[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3682566B1 - Method for managing data in a transportation cabin and standardised implementation architecture - Google Patents

Method for managing data in a transportation cabin and standardised implementation architecture Download PDF

Info

Publication number
EP3682566B1
EP3682566B1 EP18762894.6A EP18762894A EP3682566B1 EP 3682566 B1 EP3682566 B1 EP 3682566B1 EP 18762894 A EP18762894 A EP 18762894A EP 3682566 B1 EP3682566 B1 EP 3682566B1
Authority
EP
European Patent Office
Prior art keywords
optical
devices
signals
interface
cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18762894.6A
Other languages
German (de)
French (fr)
Other versions
EP3682566A1 (en
Inventor
Cyrille DELAME
Serge Berenger
Yoann REBIÈRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Latelec
Original Assignee
Latelec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latelec filed Critical Latelec
Publication of EP3682566A1 publication Critical patent/EP3682566A1/en
Application granted granted Critical
Publication of EP3682566B1 publication Critical patent/EP3682566B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/4028Bus for use in transportation systems the transportation system being an aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the invention relates to a method for managing data in a passenger transport cabin, in particular in a passenger cabin of an aircraft, as well as to a data management structure integrating a standardized optical network architecture capable of implement this process.
  • the architecture is said to be "standardised” because it makes it possible to increase the modularity of the cabin, or of other transport structures, which facilitates its reconfiguration in successive cabin reinstallations ("refittings" in English terminology), while retaining this architecture which then remains a standard for data transmission.
  • the invention applies in particular to the cabins of commercial passenger transport aircraft in civil aeronautics and to aircraft equipped with such an architecture to implement this method.
  • the field of the invention relates to the management of data transmission via a network to equipment in a passenger cabin, both the technical equipment for monitoring and/or controlling cabin systems critical for transport (pumps the air pressurization system of an aircraft, compressors of air conditioning systems, common lighting, sensors, actuators, etc.) than the technical equipment of non-critical cabin systems, in particular for the flight in the case of air transport (kitchens or "galleys" in English terminology, ventilation, individual lighting, etc.), as well as communication systems to the outside (Internet, WIFI, LIFI, etc.) for personal electronic equipment or PED (acronym for "Personal Electronic Device in English terminology), audiovisual systems (systems for transmitting images and/or sounds for passengers, coming for example from the outside environment from cameras or from recordings, in particular the IFE entertainment for aircraft (acronym for "In Flight Entertainment” in English terminology, etc.), or technical cabin equipment.
  • cabin systems critical for transport umps the air pressurization system of an aircraft, compressors of air conditioning systems, common lighting, sensors, actuators, etc.
  • the invention applies in particular to the passenger cabins of aircraft but also to data networks on board any type of transport vehicle, both motor vehicles, maritime transport, rail transport or the like.
  • the solutions of the state of the art do not provide for a standardized architecture capable of adapting to the refitting of passenger cabins, in particular a standardized architecture compatible with increasingly complex safety standards, which which generally entails the design and production of new architectures at each cabin reconfiguration with significant maintenance times and downtime cycles.
  • the invention aims, on the contrary, to allow high-performance, lightweight data communication, insensitive to interference of the EMI type and capable of adapting to cabin refittings.
  • the invention provides for a bidirectional data distribution built around a transmission between the data providers and the equipment exploiting and/or supplying the data, via an optical distribution of the data relayed to these equipment according to configurable priorities.
  • the subject of the present invention is a method for managing data in a passenger cabin equipped with a standardized architecture for distributing data streams between data resources of a “systems” part comprising an audiovisual transmission system , communication systems to the exterior of the cabin and/or cabin systems, and an “operation” part of this data consisting of recipient cabin equipment via a conversion of data into optical signals.
  • a “systems” part comprising an audiovisual transmission system , communication systems to the exterior of the cabin and/or cabin systems, and an “operation” part of this data consisting of recipient cabin equipment via a conversion of data into optical signals.
  • This management method consists in transmitting, in a so-called downward direction, the data provided by at least one system of the systems part to a single interface of concentration and configuration which directs the data of the resources according to the destination equipment, converts the data not optical signals into optical signals, then allocates wavelengths to the optical signals and distributes them by multiplexing and setting the priorities according to the destination equipment and/or the resources according to the resource and the equipment for a given resource, in order to transmit these multiplexed streams of optical signals on a channel of at least one optical distribution network to the destination equipment of the operating part via an intermediate interface which manages the wavelengths of the optical signals and reconverts them into signals adapted to the equipment if necessary .
  • Data transmission is also carried out in the opposite direction, called uplink, according to reverse processing at each interface from equipment in the cabin to the resources concerned via the intermediate interface depending on the resource concerned, the optical distribution network then the concentration and configuration interface that transmits these to the relevant resource.
  • an optical distribution network makes it possible to build an efficient, light, simplified, durable and standardized architecture, independent of the functions and protocols between the system part and the operating part. It also makes it possible to do away with the interconnection cables installed in large numbers all along the cabin, and therefore to achieve significant time savings during refittings, and improve security (computer security of data exchanges on fiber, insensitivity to EMI-type interference, etc.).
  • this method uses a number of optical networks adapted to the conditions of implementation (physical constraints, functional requirements, targeted performance and speeds, choice of cabin design, etc.) by applying a number of optical networks optimized for a number given number of system categories among audiovisual systems, communication systems and cabin systems: one network for one category of systems, one or two networks for two categories, and one, two or three networks for three categories of systems.
  • the allocation of wavelengths and the distribution of optical signals can also be conducted according to the premium or standard class level (i.e. according to the level of service, equipment and performance) of the optical flows for audiovisual transmission resources and equipment of the IFE type, and communication (PED, etc.), as well as by discrimination between the critical or non-critical flows of the resources and technical equipment of the cabin systems.
  • the premium or standard class level i.e. according to the level of service, equipment and performance
  • PED personal communication
  • the invention also relates to a data management structure on board a means of transport integrating a cabin equipped with passenger seats, said structure comprising a block of data resources integrating central units of systems comprising an audiovisual transmission system, communication systems to the outside of the cabin and/or cabin systems, a standardized architecture for distributing data streams in the cabin, and cabin equipment for operating said systems.
  • the standardized architecture comprises a concentration box and bidirectional transfer configuration, on the one hand, of basic signals with the block of data resources and, on the other hand, of optical signals with the cabin equipment on at least one optical network fiber.
  • This concentration and configuration box integrates processing units by switching basic signals, bidirectional conversion of basic signals into optical signals for transfer to equipment, and management of these optical signals by allocation of wavelengths and distribution of optical flows descenders and ascenders.
  • This concentration and configuration box is connected to the equipment of said systems via intermediate boxes also integrating at least some of the processing units depending on the equipment to which they are connected.
  • the block diagram of the figure 1 illustrates an example of a data management structure 1a on board an aircraft integrating a passenger cabin 100, equipped with seats 110 in the passenger area 120, and an avionics bay 200.
  • the structure 1a comprises a block of data resources 210 in the avionics bay 200 integrating three central units 211 to 213: a central unit 211 of an IFE transmission system, a central unit 212 of systems communication (Internet and WIFI in the example) between the cabin 100 and the exterior of the cabin, and a central unit 213 of the cabin systems in connection with the critical or non-critical technical equipment for the flight.
  • the structure 1a also includes a standardized architecture 10a for distributing downlink flows F1 and uplink data flows in and from the equipment of cabin 100.
  • the downlink flows F1 make it possible to exploit the data coming from said central units 211 to 213 and the upflows F2 to transfer data to said central units 211 to 213 from the equipment.
  • This equipment is distributed in the cabin 100: the terminals E1 of the IFE system integrated into the seats 110 of the passenger area 120, the PED E2 equipment of the passengers positioned close to these seats 110 - the communications of the terminals E1 and of the PED E2 being managed respectively by the central units 211 and 212 -; and, outside the passenger area 120, in the locations 130 in this embodiment, the critical and non-critical technical equipment E3 (pump actuators, temperature or pressure detectors, decoding/encoding units, cooking appliances for galleys, etc.) of the cabin systems managed by the central unit 213, as well as equipment E4 of communication systems located in the cabin 100 managed by the central unit of the communication systems 212.
  • the critical and non-critical technical equipment E3 pump actuators, temperature or pressure detectors, decoding/encoding units, cooking appliances for galleys, etc.
  • the distribution of downlink data flows F1 is generated by a concentration and configuration box 11 of the standardized architecture 10a. According to bidirectional transfers, said box 11 communicates, on the one hand, electrical signals with the central units 211 to 213 of the resource block 210 (double arrows F10) and, on the other hand, optical signals with the equipment of the cabin 100 via an optical fiber 2 forming a primary loop B1 of an optical network 20 on the concentration and configuration box 11.
  • the optical network 20 is integrated, according to different embodiments, into the ceiling and/or the floor of the cabin 100.
  • Such a concentration and configuration box 11 integrates signal processing units 111 to 113: a switching unit 111 to route the electrical signals generated by the resource block 210 according to the equipment E1 to E4, a bidirectional conversion unit 112 switched electrical signals 210 into optical signals, and a management unit 113 of the optical signals by wavelength allocation and distribution parameters in downlink F1 and uplink F2 optical flows in the network 20.
  • the switching is advantageously regulated by switches (not shown) activated by the concentration and configuration box 11 which also manages the switches of all the switching units 111 described below.
  • These switches allow optimal routing of signals by multiplexing networks (as specified below) according to their destination characterized by a physical address or, in variants, by a logical address or a port number.
  • the concentration and configuration box 11 is connected to the equipment E1 to E4 of the IFE systems, of the communication systems and of the cabin systems via intermediate boxes mounted in series, the disconnect boxes 30 of the optical network 20 in the example illustrated.
  • the optical network 20 comprises secondary loops in chain B2 with single optical fiber 3 coupled to the primary loop 20 through the disconnection boxes 30.
  • the connection interface boxes 40 are coupled (double arrows F20 ) to equipment E1 and E2 in cabin area 120.
  • the disconnection boxes 30 are thus electrically coupled to the equipment E3, E4 of the cabin locations 130 via electrical wiring (double arrows F40), and to the equipment E1, E2 of the passenger area 120 via the interface boxes 40.
  • Each disconnection box 30 is then connected to several - three in the example - interface boxes 40 mounted in a looped series ("daisy chain" in English terminology) on the disconnection box 30, and each box interface 40 is electrically coupled to a row of seats 12 or, alternatively, to several rows.
  • the interface boxes 40 can be connected in a bus, in a ring or in a star.
  • the distribution of the signals by the disconnection box 30 to the interface boxes 40 is carried out by recopies by successive transfer in the case of a chain configuration or selective transmissions by optical separators in the case of a star configuration. .
  • Each of these disconnection boxes 30 incorporates a unit 111 for switching the electrical signals generated by the equipment E3 and E4, a unit for bidirectional conversion 112 of the switched electrical signals into optical signals and a management unit 113 of the optical signals by length allocation wave and optical flow distribution in the network 20.
  • each interface box 40 also incorporates a unit 112 for bidirectional conversion of electrical signals into optical signals, and a management unit 113 of optical signals by wavelength allocation and flow distribution. optics in the network 20.
  • the allocation of the wavelengths is assigned independently of the interface boxes 40, several interface boxes 40 can transmit or receive signals on the same wavelength.
  • means of controlling access to these interfaces 40 are advantageously deployed.
  • Such access control means are chosen from among time-sharing multiplexing or TDM, token passing and synchronous sampling of the polling type.
  • each switching unit 111 integrates a protocol for managing priorities according to the different equipment E1 to E4, for example by prioritizing the signals to be transmitted to the technical equipment E3, then to the equipment of the communication systems E4 and E2, and finally to the E1 equipment of the IFE system.
  • each conversion unit electrical/optical bidirectional 112 advantageously integrates electro-optical transceivers (“transceivers” in English terminology) coupled to specific data adapters depending on the type of data system of the resource block 210, namely in the present example the IFE system, communication systems and cabin systems.
  • each management unit 113 by allocation of the wavelengths and distribution of the downward optical flows F1 in the direction "concentration box and configuration 11 towards the equipment E1 to E4 and uprights F2, in the reverse direction, includes a wavelength division multiplexer called WDM.
  • WDM wavelength division multiplexer
  • DWDM dense division multiplexer
  • CWDM coarse division multiplexer
  • UDWDM ultra-dense division multiplexer
  • each management unit 113 also integrates a specific optical signal management multiplexer coupled to the wavelength division multiplexer, a terminal optical signal wavelength multiplexer called OTM in the example embodiment.
  • a specific optical signal management multiplexer coupled to the wavelength division multiplexer, a terminal optical signal wavelength multiplexer called OTM in the example embodiment.
  • an optical wavelength demultiplexer of the signals coming from the optical network 20 called OWD a multiplexer for injecting optical signals at a particular wavelength and extracting optical signals over wavelengths of corresponding equipment reception wave called OADM, and/or an optical wavelength connector at specific ports called OXC can be integrated.
  • the distribution of the wavelengths is advantageously parameterized by type of service provided according to the systems (IFE system, communication systems and cabin systems).
  • the allocation of the wavelengths is identical in this example, in the uplink F1 and downlink F2 directions of the communication flows between the interface boxes 40 and the conversion and configuration box 11 but, for differentiate between the senses rising and falling, the allocation strategy can be different in these two directions according to variant embodiments.
  • wavelengths in the 1270 - 1370 nm band are allocated every 20 nm.
  • the allocation parameters can be chosen according to the disconnection boxes 30, the interface boxes 40 connected to the same disconnection box 30, by location of the equipment E1 to E4 according to their premium or standard class, and /or by type of downlink F1 and uplink F2 between the interface boxes 40 connected to the same disconnection box 30 and the conversion and configuration box 11.
  • the architecture 10a advantageously takes into account the critical or non-critical nature of the data transported over the optical network 20 between the concentration and configuration box 11 and the technical equipment E3.
  • the critical signals intended for the E3 technical equipment critical for the flight conditions, are carried by the full-duplex avionics protocol known as AFDX, while the non-critical data intended for the non-critical E3 technical equipment are processed by the protocol ethernet.
  • the block diagram of the picture 2 illustrates a simplified data management structure 1b which uses the previous structure 1a without the equipment E3 of the cabin systems which are managed by another distribution network, for example by the ceiling (cf. figure 6 ).
  • the structure 1b then manages the equipment E1 of the IFE system and the PED equipment E2 of the passenger area 120, as well as the equipment E4 of the communication systems in the cabin locations 130.
  • the data from the two central units 211 and 212 of the resource block 210, respectively of the IFE system and of the communication systems only use one and the same distribution network 20, via the floor of the cabin 100 in the example embodiment.
  • This simplified management structure 1b incorporates an architecture 10b which uses the standardized architecture 10a in which the disconnection boxes 30 have no signal conversion unit because all the conversions are performed by the interface boxes 40 in this example.
  • the disconnect boxes 30 are equipped with conversion units 112, as in the management structure 1a (cf. figure 1 ), these conversion units are not integrated or are rendered inactive.
  • Each disconnection box 30 integrates a management unit 113 equipped with an OADM multiplexer, or ROADM to increase the adaptability of the communication systems to cabin refitting (refittings).
  • the interface boxes 40 use the same configuration: a bidirectional optical/electrical conversion unit 112 and a management unit 113 equipped with an OADM multiplexer.
  • the data strictly addressed to its seats are recovered by a ROADM multiplexer with injection or DROP and addition or ADD functions: it can recover the data which is strictly addressed to its seats by making a DROP of the signal associated with its reception wavelength. It can also transmit the signals sent by its seats in the fiber by performing the ADD function of the signal associated with its emission wavelength. Depending on the design choices, the transmission and reception wavelengths may be different.
  • each fiber 2 or 3 of the optical network 20 carries all the downlink F1 and uplink F2 data streams.
  • a downlink fiber 2a dedicated to the transport of downlink data flows F1 connects the concentration and configuration box 11 to the disconnection boxes 30 and to the interface boxes 40, via extensions 2'a of fiber by derivation, and an uplink fiber 2b, dedicated to the transport of flows of data amounts F2, connects the interface boxes 40 to the concentration and configuration box 11.
  • multiple downlink fibers and/or multiple uplink fibers may be used depending on performance, addressing or physical constraint requirements.
  • the disconnect boxes 30 are eliminated in order to adapt directly to the needs of each seat 110 in terms of bit rate and bandwidth.
  • the interface boxes 40 are directly connected to the concentration and configuration box 11 via the optical fiber 2 forming the network loop B1.
  • the communication equipment E4 is then coupled by wiring to the interface boxes 40.
  • a downlink fiber 2a dedicated to transporting downlink data flows F1
  • an uplink fiber 2b dedicated to the transport of data flows uplinks F2, serially and successively connects the interface boxes 40 to the concentration and configuration box 11.
  • the fibers 2a and 2b form an optical network 21 with downflows F1 and separate amounts F2.
  • a 10f architecture dedicated to the E3 technical equipment of the cabin systems is illustrated by the block diagram of the 1f management structure of the figure 6 , in connection (double arrows F40) with the concentration box and configuration 11 of the management structure 1a (cf. figure 1 ).
  • this architecture 10f the distribution of data originating from the central unit of the cabin systems 213 takes place via a fiber 4 forming an optical network in a loop 22 via the ceiling of the cabin.
  • the fiber 4 connects the disconnect boxes 30 connected in series and the equipment E3 is coupled to these boxes 30 by transmitter/receiver means.
  • the two main families of data processed are critical data and non-critical data of E3 technical equipment respectively critical (actuators, detectors, decoding/encoding units, light units, display, announcements, etc.) and non-critical (galleys , lights, ventilation, etc.).
  • the total number of fibers depends mainly on the addressing capacity - for example according to a wavelength division multiplexing or WDM of the concentration and configuration box 11 - and the proposed maximum throughput.
  • the critical data are for example supported by the AFDX protocol and the non-critical data by Ethernet routed by AFDX and Ethernet contactors of said box 11.
  • the CAN bus protocol is also used, for example for the detectors, by the box 11 at the level of the optical/electrical conversion unit 112 (cf. figure 1 ).
  • the management of the wavelengths and distribution of the flows is processed as in the framework of the architecture 10a, for example by combining the multiplexers OTM, OWD, OADM and/or ROADM.
  • a redundant multi-fiber 4 distribution architecture is deployed to ensure information transfer in the event of a network failure.
  • the invention is not limited to the examples described and represented.
  • the architectures are reconfigurable by a digital update applied to the concentration and configuration box and to the disconnection boxes.
  • Redundant architectures can be deployed according to a configuration identical to the initial distribution architecture, in order to overcome the physical constraints of deterioration and to prevent possible failures within the optical distribution network.
  • a redundant architecture is implemented by doubling the optical networks.
  • the invention can use a number of optical networks that is variable and adapted to the conditions of implementation (physical constraints, functional requirements, targeted performance and data rates, choice of cabin design, etc.).
  • an optimized number of optical networks, without counting redundant networks can be applied for a given number of categories of systems, for example for the three categories described above (audiovisual systems, communication systems and cabin systems): a network for a category of systems; a common network or a network per category of systems for two given categories of systems, and a common network, two networks (a common network and a dedicated network) or three dedicated networks for three given categories of systems.
  • the invention can be applied to part systems made up of more than three categories.
  • the downlink and uplink optical flows are either carried together on at least one optical fiber or separated and conveyed on at least two optical fibers (for reasons of redundancy, additional deployment, throughput or performance, etc.).
  • the optical fibers can be single-mode and/or multi-mode depending on the desired performance.
  • central units of the IFE, of the communication systems and of the cabin systems are connected to the same optical distribution network as illustrated by architecture 10a of the figure 1 , or are connected to different optical networks, as illustrated for example by the architectures 10c to 10f illustrated respectively in figures 3 to 6 .
  • the basic signals between the concentration and configuration box and the block of data resources can be non-electrical signals, for example directly optical signals, which makes it possible to dispense with electrical/optical converters, signals transmitted by way wireless between ad hoc transmitters and receivers, or any type of signal that can be converted into an analog signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

