calibration of the MWS sensors and DIRCM jamming modules relative to the aircraft, as well as for the maximum permissible parallax error when transferring between two DIRCM jamming modules at the front and rear of the aircraft.

Die Erfindung zeichnet sich unter anderem aus durch:

  1. 1. Einweisung DIRCM Störmodul (Detektor) mit Suchmuster (Suchstrategie), statt Einweisung auf nominelle Position (Einweisungsposition) der Bedrohung (Ziel).
  2. 2. optimale Auslegung des Suchmusters für Abdeckung des aus der Einweisungsgenauigkeit der MWS-Daten resultierenden Suchbereichs mit möglichst wenig Suchpositionen (Zielpositionen) unter Berücksichtigung der möglichen Bewegungen von Bedrohung (Ziel) und Flugzeug (Objekt) während der Abarbeitung des Suchmusters.
The invention is characterized by, among other things:
  1. 1. Instruction of DIRCM jamming module (detector) with search pattern (search strategy), instead of instruction on nominal position (instruction position) of the threat (target).
  2. 2. optimal design of the search pattern to cover the search area resulting from the accuracy of the MWS data with as few search positions (target positions) as possible, taking into account the possible movements of the threat (target) and aircraft (object) during the processing of the search pattern.

Gemäß der Erfindung ergibt sich somit ein "DIRCM Störmodul (Detektor) Suchmuster" ("DIRCM Jamming Turret Search Pattern"). Es ergibt sich ein Suchmuster für ein DIRCM Störmodul (Detektor), das auch bei ungenauen Einweisungsdaten (Einweisungsposition / -bereich) des Raketenwarngeräts (Warnsystem, Missile Warning System, MWS) ein Aufschalten (Einweisen) auf die anfliegende Bedrohung (Ziel) ermöglicht.According to the invention, this results in a "DIRCM jamming turret search pattern". This results in a search pattern for a DIRCM jamming turret that enables locking on to the approaching threat (target) even when the missile warning system (MWS) has inaccurate guidance data (guidance position/area).

Weitere Merkmale, Wirkungen und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung sowie der beigefügten Figuren. Dabei zeigen, jeweils in einer schematischen Prinzipskizze:

  • Figur 1 ein DIRCM-System an einem Flugzeug im Betrieb,
  • Figuren 2 und 3 alternative Suchbereiche gemäß alternativer Suchstrategien.
Further features, effects and advantages of the invention emerge from the following description of a preferred embodiment of the invention and the attached figures. Each of these shows a schematic principle sketch:
  • Figure 1 a DIRCM system on an aircraft in operation,
  • Figures 2 and 3 alternative search areas according to alternative search strategies.

Figur 1 zeigt lediglich symbolisch angedeutet ein Objekt 2, hier ein militärisches Transport-Flugzeug bzw. dessen Rumpf. Am Rumpf, hier am Heck des Flugzeuges, ist ein DIRCM-System 4 sowie, hier am Bug des Flugzeuges, ein Warnsystem 6, hier ein MWS (Missile Warning System), angebracht. Das DIRCM System 4 enthält zwei DIRCM-Module 8a, b, von denen jedes einen beweglichen Detektor 10 enthält. Jeder der Detektoren 10 ist in dem Sinne beweglich, dass er um einen Schwenkpunkt 12 kardanisch schwenkbar ist. Das DIRCM-System 4 enthält außerdem eine Schnittstelle 14 zum Warnsystem 6. Figure 1 shows an object 2, in this case a military transport aircraft or its fuselage, in a merely symbolic manner. A DIRCM system 4 is attached to the fuselage, in this case at the rear of the aircraft, as well as a warning system 6, in this case a MWS (Missile Warning System), in this case at the bow of the aircraft. The DIRCM system 4 contains two DIRCM modules 8a, b, each of which contains a movable detector 10. Each of the detectors 10 is movable in the sense that it can be rotated around a pivot point 12. can be pivoted gimbal-mounted. The DIRCM system 4 also contains an interface 14 to the warning system 6.

