[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3578911B1 - Rohrwärmetauscher für einen backofen - Google Patents

Rohrwärmetauscher für einen backofen Download PDF

Info

Publication number
EP3578911B1
EP3578911B1 EP19176648.4A EP19176648A EP3578911B1 EP 3578911 B1 EP3578911 B1 EP 3578911B1 EP 19176648 A EP19176648 A EP 19176648A EP 3578911 B1 EP3578911 B1 EP 3578911B1
Authority
EP
European Patent Office
Prior art keywords
pipe
heat exchanger
sections
coil line
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19176648.4A
Other languages
English (en)
French (fr)
Other versions
EP3578911A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Werner and Pfleiderer Industrielle Backtechnik GmbH
Original Assignee
Werner and Pfleiderer Industrielle Backtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Werner and Pfleiderer Industrielle Backtechnik GmbH filed Critical Werner and Pfleiderer Industrielle Backtechnik GmbH
Priority to PL19176648T priority Critical patent/PL3578911T3/pl
Publication of EP3578911A1 publication Critical patent/EP3578911A1/de
Application granted granted Critical
Publication of EP3578911B1 publication Critical patent/EP3578911B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F9/002Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Definitions

  • the invention relates to a tubular heat exchanger for an oven.
  • the invention also relates to a method for producing a coil tubular heat exchanger and an oven module and an oven with at least one such tubular heat exchanger.
  • Tube heat exchangers of the type mentioned at the beginning are known from the market, for example, as flat tube coils or as pillow radiators.
  • a tubular heat exchanger is known from AT 27 736 B .
  • An oven is known from the DE-PS 927 861 .
  • a heat exchanger for a shower or bathtub is known from the CH 709 194 A2 .
  • the EP 0 144 040 discloses a tubular heat exchanger according to the preamble of claim 1 and describes a loop heat exchanger.
  • the AU 524 322 B2 discloses an air cooled heat exchanger.
  • the US 2004/0 069 470 A1 and the GB 16,746 describe different variants of heat exchangers.
  • a defined small distance between adjacent pipe sections of the pipe heat exchanger which is smaller than a pipe diameter, leads to an efficient heat transfer from the pipe sections leads to a fluid flowing through between adjacent pipe sections, for example by flowing air.
  • the advantages of heating the baking space by emitting radiation from the tubular heat exchanger can thus be combined with the advantages of convective heat transfer, in particular in a baking space heated by circulating air.
  • one of the heat transfer mechanisms “radiant heat” or “heat transfer to fluid flowing through” can then be dominant.
  • Thermal oil can be used as the heat transfer fluid.
  • the distance between adjacent pipe sections can be greater than 2% of the pipe diameter, can be greater than 3% and can, for example, be in the range of 5% of the pipe diameter.
  • the distance between adjacent pipe sections can be smaller than 20% of the pipe diameter, can be smaller than 15% and can be smaller than 10% of the pipe diameter.
  • An absolute distance between adjacent pipe sections of the pipe heat exchanger can be 2 mm.
  • the design as a coiled pipe heat exchanger simplifies the supply and discharge of the heat transfer fluid carried in the pipe sections.
  • the design of the serpentine tube heat exchanger with two serpentine conduit paths increases the flexibility of a conduit routing through the tube heat exchanger, which can then be adapted to production-related requirements and / or structural requirements, for example installation space requirements.
  • 180 ° deflection sections between two pipe sections of the same serpentine conduction path are led out of the arrangement plane for exactly one of the serpentine conduction paths.
  • 180 ° deflection sections leading out of the arrangement plane in this way avoid a space conflict between the deflection sections of the various snake conduction paths.
  • a passage extends between the tubular sections, which at most can be interrupted by mounting components along negligible extension sections, along the entire tubular section. This increases the effectiveness the heat transfer from the pipe sections to the fluid flowing between them is optimized.
  • the tubular heat exchanger can also have more than two serpentine conduction paths.
  • An arrangement of the pipe sections according to claim 4 can enlarge a minimum bending radius of the pipe forming the pipe sections within a respective serpentine conduction path. This simplifies the manufacture of the tubular heat exchanger.
  • An inlet-side Y-pipe piece according to claim 5 enables a common heat transfer fluid supply for the various coil line inlets.
  • a corresponding Y-pipe section can also be provided on the outlet side.
  • a further object of the invention is to provide a manufacturing method for a coiled pipe heat exchanger which has at least two coiled conduction paths.
  • this object is achieved by a production method with the steps specified in claim 7.
  • the advantages of the manufacturing process correspond to those which have already been explained above with reference to the coil pipe heat exchanger with the at least two coil line paths.
  • the snake tube heat exchanger can be manufactured from exactly one type of pipe by corresponding sequential bending and, if necessary, adding further pipes to pieces.
  • a method according to claim 8 enables the production of a snake tube heat exchanger according to claim 6.
  • the bending out of the bent out 180 ° deflection sections can take place with the aid of a corresponding tube bending device in the course of the production of the snake line paths.
  • a resulting bending angle can be in the range of 150 °, for example.
  • the pipe sections of the pipe heat exchanger can extend horizontally in the oven module or in the oven.
  • the pipe sections of the pipe heat exchanger can extend transversely to a conveying direction of the baked good through the oven module or the oven. This transverse extension can take place over a width of the entire baking chamber.
  • the pipe sections of the pipe heat exchanger can also extend in the conveying direction of the baked good.
  • the oven can be a continuous oven, in particular a tunnel oven.
  • the oven can consist of several oven modules be made, which can be constructed in particular in the same way.
  • Fig. 1 shows an overall side view of a tunnel oven 1 designed as a tunnel oven, with which, for example, long-life baked goods in the form of soft biscuits, hard biscuits or lye biscuits can be produced. Other baked goods, such as toast, can also be processed in the oven.
  • the oven 1 can also be used for roasting and, as a special application, drying or sterilization.
  • a total of eight oven modules 2 1 to 2 8 which belong to an upper continuous baking chamber, and eight oven modules 3 1 to 3 8 underneath, which belong to a lower continuous baking chamber of the continuous oven 1.
  • the oven modules are thus arranged on two levels.
  • the furnace modules 2 1 to 2 8 and 3 1 to 3 8 each have the same basic structure, in particular with regard to a support frame design and receptacles for add-on and built-in parts.
  • the furnace modules 2 1 to 2 8 and 3 1 to 3 8 have the same dimensions, that is, in terms of height, width and depth, each basically have the same space requirements.
  • the oven modules 2 1 to 2 8 and 3 1 to 3 8 are initially available as separate modules and are connected to one another when the oven 1 is assembled. In each of the oven modules 2 1 to 2 8 and 3 1 to 3 8 , heated circulating air is in each case conducted in a circuit via the heat exchangers described below.
  • the upper oven modules 2 1 to 2 8 are supported by the lower oven modules 3 1 to 3 8 .
  • the lower furnace modules 3 1 to 3 8 are supported by a machine floor.