L'invention se rapporte à un procédé de gestion de données dans une cabine de transport de passagers, en particulier dans une cabine passagers d'un aéronef, ainsi qu'à une structure de gestion de données intégrant une architecture standardisée à réseau optique apte à mettre en œuvre ce procédé.The invention relates to a method for managing data in a passenger transport cabin, in particular in a passenger cabin of an aircraft, as well as to a data management structure integrating a standardized optical network architecture capable of implement this process.

L'architecture est dite « standardisée » car elle permet d'augmenter la modularité de la cabine, ou d'autres structures de transport, ce qui facilite sa reconfiguration dans les réinstallations successives de cabine (« refittings » en terminologie anglaise), tout en conservant cette architecture qui reste alors un standard pour la transmission de données. L'invention s'applique en particulier aux cabines des avions commerciaux de transport de passagers de l'aéronautique civile et aux aéronefs équipés d'une telle architecture pour mettre en œuvre ce procédé.The architecture is said to be "standardised" because it makes it possible to increase the modularity of the cabin, or of other transport structures, which facilitates its reconfiguration in successive cabin reinstallations ("refittings" in English terminology), while retaining this architecture which then remains a standard for data transmission. The invention applies in particular to the cabins of commercial passenger transport aircraft in civil aeronautics and to aircraft equipped with such an architecture to implement this method.

Le domaine de l'invention se rapporte à la gestion de la transmission de données par un réseau à des équipements d'une cabine de passagers, aussi bien les équipements techniques de contrôle et/ou de commande des systèmes cabine critiques pour le transport (pompes du système de pressurisation d'air d'un aéronef, compresseurs des systèmes de conditionnement d'air, éclairage commun, détecteurs, actionneurs, etc.) que les équipements techniques des systèmes cabine non critiques, en particulier pour le vol dans le cas d'un transports aérien (cuisines ou « galleys » en terminologie anglaise, ventilation, éclairage individuel, etc.), ainsi que les systèmes de communication vers l'extérieur (Internet, WIFI, LIFI, etc.) pour les équipements électroniques personnels ou PED (acronyme de « Personal Electronic Device en terminologie anglaise), les systèmes audiovisuels (systèmes de transmission d'images et/ou de sons pour les passagers, provenant par exemple de l'environnement extérieur à partir de caméras ou à partir d'enregistrements, en particulier le système de divertissement IFE pour les avions acronyme de « In Flight Entertainement » en terminologie anglaise, etc.), ou des équipements techniques de la cabine.The field of the invention relates to the management of data transmission via a network to equipment in a passenger cabin, both the technical equipment for monitoring and/or controlling cabin systems critical for transport (pumps the air pressurization system of an aircraft, compressors of air conditioning systems, common lighting, sensors, actuators, etc.) than the technical equipment of non-critical cabin systems, in particular for the flight in the case of air transport (kitchens or "galleys" in English terminology, ventilation, individual lighting, etc.), as well as communication systems to the outside (Internet, WIFI, LIFI, etc.) for personal electronic equipment or PED (acronym for "Personal Electronic Device in English terminology), audiovisual systems (systems for transmitting images and/or sounds for passengers, coming for example from the outside environment from cameras or from recordings, in particular the IFE entertainment for aircraft (acronym for "In Flight Entertainment" in English terminology, etc.), or technical cabin equipment.

L'invention s'applique en particulier aux cabines passagers des aéronefs mais également aux réseaux de données embarqués dans tout type de véhicule de transport, aussi bien les véhicules automobiles, le transport maritime, le transport ferroviaire ou équivalent.The invention applies in particular to the passenger cabins of aircraft but also to data networks on board any type of transport vehicle, both motor vehicles, maritime transport, rail transport or the like.

ÉTAT DE LA TECHNIQUESTATE OF THE ART

L'évolution actuelle dans le transport tend à embarquer un nombre croissant de systèmes électroniques pour la gestion des données dédiées tant aux équipements techniques du transport qu'aux équipements personnels des passagers. En particulier dans le transport aérien, le besoin des passagers à rester connecter (Internet, Vidéo à la Demande, contact téléphonique, etc.) est de plus en plus pressant. De plus, l'isolation des passagers dans l'espace contribue à augmenter ce besoin.The current evolution in transport tends to embed an increasing number of electronic systems for the management of data dedicated both to technical transport equipment and to the personal equipment of passengers. In air transport in particular, the need for passengers to stay connected (Internet, Video on Demand, telephone contact, etc.) is increasingly pressing. In addition, the isolation of passengers in space contributes to increasing this need.

Cette gestion des données est aujourd'hui assurée au cas par cas, par la multiplication de liaisons directes locales entre les équipements fournisseurs de données et les systèmes d'exploitation de ces données. Cependant la multiplication des liaisons limitent la quantité d'équipements électroniques personnels pouvant être utilisés en permanence par les passagers alors que le nombre et la diversification des PED (smartphones, tablettes, caméras, ordinateurs portables, casques de réalité virtuelle, etc.) augmentent considérablement.This data management is now ensured on a case-by-case basis, by increasing the number of direct local links between the data supplier equipment and the data processing systems. However, the proliferation of connections limits the amount of personal electronic equipment that can be used permanently by passengers, while the number and diversification of PEDs (smartphones, tablets, cameras, laptops, virtual reality headsets, etc.) are increasing considerably .