Figur 1 zeigt eine Situation, bei welcher sich das Objekt 2 im Flug befindet und eine Bedrohung in Form eines Ziels 16, hier eine feindliche Boden-Luft-Rakete, auf das Objekt 2 anfliegt, um dieses zu zerstören. Mithilfe des DIRCM Systems 4 soll das Ziel 16 in üblicher, hier nicht näher detailliert erläuterter Weise, also durch Zielverfolgung (Tracking) und Beleuchtung des IR(Infrarot)-Suchkopfes der Rakete mit einem Laserstrahl 18 (Jamming) unschädlich gemacht werden. Figure 1 shows a situation in which the object 2 is in flight and a threat in the form of a target 16, in this case an enemy surface-to-air missile, is flying towards the object 2 in order to destroy it. With the help of the DIRCM system 4, the target 16 is to be rendered harmless in the usual way, which is not explained in detail here, i.e. by tracking and illuminating the IR (infrared) seeker head of the missile with a laser beam 18 (jamming).

Hierzu muss der Laserstrahl 18 zunächst auf das Ziel 16 ausgerichtet werden. Hierzu muss das Ziel 16 vom Detektor 10 erfasst bzw. geortet und anschließend getrackt werden. Hierzu muss wiederum der Detektor 10 zumindest grob auf das Ziel 16 hin vorausgerichtet bzw. eingewiesen werden.For this purpose, the laser beam 18 must first be aligned with the target 16. For this purpose, the target 16 must be detected or located by the detector 10 and then tracked. For this purpose, the detector 10 must in turn be at least roughly aligned or directed towards the target 16.

Das Ziel 16 wird zunächst vom Warnsystem 6 bemerkt und erfasst und dessen ermittelte Position als Einweisungsposition EP vom Warnsystem 6 über die Schnittstelle 14 an das DIRCM-System 4 übermittelt bzw. von diesem empfangen. Die Schnittstelle 14 dient daher dem DIRCM-System 4 zum Empfang der Einweisungsposition EP für das Ziel 16. Die entsprechende Einweisungsposition EP ist jedoch mit Ungenauigkeiten behaftet. Daher wird der Einweisungsposition EP ein Einweisungsbereich EB zugeordnet. Der Einweisungsbereich stellt sicher, dass sich das Ziel 16 mit einer ersten Mindestwahrscheinlichkeit tatsächlich im Einweisungsbereich EB befindet. Diese Wahrscheinlichkeit ist hier eine so genannte 3-sigma- Wahrscheinlichkeit von ca. 99,7 %. Wie in Fig. 1 dargestellt, befindet sich das Ziel 16 tatsächlich entfernt von der Einweisungsposition EP.The target 16 is first noticed and recorded by the warning system 6 and its determined position is transmitted as the instruction position EP from the warning system 6 via the interface 14 to the DIRCM system 4 or received by it. The interface 14 is therefore used by the DIRCM system 4 to receive the instruction position EP for the target 16. However, the corresponding instruction position EP is subject to inaccuracies. Therefore, the instruction position EP is assigned an instruction area EB. The instruction area ensures that the target 16 is actually located in the instruction area EB with a first minimum probability. This probability is a so-called 3-sigma probability of approximately 99.7%. As in Fig. 1 shown, the target 16 is actually located away from the guidance position EP.

Das Ziel 16, sowie Positionen und Bereiche usw. werden in Figur 1 symbolisch in einer Azimut(A)- / Elevations(E)-Darstellung einer Kugelumgebung des Objekts 2 dargestellt.The target 16, as well as positions and areas etc. are in Figure 1 symbolically represented in an azimuth (A) / elevation (E) representation of a spherical environment of object 2.

Dem Detektor 10 ist eine Zielposition ZP zugeordnet bzw. weist der Detektor 10 eine solche Zielposition ZP auf. Auch die Detektion durch den Detektor 10 ist mit einer Unsicherheit behaftet. Auch dieser Zielposition ZP wird daher ein Zielbereich ZB zugeordnet. Sollte sich das Ziel 16 tatsächlich im Zielbereich ZB befinden, wird dieses mit einer zweiten Mindestwahrscheinlichkeit auch tatsächlich vom Detektor 10 detektiert. Diese Wahrscheinlichkeit ist hier ebenso eine 3-sigma- Wahrscheinlichkeit von ca. 99,7 %.A target position ZP is assigned to the detector 10 or the detector 10 has such a target position ZP. The detection by the detector 10 is also subject to uncertainty. This target position ZP is therefore also assigned a target area ZB. If the target 16 is actually located in the target area ZB, it will actually be detected by the detector 10 with a second minimum probability. This probability is also a 3-sigma probability of approximately 99.7%.