  • a loading module 4 for the baked goods is arranged in the conveying direction, which in turn has two floors and communicates with the two continuous baking rooms.
  • Behind a final oven module 2 i and 3 i in the direction of baked goods is an output module 5 of the continuous oven 1 for taking over the baked goods from the continuous baking rooms and for dispensing them, which is also designed in two floors and again with communicates with the two continuous baking rooms.
  • the loading module 4 on the one hand and the output module 5 on the other hand close the circulating air circuit at the beginning and at the end of the continuous baking rooms.
  • the conveyor oven 1 is in the Fig. 1 shown interrupted to indicate that the number of furnace modules 2 i , 3 i can be greater than in the Fig. 1 shown.
  • the number N of furnace modules 2 i , 3 i can vary in practice, for example, between 5 and 20.
  • Baked goods to be baked enter the respective continuous baking chamber 7, 8 via the loading module 4, i.e. into the respective leading initial oven module 2 1 , 3 1 , pass through the respective continuous baking chamber 7, 8 along the baked good conveying direction 9 and enter via the output module 5 after having passed through the last final oven modules 2 i , 3 i from the continuous baking chambers 7, 8, completely baked again.
  • a cleaning opening 6a for some or all of the furnace modules 2 i , 3 i , a cleaning opening 6a, an inspection opening 6b and a steam opening 6c are also provided. Steaming / unloading of the respective baking chamber of the oven module 2 i , 3 i is possible via the respective damage opening 6c.
  • Fig. 2 shows a section through one of the oven modules using the oven module 2 1 as an example.
  • the conveying direction 9 is perpendicular to the cutting plane or plane of the drawing Fig. 2 .
  • Fig. 3 shows this in greater detail using the example of one of the furnace modules 2 i.
  • the furnace modules 3 i are constructed in the same way, so that it is sufficient to follow the detailed illustration Fig. 3 to show an example of one of the furnace modules 2 i.
  • the Fig. 2 are not to be found, is in this respect to the Fig. 3 referenced.
  • the oven modules 2 i , 3 i each have an oven 10, which is heated on the one hand directly via the circulating air and on the other hand via radiant heat, which is generated by heat exchangers in the form of two coil tube heat exchangers 11, 12.
  • the baking rooms 10 are each part of the two stacked through-going baking rooms 7, 8, which are formed on the one hand by the upper oven modules 2 i and on the other hand by the lower oven modules 3 i .
  • the tubular heat exchanger 11 arranged above the baking space generates top heat for the baking space 10.
  • the tubular heat exchanger 12 arranged below the baking space generates bottom heat for the baking space 10.
  • Thermal oil is used as the heat transfer fluid that flows through the tube heat exchangers 11, 12.
  • the upper tubular heat exchanger 11 is carried by a holding frame 13 which is mounted on the side frame cheeks 14, 15 of the oven module 6. Together with an upper retaining plate 16 and a lower retaining plate 17, the two frame cheeks 14, 15 form a baking room module 18 in which, among other things, the two tubular heat exchangers 11, 12 of the baking oven module 2 i are accommodated.
  • An air guide plate 18a is arranged between the upper retaining plate 16 and the upper tubular heat exchanger 11. The latter serves to equalize a circulating air flow in the baking chamber 10.
  • the air guide plate 18a can also absorb heat energy from the tubular heat exchanger 11 and release it to the circulating air, so it can serve as an additional indirect heat exchanger component.
  • a corresponding air guide plate 18a is arranged between the lower tubular heat exchanger 12 and the lower holding plate 17.
  • An upper conveyor strand 19 of an endless conveyor belt 20 runs between the two tubular heat exchangers 11, 12 and is used to transport the baked goods through the respective continuous baking chamber 7, 8 between the loading module 4 and the output module 5.
  • the continuous oven 1 has two endless conveyor belts 20, namely an upper endless conveyor belt 20 for the oven modules 2 i and a similarly constructed lower endless conveyor belt for the lower oven modules 3 i . It is therefore sufficient to describe one of these conveyor belts below.
  • the conveyor belt 20 has a plurality of belt links 21, of which in the Fig. 2 an upper belt link 21 o and a lower belt link 21 u can be seen.
  • the upper belt link 210 is part of the upper conveyor strand 19 and is arranged in the baking chamber 10.
  • the lower belt link 21 u is part of a lower belt run 22 which runs beneath the baking chamber 10 and the lower tubular heat exchanger 11 through a return conveyor belt chamber 23 counter to the conveying direction 9 as part of the endless conveyor belt 20.
  • An upper air circulation duct 24 is arranged between the upper holding plate 16 of the baking room module 18 and an upper module plate 23a of the oven module 2 i , 3 i.
  • a lower circulating air duct 26 is arranged between the lower holding plate 17 of the baking room module 18 and a lower module plate 25.
  • the two circulating air ducts 24, 26 extend over the entire width of the oven module 2 i , 3 i .
  • the two circulating air ducts 24, 26 are in fluid connection with two axial / radial fans 31, 32 via supply and exhaust air ducts 27, 28, 29, 30. Overall, this results in a circulating air circuit of the respective oven module 2 i , 3 i .
  • the baking chamber 10 of the respective oven module 2 i , 3 i is part of this circulating air circuit.
  • the fans 31 and 32, together with the respective circulating air circuit, are components of a circulating air device of the continuous oven 1.
  • the two fans 31, 32 and the supply air and exhaust air ducts 27 to 30 are mounted on lateral, vertically extending frame plates 33, 34 of the oven module 2 i , 3 i .
  • Fig. 3 shows one of the two tube heat exchangers that are used in the oven module 2 1 using the example of the upper coil tube heat exchanger 11. All tubular heat exchangers 11, 12 of the oven modules 2 i , 3 i of the oven 1 are constructed in the same way, so that it is sufficient to describe this upper tubular heat exchanger 11 below.
  • the tubular heat exchanger 11 has a plurality, namely thirty-six in the illustrated embodiment, in an arrangement level (cf. level 35 in FIG Fig. 2 ) juxtaposed heat exchanger pipe sections 36 for guiding a heat transfer fluid.
  • Thermal oil in particular, can be used as the heat transfer fluid.
  • the arrangement of the heat exchanger tube sections 36 next to one another in the arrangement plane 35 can be such that actually in a side view as in FIG Fig. 2 all heat exchanger pipe sections 36 are completely aligned with one another.
  • longitudinal axes, in particular of adjacent pipe sections 36 can have different distances from the arrangement plane 35.
  • a bandwidth of the distances between the longitudinal axes of the pipe sections 36 and the arrangement plane 35 is, however, also in this case smaller than a diameter of the individual pipe sections 36 and is in particular smaller than a fraction of this diameter, for example less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20% and in particular can be less than 10% of the The diameter of the pipe sections 36.