Une autre conséquence de la multiplication de ces liaisons est l'augmentation significative du poids et de la complexité du câblage embarqué. Cette conséquence est aggravée du fait que, les aéronefs utilisant de plus en plus de structures de base (fuselage, etc.) en matériaux composites, de lourds équipements métalliques sont nécessaires pour neutraliser les effets liés à la foudre et aux interférences électromagnétiques dites EMI (« Electro Magnetic Interference » en terminologie anglaise).Another consequence of the multiplication of these links is the significant increase in the weight and complexity of the on-board wiring. This consequence is aggravated by the fact that, with aircraft using more and more basic structures (fuselage, etc.) made of composite materials, heavy metal equipment is necessary to neutralize the effects of lightning and electromagnetic interference known as EMI (“Electro Magnetic Interference” in English terminology).

Ainsi, l'utilisation massive de câblage et les besoins croissants en débit à bord, en particulier pour les cabines passagers d'aéronefs, nécessitent la mise en place de technologies de communication performantes, légères et insensibles aux interférences de type EMI.Thus, the massive use of cabling and the growing needs for on-board throughput, in particular for the passenger cabins of aircraft, require the implementation of high-performance communication technologies that are light and insensitive to interference of the EMI type.

Des documents de l'état de la technique rendent compte de l'utilisation de fibres optiques dans une cabine d'avion afin de transmettre des données. On peut par exemple citer les documents de brevet US 20100139948 , US 2005247820 , US 2005258676 et US 2012141066 . Cependant les solutions développées dans ces documents décrivent des moyens optimisés dédiés à l'installation de câbles électriques ou, indifféremment, de fibres optiques dans la cabine passager d'un aéronef. Aucune architecture globale de gestion et de distribution de données par voie optique n'est décrite dans ces documents.Prior art documents report the use of optical fibers in an aircraft cabin to transmit data. One can cite, for example, the patent documents US 20100139948 , US 2005247820 , US 2005258676 and US 2012141066 . However, the solutions developed in these documents describe optimized means dedicated to the installation of electric cables or, indifferently, of optical fibers in the passenger cabin of an aircraft. No global architecture for managing and distributing data by optical channel is described in these documents.

De plus, les solutions de l'état de la technique ne prévoient pas d'architecture standardisée, capable de s'adapter aux refittings des cabines de passagers, en particulier une architecture standardisée compatible avec des normes de sécurité de plus en plus complexes, ce qui entraîne en général la conception et la réalisation de nouvelles architectures à chaque reconfiguration de cabine avec des durées de maintenance et des cycles d'immobilisation importants.Moreover, the solutions of the state of the art do not provide for a standardized architecture capable of adapting to the refitting of passenger cabins, in particular a standardized architecture compatible with increasingly complex safety standards, which which generally entails the design and production of new architectures at each cabin reconfiguration with significant maintenance times and downtime cycles.

EXPOSÉ DE L'INVENTIONDISCLOSURE OF THE INVENTION

L'invention vise, au contraire, à permettre une communication de données performante, légère, insensible aux interférences de type EMI et apte à s'adapter aux refittings de cabine. Pour ce faire, l'invention prévoit une distribution des données bidirectionnelle bâtie autour d'une transmission entre les fournisseurs de données et des équipements exploitant et/ou fournissant des données, via une distribution optique des données relayée jusqu'à ces équipements en fonction de priorités paramétrables.The invention aims, on the contrary, to allow high-performance, lightweight data communication, insensitive to interference of the EMI type and capable of adapting to cabin refittings. To do this, the invention provides for a bidirectional data distribution built around a transmission between the data providers and the equipment exploiting and/or supplying the data, via an optical distribution of the data relayed to these equipment according to configurable priorities.

Plus précisément, la présente invention a pour objet un procédé de gestion de données dans une cabine de passagers équipée d'une architecture standardisée de distribution de flux de données entre des ressources de données d'une partie « systèmes » comportant un système de transmission audiovisuel, des systèmes de communication vers l'extérieur de la cabine et/ou des systèmes cabine, et une partie « exploitation » de ces données constituée d'équipements de cabine destinataires via une conversion de données en signaux optiques. Ce procédé de gestion consiste à transmettre, dans un sens dit descendant, les données fournies par au moins un système de la partie systèmes à une unique interface de concentration et configuration qui aiguille les données des ressources selon l'équipement destinataire, convertit les données non optiques en signaux optiques, puis alloue des longueurs d'onde aux signaux optiques et les distribue par multiplexage et paramétrage des priorités en fonction des équipements destinataires et/ou des ressources en fonction de la ressource et des équipements pour une ressource donnée, afin de transmettre ces flux multiplexés de signaux optiques sur une voie d'au moins un réseau de distribution optique aux équipements destinataires de la partie exploitation via une interface intermédiaire qui gère les longueurs d'onde des signaux optiques et les reconvertit en signaux adaptés aux équipements le cas échéant. La transmission de données est également conduite dans le sens inverse dit montant selon un traitement inversé à chaque interface depuis des équipements de la cabine jusqu'aux ressources concernées via l'interface intermédiaire en fonction de la ressource concernée, le réseau de distribution optique puis l'interface de concentration et configuration qui transmet ces derniers à la ressource concernée.More specifically, the subject of the present invention is a method for managing data in a passenger cabin equipped with a standardized architecture for distributing data streams between data resources of a “systems” part comprising an audiovisual transmission system , communication systems to the exterior of the cabin and/or cabin systems, and an “operation” part of this data consisting of recipient cabin equipment via a conversion of data into optical signals. This management method consists in transmitting, in a so-called downward direction, the data provided by at least one system of the systems part to a single interface of concentration and configuration which directs the data of the resources according to the destination equipment, converts the data not optical signals into optical signals, then allocates wavelengths to the optical signals and distributes them by multiplexing and setting the priorities according to the destination equipment and/or the resources according to the resource and the equipment for a given resource, in order to transmit these multiplexed streams of optical signals on a channel of at least one optical distribution network to the destination equipment of the operating part via an intermediate interface which manages the wavelengths of the optical signals and reconverts them into signals adapted to the equipment if necessary . Data transmission is also carried out in the opposite direction, called uplink, according to reverse processing at each interface from equipment in the cabin to the resources concerned via the intermediate interface depending on the resource concerned, the optical distribution network then the concentration and configuration interface that transmits these to the relevant resource.

Dans ces conditions, l'utilisation de réseau de distribution optique permet de bâtir une architecture performante, légère, simplifiée, durable et standardisée, indépendante des fonctions et protocoles entre la partie système et la partie exploitation. Elle permet en outre de s'affranchir des câblages d'interconnexion installés en grand nombre tout le long de la cabine, et donc de réaliser un gain de temps important lors des refittings, et d'améliorer la sécurité (sécurité informatique des échanges de données sur fibre, insensibilité aux interférences de type EMI, etc.).Under these conditions, the use of an optical distribution network makes it possible to build an efficient, light, simplified, durable and standardized architecture, independent of the functions and protocols between the system part and the operating part. It also makes it possible to do away with the interconnection cables installed in large numbers all along the cabin, and therefore to achieve significant time savings during refittings, and improve security (computer security of data exchanges on fiber, insensitivity to EMI-type interference, etc.).

De plus, ce procédé utilise un nombre de réseaux optiques adapté aux conditions de mise en œuvre (contraintes physiques, exigences fonctionnelles, performances et débits visés, choix de conception de cabine, etc.) en appliquant un nombre de réseaux optiques optimisé pour un nombre donné de catégories de système parmi les systèmes audiovisuels, les systèmes de communication et les systèmes cabine: un réseau pour une catégorie de systèmes, un ou deux réseaux pour deux catégories, et un, deux ou trois réseaux pour trois catégories de systèmes.In addition, this method uses a number of optical networks adapted to the conditions of implementation (physical constraints, functional requirements, targeted performance and speeds, choice of cabin design, etc.) by applying a number of optical networks optimized for a number given number of system categories among audiovisual systems, communication systems and cabin systems: one network for one category of systems, one or two networks for two categories, and one, two or three networks for three categories of systems.

L'allocation de longueurs d'onde et la distribution des signaux optiques peut aussi être conduite en fonction du niveau classe premium ou standard (c'est-à-dire selon le niveau de service, d'équipement et de prestation) des flux optiques pour les ressources et équipements de transmission audiovisuel de type IFE, et de communication (PED, etc.), ainsi que par une discrimination entre les flux critiques ou non critiques des ressources et équipements techniques des systèmes cabine.The allocation of wavelengths and the distribution of optical signals can also be conducted according to the premium or standard class level (i.e. according to the level of service, equipment and performance) of the optical flows for audiovisual transmission resources and equipment of the IFE type, and communication (PED, etc.), as well as by discrimination between the critical or non-critical flows of the resources and technical equipment of the cabin systems.

Selon des modes particuliers, le procédé peut prévoir que :

  • l'interface intermédiaire est connectée aux équipements des systèmes cabine et/ou aux équipements des systèmes de communication;
  • l'interface intermédiaire comporte au moins une interface de déconnexion couplée à des interfaces de liaison aux équipements du système audiovisuel et aux équipements des systèmes de communication vers l'extérieur situés à proximité des équipements du système audiovisuel, les interfaces de liaison assurant, dans les deux sens, la conversion optique/électrique ainsi que la gestion par allocation des longueurs d'onde et distribution des données;
  • l'allocation des longueurs d'onde est effectuée en fonction du positionnement des équipements dans la cabine, des contraintes physiques de la cabine et des caractéristiques fonctionnelles de service liées à un type de flux optique se rapportant à un niveau de classe et/ou de sécurité, par exemple le niveau premium ou standard des flux optiques ou la discrimination entre les flux critiques ou non critiques des ressources et équipements techniques des systèmes cabine;
  • l'architecture est reconfigurée par un traitement numérique appliqué à l'interface de concentration et configuration lors d'installation et/ou de suppression des équipements audiovisuels, de communication, et/ou de commande / contrôle technique de la cabine;
  • une architecture de redondance intégrant au moins l'interface de concentration et configuration est déployée selon une configuration identique à l'interface de concentration et configuration de l'architecture standardisée, afin de s'affranchir des contraintes physiques de détérioration et de prévenir d'éventuelles pannes au sein du réseau de distribution optique; en option, l'architecture de redondance intègre également une interface intermédiaire de connexion aux équipements;
  • le réseau de distribution optique peut ajouter et/ou séparer des flux optiques par multiplexage et/ou démultiplexage de longueurs d'onde au sein de ce réseau;
  • la transmission de données est effectuée dans les sens descendant et montant soit sur la même voie optique soit sur deux voies optiques distinctes.
According to particular modes, the method may provide that:
  • the intermediate interface is connected to the equipment of the cabin systems and/or to the equipment of the communication systems;
  • the intermediate interface comprises at least one disconnection interface coupled to interfaces for linking to the equipment of the audiovisual system and to the equipment of the communication systems to the outside located close to the equipment of the audiovisual system, the link interfaces ensuring, in the two-way, optical/electrical conversion as well as management by wavelength allocation and data distribution;
  • the allocation of wavelengths is made according to the positioning of the equipment in the cabin, the physical constraints of the cabin and the functional service characteristics linked to a type of optical flow relating to a class and/or safety level, for example the premium or standard level of optical flows or discrimination between critical and non-critical flows of resources and technical equipment of cabin systems;
  • the architecture is reconfigured by digital processing applied to the concentration and configuration interface during installation and/or removal of the audiovisual, communication, and/or control/technical control equipment of the cabin;
  • a redundancy architecture integrating at least the concentration and configuration interface is deployed according to a configuration identical to the concentration and configuration interface of the standardized architecture, in order to overcome the physical constraints of deterioration and to prevent possible failures within the optical distribution network; as an option, the redundancy architecture also incorporates an intermediate interface for connection to equipment;
  • the optical distribution network can add and/or separate optical streams by wavelength multiplexing and/or demultiplexing within this network;
  • the data transmission is carried out in the downlink and uplink directions either on the same optical channel or on two separate optical channels.