Gemäß einer Suchstrategie wird nun ein Suchbereich 20 bereitgestellt. In diesem Suchbereich 20 soll nun das Ziel 16 mithilfe des Detektors 10 gesucht werden. Der Suchbereich 20 wird größer als der Zielbereich ZB gewählt, um die Suche gegenüber dem Zielbereich ZB erweitern zu können. Gleichzeitig wird der Suchbereich 20 so gewählt, dass dieser mindestens den Einweisungsbereich EB abdeckt bzw. beinhaltet. Somit ist sichergestellt, dass der gesamte Einweisungsbereich EB auch nach dem Ziel 16 abgesucht wird. Im Beispiel besteht die Suchstrategie darin, den Suchbereich 20 kreisförmig mit dem 1,2-fachen Radius des Einweisungsbereiches EB konzentrisch zur Einweisungsposition EP auszuführen.According to a search strategy, a search area 20 is now provided. The target 16 is now to be searched for in this search area 20 using the detector 10. The search area 20 is selected to be larger than the target area ZB in order to be able to expand the search compared to the target area ZB. At the same time, the search area 20 is selected so that it covers or includes at least the instruction area EB. This ensures that the entire instruction area EB is also searched for the target 16. In the example, the search strategy consists of executing the search area 20 in a circle with 1.2 times the radius of the instruction area EB concentrically to the instruction position EP.

Gemäß der Suchstrategie wird nun der Suchbereich 20 nach dem Ziel 16 abgesucht, indem der Zielbereich ZB durch Bewegung des Detektors 10 über den Suchbereich 20 bewegt wird. Das Ziel 16 wird dabei jeweils innerhalb des Zielbereiches ZB gesucht.According to the search strategy, the search area 20 is now searched for the target 16 by moving the target area ZB over the search area 20 by moving the detector 10. The target 16 is searched for within the target area ZB.

Im Beispiel wird gemäß Suchstrategie zunächst eine erste Zielposition ZP1 45° rechts unterhalb der Einweisungsposition bei 75% des Radius des Einweisungsbereiches EB positioniert. Bei an dieser Zielposition ZP1 festgehaltenem Zielbereich ZB1 wird dieser nach dem Ziel 16 - hier erfolglos - abgesucht. Als zweite Zielposition ZP2 wird als nächstes ein Ort 45° links unterhalb der Einweisungsposition bei 75% des Radius des Einweisungsbereiches EB gewählt. Bei festgehaltenem entsprechendem Zielbereich ZB2 wird dieser nach dem Ziel 16 - hier erfolgreich - abgesucht. Somit ist der Detektor 10 an der Zielposition ZP2 erfolgreich auf das Ziel 16 eingewiesen, eine erfolgreiche Einweisung wird daher festgestellt. Das übliche automatische Tracking des Ziels 16 im Detektor 10 wird nun aktiviert und dieser demnach mit seiner Zielposition ZP3 exakt auf das Ziel 16 ausgerichtet. Nun wird mit der Bestrahlung des Ziels 16 durch den Laserstrahl 18 begonnen und das Ziel 16 so erfolgreich bekämpft.In the example, according to the search strategy, a first target position ZP1 is initially positioned 45° to the right below the instruction position at 75% of the radius of the instruction area EB. With the target area ZB1 held at this target position ZP1, this is searched for target 16 - in this case unsuccessfully. The next location selected as the second target position ZP2 is a location 45° to the left below the instruction position at 75% of the radius of the instruction area EB. With the corresponding target area ZB2 held, this is searched for target 16 - in this case successfully. The detector 10 at the target position ZP2 is thus successfully guided to target 16, and successful guidance is therefore determined. The usual automatic tracking of target 16 in detector 10 is now activated and this is therefore aligned exactly with target 16 with its target position ZP3. The irradiation of target 16 with laser beam 18 now begins, successfully attacking target 16.