  • the pipe diameter of the pipe sections 36 can be in the range between 10 mm and 150 mm and, for example, in the range between 25 mm and 50 mm, for example 35 mm, 38 mm or 40 mm. Unless the pipe sections 36 in side view, as for example in the Fig. 2 are completely aligned with one another, the longitudinal axes of the pipe sections 36 can in this case have a distance from the arrangement plane 35 that is in the range between 0 mm and +/- 20 mm.
  • a distance A between two adjacent pipe sections 36 is on the one hand smaller than the pipe diameter and on the other hand greater than 1% of the pipe diameter.
  • This distance A is in the Fig. 6 , which shows a section of the tube heat exchanger 11 in a plan view, exemplifies two adjacent tube sections 36.
  • An absolute distance between two adjacent pipe sections 36 can be in the range between 1 mm and 50 mm, in particular in the range between 1 mm and 10 mm, in the range between 1 mm and 5 mm and can be, for example, 2 mm.
  • This distance between the adjacent pipe sections 36 enables a passage between these pipe sections.
  • Such a passage runs along an entire extension of the pipe sections 36 through the baking chamber 10 transversely to the conveying direction 9 and is at most interrupted by mounting components. Such interruptions are very small compared to the overall extent of the pipe sections 36 and Usually less than 5% of the total extension of the pipe sections 36. Because of these passages resulting from the distance between adjacent pipe sections 36, an effective heat transfer results from the pipe sections 36 to fluid flowing through between adjacent pipe sections 36.
  • FIG Fig. 7 Corresponding heat transfer conditions are very schematically shown in FIG Fig. 7 for two adjacent pipe sections 36 of the pipe heat exchanger 12.
  • the Fig. 7 shows the flow conditions at the lower coil pipe heat exchanger 12.
  • the heat transfer fluid 37 flows through the pipe sections 36.
  • the jacket walls 38 of the pipe sections 36 have a further heat-absorbing fluid, in the embodiment described, air 39 flowing around them, as shown schematically by some flow arrows reproduced. Due to the distance A between the adjacent pipe sections 36, which is in the range between 1% and 100% of the pipe diameter D, the inflowing air 39 flows through between the adjacent pipe sections after it has come into contact with peripheral sections U of the jacket walls 38.
  • the air 39 breaks off from the jacket wall 37 in the further course of the flow and the air 39 continues to flow turbulently upwards, where the Air which has flowed through the passage under consideration between the adjacent pipe sections 36 is effectively mixed with the air 39 which has flowed through adjacent passages between the pipe sections 36 shown and adjacent pipe sections not shown on the left and right.
  • a closed and essentially uninterrupted flow occurs very quickly Volume air flow upwards to the baking chamber 10, which is in the Fig. 2 is shown by flow arrows 40.
  • the turbulence ensures that the pipe sections 36 themselves do not serve as screens for the further air flow, that is, the air flow above the pipe heat exchanger 12 results in a closed air curtain without gaps through the baking chamber 10.
  • the tube heat exchanger 11 is designed as a coil tube heat exchanger.
  • a first serpentine conduit path 41 runs between a first serpentine conduit inlet 42 and a first serpentine conduit outlet 43.
  • a second serpentine conduit path 44 runs between a second serpentine conduit inlet 45 and a second serpentine conduit outlet 46 Fig. 3
  • the tubular heat exchanger 11 shown has exactly two serpentine line paths 41 and 44. In principle, a larger number of corresponding serpentine line paths is also possible.
  • the two serpentine line inlets 42, 45 on the one hand and the two serpentine line outlets 43 and 46 on the other hand are each in fluid connection via a Y-pipe section 49, 50 with one another and with a collecting inlet 49a on the one hand and with a collecting outlet 50a on the other hand.
  • the two serpentine line inlets 42, 45 are in fluid connection with the collecting line inlet 49a via the Y-pipe section 49.
  • the collecting line inlet 49a is in turn in fluid connection with a heat transfer fluid source not shown in the drawing.
  • the two collecting line outlets 43, 46 are in fluid connection with the collecting line outlet 50a via the further Y-pipe section 50.
  • the collecting line outlet 50a can be in fluid connection with the collecting line inlet 49a to form a heat transfer medium-fluid circuit.
  • a pump for the heat transfer fluid 37 which is likewise not shown in the drawing, can be part of this circuit.
  • the 180 ° deflection sections 47 are led out of the arrangement plane 35 between the two pipe sections 36 connected via this, namely bent out at an obtuse angle.
  • a bending angle ⁇ between the plane of arrangement 35 and a plane of arrangement of the 180 ° deflection sections 47 (cf. Fig. 2 , shown there in the tubular heat exchanger 12) is about 150 ° in the embodiment shown. This bending angle can be in the range between 120 ° and 165 °.
  • This routing of the 180 ° deflection sections 47 out of the arrangement plane 35 means that no installation space conflict occurs between the 180 ° deflection sections 47, 48 of the various hose line paths 41, 44.
  • a hose-pipe heat exchanger in the manner of hose-pipe heat exchangers 11 and 12 of the oven module 6 is produced as follows: First, a tube is provided which is a multiple of the length of one of the tube sections 36 between the respective deflection sections 47, 48. A first hose line path, for example the hose line path 41, is then produced by bending the pipe in the area of the deflection sections 47 between the pipe sections 36. A second hose line path, in this case the hose line path 44, is then produced by bending the pipe of the deflection sections 48 between the pipe sections 36. As soon as these manufacturing bending steps If the end of the tube is reached, a further tube with the same diameter is optionally pieced together, that is to say connected to the tube that has just been machined, for example welded to the end face.
  • the two hose line paths 41, 44 are inserted into one another in the arrangement plane 35.
  • the Y-pipe pieces 49, 50 can then be connected to the serpentine line inlets 42, 45 and the serpentine line outlets 43, 46, for example welded to them and optionally a fluid passage between the respective Y-pipe piece 49, 50 and the respective line inlets 42, 45 on the one hand and Outlets 43, 46 on the other hand are created.
  • the 180 ° deflection sections 47 between the pipe sections 36 of the same hose line path 41 are bent out of the arrangement plane 35. This bending out can take place at the same time when producing this serpentine conduction path 41 by using a corresponding, in particular flat, bending tool.
  • the baked goods carried on the conveyor belt 19 through the oven modules 2 to 6 are heated on the one hand by radiant heat from the tube heat exchangers 11, 12, which are housed in the respective oven modules 2 to 6, and on the other hand via the circulating air , which flows through the respective baking chamber 10 of the oven module 2 to 6, heated.
  • the heat contributions "radiant heat” on the one hand and “circulating air heat” (heat transfer to fluid flowing through) on the other can be specified by appropriate design of the tubular heat exchangers 11, 12 and by the temperature and flow of the heat transfer fluid 37 through the tubular heat exchangers 11, 12 and on the other hand by the amount of air flowing through the baking chambers 10.
  • An air flow through the baking chamber 10 (cf., for example, the air flow 40 in FIG Fig. 2 ) can be directed from bottom to top or from top to bottom, depending on the design of the furnace module 2 to 6.