L'invention se rapporte également à une structure de gestion de données embarquée dans un moyen de transport intégrant une cabine équipée de sièges passagers, ladite structure comportant un bloc de ressources de données intégrant des unités centrales de systèmes comportant un système de transmission audiovisuel, des systèmes de communication vers l'extérieur de la cabine et/ou des systèmes cabine, une architecture standardisée de distribution de flux de données dans la cabine, et des équipements de cabine d'exploitation desdits systèmes. Dans cette structure, l'architecture standardisée comporte un boitier de concentration et configuration de transfert bidirectionnel, d'une part, de signaux de base avec le bloc de ressources de données et, d'autre part, de signaux optiques avec les équipements de la cabine sur au moins une fibre de réseau optique. Ce boitier de concentration et configuration intègre des unités de traitement par commutation des signaux de base, conversion bidirectionnelle des signaux de base en signaux optiques de transfert aux équipements, et gestion de ces signaux optiques par allocation de longueurs d'onde et distribution de flux optiques descendants et montants. Ce boitier de concentration et configuration est relié aux équipements desdits systèmes via des boitiers intermédiaires intégrant également au moins certaines des unités de traitement en fonction des équipements auxquels ils sont reliés.The invention also relates to a data management structure on board a means of transport integrating a cabin equipped with passenger seats, said structure comprising a block of data resources integrating central units of systems comprising an audiovisual transmission system, communication systems to the outside of the cabin and/or cabin systems, a standardized architecture for distributing data streams in the cabin, and cabin equipment for operating said systems. In this structure, the standardized architecture comprises a concentration box and bidirectional transfer configuration, on the one hand, of basic signals with the block of data resources and, on the other hand, of optical signals with the cabin equipment on at least one optical network fiber. This concentration and configuration box integrates processing units by switching basic signals, bidirectional conversion of basic signals into optical signals for transfer to equipment, and management of these optical signals by allocation of wavelengths and distribution of optical flows descenders and ascenders. This concentration and configuration box is connected to the equipment of said systems via intermediate boxes also integrating at least some of the processing units depending on the equipment to which they are connected.

Selon des modes de réalisation préférés :

  • les signaux de base entre le boitier de concentration et configuration et le bloc de ressources de données sont choisis entre des signaux électriques, hertziens et optiques;
  • les boitiers intermédiaires sont constitués par au moins un boitier de déconnexion intégrant des unités de conversion de signaux optiques/électriques, et/ou de commutation et/ou de gestion par allocation des longueurs d'onde en fonction des équipements de systèmes de communication et/ou des systèmes cabine en liaison;
  • chaque boitier de déconnexion est relié aux équipements des systèmes de transmission audiovisuelle et à des équipements des systèmes de communication à proximité des sièges passagers via des boitiers d'interface munis d'unités de conversion optique/électrique et de gestion d'allocation des longueurs d'onde;
  • les signaux de base étant des signaux électriques, les boitiers intermédiaires sont constitués de boitiers d'interface intégrant des unités de conversion électrique/optique et de gestion par allocation des longueurs d'onde, chaque boitier d'interface étant relié à des équipements des systèmes de transmission audiovisuel et des systèmes de communication à proximité des sièges passagers;
  • les sièges sont raccordés au boitier d'interface correspondant par des émetteurs / récepteurs de signaux;
  • les boitiers d'interface sont reliés entre eux et à un boitier de déconnexion selon une configuration choisie entre une configuration en chaîne, en bus, en anneau et en étoile, en fonction des contraintes physiques, des exigences fonctionnelles et des choix de conception;
  • la distribution des signaux par le boitier de déconnexion aux boitiers d'interface est réalisée par une technique choisie entre des recopies par transfert successif dans le cas d'une configuration en chaîne et des transmissions sélectives par des séparateurs optiques dans le cas d'une configuration en étoile;
  • chaque boitier d'interface transmet des signaux électriques à plusieurs sièges passagers et comporte une unité de conversion des signaux descendants aux équipements en signaux électriques et des signaux montants des équipements en signaux optiques, et une unité de gestion par allocation des longueurs d'onde intégrant un multiplexeur OADM d'injection et de récupération de signaux optiques respectivement dans et depuis au moins une fibre otique;
  • l'unité de gestion par allocation des longueurs d'onde de chaque boitier d'interface intègre un multiplexeur OADM d'injection et d'extraction de signaux optiques reconfigurable dit ROADM;
  • les allocations de longueurs d'onde peuvent être paramétrés selon une répartition pouvant être choisie par type de système, par association à chaque boitier de déconnexion, par association aux boitiers d'interface reliés à un même boitier de déconnexion, par emplacement des équipements en fonction de leur classe, et/ou par type de flux descendant et montant entre les boitiers d'interface et le boitier de concentration et configuration;
  • l'attribution des allocations de longueurs d'onde est identique dans les sens montant et descendant des flux de données entre les boitiers d'interface et le boitier de concentration et configuration;
  • les boitiers intermédiaires sont constitués par au moins un boitier de déconnexion intégrant des unités de commutation et de gestion d'allocation des longueurs d'onde en fonction des équipements des systèmes audiovisuels, de communication et/ou des systèmes cabine en liaison, chaque boitier de déconnexion étant couplé directement aux équipements de systèmes cabine et à des équipements de systèmes de communication situés dans la cabine, et couplé aux équipements des systèmes de transmission audiovisuel et à des équipements des systèmes de communication à proximité des sièges passagers via des boitiers d'interface munis d'unités de conversion optique/électrique et de gestion par allocation des longueurs d'onde;
  • dans le cas où l'allocation des longueurs d'onde est indépendante des boitiers d'interface, des moyens de contrôle d'accès à ces boitiers sont prévus et choisis parmi un multiplexage en temps partagé ou TDM, un passage de jeton et un échantillonnage synchrone de type polling, afin d'éviter les risques d'interférence;
  • chaque unité de commutation comporte des contacteurs d'aiguillage (« switchs » en terminologie anglaise) des données des ressources activés par le boitier de concentration et configuration en fonction des équipements destinataires;
  • chaque unité de commutation intègre des moyens de gestion des priorités;
  • chaque unité de conversion électrique / optique intègre des émetteurs-récepteurs électro-optiques (« transceivers » en terminologie anglaise), ces transceivers pouvant être couplés à des adaptateurs spécifiques de données en fonction des ressources;
  • chaque unité de gestion par allocation des longueurs d'onde et distribution des flux optiques descendants et montants comporte un réseau d'attribution par multiplexage choisi entre un multiplexeur de division de longueur d'onde (ou WDM acronyme de « wavelength division multiplexer »), un multiplexeur de division dense (ou DWDM acronyme de « dense wavelength division multiplexer »), un multiplexeur de division brut (ou CWDM « acronyme de « coarse wavelength division multiplexer ») et un multiplexeur de division ultra-dense (ou UDWDM acronyme de « ultra-dense wavelength division multiplexer »);
  • chaque unité de gestion par allocation des longueurs d'onde et distribution des flux optiques montants et descendants intègre également des moyens de gestion spécifique des signaux optiques couplés au multiplexeur de division de longueur d'onde et choisis parmi un multiplexeur terminal de longueurs d'onde des signaux optiques ou OTM, un démultiplexeur de longueur d'onde optique des signaux issus du réseau optique ou OWD, un multiplexeur d'injection de signaux optiques à une longueur d'onde et d'extraction de signaux optiques sur des longueurs d'onde de réception d'équipement correspondant ou OADM, et/ou un connecteur de longueurs d'onde optique à des ports spécifiques ou OXC (OTM, OWD, OADM et OXC étant respectivement des acronymes de « optical terminal multiplexer », « optical wavelength demultiplexer », « optical add and drop multiplexer » et « optical cross connect » en terminologie anglaise);
  • les flux optiques descendants et montants sont soit portées conjointement sur au moins une fibre optique soit séparés sur au moins deux fibres optiques, pour des raisons de redondance, de déploiement supplémentaire, de débit ou de performance, les fibres optiques pouvant être monomodes et/ou multi-modes;
  • la structure de transport est un aéronef et les ressources de données sont situées dans l'aéronef à proximité de la cabine passagers, en particulier dans une baie avionique.
According to preferred embodiments:
  • the basic signals between the concentration and configuration box and the data resource block are chosen between electrical, radio and optical signals;
  • the intermediate boxes consist of at least one disconnection box incorporating optical/electrical signal conversion units, and/or switching and/or management by wavelength allocation depending on the communication system equipment and/or or linked cabin systems;
  • each disconnection box is connected to the equipment of the audiovisual transmission systems and to the equipment of the communication systems close to the passenger seats via interface boxes provided with units for optical/electrical conversion and for managing the allocation of the lengths of 'wave;
  • the basic signals being electrical signals, the intermediate boxes consist of interface boxes integrating electrical/optical conversion and management units by wavelength allocation, each interface box being connected to equipment of the audiovisual transmission systems and of the communication systems close to the passenger seats;
  • the seats are connected to the corresponding interface box by signal transmitters/receivers;
  • the interface boxes are connected to each other and to a disconnection box according to a configuration chosen between a chain, bus, ring and star configuration, depending on the physical constraints, the functional requirements and the design choices;
  • the distribution of the signals by the disconnection box to the interface boxes is carried out by a technique chosen between recopies by successive transfer in the case of a chain configuration and selective transmissions by optical separators in the case of a configuration star;
  • each interface box transmits electrical signals to several passenger seats and comprises a unit for converting the downlink signals to the equipment into electrical signals and the uplink signals from the equipment into optical signals, and a wavelength allocation management unit integrating an OADM multiplexer for injecting and recovering optical signals respectively into and from at least one optical fiber;
  • the wavelength allocation management unit of each interface box integrates an OADM multiplexer for injection and extraction of reconfigurable optical signals called ROADM;
  • the wavelength allocations can be configured according to a distribution that can be chosen by type of system, by association with each disconnection box, by association with the interface boxes connected to the same disconnection box, by location of the equipment in operation their class, and/or by type of downward and upward flow between the interface boxes and the concentration and configuration box;
  • the allocation of wavelength allocations is identical in the uplink and downlink directions of the data streams between the interface boxes and the concentration and configuration box;
  • the intermediate boxes consist of at least one disconnection box integrating switching and wavelength allocation management units according to the equipment of the audiovisual systems, communication and/or cabin systems in connection, each box of disconnection being coupled directly to cabin system equipment and communication system equipment located in the cabin, and coupled to audiovisual transmission system equipment and communication system equipment close to the passenger seats via interface boxes fitted with units for optical/electrical conversion and management by wavelength allocation;
  • in the case where the allocation of the wavelengths is independent of the interface boxes, means for controlling access to these boxes are provided and chosen from time-sharing or TDM multiplexing, token passing and sampling synchronous polling type, to avoid the risk of interference;
  • each switching unit comprises switching contactors (“switches” in English terminology) of the data of the resources activated by the concentration and configuration box according to the recipient equipment;
  • each switching unit incorporates priority management means;
  • each electrical/optical conversion unit incorporates electro-optical transceivers (“transceivers” in English terminology), these transceivers being able to be coupled to specific data adapters depending on the resources;
  • each management unit by allocation of wavelengths and distribution of downlink and uplink optical flows comprises a network allocation by multiplexing chosen between a wavelength division multiplexer (or WDM acronym for "wavelength division multiplexer"), a dense division multiplexer (or DWDM acronym for "dense wavelength division multiplexer"), a division multiplexer gross (or CWDM “acronym for “coarse wavelength division multiplexer”) and an ultra-dense division multiplexer (or UDWDM acronym for “ultra-dense wavelength division multiplexer”);
  • each management unit by allocation of wavelengths and distribution of up and down optical flows also incorporates means for specific management of optical signals coupled to the wavelength division multiplexer and selected from a terminal wavelength multiplexer optical signals or OTM, an optical wavelength demultiplexer of signals coming from the optical network or OWD, a multiplexer for injecting optical signals at one wavelength and extracting optical signals at different wavelengths receiving corresponding equipment or OADM, and/or an optical wavelength connector to specific ports or OXC (OTM, OWD, OADM and OXC being respectively acronyms for "optical terminal multiplexer", "optical wavelength demultiplexer" , “optical add and drop multiplexer” and “optical cross connect” in English terminology);
  • the downlink and uplink optical flows are either carried together on at least one optical fiber or separated on at least two optical fibers, for reasons of redundancy, additional deployment, speed or performance, the optical fibers possibly being single-mode and/or multi-mode;
  • the transport structure is an aircraft and the data resources are located in the aircraft close to the passenger cabin, in particular in an avionics bay.