In einer alternativen - nicht dargestellten - Situation wird das Ziel 16 vom Detektor 10 gemäß dem obigen Vorgehen im gesamten Suchbereich 20 nicht detektiert: Durch sukzessives Versetzen der Zielposition ZP und Absuchen des jeweiligen Zielbereiches ZB wird also der gesamte Suchbereich 20 erfolglos nach dem Ziel 16 abgesucht. In der Folge wird die erfolglose Einweisung des Detektors 10 auf das Ziel 16 festgestellt und an das Warnsystem 6 gemeldet. Das Warnsystem liefert daraufhin eine neue Einweisungsposition EP und das obige Verfahren wird wiederholt.In an alternative situation - not shown - the target 16 is not detected by the detector 10 in the entire search area 20 according to the above procedure: By successively moving the target position ZP and searching the respective target area ZB, the entire search area 20 is searched unsuccessfully for the target 16. As a result, the unsuccessful guidance of the detector 10 to the target 16 is determined and reported to the warning system 6. The warning system then supplies a new guidance position EP and the above procedure is repeated.

Das gesamte beschriebene Verfahren wird mit Hilfe bzw. von einer Steuer- und Auswerteeinheit 22 des DIRCM Systems 4 durchgeführt. Die Verfolgung und Bestrahlung bzw. Bekämpfung des Ziels 16 erfolgt mit Hilfe bzw. von einem in den Figuren nicht näher dargestellten herkömmlichen Bekämpfungsmodul 24 in den DIRCM-Modulen 8a, b. Die DIRCM-Module 8a, b sind daher also auch zum Verfolgen des Ziels 16 mit dem Detektor 10 und Bestrahlen des Ziels 16 mit dem Laserstrahl 18 ausgebildet. Zusammen mit dem Warnsystem 6 bildet das DIRCM-System 4 eine DIRCM Anlage 26.The entire described procedure is carried out with the help of or by a control and evaluation unit 22 of the DIRCM system 4. The tracking and Irradiation or combating of the target 16 takes place with the help of or by a conventional combat module 24 (not shown in detail in the figures) in the DIRCM modules 8a, b. The DIRCM modules 8a, b are therefore also designed to track the target 16 with the detector 10 and irradiate the target 16 with the laser beam 18. Together with the warning system 6, the DIRCM system 4 forms a DIRCM system 26.

Die Figuren 2 und 3 zeigen mögliche alternative Suchbereiche 20 bzw. Suchmuster, die aus der Überlagerung der Zielbereiche ZB von drei oder vier Zielpositionen ZP entstehen, wobei die Zielpositionen ZP der Einweisungsposition EP benachbart sind. Dargestellt sind wieder Azimut A und Elevation E bzw. - ausgehend von der Einweisungsposition EP als Nullpunkt - Azimut- und Elevations-fehler bei der Einweisung. Figur 2 geht dabei von drei, Figur 3 von vier benachbarten Zielpositionen ZP1-3 / ZP1-4 aus. Die Einweisungsposition EP und der Einweisungsbereich EB mit Radius r um diese stellt den maximal möglichen Drei-Sigma-Fehler der Eiseinweisungsgenauigkeit des Warnsystems 6 relativ zur Installationsebene des DIRCM Moduls 8a, b (Jamming Turret) dar. Die drei bzw. vier Zielbereiche ZB1-3 / ZB1-4 um die jeweils gewählten Zielpositionen ZP1-3/ZP1-4 haben den selben Radius r.The Figures 2 and 3 show possible alternative search areas 20 or search patterns that result from the superposition of the target areas ZB of three or four target positions ZP, whereby the target positions ZP are adjacent to the instruction position EP. Again, azimuth A and elevation E are shown or - starting from the instruction position EP as the zero point - azimuth and elevation errors during the instruction. Figure 2 assumes three, Figure 3 from four neighboring target positions ZP1-3 / ZP1-4. The guidance position EP and the guidance area EB with radius r around it represent the maximum possible three-sigma error of the ice guidance accuracy of the warning system 6 relative to the installation level of the DIRCM module 8a, b (jamming turret). The three or four target areas ZB1-3 / ZB1-4 around the respectively selected target positions ZP1-3/ZP1-4 have the same radius r.