  • Fig. 2 takes care of in the Fig. 2 Left fan 31 ensures that the circulating air first flows through the supply air duct 27 into the lower circulating air duct 26.
  • the Fig. 2 Right fan 32 ensures that the circulating air flows through the right supply air duct 28 into the lower circulating air duct 26.
  • the circulating air flows out of the lower circulating air duct 26 upwards and between the adjacent pipe sections 36 of the lower pipe heat exchanger 12, as above in connection with FIG Fig. 6 already described.
  • the circulating air then flows through the upper conveyor strand 19 of the endless conveyor belt 20 and then flows around the dough pieces conveyed thereon through the baking chamber 10.
  • the circulating air then flows through the passages between the pipe sections 36 of the upper tubular heat exchanger 11 and then flows into the upper circulating air duct 24, from where the circulating air is then sucked out again via the fans 31, 32 and the exhaust air ducts 29, 30 to complete the respective circulating air circuit.
  • An overpressure in the circulating air circuit can be achieved via a flap-controlled exhaust pipe 51 (cf. Fig. 2 ) escape.
  • the oven module can have 2 fans as in the version Fig. 2 or just an axial-radial fan have, which can then be attached to one or the other side of the furnace module.
  • the arrangement of this fan can alternate between the two sides of the continuous oven 1, for example, so that, for example, in oven module 3, the fan is arranged on the right in the manner of fan 32 following furnace module 4 on the left and in the following furnace module 5 again on the right.
  • the direction of flow of the circulating air through the baking chamber 10 can be specified by appropriately activating the respective fan 31, 32 from bottom to top or from top to bottom.
  • Different temperature zones can be specified in the furnace modules 2 to 6. This can be specified by specifying the temperature and / or the flow rate of the thermal oil and / or the amount of circulating air and the direction of the air circulation from bottom to top / from top to bottom. A central control device of the oven 1 is used for this.
  • the belt link 21 extends transversely to the conveying direction 9 between lateral guides 53, 54 for the endless conveyor belt 20, which are accommodated in the baking room module 18 for the upper conveyor strand 19.
  • the respective belt link 21 is connected to these guides 53, 54 via suspension mounting plates 55.
  • the upper conveying strand 19 extends in a conveying plane 56 which runs parallel to the planes of arrangement of the tubular heat exchangers 11, 12 (cf. plane of arrangement 35).
  • the band member 21 In projection in a direction perpendicular to the conveying plane 56, that is, seen in the viewing direction of FIG Fig. 9 , the band member 21 has gas passage openings 57, 58. These gas passage openings 57, 58 have a total opening area which is at least 30% of a total area of the projection of the band member 21.
  • the belt link 21 has between the lateral guides, that is, between the two suspension mounting plates 55, several link planes 59, 60 which, in the embodiment 2 shown, are spaced apart from one another perpendicular to the conveying plane 56.
  • the first, upper link level 59 coincides with the conveying level 56 and is defined by a plurality of double link brackets 63 extending along the conveying direction 9 between lateral link cheeks 61, 62.
  • the gas passage openings 58 are between the brackets of the respective double Link bracket 63 executed. Further gas passage openings in the upper link level 59 are made between two adjacent double link brackets 63.
  • the second, lower link level 60 is formed below the first link level 59 in the case of the belt links 21 currently forming the upper conveyor strand 19.
  • the gas passage openings 57 in the stiffening plate 64 run in the manner of elongated holes.
  • the gas passage openings 57 have a longitudinal extension in the direction of the longitudinal extension of the belt link 21.
  • the gas passage openings 58 between the brackets of the respective double link bracket 63 are designed in the manner of elongated holes.
  • the gas passage openings 58 have a longitudinal extension transverse to the longitudinal extension of the belt link 21, that is, as long as the belt link 21 is part of the upper conveying strand 19, parallel to the conveying direction 9.
  • the belt link 21 is designed to be self-supporting.
  • the belt links 21 revolve endlessly in the manner of chain links between the guides 53, 54, the upper conveyor strand 19 running in the conveying direction 9 and the lower belt strand 22 opposite to the conveying direction 9 Oven module 2 1 and the final oven module 2 N , a 180 ° deflection takes place via the correspondingly designed guides 53, 54 between the upper conveyor run 19 and the lower belt run 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Baking, Grill, Roasting (AREA)

Description

  • Die Erfindung betrifft einen Rohrwärmetauscher für einen Backofen. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Schlangen-Rohrwärmetauschers sowie ein Backofenmodul und einen Backofen mit mindestens einem derartigen Rohrwärmetauscher.
  • Rohrwärmetauscher der eingangs genannten Art sind beispielsweise als Flachrohrschlangen oder als Kissenradiatoren vom Markt her bekannt. Ein Rohrwärmetauscher ist bekannt aus der AT 27 736 B . Ein Backofen ist bekannt aus der DE-PS 927 861 . Ein Wärmetauscher für eine Dusche oder Badewanne ist bekannt aus der CH 709 194 A2 . Die EP 0 144 040 offenbart einen Rohrwärmetauscher gemäß dem Oberbegriff des Anspruchs 1 und beschreibt einen Schleifenwärmetauscher. Die AU 524 322 B2 offenbart einen luftgekühlten Wärmetauscher. Die US 2004/0 069 470 A1 und die GB 16,746 beschreiben verschiedene Varianten von Wärmetauschern.
  • Es ist eine Aufgabe der vorliegenden Erfindung, einen Rohrwärmetauscher der eingangs genannten Art derart weiterzubilden, dass hierüber ein Backraum effizient und variabel beheizt werden kann.
  • Diese Aufgabe ist erfindungsgemäß gelöst durch einen Rohrwärmetauscher mit dem im Anspruch 1 angegebenen Merkmalen.