PRÉSENTATION DES FIGURESPRESENTATION OF FIGURES

D'autres données, caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description non limitée qui suit, en référence aux figures annexées qui représentent, respectivement :

  • la figure 1, un schéma-blocs d'un exemple de structure de gestion de données embarquée dans une cabine de passagers d'un aéronef pour des équipements d'un système IFE, de systèmes de communication et de systèmes cabine;
  • la figure 2, un schéma-blocs reprenant l'exemple de structure de la figure 1 et dédié aux équipements d'un système IFE et à des systèmes de communication ;
  • la figure 3, une variante du schéma-blocs de la figure 2 avec séparation des flux optiques descendants et montants sur deux fibres optiques;
  • la figure 4, une variante du schéma-blocs de la figure 2 sans boitier de déconnexion, permet une adaptation en fonction des besoins de chaque siège en débit et bande passante;
  • la figure 5, une variante du schéma-blocs de la figure 4 avec séparation des flux montants et descendants sur deux fibres optiques, et
  • la figure 6, une variante du schéma-blocs de la figure 1 sans boitier d'interface et dédiée aux équipements techniques des systèmes cabine.
Other data, characteristics and advantages of the present invention will appear on reading the non-limited description which follows, with reference to the appended figures which represent, respectively:
  • the figure 1 , a block diagram of an example of on-board data management structure in an aircraft passenger cabin for equipment of an IFE system, communication systems and cabin systems;
  • the figure 2 , a block diagram showing the example structure of the figure 1 and dedicated to IFE system equipment and communication systems;
  • the picture 3 , a variant of the block diagram of the picture 2 with separation of downlink and uplink optical flows on two optical fibers;
  • the figure 4 , a variant of the block diagram of the picture 2 without disconnection box, allows adaptation according to the needs of each seat in terms of speed and bandwidth;
  • the figure 5 , a variant of the block diagram of the figure 4 with separation of uplink and downlink flows on two optical fibers, and
  • the figure 6 , a variant of the block diagram of the figure 1 without interface box and dedicated to the technical equipment of cabin systems.

Dans la description ci-dessous, des signes de référence identiques se rapportent à un même élément ou un élément semblable ayant la même fonction et renvoient au(x) passage(s) du texte qui le(s) décrive(nt).In the description below, identical reference signs relate to the same element or a similar element having the same function and refer to the passage(s) of the text which describes them.

DESCRIPTION DETAILLEE DE MODES DE REALISATIONDETAILED DESCRIPTION OF EMBODIMENTS

Le schéma-blocs de la figure 1 illustre un exemple de structure de gestion de données 1a embarquée dans un aéronef intégrant une cabine de passagers 100, équipée de sièges 110 dans la zone passagers 120, et une baie avionique 200. La structure 1a comporte un bloc de ressources de données 210 dans la baie avionique 200 intégrant trois unités centrales 211 à 213: une unité centrale 211 d'un système de transmission IFE, une unité centrale 212 de systèmes de communication (Internet et WIFI dans l'exemple) entre la cabine 100 et l'extérieur de la cabine, et une unité centrale 213 des systèmes cabine en liaison avec les équipements techniques critiques ou non critiques pour le vol.The block diagram of the figure 1 illustrates an example of a data management structure 1a on board an aircraft integrating a passenger cabin 100, equipped with seats 110 in the passenger area 120, and an avionics bay 200. The structure 1a comprises a block of data resources 210 in the avionics bay 200 integrating three central units 211 to 213: a central unit 211 of an IFE transmission system, a central unit 212 of systems communication (Internet and WIFI in the example) between the cabin 100 and the exterior of the cabin, and a central unit 213 of the cabin systems in connection with the critical or non-critical technical equipment for the flight.

La structure 1a comporte également une architecture standardisée 10a de distribution de flux descendants F1 et de flux montants de données dans et à partir des équipements de la cabine 100. Les flux descendants F1 permettent d'exploiter les données provenant desdites unités centrales 211 à 213 et les flux montants F2 de transférer des données auxdites unités centrales 211 à 213 à partir des équipements. Ces équipements sont répartis dans la cabine 100: les terminaux E1 du système IFE intégrés aux sièges 110 de la zone passagers 120, les équipements PED E2 des passagers positionnés à proximité de ces sièges 110 - les communications des terminaux E1 et des PED E2 étant gérés respectivement par les unités centrales 211 et 212 -; et, en dehors de la zone passagers 120, dans les emplacements 130 dans cet exemple de réalisation, les équipements techniques critiques et non critiques E3 (actionneurs de pompes, détecteurs de température ou de pression, unités de décodage/encodage, appareils de cuisson des galleys, etc.) des systèmes cabine gérés par l'unité centrale 213, ainsi que des équipements E4 de systèmes de communication situés dans la cabine 100 gérés par l'unité centrale des systèmes de communication 212.The structure 1a also includes a standardized architecture 10a for distributing downlink flows F1 and uplink data flows in and from the equipment of cabin 100. The downlink flows F1 make it possible to exploit the data coming from said central units 211 to 213 and the upflows F2 to transfer data to said central units 211 to 213 from the equipment. This equipment is distributed in the cabin 100: the terminals E1 of the IFE system integrated into the seats 110 of the passenger area 120, the PED E2 equipment of the passengers positioned close to these seats 110 - the communications of the terminals E1 and of the PED E2 being managed respectively by the central units 211 and 212 -; and, outside the passenger area 120, in the locations 130 in this embodiment, the critical and non-critical technical equipment E3 (pump actuators, temperature or pressure detectors, decoding/encoding units, cooking appliances for galleys, etc.) of the cabin systems managed by the central unit 213, as well as equipment E4 of communication systems located in the cabin 100 managed by the central unit of the communication systems 212.

La distribution de flux descendants F1 de données est générée par un boitier de concentration et configuration 11 de l'architecture standardisée 10a. Selon des transferts bidirectionnels, ledit boitier 11 communique, d'une part, des signaux électriques avec les unités centrales 211 à 213 du bloc de ressources 210 (doubles flèches F10) et, d'autre part, des signaux optiques avec les équipements de la cabine 100 via une fibre optique 2 formant une boucle primaire B1 d'un réseau optique 20 sur le boitier de concentration et configuration 11. Le réseau optique 20 est intégré, selon différents modes de réalisation, au plafond et/ou au plancher de la cabine 100.The distribution of downlink data flows F1 is generated by a concentration and configuration box 11 of the standardized architecture 10a. According to bidirectional transfers, said box 11 communicates, on the one hand, electrical signals with the central units 211 to 213 of the resource block 210 (double arrows F10) and, on the other hand, optical signals with the equipment of the cabin 100 via an optical fiber 2 forming a primary loop B1 of an optical network 20 on the concentration and configuration box 11. The optical network 20 is integrated, according to different embodiments, into the ceiling and/or the floor of the cabin 100.

Un tel boitier de concentration et configuration 11 intègre des unités de traitement des signaux 111 à 113: une unité de commutation 111 pour aiguiller les signaux électriques générés par le bloc de ressources 210 en fonction des équipements E1 à E4, une unité de conversion bidirectionnelle 112 des signaux électriques commutés 210 en signaux optiques, et une unité de gestion 113 des signaux optiques par des paramètres d'allocation en longueurs d'onde et de distribution en flux optiques descendants F1 et montants F2 dans le réseau 20.Such a concentration and configuration box 11 integrates signal processing units 111 to 113: a switching unit 111 to route the electrical signals generated by the resource block 210 according to the equipment E1 to E4, a bidirectional conversion unit 112 switched electrical signals 210 into optical signals, and a management unit 113 of the optical signals by wavelength allocation and distribution parameters in downlink F1 and uplink F2 optical flows in the network 20.

La commutation est avantageusement réglée par des switchs (non représentés) activés par le boitier de concentration et configuration 11 qui gère également les switchs de toutes les unités de commutation 111 décrites ci-après. Ces switchs permettent un aiguillage optimal des signaux par des réseaux de multiplexage (comme précisé ci-après) en fonction de leur destination caractérisée par une adresse physique ou, dans des variantes, par une adresse logique ou un numéro de port.The switching is advantageously regulated by switches (not shown) activated by the concentration and configuration box 11 which also manages the switches of all the switching units 111 described below. These switches allow optimal routing of signals by multiplexing networks (as specified below) according to their destination characterized by a physical address or, in variants, by a logical address or a port number.

Le boitier de concentration et configuration 11 est relié aux équipements E1 à E4 des systèmes IFE, des systèmes de communication et des systèmes cabine via des boitiers intermédiaires montés en série, les boitiers de déconnexion 30 du réseau optique 20 dans l'exemple illustré. Le réseau optique 20 comporte des boucles secondaires en chaîne B2 à fibre optique unique 3 couplées à la boucle primaire 20 à travers les boitiers de déconnexion 30. Sur ces boucles secondaires B2, les boitiers d'interface de connexion 40 sont couplées (doubles flèches F20) aux équipements E1 et E2 de la zone de cabine 120.The concentration and configuration box 11 is connected to the equipment E1 to E4 of the IFE systems, of the communication systems and of the cabin systems via intermediate boxes mounted in series, the disconnect boxes 30 of the optical network 20 in the example illustrated. The optical network 20 comprises secondary loops in chain B2 with single optical fiber 3 coupled to the primary loop 20 through the disconnection boxes 30. On these secondary loops B2, the connection interface boxes 40 are coupled (double arrows F20 ) to equipment E1 and E2 in cabin area 120.

Les boitiers de déconnexion 30 sont ainsi couplés électriquement aux équipements E3, E4 des emplacements de cabine 130 via des câblages électriques (doubles flèches F40), et aux équipements E1, E2 de la zone passagers 120 via les boitiers d'interface 40.The disconnection boxes 30 are thus electrically coupled to the equipment E3, E4 of the cabin locations 130 via electrical wiring (double arrows F40), and to the equipment E1, E2 of the passenger area 120 via the interface boxes 40.

Chaque boitier de déconnexion 30 est alors relié à plusieurs - trois dans l'exemple - boitiers d'interface 40 montées en série bouclée (« daisy chain » en terminologie anglaise) sur le boitier de déconnexion 30, et chaque boitier d'interface 40 est couplé électriquement à une rangée de sièges 12 ou, en variante de réalisation, à plusieurs rangées. Alternativement, en fonction des contraintes d'encombrement, des exigences fonctionnelles ou de choix de conception, les boitiers d'interface 40 peuvent être connectés en bus, en anneau ou en étoile. La distribution des signaux par le boitier de déconnexion 30 aux boitiers d'interface 40 est réalisée par des recopies par transfert successif dans le cas d'une configuration en chaîne ou des transmissions sélectives par des séparateurs optiques dans le cas d'une configuration en étoile.Each disconnection box 30 is then connected to several - three in the example - interface boxes 40 mounted in a looped series ("daisy chain" in English terminology) on the disconnection box 30, and each box interface 40 is electrically coupled to a row of seats 12 or, alternatively, to several rows. Alternatively, depending on space constraints, functional requirements or design choices, the interface boxes 40 can be connected in a bus, in a ring or in a star. The distribution of the signals by the disconnection box 30 to the interface boxes 40 is carried out by recopies by successive transfer in the case of a chain configuration or selective transmissions by optical separators in the case of a star configuration. .

Chacun de ces boitiers de déconnexion 30 intègre une unité de commutation 111 des signaux électriques générés par les équipements E3 et E4, une unité de conversion bidirectionnelle 112 des signaux électriques commutés en signaux optiques et une unité de gestion 113 des signaux optiques par allocation en longueurs d'onde et distribution en flux optiques dans le réseau 20.Each of these disconnection boxes 30 incorporates a unit 111 for switching the electrical signals generated by the equipment E3 and E4, a unit for bidirectional conversion 112 of the switched electrical signals into optical signals and a management unit 113 of the optical signals by length allocation wave and optical flow distribution in the network 20.

De plus, dans cet exemple de réalisation, chaque boitier d'interface 40 intègre également une unité de conversion bidirectionnelle 112 des signaux électriques en signaux optiques, et une unité de gestion 113 des signaux optiques par allocation de longueurs d'onde et distribution de flux optiques dans le réseau 20. Dans le cas où l'allocation des longueurs d'onde est attribuée indépendamment des boitiers d'interface 40, plusieurs boitiers d'interface 40 peuvent émettre ou recevoir des signaux sur une même longueur d'onde. Pour éviter de tels risques d'interférence, des moyens de contrôle d'accès à ces interfaces 40 sont avantageusement déployés. De tels moyens de contrôle d'accès sont choisis parmi un multiplexage en temps partagé ou TDM, un passage de jeton et un échantillonnage synchrone de type polling.In addition, in this exemplary embodiment, each interface box 40 also incorporates a unit 112 for bidirectional conversion of electrical signals into optical signals, and a management unit 113 of optical signals by wavelength allocation and flow distribution. optics in the network 20. In the case where the allocation of the wavelengths is assigned independently of the interface boxes 40, several interface boxes 40 can transmit or receive signals on the same wavelength. To avoid such risks of interference, means of controlling access to these interfaces 40 are advantageously deployed. Such access control means are chosen from among time-sharing multiplexing or TDM, token passing and synchronous sampling of the polling type.