Für jedes Suchmuster (hier im Uhrzeigersinn, ausgehend vom Zielbereich ZB1) ergibt sich ein jeweiliger Suchbereich 20 in dem mit einer Drei-Sigma-Wahrscheinlichkeit die Detektion eines Ziels 16 sichergestellt ist. D. h., das Innere des Suchbereiches 20 ist vollständig von Zielbereichen ZB um die jeweiligen Zielpositionen ZP abgedeckt. Für Figur 2 ergibt sich ein Radius des Suchbereiches 20 von 1,15 r, für Figur 3 von 1,41 r. Der Drei-Sigma-Fehlerbereich ist somit jeweils entsprechend vergrößert gegenüber dem Zielbereich ZB bzw. dem Einweisungsbereich EB.For each search pattern (here clockwise, starting from the target area ZB1), a respective search area 20 results in which the detection of a target 16 is ensured with a three-sigma probability. This means that the interior of the search area 20 is completely covered by target areas ZB around the respective target positions ZP. For Figure 2 This results in a radius of the search area 20 of 1.15 r, for Figure 3 of 1.41 r. The three-sigma error range is thus correspondingly increased compared to the target range ZB or the reference range EB.

Figur 2 zeigt einen alternativen Suchbereich 20. Dieser wird durch insgesamt drei Zielpositionen ZP1-3 und die zugehörigen Zielbereiche ZB1-3 dargestellt. Die Zielpositionen ZP1-3 sind dabei der Einweisungsposition EP benachbart bzw. liegen auf Strahlen 28 an Winkeln von 0°, 120° und 240° auf einem Kreis um die Einweisungsposition EP. Die Abstände zur Einweisungsposition EP sind gleich und betragen zwei Drittel des Radius des Zielbereiches ZB. Figur 2 zeigt die Größe des Suchbereiches 20 im Vergleich zum Einweisungsbereich EB. Figure 2 shows an alternative search area 20. This is represented by a total of three target positions ZP1-3 and the associated target areas ZB1-3. The target positions ZP1-3 are adjacent to the instruction position EP or are located on beams 28 at angles of 0°, 120° and 240° on a circle around the instruction position EP. The distances to the instruction position EP are the same and amount to two thirds of the radius of the target area ZB. Figure 2 shows the size of the search area 20 in comparison to the briefing area EB.

In Figur 3 sind insgesamt vier Zielpositionen ZP1-4 mit zugehörigen Zielbereichen ZB1-4 gewählt. Die Zielpositionen ZP1-4 liegen hierbei auf entsprechenden Strahlen 28 bei 0°, 90°, 180° und 270°. Jeweils beim Radius r der Zielbereiche ZB. Auch hier ist die Größe des Suchbereiches 20 im Vergleich zum Einweisungsbereich EB gezeigt.In Figure 3 A total of four target positions ZP1-4 with associated target areas ZB1-4 are selected. The target positions ZP1-4 are located on corresponding beams 28 at 0°, 90°, 180° and 270°. Each at the radius r of the target areas ZB. Here too, the size of the search area 20 is shown in comparison to the instruction area EB.

Bezugszeichenlistelist of reference symbols

22
Objektobject
44
DIRCM-SystemDIRCM system
66
Warnsystemwarning system
8a, b8a, b
DIRCM-ModulDIRCM module
1010
Detektordetector
1212
Schwenkpunktpivot point
1414
Schnittstelleinterface
1616
ZielGoal
1818
Laserstrahllaser beam
2020
Suchbereichsearch area
2222
Steuer- und Auswerteeinheitcontrol and evaluation unit
2424
Bekämpfungsmodulcontrol module
2626
DIRCM-AnlageDIRCM facility
2828
Strahlbeam
EPEP
Einweisungspositioninstruction position
EBEB
Einweisungsbereichinstruction area
ZPZP
Zielpositiontarget position
ZBZB
Zielbereichtarget area
AA
Azimutazimuth
EE
Elevationelevation
rr
Radiusradius

Claims (16)