  • Erfindungsgemäß wurde erkannt, dass ein definiert kleiner Abstand benachbarter Rohrabschnitte des Rohrwärmetauschers, der kleiner ist als ein Rohrdurchmesser, zu einem effizienten Wärmeübertrag von den Rohrabschnitten auf ein zwischen jeweils benachbarten Rohrabschnitten durchströmendes Fluid, z.B. durch strömende Luft, führt. Die Vorteile einer Backraumerwärmung über eine Strahlungsabgabe vom Rohrwärmetauscher können somit mit den Vorteilen einer konvektiven Wärmeübertragung, insbesondere in einem umluftbeheizten Backraum kombiniert werden. Je nach Auslegung des Rohrwärmetauschers und je nach Umluftsteuerung kann dann einer der Wärmeübertragungsmechanismen "Strahlungswärme" oder "Wärmeabgabe an durchströmendes Fluid" dominierend sein. Als Wärmeträger-Fluid kann Thermoöl zum Einsatz kommen. Der Abstand benachbarter Rohrabschnitte kann größer sein als 2 % des Rohrdurchmessers, kann größer sein als 3 % und kann beispielsweise im Bereich von 5 % des Rohrdurchmessers liegen. Der Abstand benachbarter Rohrabschnitte kann kleiner sein als 20 % des Rohrdurchmessers, kann kleiner sein als 15 % und kann kleiner sein als 10 % des Rohrdurchmessers. Ein absoluter Abstand benachbarter Rohrabschnitte des Rohrwärmetauschers kann 2 mm betragen. Die Ausbildung als Schlangen-Rohrwärmetauscher vereinfacht die Zu- und Abführung des in den Rohrabschnitten geführten Wärmeträger-Fluids. Die Ausgestaltung des Schlangen-Rohrwärmetauschers mit zwei Schlangen-Leitungswegen erhöht eine Flexibilität einer Leitungswegführung durch den Rohrwärmetauscher, der dann an herstellungsbedingte Anforderungen und/oder an bauliche Anforderungen, z.B. an Bauraumerfordernisse, anpassbar ist. 180°-Umlenkabschnitte zwischen zwei Rohrabschnitten des gleichen Schlangen-Leitungsweges sind für genau einen der Schlangen-Leitungswege aus der Anordungsebene herausgeführt. Derart aus der Anordnungsebene herausgeführte 180°-Umlenkabschnitte vermeiden einen Bauraumkonflikt zwischen den Umlenkabschnitten der verschiedenen Schlangen-Leitungswege.
  • Beim Rohrwärmetauscher nach Anspruch 2 erstreckt sich ein Durchgang zwischen den Rohrabschnitten, der allenfalls längs vernachlässigbarer Erstreckungsabschnitte durch Halterungskomponenten unterbrochen sein kann, längs der gesamten Rohrabschnitte. Hierdurch wird die Effektivität des Wärmeübertrags von den Rohrabschnitten auf das zwischen diesen durchströmende Fluid optimiert.
  • Der Rohrwärmetauscher kann nach Anspruch 3 auch mehr als zwei Schlangen-Leitungswege aufweisen.
  • Eine Anordnung der Rohrabschnitte nach Anspruch 4 kann einen minimalen Biegeradius des die Rohrabschnitte bildenden Rohres innerhalb jeweils eines Schlangen-Leitungsweges vergrößern. Hierdurch wird die Herstellung des Rohrwärmetauschers vereinfacht.
  • Ein einlassseitiges Hosenrohrstück nach Anspruch 5 ermöglicht eine gemeinsame Wärmeträger-Fluid-Zufuhr für die verschiedenen Schlangen-Leitungseinlässe.
  • Alternativ oder zusätzlich kann nach Anspruch 6 auch auslassseitig ein entsprechendes Hosenrohrstück vorgesehen sein.
  • Eine weitere Aufgabe der Erfindung ist es, ein Herstellungsverfahren für einen Schlangen-Rohrwärmetauscher anzugeben, der mindestens zwei Schlangen-Leitungswege aufweist.
  • Diese Aufgabe ist erfindungsgemäß gelöst durch ein Herstellungsverfahren mit den in Anspruch 7 angegebenen Schritten.
  • Die Vorteile des Herstellungsverfahrens entsprechen denen, die vorstehend unter Bezugnahme auf den Schlangen-Rohrwärmetauscher mit den mindestens zwei Schlangen-Leitungswegen bereits erläutert wurden. Der Schlangen-Rohrwärmetauscher kann aus genau einem Rohrtyp durch entsprechendes sequentielles Biegen und gegebenenfalls Anstückeln weiterer Rohre gefertigt werden.
  • Ein Verfahren nach Anspruch 8 ermöglicht die Herstellung eines Schlangen-Rohrwärmetauschers nach Anspruch 6. Das Herausbiegen der herausgebogenen 180°-Umlenkabschnitte kann mithilfe einer entsprechenden Rohrbiegeeinrichtung im Zuge der Herstellung der Schlangen-Leitungswege erfolgen.
  • Ein gleichzeitiges Herausbiegen der herausgebogenen 180°-Umlenkabschnitte nach Anspruch 9 vereinfacht die Herstellung des Schlangen-Rohrwärmetauschers. Ein resultierender Biegewinkel kann beispielsweise im Bereich von 150° liegen.
  • Die Vorteile eines Backofenmoduls nach Anspruch 10 und eines Backofens nach Anspruch 11 entsprechen denjenigen, die vorstehend unter Bezugnahme auf den Rohrwärmetauscher bereits erläutert wurden.
  • Die Rohrabschnitte des Rohrwärmetauschers können sich horizontal im Backofenmodul bzw. im Backofen erstrecken. Die Rohrabschnitte des Rohrwärmetauschers können sich quer zu einer Förderrichtung des Backgutes durch das Backofenmodul bzw. den Backofen erstrecken. Diese Quererstreckung kann über eine Breite des gesamten Backraums erfolgen. Alternativ können sich die Rohrabschnitte des Rohrwärmetauschers auch in Förderrichtung des Backgutes erstrecken.
  • Bei dem Backofen kann es sich um einen Durchlauf-Backofen, insbesondere um einen Tunnelofen handeln. Der Backofen kann aus mehreren Backofenmodulen gefertigt sein, die insbesondere gleichartig aufgebaut sein können.
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
  • Fig. 1
    eine Seitenansicht eines modular aufgebauten Backenofens;
    Fig. 2
    einen Schnitt gemäß Linie II-II in Fig. 1;
    Fig. 3
    eine perspektivische Ansicht auf einen SchlangenRohrwärmetauscher für ein Backofenmodul des Backenofens nach Fig. 1;
    Fig. 4
    eine Ausschnittsvergrößerung einer perspektivischen Ansicht des Rohrwärmetauschers nach Fig. 3 im Bereich von 180°-Umlenkabschnitten zweier SchlangenLeitungswege;
    Fig. 5
    in einer zu Fig. 4 ähnlichen Darstellung wiederum eine perspektivische Ansicht der 180°-Umlenkabschnitte, in etwa aus der entgegengesetzten Blickrichtung wie in Fig. 4;
    Fig. 6
    in einer zu den Fig. und 5 ähnlichen Darstellung eine Aufsicht auf einen Abschnitt des Rohrwärmetauschers, die einen Abstand zwischen jeweils zwei benachbarten Rohrabschnitten verdeutlicht;
    Fig. 7
    schematisch Strömungsverhältnisse beim Durchtritt eines Gases, an welches der Rohrwärmetauscher Wärme abgibt, durch Durchgänge zwischen zwei im Querschnitt dargestellten, benachbarten Rohrabschnitten des Rohrwärmetauschers;
    Fig. 8
    eine perspektivische Ansicht eines Bandgliedes eines Endlos-Förderbandes des Backofens; und
    Fig. 9
    eine Aufsicht auf das Bandglied nach Fig. 8.