Avantageusement, chaque unité de commutation 111 intègre un protocole de gestion des priorités en fonction des différents équipements E1 à E4, par exemple en priorisant les signaux à transmettre aux équipements techniques E3, puis aux équipements des systèmes de communication E4 et E2, et enfin aux équipements E1 du système IFE. Par ailleurs, chaque unité de conversion bidirectionnelle électrique / optique 112 intègre avantageusement des émetteurs-récepteurs électro-optiques (« transceivers » en terminologie anglaise) couplés à des adaptateurs spécifiques de données en fonction du type de système de données du bloc de ressources 210, à savoir dans le présent exemple le système IFE, les systèmes de communication et les systèmes cabine.Advantageously, each switching unit 111 integrates a protocol for managing priorities according to the different equipment E1 to E4, for example by prioritizing the signals to be transmitted to the technical equipment E3, then to the equipment of the communication systems E4 and E2, and finally to the E1 equipment of the IFE system. Furthermore, each conversion unit electrical/optical bidirectional 112 advantageously integrates electro-optical transceivers (“transceivers” in English terminology) coupled to specific data adapters depending on the type of data system of the resource block 210, namely in the present example the IFE system, communication systems and cabin systems.

Concernant les allocations de longueurs d'onde, chaque unité de gestion 113 par allocation des longueurs d'onde et distribution des flux optiques descendants F1 dans le sens « boitier de concentration et configuration 11 vers les équipements E1 à E4 et montants F2, dans le sens inverse, comporte un multiplexeur de division de longueur d'onde dit WDM. Alternativement, en fonction des exigences de performance, de débit, d'adressage et de contraintes physiques, un multiplexeur de division dense dit DWDM, un multiplexeur de division brut dit CWDM ou un multiplexeur de division ultra-dense dit UDWDM peuvent être avantageusement utilisés.Concerning the allocations of wavelengths, each management unit 113 by allocation of the wavelengths and distribution of the downward optical flows F1 in the direction "concentration box and configuration 11 towards the equipment E1 to E4 and uprights F2, in the reverse direction, includes a wavelength division multiplexer called WDM. Alternatively, depending on the requirements of performance, throughput, addressing and physical constraints, a dense division multiplexer called DWDM, a coarse division multiplexer called CWDM or an ultra-dense division multiplexer called UDWDM can be advantageously used.

Avantageusement, chaque unité de gestion 113 intègre également un multiplexeur de gestion spécifique des signaux optiques couplé au multiplexeur de division de longueur d'onde, un multiplexeur terminal de longueurs d'onde des signaux optiques dit OTM dans l'exemple de réalisation. Alternativement ou en combinaison, un démultiplexeur de longueur d'onde optique des signaux issus du réseau optique 20 dit OWD, un multiplexeur d'injection de signaux optiques à une longueur d'onde particulière et d'extraction de signaux optiques sur des longueurs d'onde de réception d'équipement correspondant dit OADM, et/ou un connecteur de longueurs d'onde optique à des ports spécifiques dit OXC peuvent être intégrés.Advantageously, each management unit 113 also integrates a specific optical signal management multiplexer coupled to the wavelength division multiplexer, a terminal optical signal wavelength multiplexer called OTM in the example embodiment. Alternatively or in combination, an optical wavelength demultiplexer of the signals coming from the optical network 20 called OWD, a multiplexer for injecting optical signals at a particular wavelength and extracting optical signals over wavelengths of corresponding equipment reception wave called OADM, and/or an optical wavelength connector at specific ports called OXC can be integrated.

La répartition des longueurs d'onde est avantageusement paramétrée par type de service fourni selon les systèmes (système IFE, systèmes de communication et systèmes cabine). A des fins de simplification, l'attribution des longueurs d'onde est identique dans cet exemple, dans les sens montant F1 et descendant F2 des flux de communication entre les boitiers d'interface 40 et le boitier de conversion et configuration 11 mais, pour bien différencier les sens montant et descendant, la stratégie d'allocations peut être différente dans ces deux sens selon des variantes de réalisation. Dans l'exemple, des longueurs d'onde dans la bande 1270 - 1370 nm sont allouées tous les 20 nm.The distribution of the wavelengths is advantageously parameterized by type of service provided according to the systems (IFE system, communication systems and cabin systems). For the purposes of simplification, the allocation of the wavelengths is identical in this example, in the uplink F1 and downlink F2 directions of the communication flows between the interface boxes 40 and the conversion and configuration box 11 but, for differentiate between the senses rising and falling, the allocation strategy can be different in these two directions according to variant embodiments. In the example, wavelengths in the 1270 - 1370 nm band are allocated every 20 nm.

Alternativement, les paramètres d'allocation peuvent être choisis en fonction des boitiers de déconnexion 30, des boitiers d'interface 40 reliés à un même boitier de déconnexion 30, par emplacement des équipements E1 à E4 en fonction de leur classe premium ou standard, et/ou par type de flux descendant F1 et montant F2 entre les boitiers d'interface 40 reliés à un même boitier de déconnexion 30 et le boitier de conversion et configuration 11.Alternatively, the allocation parameters can be chosen according to the disconnection boxes 30, the interface boxes 40 connected to the same disconnection box 30, by location of the equipment E1 to E4 according to their premium or standard class, and /or by type of downlink F1 and uplink F2 between the interface boxes 40 connected to the same disconnection box 30 and the conversion and configuration box 11.

L'architecture 10a prend avantageusement en compte la nature critique ou non critique des données transportées sur le réseau optique 20 entre le boitier de concentration et configuration 11 et les équipements techniques E3. Pour ce faire, les signaux critiques, destinés aux équipements techniques E3 critiques pour les conditions de vol, sont portés par le protocole avionique en duplex intégral dit AFDX, alors que les données non critiques destinées aux équipements techniques E3 non critiques sont traitées par le protocole Ethernet.The architecture 10a advantageously takes into account the critical or non-critical nature of the data transported over the optical network 20 between the concentration and configuration box 11 and the technical equipment E3. To do this, the critical signals, intended for the E3 technical equipment critical for the flight conditions, are carried by the full-duplex avionics protocol known as AFDX, while the non-critical data intended for the non-critical E3 technical equipment are processed by the protocol ethernet.

Le schéma-blocs de la figure 2 illustre une structure de gestion de données simplifiée 1b qui reprend la structure 1a précédente sans les équipements E3 des systèmes cabine qui sont gérés par un autre réseau de distribution, par exemple par le plafond (cf. figure 6). La structure 1b gère alors les équipements E1 du système IFE et les équipements PED E2 de la zone passagers 120, ainsi que les équipements E4 des systèmes de communication dans les emplacements de cabine 130. Dans ce cas, les données issues des deux unités centrales 211 et 212 du bloc de ressources 210, respectivement du système IFE et des systèmes de communication, n'utilisent qu'un même réseau de distribution 20, par le plancher de la cabine 100 dans l'exemple de réalisation.The block diagram of the picture 2 illustrates a simplified data management structure 1b which uses the previous structure 1a without the equipment E3 of the cabin systems which are managed by another distribution network, for example by the ceiling (cf. figure 6 ). The structure 1b then manages the equipment E1 of the IFE system and the PED equipment E2 of the passenger area 120, as well as the equipment E4 of the communication systems in the cabin locations 130. In this case, the data from the two central units 211 and 212 of the resource block 210, respectively of the IFE system and of the communication systems, only use one and the same distribution network 20, via the floor of the cabin 100 in the example embodiment.

Cette structure de gestion simplifiée 1b intègre une architecture 10b qui reprend l'architecture standardisée 10a dans laquelle les boitiers de déconnexion 30 sont dépourvus d'unité de conversion des signaux car toutes les conversions sont effectuées par les boitiers d'interface 40 dans cet exemple. Alternativement, si les boitiers de déconnexion 30 sont équipés d'unités de conversion 112, comme dans la structure de gestion 1a (cf. figure 1), ces unités de conversion ne sont pas intégrées ou sont rendues inactives. Chaque boitier de déconnexion 30 intègre une unité de gestion 113 équipée d'un multiplexeur OADM, ou ROADM pour augmenter l'adaptabilité des systèmes de communication au réaménagement de cabine (refittings).This simplified management structure 1b incorporates an architecture 10b which uses the standardized architecture 10a in which the disconnection boxes 30 have no signal conversion unit because all the conversions are performed by the interface boxes 40 in this example. Alternatively, if the disconnect boxes 30 are equipped with conversion units 112, as in the management structure 1a (cf. figure 1 ), these conversion units are not integrated or are rendered inactive. Each disconnection box 30 integrates a management unit 113 equipped with an OADM multiplexer, or ROADM to increase the adaptability of the communication systems to cabin refitting (refittings).

Les boitiers d'interface 40 reprennent la même configuration: une unité de conversion bidirectionnelle optique/électrique 112 et une unité de gestion 113 équipée d'un multiplexeur OADM. En variante, dans le cas où chaque boitier d'interface 40 fonctionne sur une longueur d'onde qui lui est propre, les données strictement adressées à ses sièges sont récupérées par un multiplexeur ROADM à fonctions injection ou DROP et addition ou ADD: il peut récupérer les données qui sont strictement adressées à ses sièges en faisant un DROP du signal associé à sa longueur d'onde de réception. Il peut aussi transmettre les signaux envoyés par ses sièges dans la fibre en effectuant la fonction ADD du signal associé à sa longueur d'onde d'émission. Suivant les choix de conception, les longueurs d'onde d'émission et de réception peuvent être différentes.The interface boxes 40 use the same configuration: a bidirectional optical/electrical conversion unit 112 and a management unit 113 equipped with an OADM multiplexer. As a variant, in the case where each interface box 40 operates on a wavelength specific to it, the data strictly addressed to its seats are recovered by a ROADM multiplexer with injection or DROP and addition or ADD functions: it can recover the data which is strictly addressed to its seats by making a DROP of the signal associated with its reception wavelength. It can also transmit the signals sent by its seats in the fiber by performing the ADD function of the signal associated with its emission wavelength. Depending on the design choices, the transmission and reception wavelengths may be different.

Par ailleurs, dans l'architecture standardisée 10a, chaque fibre 2 ou 3 du réseau optique 20 porte l'ensemble des flux de données descendants F1 et montants F2.Furthermore, in the standardized architecture 10a, each fiber 2 or 3 of the optical network 20 carries all the downlink F1 and uplink F2 data streams.

Dans l'architecture 10c du schéma-bloc de la figure 3, qui illustre une variante de réalisation 1c de la structure de gestion de données simplifiée 1b, les flux de données descendants F1 et montants F2 sont séparés. Dans cette architecture 10c, une fibre de flux descendants 2a, dédiée au transport des flux de données descendants F1, relie le boitier de concentration et configuration 11 aux boitiers de déconnexion 30 et aux boitiers d'interface 40, via des prolongements 2'a de fibre par dérivation, et une fibre de flux montant 2b, dédiée au transport des flux de données montants F2, relie les boitiers d'interface 40 au boitier de concentration et configuration 11.In architecture 10c of the block diagram of the picture 3 , which illustrates a variant embodiment 1c of the simplified data management structure 1b, the downlink F1 and uplink F2 data streams are separated. In this architecture 10c, a downlink fiber 2a, dedicated to the transport of downlink data flows F1, connects the concentration and configuration box 11 to the disconnection boxes 30 and to the interface boxes 40, via extensions 2'a of fiber by derivation, and an uplink fiber 2b, dedicated to the transport of flows of data amounts F2, connects the interface boxes 40 to the concentration and configuration box 11.

En variantes, plusieurs fibres de flux descendants et/ou plusieurs fibres de flux montants peuvent être utilisées en fonction des exigences de performance, d'adressage ou de contraintes physiques.Alternatively, multiple downlink fibers and/or multiple uplink fibers may be used depending on performance, addressing or physical constraint requirements.

Dans l'architecture 10d de la structure de gestion 1d du schéma-blocs de la figure 4, qui reprend la structure de gestion des données simplifiée 1b de la figure 2, les boitiers de déconnexion 30 sont supprimés afin de s'adapter directement aux besoins de chaque siège 110 en débit et bande passante. Dans cette architecture 10d, les boitiers d'interface 40 sont directement connectées au boitier de concentration et configuration 11 via la fibre optique 2 formant la boucle de réseau B1. Les équipements de communication E4 sont alors couplés par câblage aux boitiers d'interface 40.In the 10d architecture of the 1d management structure of the block diagram of the figure 4 , which uses the simplified data management structure 1b of the picture 2 , the disconnect boxes 30 are eliminated in order to adapt directly to the needs of each seat 110 in terms of bit rate and bandwidth. In this architecture 10d, the interface boxes 40 are directly connected to the concentration and configuration box 11 via the optical fiber 2 forming the network loop B1. The communication equipment E4 is then coupled by wiring to the interface boxes 40.