  1. Method for the orientation of a movable detector (10) of a DIRCM module (8a, b) of a DIRCM system (4) with respect to an approaching target (16), the DIRCM system (4) containing:
    - an interface (14) to a warning system (6) for receiving an orientation position (EP) for the target (16) from the warning system (6),
    - at least one DIRCM module (8a, b) having the detector (10) for detecting the target (16), the detector (10) having a target position (ZP) for the alignment with respect to the target (16), the target position (ZP) indicating that direction in which a laser beam (18) - which combats the target (16) by illumination - of the associated DIRCM module (8a, b) is emitted, and the target position (ZP) being fixedly linked with the detector (10) and being moved together with the latter, in which method:
    - the orientation position (EP) is received via the interface (14),
    - the orientation position (EP) is assigned an orientation range (EB) in which the target (16) is actually situated with a first minimum probability,
    - the target position (ZP) is assigned a target range (ZB) in which a detection of the target (16) is possible with a second minimum probability and which is smaller than the orientation range (EB),
    - in accordance with a search strategy a search range (20) is provided which is chosen to be larger than the target range (ZB) and which covers at least the orientation range (EB),
    - in accordance with the search strategy the search range (20) is searched for the target (16) by virtue of the fact that the target range (ZB) is moved over the search range (20) by movement of the detector (10) and in the process the target (16) is searched for in each case in the target range (ZB), wherein
    - the search range (20) is searched until either the target (16) has been detected or the entire search range (20) has been unsuccessfully searched for the target (16),
    - if the target (16) has been detected in the search range (20), a successful orientation of the detector (10) with respect to the target (16) is ascertained,
    - if the entire search range (20) has been unsuccessfully searched for the target (16), an unsuccessful orientation of the detector (10) with respect to the target (16) is ascertained.
  2. Method according to Claim 1,
    characterized
    in that if the unsuccessful orientation is ascertained, the latter is reported to a receiver, and/or if the successful orientation is ascertained, the target position (ZP) is aligned with respect to the target (16) with the aid of the detector (10).
  3. Method according to either of the preceding claims, characterized
    in that a three-sigma range in relation to the presence of the target (16) in the orientation range (EB) is chosen as orientation range (EB), and/or a three-sigma range in relation to the successful detection of the target (16) in the target range (ZB) is chosen as target range (ZB).
  4. Method according to any of the preceding claims, characterized
    in that the search range (20) is formed by merging and/or superimposing the target ranges (ZB) for at least two alignments of the detector (10) with respect to different target positions (ZP).
  5. Method according to any of the preceding claims, characterized
    in that a search strategy is chosen which avoids a multiple search for the target (16) at identical locations of the search range (20).
  6. Method according to any of the preceding claims, characterized
    in that a search strategy is chosen which takes account of a movement of the target (16) and/or a movement of the DIRCM system (4).
  7. Method according to any of the preceding claims, characterized
    in that a search strategy is used which takes account of a distance and/or a relative movement between the warning system (6) and the detector (10).
  8. Method according to any of the preceding claims, characterized
    in that a search strategy is chosen in accordance with which the detector (10) is aligned stepwise with respect to at least two target positions (ZP), and the target range (ZB) is at least partly searched at the respective captured target position (ZP).
  9. Method according to any of the preceding claims, characterized
    in that a search strategy (20) is chosen which involves choosing three or four target positions (ZP) which lie on rays (28) which proceed from the orientation position (EP) and are offset relative to one another by in each case 120° or 90°.
  10. Method according to Claim 9,
    characterized
    in that the spacings of the three or four target positions (ZP) on the rays (28) are chosen to be at an equal distance from the orientation position (EP).
  11. Method according to Claim 9,
    characterized
    in that the spacings of the three or four target positions (ZP) on the rays (28) are chosen to be at different distances from the orientation position (EP).
  12. DIRCM system (4), having
    - an interface (14) to a warning system (6) for receiving an orientation position (EP) for an approaching target (16) from the warning system (6),
    - at least one DIRCM module (8a, b) having a movable detector (10) for detecting the target (16), the detector (10) having a target position (ZP) for the alignment with respect to the target (16),
    - a control and evaluation unit (22) for carrying out the method according to any of the preceding claims.
  13. DIRCM system (4) according to Claim 12, characterized in that
    - this system contains a combating module (24) for tracking and combating the target (16) on the basis of the target position (ZP) supplied by the detector (10) and/or
    - the DIRCM module (8a, b) is also designed for tracking and/or irradiating the target (16).
  14. DIRCM apparatus (26) having a DIRCM system (4) according to Claim 12 or 13 and having the warning system (6) .
  15. Object (2), having a DIRCM apparatus (26) according to Claim 14 that protects the object (2),
    wherein the DIRCM apparatus (26) is mounted on the object (2) .
  16. Object (2) according to Claim 15,
    characterized
    in that the warning system (6) is arranged at a distance from at least one of the DIRCM modules (8a, b) on the object (2).
EP20196593.6A 2019-10-04 2020-09-17 Alignment of a detector of a dircm module relative to a target Active EP3800483B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019006925.0A DE102019006925A1 (en) 2019-10-04 2019-10-04 Alignment of a detector of a DIRCM module to a target