  • Fig. 1 zeigt eine Gesamt-Seitenansicht eines als Tunnelofen ausgeführten Durchlauf-Backofens 1, mit dem z.B. Dauerbackgebäck in Form von Weichkeksen, Hartkeksen oder Laugengebäck produziert werden können. Auch anderes Backgut, z.B. Toastbrot, kann im Backofen verarbeitet werden. Mit dem Backofen 1 ist auch ein Rösten und als Spezialanwendung auch ein Trocknen oder Sterilisieren möglich. Der Backofen 1 ist in der dargestellten Ausführung unterbrochen dargestellt und hat eine Mehrzahl von Ofenmodulen 2i, 3i mit Backräumen, die zusammen zwei übereinanderliegende Durchlauf-Backräume zwischen jeweils einem in Backgut-Förderrichtung führenden Anfangs-Ofenmodul 21, 31 und jeweils einem in Backgut-Förderrichtung letzten Abschluss-Ofenmodul 2N, 3N (i = 1, ..., N, N: Anzahl der Ofenmodule) bilden. In der Fig. 1 sind insgesamt acht Ofenmodule 21 bis 28, die zu einem oberen Durchlauf-Backraum gehören, und darunterliegend acht Ofenmodule 31 bis 38 dargestellt, die zu einem unteren Durchlauf-Backraum des Durchlauf-Backofens 1 gehören. Die Ofenmodule sind beim Durchlauf-Backofen 1 also zweistöckig angeordnet.
  • Die Ofenmodule 21 bis 28 sowie 31 bis 38 haben jeweils den gleichen Grundaufbau, insbesondere was eine Tragrahmengestaltung sowie Aufnahmen für An- und Einbauteile angeht. Insoweit haben die Ofenmodule 21 bis 28 und 31 bis 38 die gleichen Abmessungen, haben also, was Höhe, Breite und Tiefe angeht, jeweils grundsätzlich die gleichen Bauraumerfordernisse.
  • Die Ofenmodule 21 bis 28 und 31 bis 38 liegen zunächst als separate Module vor und werden beim Zusammenbau des Backofens 1 miteinander verbunden. In jedem der Backofenmodule 21 bis 28 und 31 bis 38 wird über nachfolgend noch beschriebene Wärmetauscher geheizte Umluft jeweils in einem Kreislauf geführt. Die oberen Ofenmodule 21 bis 28 werden von den unteren Ofenmodulen 31 bis 38 getragen. Die unteren Ofenmodule 31 bis 38 werden von einem Maschinenboden getragen.
  • Vor einem in der Backgut-Förderrichtung jeweils führenden Anfangs-Backofenmodul 21 beziehungsweise 31 ist in der Förderrichtung ein Beschickungsmodul 4 für das Backgut angeordnet, welches wiederum zweistöckig ausgeführt ist und mit den beiden Durchlauf-Backräumen kommuniziert. Hinter einem in der Backgut-Förderrichtung letzten Abschluss-Ofenmodul 2i sowie 3i ist ein Ausgabemodul 5 des Durchlauf-Backofens 1 zum Übernehmen des gebackenen Backguts aus den Durchlauf-Backräumen und zum Ausgeben von diesem angeordnet, welches ebenfalls zweistöckig ausgeführt ist und wiederum mit den beiden Durchlauf-Backräumen kommuniziert. Das Beschickungsmodul 4 einerseits und das Ausgabemodul 5 andererseits schließen den Umluftkreislauf am Anfang und am Ende der Durchlauf-Backräume jeweils ab.
  • Zwischen den Ofenmodulen 28, 38 und dem Ausgabemodul 5 ist der Durchlauf-Backofen 1 in der Fig. 1 unterbrochen dargestellt, um anzudeuten, dass die Anzahl der Ofenmodule 2i, 3i größer sein kann, als in der Fig. 1 dargestellt. Die Anzahl N der Ofenmodule 2i, 3i kann in der Praxis beispielsweise zwischen 5 und 20 variieren.
  • Zu backendes Backgut tritt über das Beschickungsmodul 4 in den jeweiligen Durchlauf-Backraum 7, 8, also in das jeweils führende Anfangs-Ofenmodul 21, 31 ein, durchläuft den jeweiligen Durchlauf-Backraum 7, 8 längs der Backgut-Förderrichtung 9 und tritt über das Ausgabemodul 5 nach Durchlaufen der jeweils letzten Abschluss-Ofenmodule 2i, 3i aus den Durchlauf-Backräumen 7, 8 fertig gebacken wieder aus.
  • In der Seitenansicht des Durchlauf-Backofens nach Fig. 1 sind bei einigen oder allen der Ofenmodule 2i, 3i zudem vorgesehen jeweils eine Reinigungsöffnung 6a, jeweils eine Inspektionsöffnung 6b und jeweils eine Schwadenöffnung 6c. Über die jeweilige Schadenöffnung 6c ist ein Be-/ Entschwaden des jeweiligen Backraums des Ofenmoduls 2i, 3i möglich.
  • Fig. 2 zeigt einen Schnitt durch eines der Backofenmodule am Beispiel des Backofenmoduls 21. Die Förderrichtung 9 steht senkrecht auf der Schnitt- bzw. Zeichenebene der Fig. 2. Fig. 3 zeigt am Beispiel eines der Ofenmodule 2i dieses stärker im Detail. Die Ofenmodule 3i sind ebenso aufgebaut, sodass es genügt, in der Detaildarstellung nach Fig. 3 beispielhaft eines der Ofenmodule 2i zu zeigen. Soweit es um Details geht, die der Fig. 2 nicht zu entnehmen sind, wird insoweit auf die Fig. 3 verwiesen.
  • Die Backofenmodule 2i, 3i haben jeweils einen Backraum 10, der einerseits direkt über die Umluft beheizt wird und andererseits über Strahlungswärme, die erzeugt wird von Wärmetauschern in Form von zwei Schlangen-Rohrwärmetauschern 11, 12. Die Backräume 10 sind jeweils Teil der beiden übereinander angeordneten Durchlauf-Backräume 7, 8, die gebildet werden einerseits von den oberen Ofenmodulen 2i und andererseits von den unteren Ofenmodulen 3i. Der oberhalb des Backraums angeordnete Rohrwärmetauscher 11 erzeugt dabei Oberhitze für den Backraum 10. Der unterhalb des Backraums angeordnete Rohrwärmetauscher 12 erzeugt Unterhitze für den Backraum 10.
  • Als Wärmeträger-Fluid, welches durch die Rohrwärmetauscher 11, 12 fließt, kommt Thermoöl zum Einsatz. Die beiden Wärmetauscher 11, 12 bilden zusammen mit einer nicht dargestellten Thermoölquelle eine Thermoöl-Heizeinrichtung.