Comme illustré par l'architecture 10e de la structure de gestion 1e de la figure 5 il est également possible de séparer les flux de données descendants F1 et montants F2 à partir de l'architecture 10d. Dans cette architecture 10e, une fibre de flux descendants 2a, dédiée au transport des flux de données descendants F1, relie en série le boitier de concentration et configuration 11 aux boitiers d'interface 40 successives, et une fibre de flux montants 2b, dédiée au transport des flux de données montants F2, relie en série et successivement les boitiers d'interface 40 au boitier de concentration et configuration 11. Les fibres 2a et 2b forment un réseau optique 21 à flux descendants F1 et montants F2 séparés.As illustrated by the 10e architecture of the 1e management structure of the figure 5 it is also possible to separate the descending F1 and ascending F2 data streams from the architecture 10d. In this architecture 10e, a downlink fiber 2a, dedicated to transporting downlink data flows F1, serially connects the concentration and configuration box 11 to the successive interface boxes 40, and an uplink fiber 2b, dedicated to the transport of data flows uplinks F2, serially and successively connects the interface boxes 40 to the concentration and configuration box 11. The fibers 2a and 2b form an optical network 21 with downflows F1 and separate amounts F2.

Une architecture 10f dédiée aux équipements techniques E3 des systèmes cabine (emplacements 130) est illustrée par le schéma-blocs de la structure de gestion 1f de la figure 6, en liaison (doubles flèches F40) avec le boitier de concentration et configuration 11 de la structure de gestion 1a (cf. figure 1). Dans cette architecture 10f, la distribution des données issues de l'unité centrale des systèmes cabine 213 s'effectue via une fibre 4 formant un réseau optique en boucle 22 par le plafond de la cabine. La fibre 4 relie les boitiers de déconnexion 30 montés en série et les équipements E3 sont couplés à ces boitiers 30 par des moyens émetteurs / récepteurs. Les deux principales familles de données traitées sont les données critiques et les données non critiques des équipements techniques E3 respectivement critiques (des actionneurs, détecteurs, unités de décodage/encodage, unités de lumière, affichage, annonces, etc.) et non critiques (galleys, lumières, ventilation, etc.).A 10f architecture dedicated to the E3 technical equipment of the cabin systems (slots 130) is illustrated by the block diagram of the 1f management structure of the figure 6 , in connection (double arrows F40) with the concentration box and configuration 11 of the management structure 1a (cf. figure 1 ). In this architecture 10f, the distribution of data originating from the central unit of the cabin systems 213 takes place via a fiber 4 forming an optical network in a loop 22 via the ceiling of the cabin. The fiber 4 connects the disconnect boxes 30 connected in series and the equipment E3 is coupled to these boxes 30 by transmitter/receiver means. The two main families of data processed are critical data and non-critical data of E3 technical equipment respectively critical (actuators, detectors, decoding/encoding units, light units, display, announcements, etc.) and non-critical (galleys , lights, ventilation, etc.).

En variante, il est possible de déployer plusieurs fibres 4 en parallèle et le nombre total de fibres dépend principalement de la capacité d'adressage - par exemple selon un multiplexage de division de longueur d'onde ou WDM du boitier de concentration et configuration 11 - et du débit maximal proposé. Les données critiques sont par exemple supportées par le protocole AFDX et les données non critiques par Ethernet aiguillés par des contacteurs AFDX et Ethernet dudit boitier 11. Le protocole de bus CAN est également utilisé, par exemple pour les détecteurs, par le boitier 11 au niveau de l'unité de conversion optique / électrique 112 (cf. figure 1).As a variant, it is possible to deploy several fibers 4 in parallel and the total number of fibers depends mainly on the addressing capacity - for example according to a wavelength division multiplexing or WDM of the concentration and configuration box 11 - and the proposed maximum throughput. The critical data are for example supported by the AFDX protocol and the non-critical data by Ethernet routed by AFDX and Ethernet contactors of said box 11. The CAN bus protocol is also used, for example for the detectors, by the box 11 at the level of the optical/electrical conversion unit 112 (cf. figure 1 ).

La gestion des longueurs d'onde et distribution des flux est traitée comme dans le cadre de l'architecture 10a, par exemple par combinaison des multiplexeurs OTM, OWD, OADM et/ou ROADM.The management of the wavelengths and distribution of the flows is processed as in the framework of the architecture 10a, for example by combining the multiplexers OTM, OWD, OADM and/or ROADM.

Avec la gestion de données critiques, une architecture de distribution redondante à plusieurs fibres 4 est déployée afin d'assurer le transfert d'informations en cas de panne de réseau.With critical data management, a redundant multi-fiber 4 distribution architecture is deployed to ensure information transfer in the event of a network failure.

L'invention n'est pas limitée aux exemples décrits et représentés. Les architectures sont reconfigurables par une mise à jour numérique appliquée au boitier de concentration et configuration et aux boitiers de déconnexion.The invention is not limited to the examples described and represented. The architectures are reconfigurable by a digital update applied to the concentration and configuration box and to the disconnection boxes.

Des architectures redondantes peuvent être déployées selon une configuration identique à l'architecture de distribution initiale, afin de s'affranchir des contraintes physiques de détérioration et de prévenir d'éventuelles pannes au sein du réseau de distribution optique. En particulier, dans le cas où des équipements critiques des systèmes cabine sont exploitées par ces architectures, une architecture redondante est mise en place en doublant les réseaux optiques.Redundant architectures can be deployed according to a configuration identical to the initial distribution architecture, in order to overcome the physical constraints of deterioration and to prevent possible failures within the optical distribution network. In particular, in the event that equipment critical cabin systems are exploited by these architectures, a redundant architecture is implemented by doubling the optical networks.

L'invention peut utiliser un nombre de réseaux optiques variable et adapté aux conditions de mise en œuvre (contraintes physiques, exigences fonctionnelles, performances et débits visés, choix de conception de cabine, etc.). Ainsi un nombre de réseaux optiques optimisé, sans compter les réseaux redondants, peut être appliqué pour un nombre donné de catégories de systèmes, par exemple pour les trois catégories décrites ci-dessus (systèmes audiovisuels, systèmes de communication et systèmes cabine) : un réseau pour une catégorie de systèmes; un réseau commun ou un réseau par catégorie de systèmes pour deux catégories de systèmes données, et un réseau commun, deux réseaux (un réseau commun et un réseau dédié) ou trois réseaux dédiés pour trois catégories de systèmes données. Mais l'invention peut s'appliquer à une partie systèmes constitués de plus de trois catégories.The invention can use a number of optical networks that is variable and adapted to the conditions of implementation (physical constraints, functional requirements, targeted performance and data rates, choice of cabin design, etc.). Thus an optimized number of optical networks, without counting redundant networks, can be applied for a given number of categories of systems, for example for the three categories described above (audiovisual systems, communication systems and cabin systems): a network for a category of systems; a common network or a network per category of systems for two given categories of systems, and a common network, two networks (a common network and a dedicated network) or three dedicated networks for three given categories of systems. However, the invention can be applied to part systems made up of more than three categories.

Par ailleurs, les flux optiques descendants et montants sont soit portées conjointement sur au moins une fibre optique soit séparés et véhiculés sur au moins deux fibres optiques (pour des raisons de redondance, de déploiement supplémentaire, de débit ou de performance, etc.). De plus, les fibres optiques peuvent être monomodes et/ou multi-modes en fonction des performances souhaitées.Furthermore, the downlink and uplink optical flows are either carried together on at least one optical fiber or separated and conveyed on at least two optical fibers (for reasons of redundancy, additional deployment, throughput or performance, etc.). In addition, the optical fibers can be single-mode and/or multi-mode depending on the desired performance.

En outre, les unités centrales de l'IFE, des systèmes de communication et des systèmes Cabine sont connectés à un même réseau de distribution optique comme illustré par l'architecture 10a de la figure 1, ou sont connectés à différents réseaux optiques, comme illustré par exemple par les architectures 10c à 10f illustrées respectivement aux figures 3 à 6.Furthermore, the central units of the IFE, of the communication systems and of the cabin systems are connected to the same optical distribution network as illustrated by architecture 10a of the figure 1 , or are connected to different optical networks, as illustrated for example by the architectures 10c to 10f illustrated respectively in figures 3 to 6 .

De plus, les signaux de base entre le boitier de concentration et configuration et le bloc de ressources de données peuvent être des signaux non électriques, par exemple des signaux directement optiques, ce qui permet de s'affranchir des convertisseurs électriques/optiques, des signaux transmis par voie hertzienne entre des émetteurs et des récepteurs ad hoc, ou tout type de signal convertissable en signal analogique.In addition, the basic signals between the concentration and configuration box and the block of data resources can be non-electrical signals, for example directly optical signals, which makes it possible to dispense with electrical/optical converters, signals transmitted by way wireless between ad hoc transmitters and receivers, or any type of signal that can be converted into an analog signal.

Par ailleurs, en cas de coupure d'une fibre, il est possible de faire fonctionner le système de manière partiel en alimentant par le circuit non coupé, soit dans le sens montant soit dans le sens descendant.Furthermore, in the event of a fiber cut, it is possible to operate the system partially by supplying power via the uncut circuit, either in the up direction or in the down direction.

Claims (29)