Publications (2)

Publication Number Publication Date
EP3800483A1 EP3800483A1 (en) 2021-04-07
EP3800483B1 true EP3800483B1 (en) 2024-10-23

Family

ID=72560413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20196593.6A Active EP3800483B1 (en) 2019-10-04 2020-09-17 Alignment of a detector of a dircm module relative to a target

Country Status (3)

Country Link
EP (1) EP3800483B1 (en)
DE (1) DE102019006925A1 (en)
ES (1) ES3005282T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022003403A1 (en) 2022-09-16 2024-03-21 Diehl Defence Gmbh & Co. Kg DIRCM with prediction of MWS data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527865B1 (en) * 2011-05-24 2017-03-15 Bird Aerosystems Ltd. System, device and method of protecting aircrafts against incoming missiles and threats
EP3081895B1 (en) * 2015-04-17 2018-06-06 Elettronica S.p.A. Multiple turret dircm system and related method of operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148071A1 (en) * 2001-09-28 2003-04-17 Ibeo Automobile Sensor Gmbh Object detection and tracking procedures
US7733465B2 (en) * 2004-05-26 2010-06-08 Bae Systems Information And Electronic Systems Integration Inc. System and method for transitioning from a missile warning system to a fine tracking system in a directional infrared countermeasures system
US7378626B2 (en) * 2005-10-04 2008-05-27 Raytheon Company Directed infrared countermeasures (DIRCM) system and method
WO2019077572A1 (en) * 2017-10-20 2019-04-25 Elettronica S.P.A. Distributed system of detection and countermeasure of ir-guided missiles
ES2909195T3 (en) * 2017-12-21 2022-05-05 Elettr S P A IRCM system based on coordinated flare management and DIRCM systems for protection against IR guided missiles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527865B1 (en) * 2011-05-24 2017-03-15 Bird Aerosystems Ltd. System, device and method of protecting aircrafts against incoming missiles and threats
EP3081895B1 (en) * 2015-04-17 2018-06-06 Elettronica S.p.A. Multiple turret dircm system and related method of operation

Also Published As

Publication number Publication date
ES3005282T3 (en) 2025-03-14
EP3800483A1 (en) 2021-04-07
DE102019006925A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
DE4444635C2 (en) Self-defense device against missiles
DE102020001153B4 (en) Missile, in particular guided missile, with a radar sensor unit
EP2482025B1 (en) Method and device for defending against an attacking missile
EP3800483B1 (en) Alignment of a detector of a dircm module relative to a target
EP3514477A1 (en) System and method for interfering with a detection of a target
DE3131089C2 (en) Reconnaissance and fire control system
DE19729483A1 (en) Air-born land mine retrieval method
EP3751226B1 (en) Dircm with predictive transfer between modules
DE2922592C2 (en) Missile defense method
EP3702720B1 (en) Dircm with simplified transfer between modules
DE19845911A1 (en) Satellite-based defense system and method for satellite-based defense
EP0281675A2 (en) Sensor for attacking helicopters
EP3118567B1 (en) Method for protecting a vehicle against an attack by a laser beam
EP3699544B1 (en) Dircm with dual target tracking
DE3343604C2 (en) Method and device for combating ground targets by means of a radar-guided missile
EP2840414B1 (en) Method for protecting an object needing protection
EP3869146A1 (en) Control method for a missile radar sensor of a missile, missile control unit and missile
EP3954964A1 (en) Dircm with independent overlap-free transfer between modules
EP3282216B1 (en) Device for damaging using directional radiation
EP3869145A1 (en) Method for guiding a missile, missile control and missile
DE102010005198B4 (en) Missile and method for detecting a target
DE102010015045B4 (en) Method and system for determining trajectories of fast-moving objects or projectiles by means of a time-wavelength-coded detection space
DE102020002555B4 (en) Method for effectiveness optimization by means of iterative target recognition of a target object during a target approach with a guided missile
DE69008087T2 (en) Device for determining goals.
DE2918858C2 (en) Arrangement for targeting a seeker head

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210930

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020009550

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20241023

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 3005282

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20250314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241023