  • Der obere Rohrwärmetauscher 11 wird von einem Haltegestell 13 getragen, welches an seitlichen Rahmen-Wangen 14, 15 des Backofenmoduls 6 montiert ist. Zusammen mit einer oberen Halteplatte 16 und einer unteren Halteplatte 17 bilden die beiden Rahmen-Wangen 14, 15 ein Backraummodul 18, in dem unter anderem die beiden Rohrwärmetauscher 11, 12 des Backofenmoduls 2i untergebracht sind. Zwischen der oberen Halteplatte 16 und dem oberen Rohrwärmetauscher 11 ist ein Luftführungsblech 18a angeordnet. Letzteres dient einer Vergleichmäßigung einer Umluftströmung im Backraum 10. Das Luftführungsblech 18a kann zudem vom Rohrwärmetauscher 11 Wärmeenergie aufnehmen und diese an die Umluft abgeben, kann also als zusätzliche indirekte Wärmetauscherkomponente dienen. Ein entsprechendes Luftführungsblech 18a ist zwischen dem unteren Rohrwärmetauscher 12 und der unteren Halteplatte 17 angeordnet.
  • Zwischen den beiden Rohrwärmetauschern 11, 12 läuft ein oberes Fördertrum 19 eines Endlos-Förderbandes 20, welches zum Transport des Backgutes durch den jeweiligen Durchlauf-Backraum 7, 8 zwischen dem Besschickungsmodul 4 und dem Ausgabemodul 5 dient. Der Durchlauf-Backofen 1 hat entsprechend seinem zweistöckigen Aufbau zwei Endlos-Förderbänder 20, nämlich ein oberes Endlos-Förderband 20 für die Backofenmodule 2i und ein in gleicher Weise aufgebautes unteres Endlos-Förderband für die unteren Ofenmodule 3i. Es genügt also, eines dieser Förderbänder nachfolgend zu beschreiben.
  • Das Förderband 20 hat eine Mehrzahl von Bandgliedern 21, von denen in der Fig. 2 ein oberes Bandglied 21o und ein unteres Bandglied 21u zu sehen ist. Das obere Bandglied 210 ist in seiner aktuellen Betriebsstellung Teil des oberen Fördertrums 19 und ist im Backraum 10 angeordnet. Das untere Bandglied 21u ist Teil eines unteren Bandtrums 22, welches unterhalb des Backraums 10 und des unteren Rohrwärmetauschers 11 durch einen Rücklauf-Förderbandraum 23 entgegen der Förderrichtung 9 als Teil des Endlos-Förderbandes 20 läuft.
  • Zwischen der oberen Halteplatte 16 des Backraummoduls 18 und einer oberen Modulplatte 23a des Backofenmoduls 2i, 3i ist ein oberer Umluftkanal 24 angeordnet. Zwischen der unteren Halteplatte 17 des Backraummoduls 18 und einer unteren Modulplatte 25 ist ein unterer Umluftkanal 26 angeordnet. Die beiden Umluftkanälen 24, 26 erstrecken sich über die gesamte Breite des Backofenmoduls 2i, 3i.
  • Über Zu- und Abluftkanäle 27, 28, 29, 30 stehen die beiden Umluftkanäle 24, 26 mit zwei Axial-/Radiallüftern 31, 32 in Fluidverbindung. Insgesamt ergibt sich so jeweils ein Umluft-Kreislauf des jeweiligen Ofenmoduls 2i, 3i. Der Backraum 10 des jeweiligen Ofenmoduls 2i, 3i ist Teil dieses Umluftkreislaufes. Die Lüfter 31 bzw. 32 sind zusammen mit dem jeweiligen Umluftkreis Bestandteile einer Umlufteinrichtung des Durchlauf-Backofens 1.
  • Die beiden Lüfter 31, 32 sowie die Zuluft- und Abluftkanäle 27 bis 30 sind an seitlichen, vertikal verlaufenden Rahmenplatten 33, 34 des Backofenmoduls 2i, 3i montiert.
  • Fig. 3 zeigt am Beispiel des oberen Schlangen-Rohrwärmetauschers 11 einen der beiden Rohrwärmetauscher, die im Backofenmodul 21 zum Einsatz kommen. Alle Rohrwärmetauscher 11, 12 der Backofenmodule 2i, 3i des Backofens 1 sind in gleicher Weise aufgebaut, sodass es ausreicht, nachfolgend diesen oberen Rohrwärmetauscher 11 zu beschrieben.
  • Der Rohrwärmetauscher 11 hat eine Mehrzahl, im dargestellten Ausführungsbeispiel nämlich sechsunddreißig, in einer Anordnungsebene (vgl. Ebene 35 in der Fig. 2) nebeneinander angeordnete Wärmetauscher-Rohrabschnitte 36 zur Führung eines Wärmeträger-Fluids. Als Wärmeträger-Fluid kann insbesondere Thermoöl zum Einsatz kommen.
  • Die Anordnung der Wärmetauscher-Rohrabschnitte 36 nebeneinander in der Anordnungsebene 35 kann so sein, dass tatsächlich in einer Seitenansicht wie in der Fig. 2 alle Wärmetauscher-Rohrabschnitte 36 miteinander vollständig fluchten. Alternativ können Längsachsen insbesondere benachbarter Rohrabschnitte 36 zur Anordnungsebene 35 verschiedenen Abstand haben. Eine Bandbreite der Abstände der Längsachsen der Rohrabschnitte 36 zur Anordnungsebene 35 ist aber auch in diesem Fall geringer als ein Durchmesser der einzelnen Rohrabschnitte 36 und ist insbesondere geringer als ein Bruchteil dieses Durchmesser, beispielsweise geringer als 80%, geringer als 70%, geringer als 60%, geringer als 50%, geringer als 40%, geringer als 30%, geringer als 20% und kann insbesondere geringer sein als 10% des Durchmessers der Rohrabschnitte 36. Der Rohrdurchmesser der Rohrabschnitte 36 kann im Bereich zwischen 10 mm und 150 mm und beispielsweise im Bereich zwischen 25 mm und 50 mm, zum Beispiel bei 35 mm, 38 mm oder 40 mm liegen. Sofern die Rohrabschnitte 36 in Seitenansicht nicht wie beispielsweise in der Fig. 2 vollständig miteinander fluchten, können die Längsachsen der Rohrabschnitte 36 in diesem Fall zur Anordnungsebene 35 also einen Abstand haben, der im Bereich zwischen 0 mm und +/- 20 mm liegt.
  • Ein Abstand A zwischen jeweils zwei benachbarten Rohrabschnitten 36 ist zum einen kleiner als der Rohrdurchmesser und zum anderen größer als 1% des Rohrdurchmessers. Dieser Abstand A ist in der Fig. 6, die einen Abschnitt des Rohrwärmetauschers 11 in einer Aufsicht zeigt, beispielhaft für zwei benachbarte Rohrabschnitte 36 veranschaulicht.
  • Ein absoluter Abstand zwischen zwei benachbarten Rohrabschnitten 36 kann im Bereich zwischen 1 mm und 50 mm liegen, insbesondere im Bereich zwischen 1 mm und 10 mm, im Bereich zwischen 1 mm und 5 mm und kann beispielsweise bei 2 mm liegen.