  1. A method for managing data in a passenger cabin (100) equipped with a standardized architecture (10a to 10f) for distributing data streams (F1, F2) between data resources (211 to 213) of a systems part comprising an audiovisual transmission system, systems for outward communication from the cabin (100) and/or cabin systems, and a part for utilization of these data consisting on cabin devices (E1 to E4) recipient via a conversion of data into optical signals, distributed to these devices via an interface, the transmission of data can be conducted in both upstream and downstream directions characterized in that, the data of each resource being electrical signals, conversion into analog, optical or hertzian signals, it consists in transmitting, in a so-called downgoing direction, the data supplied by at least one system of the systems part to a single concentration and configuration interface (11) which steers the data of the resources (211 to 213) according to the recipient device (E1 to E4), converts the non-optical data into optical signals, and then allocates wavelengths to the optical signals and distributes them by multiplexing and parametrization of priorities as a function of the recipient devices (E1 to E4) and/or resources (211 to 213) as a function of the devices for a given resource, so as to transmit these multiplexed streams (F1) of optical signals on a pathway (2; 2a, 2'a; 2b) of at least one optical distribution network (20 to 22) to the recipient devices (E1 to E4) of the utilization part via an intermediate interface (30, 40) which manages the wavelengths of the optical signals and reconverts them into signals suited to the devices (E1 to E4) if relevant, and in that the transmission of data is also undertaken in the reverse so-called upgoing direction according to a processing reversed at each interface (30, 40) from devices (E1 to E4) of the cabin (100) to the resources concerned (210; 211 to 213) via the intermediate interface (30, 40) as a function of the resource concerned (211 to 213), the optical distribution network (20 to 22) and then the concentration and configuration interface (11) which transmits them to the resource concerned (211 to 213).
  2. The management method as claimed in claim 1, in which the intermediate interface (30, 40) is connected to the devices (E3, E4) of the cabin systems and/or to the devices (E2) of the communication systems.
  3. The management method as claimed in either one of the preceding claims, in which the intermediate interface (30, 40) comprises at least one disconnection interface (30) coupled to linking interfaces (40) for linking to the devices of the audiovisual system (E1) and to the devices of the systems for outward communication (E2) situated in proximity to the devices of the audiovisual system (E1), the linking interfaces (40) ensuring, in both directions, optical/electrical conversion as well as management by allocation of wavelengths and distribution of data streams (F1, F2).
  4. The management method as claimed in any one of the preceding claims, in which the allocation of the wavelengths is performed as a function of the positioning of the devices (E1 to E4) in the cabin (100), of the physical constraints of the cabin (100) and of the functional service characteristics related to a type of optical stream (F1, F2) pertaining to a level of class and/or of security.
  5. The management method as claimed in any one of the preceding claims, in which the architecture (10a to 10f) is reconfigured by a digital processing applied to the concentration and configuration interface (11) during installation and/or removal of the audiovisual devices (E1), communication devices (E2, E3), and/or devices for technical command / control (E4) of the cabin (100).
  6. The management method as claimed in any one of the preceding claims, in which a redundancy architecture incorporating at least the concentration and configuration interface is deployed according to a configuration identical to the concentration and configuration interface (11) of the standardized architecture (10a to 10f).
  7. The management method as claimed in any one of the preceding claims, in which the optical distribution network (20 to 22) can add and/or separate optical streams (F1, F2) by multiplexing and/or demultiplexing of wavelengths within this network (20 to 22).
  8. The management method as claimed in any one of the preceding claims, in which the transmission of data is performed in the downgoing and upgoing directions either on the same optical pathway (2, 3) or on two distinct optical pathways (2a, 2'a; 2b).
  9. A data management structure (1a to 1f) embedded on board a transport means incorporating a cabin (100) equipped with passenger seats (110), said structure comprising a data resources block (210) incorporating central units (211 to 213) of systems comprising an audiovisual transmission system, systems for outward communication from the cabin (100) and/or cabin systems, a standardized architecture for distributing data streams (10a to 10f) in the cabin (100) via means for converting data into optical signals, and cabin devices (E1 to E4) for utilization of said systems, the optical signals being distributed on these equipments via an interface, the data transmission being able to be carried out in upward and downward direction, characterized in that the data of each resource being electrical signals, convertible into analog, optical or radio signals, said standardized architecture (10a to 10f) comprises a concentration and configuration box (11) for bidirectional transfer, on the one hand, of base signals with the data resources block (210) and, on the other hand, of optical signals with the devices (E1 to E4) of the cabin (100) on at least one optical network fiber (2, 3; 2a, 2'a; 2b), in that this concentration and configuration box (11) incorporates units (211 to 213) for processing by switching of the base signals, bidirectional conversion of the base signals into optical signals for transfer to the devices (E1 to E4), and management of these optical signals by allocation of wavelengths and distribution of downgoing (F1) and upgoing (F2) optical streams by parametrization of priorities as a function of the recipient devices (E1 to E4) and/or resources (211 to 213) as a function of the devices for a given resource, and in that this concentration and configuration box (11) is linked to the devices (E1 to E4) of said systems via intermediate boxes (30, 40) also incorporating at least some of the processing units (111 to 113) as a function of the devices to which they are linked.
  10. The management structure as claimed in the preceding claim, in which the base signals between the concentration and configuration box (11) and the data resources block (210) are chosen from between electrical, RF and optical signals.
  11. The management structure as claimed in the preceding claim, in which the intermediate boxes consist of at least one disconnection box (30) incorporating units (111) for processing optical/electrical signals, and/or for switching (112) and/or for management by allocation of wavelengths (113) as a function of the devices (E2 to E4) of communication systems and/or cabin systems in conjunction.
  12. The management structure as claimed in the preceding claim, in which each disconnection box (30) is linked to the devices (E1) of the audiovisual transmission systems and to devices (E2) of the communication systems in proximity to the passenger seats (110) via interface boxes (40) furnished with units (112, 113) for optical/electrical conversion and for management by allocation of wavelengths.
  13. The management structure as claimed in claim 9, in which, the base signals being electrical signals, the intermediate boxes consist of interface boxes (40) incorporating units (112, 113) for electrical/optical conversion and for management by allocation of wavelengths, each interface box (40) being linked to devices (E1, E2) of the audiovisual transmission systems and communication systems in proximity to the passenger seats (110).
  14. The management structure as claimed in the preceding claim, in which the seats (110) are hooked up to the corresponding interface box (40) by signals emitters / receivers.
  15. The management structure as claimed in either one of claims 13 and 14, in which the interface boxes (40) are linked, to one another and to a disconnection box (30) as claimed in claim 12, according to a configuration chosen from between a chain configuration (B2), bus configuration, ring configuration and star configuration, as a function of the physical constraints, of the functional requirements and of the design choices.
  16. The management structure as claimed in the preceding claim, in which the distributing of the signals by the disconnection box (30) to the interface boxes (40) is carried out by a technique chosen from between copyovers by successive transfer in the case of a chain configuration (B2) and selective transmissions by optical separators in the case of a star configuration.
  17. The management structure as claimed in any one of claims 13 to 16, in which each interface box (40) transmits electrical signals to several passenger seats (110) and comprises a unit (112) for converting the downgoing signals to the devices (E1, E2) into electrical signals and the upgoing signals from the devices (E1, E2) into optical signals, and a unit for management by allocation of wavelengths (113) incorporating an OADM multiplexer for injecting and recovering optical signals respectively into and from at least one optical fiber (3; 2'a, 2b).
  18. The management structure as claimed in the preceding claim, in which the unit (113) for management by allocation of wavelengths of each interface box (40) incorporates a so-called ROADM reconfigurable OADM multiplexer for injecting and extracting optical signals.
  19. The management structure as claimed in any one of claims 13 to 18, in which the wavelength allocations are parametrized according to a distribution chosen by type of system, by association with each disconnection box (30), by association with the interface boxes (40) linked to one and the same disconnection box (30), by location of the devices (E1, E2) as a function of their class, and/or by type of downgoing (F1) and upgoing stream (F2) between the interface boxes (40) and the concentration and configuration box (11).
  20. The management structure as claimed in any one of claims 13 to 19, in which the allotting of the wavelength allocations is identical in the upgoing and downgoing directions of the data streams (F1, F2) between the interface boxes (40) and the concentration and configuration box (11).
  21. The management structure as claimed in any one of claims 13 to 20, in which the intermediate boxes consist of at least one disconnection box (30) incorporating units for switching (111) and for managing (113) allocation of the wavelengths as a function of the devices (E1 to E4) of the audiovisual systems, communication systems and/or cabin systems in conjunction, each disconnection box (30) being coupled directly to the devices (E3) of cabin systems and to devices (E4) of communication systems situated in the cabin (100), and coupled to the devices (E1) of the audiovisual transmission systems and to devices (E2) of the communication systems in proximity to the passenger seats (110) via interface boxes (40) furnished with units for optical/electrical conversion (112) and for management (113) by allocation of wavelengths.
  22. The management structure as claimed in any one of claims 13 to 21, in which, in the case where the allocation of the wavelengths is independent of the interface boxes (40), means for controlling access to these boxes (40) are provided and chosen from among time division multiplexing or TDM, token passing and synchronous sampling of polling type, so as to avoid the risks of interference.
  23. The management structure as claimed in any one of claims 9 to 22, in which each switching unit (111) comprises resources data switches activated by the concentration and configuration box (11) as a function of the recipient devices (E1 to E4).
  24. The management structure as claimed in any one of claims 9 to 23, in which each switching unit (111) incorporates means for managing priorities.
  25. The management structure as claimed in any one of claims 11 to 24, in which each electrical / optical conversion unit (112) incorporates electro-optical emitters-receivers termed transceivers, these transceivers are coupled to specific adaptors of data as a function of the resources (211 to 213).
  26. The management structure as claimed in any one of claims 9 to 25, in which each unit (113) for management by allocation of wavelengths and distribution of the downgoing (F1) and upgoing (F2) optical streams comprises a network for allotting by multiplexing chosen from between a wavelength division multiplexer WDM, a dense division multiplexer DWDM, a coarse division multiplexer CWDM and an ultra-dense division multiplexer UDWDM.
  27. The management structure as claimed in any one of claims 9 to 26, in which each unit (113) for management by allocation of wavelengths and distribution of the upgoing (F1) and downgoing (F2) optical streams also incorporates means for specific management of the optical signals coupled to the wavelength division multiplexer OTM and chosen from among a terminal multiplexer of wavelengths of the optical signals, an optical wavelength demultiplexer OWD of the signals arising from the optical network, an OADM multiplexer for injecting optical signals at a particular wavelength and for extracting optical signals on corresponding-device reception wavelengths termed, and/or an optical connector of wavelengths to specific ports, termed OXC.
  28. The management structure as claimed in any one of claims 9 to 27, in which the downgoing (F1) and upgoing (F2) optical streams are either carried jointly on at least one optical fiber (2, 3) or separated on at least two optical fibers (2a, 2'a; 2b), the optical fibers being single-mode and/or multimode.
  29. The management structure as claimed in any one of claims 9 to 28, in which the transport structure is an aircraft and the data resources (211 to 213) are situated in the aircraft in proximity to the passenger cabin (100), in particular in an avionics bay (200).
EP18762894.6A 2017-09-13 2018-09-12 Method for managing data in a transportation cabin and standardised implementation architecture Active EP3682566B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758477A FR3071073B1 (en) 2017-09-13 2017-09-13 DATA MANAGEMENT METHOD IN A TRANSPORT CAB AND STANDARDIZED IMPLEMENTATION ARCHITECTURE
PCT/EP2018/074637 WO2019053075A1 (en) 2017-09-13 2018-09-12 Method for managing data in a transportation cabin and standardised implementation architecture

Publications (2)

Publication Number Publication Date
EP3682566A1 EP3682566A1 (en) 2020-07-22
EP3682566B1 true EP3682566B1 (en) 2022-06-08

Family

ID=60627779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18762894.6A Active EP3682566B1 (en) 2017-09-13 2018-09-12 Method for managing data in a transportation cabin and standardised implementation architecture

Country Status (6)

Country Link
US (1) US11502769B2 (en)
EP (1) EP3682566B1 (en)
JP (1) JP7268009B2 (en)
CA (1) CA3073913A1 (en)
FR (1) FR3071073B1 (en)
WO (1) WO2019053075A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898801A (en) * 1998-01-29 1999-04-27 Lockheed Martin Corporation Optical transport system
JP3275819B2 (en) * 1998-02-12 2002-04-22 株式会社デンソー Information communication system
US7172155B2 (en) 2004-03-27 2007-02-06 The Boeing Company Seat interface for powered seat track cover
US7389960B2 (en) 2004-03-27 2008-06-24 The Boeing Company Passenger cabin seat power bus
FR2890275B1 (en) 2005-08-31 2008-12-19 Airbus France Sas OPTICAL COMMUNICATION BUS NETWORK FOR AVIONICS EQUIPMENT
FR2923617B1 (en) * 2007-11-08 2009-11-27 Airbus France AVIONIC EQUIPMENT WITH OPTICAL CONTACT AND AVIONIC SYSTEM COMPRISING SUCH EQUIPMENT.
JP2011515034A (en) * 2008-02-08 2011-05-12 パナソニック・アビオニクス・コーポレイション Optical communication system and method for delivering content on a mobile platform during movement
US8173902B2 (en) 2008-12-04 2012-05-08 Inflight Investments Inc. System for mounting electrical and optical conductors to floor beams of an aircraft
RU2550537C2 (en) * 2009-08-06 2015-05-10 Люмексис Корпорейшн Serial networking fibre-to-seat in-flight entertainment system
US8903242B2 (en) * 2010-07-28 2014-12-02 ADVA Optical Networking, SE Directionless and colorless reconfigurable optical add/drop multiplexer
US9794019B2 (en) * 2011-04-28 2017-10-17 Hewlett Packard Enterprise Development Lp Prioritized optical arbitration systems and methods
JP5983176B2 (en) * 2012-08-20 2016-08-31 富士通株式会社 Network design apparatus, network design method, and network design program
US9420314B1 (en) * 2015-05-07 2016-08-16 The Boeing Company Distribution of in-flight entertainment content to portable electronic devices
EP3408952A1 (en) * 2016-01-29 2018-12-05 Fundacio Privada Centre Tecnologic de Telecomunicacions de Catalunya System and method for providing passengers with multimedia entertainment services in transportation vehicles

Also Published As

Publication number Publication date
FR3071073B1 (en) 2022-11-18
US20200274632A1 (en) 2020-08-27
CA3073913A1 (en) 2019-03-21
JP2020537839A (en) 2020-12-24
EP3682566A1 (en) 2020-07-22
FR3071073A1 (en) 2019-03-15
JP7268009B2 (en) 2023-05-02
WO2019053075A1 (en) 2019-03-21
US11502769B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
EP2462513B1 (en) Serial networking fiber-to-the-seat inflight entertainment system
EP2320603B1 (en) Communication sytem in an aircraft
CA2478754C (en) Aircraft equipment control system
JP4603385B2 (en) Optical network with selective mode switching
US20100124421A1 (en) Bi-directional optical link between multiple data sources and a processing node in an avionics platform
EP1479194A1 (en) Local network for data exchange between portable micro-computers of aircraft passengers
EP3804280B1 (en) System for communicating via signals of li-fi type
US9020344B2 (en) Unified switching fabric architecture
US9197906B1 (en) Aircraft cabin management system
EP3682566B1 (en) Method for managing data in a transportation cabin and standardised implementation architecture
FR3034601A1 (en) COMMUNICATION NETWORK, COMMUNICATION PLANT ON AIRCRAFT AND AIRCRAFT COMPRISING SUCH A COMMUNICATION PLANT
Habiby et al. WDM optical backbone networks in aircraft applications: Networking challenges and standards progress
EP4078855B1 (en) Radio-frequency data transport infrastructure via optical fibers
EP3900238A1 (en) Reconfigurable optical backplane
EP2871805B1 (en) Data network, aircraft or spacecraft, and method
Zhang et al. Developing a generic optical avionic network
WO2021110867A1 (en) Passive optical communication network and aircraft containing said network
Ordoño et al. Multiprotocol CWDM network for refueling vision system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1497648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018036534

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220908

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1497648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018036534

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230310

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240912

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240923

Year of fee payment: 7