  • Dieser Abstand zwischen den benachbarten Rohrabschnitten 36 ermöglicht einen Durchgang zwischen diesen Rohrabschnitten. Ein derartiger Durchgang verläuft längs einer gesamten Erstreckung der Rohrabschnitte 36 durch den Backraum 10 quer zur Förderrichtung 9 und ist allenfalls unterbrochen durch Halterungskomponenten. Derartige Unterbrechungen sind im Vergleich zur Gesamterstreckung der Rohrabschnitte 36 sehr klein und im Regelfall geringer als 5% der Gesamterstreckung der Rohrabschnitte 36. Aufgrund dieser, durch den Abstand jeweils benachbarter Rohrabschnitte 36 resultierender Durchgänge ergibt sich ein effektiver Wärmeübertrag von den Rohrabschnitten 36 auf zwischen jeweils benachbarten Rohrabschnitten 36 durchströmendes Fluid.
  • Entsprechende Wärmeübertragungsverhältnisse sind stark schematisch in der Fig. 7 für zwei benachbarte Rohrabschnitte 36 des Rohrwärmetauschers 12 dargestellt. Die Fig. 7 zeigt die Strömungsverhältnisse am unteren Schlangen-Rohrwärmetauscher 12. Durch die Rohrabschnitte 36 fließt das Wärmeträger-Fluid 37. Mantelwände 38 der Rohrabschnitte 36 werden von einem weiteren Wärmeaufnahme-Fluid, in der beschriebenen Ausführung von Luft 39 angeströmt und umströmt, wie durch einige Strömungspfeile schematisch wiedergegeben. Aufgrund des Abstandes A zwischen den benachbarten Rohrabschnitten 36, der im Bereich zwischen 1% und 100% des Rohrdurchmessers D liegt, strömt die anströmende Luft 39, nachdem sie in Kontakt mit Umfangsabschnitten U der Mantelwände 38 getreten ist, zwischen den benachbarten Rohrabschnitten hindurch. Nach Durchtritt durch die engste Stelle des Durchgangs zwischen den benachbarten Rohrabschnitten 36, an der der Abstand A vorliegt, kommt es im weiteren Strömungsverlauf zu einem Strömungsabriss der Luft 39 von der Mantelwand 37 und zu einer turbulenten Weiterströmung der Luft 39 nach oben, wo sich die Luft, die durch den betrachteten Durchgang zwischen den benachbarten Rohrabschnitten 36 geströmt ist, effektiv mit der Luft 39 durchmischt, die durch benachbarte Durchgänge zwischen den dargestellten Rohrabschnitten 36 und links und rechts benachbarten, nicht dargestellten Rohrabschnitten, hindurchgeströmt ist. Oberhalb der Anordnungsebene 35 kommt es bei der dargestellten Luftdurchströmung von unten nach oben sehr rasch zu einem geschlossenen und im Wesentlichen unterbrechungsfreien Volumen-Luftstrom nach oben hin zum Backraum 10, was in der Fig. 2 durch Strömungspfeile 40 wiedergegeben ist. Die Turbulenz sorgt dabei dafür, dass die Rohrabschnitte 36 selbst nicht als Blenden für den weiteren Luftstrom dienen, der Luftstrom oberhalb des Rohrwärmetauschers 12 also einen geschlossenen Luftvorhang ohne Lücken durch den Backraum 10 ergibt.
  • Der Rohrwärmetauscher 11 ist als Schlangen-Rohrwärmetauscher ausgebildet. Ein erster Schlangen-Leitungsweg 41 verläuft zwischen einem ersten Schlangen-Leitungseinlass 42 und einem ersten Schlangen-Leitungsauslass 43. Ein zweiter Schlangen-Leitungsweg 44 verläuft zwischen einem zweiten Schlangen-Leitungseinlass 45 und einem zweiten Schlangen-Leitungsauslass 46. Der in der Fig. 3 dargestellte Rohrwärmetauscher 11 hat also genau zwei Schlangen-Leitungswege 41 und 44. Grundsätzlich ist auch eine größere Anzahl entsprechender Schlangen-Leitungswege möglich.
  • Jeweils zwei in der Anordnungsebene 35 einander benachbarte Rohrabschnitte 36 gehören zu verschiedenen Schlangen-Leitungswegen. Bei der Darstellung nach Fig. 3 gehört der ganz links unten dargestellte Rohrabschnitt 36 zum ersten Schlangen-Leitungsweg 41. Der diesem direkt nach rechts oben benachbarte Rohrabschnitt 36 gehört zum zweiten Schlangen-Leitungsweg 44. Der diesem wiederum rechts oben direkt benachbarte Rohrabschnitt gehört dann zum ersten Schlangen-Leitungsweg 41. Die weiteren benachbarten Rohrabschnitte 36 gehören alternierend zum zweiten Schlangen-Leitungsweg 44 und zum ersten Schlangen-Leitungsweg 41. Der rechts oben ganz außen dargestellte Rohrabschnitt 36 gehört dann zum zweiten Schlangen-Leitungsweg 44 und mündet im zweiten Schlangen-Leitungsauslass 46 aus.
  • Diese alternierende Zugehörigkeit der Rohrabschnitte 36 zu den beiden Schlangen-Leitungswegen 41 und 44 vergrößert einen minimalen Biegeradius des Rohres, aus dem die Rohrabschnitte 36 gefertigt sind, innerhalb jeweils eines der beiden Schlangen-Leitungswege 41, 44. Dieser vergrößerte Biegungsradius wird durch den Verlauf von 180°-Umlenkabschnitten 47, 48 der beiden Schlangen-Leitungswege 41, 44 deutlich, der sich besonders aus den Fig. 4 bis 6 ergibt, die entsprechend vergrößerte Darstellungen der Schlangen-Leitungswege 41, 44 des Rohrwärmetauschers 11 zeigen. Ein innerer Biegeradius der 180°-Umlenkabschnitte 47, 48 ist dabei größer als der Rohrradius, ist also größer als der halbe Rohrdurchmesser D. Dieser innere Biegeradius der 180°-Umlenkabschnitte 47, 48 ist andererseits kleiner als der Rohrdurchmesser D.
  • Die beiden Schlangen-Leitungseinlässe 42, 45 einerseits und die beiden Schlangen-Leitungsauslässe 43 und 46 andererseits stehen jeweils über ein Hosenrohrstück 49, 50 miteinander sowie mit einem Sammeleinlass 49a einerseits und mit einem Sammelauslass 50a andererseits in Fluidverbindung.
  • Über das Hosenrohrstück 49 stehen die beiden Schlangen-Leitungseinlässe 42, 45 mit dem Sammel-Leitungseinlass 49a in Fluidverbindung. Der Sammel-Leitungseinlass 49a steht wiederum mit einer in der Zeichnung nicht dargestellten Wärmeträger-Fluid-Quelle in Fluidverbindung. Über das weitere Hosenrohrstück 50 stehen die beiden Sammel-Leitungsauslässe 43, 46 mit dem Sammel-Leitungsauslass 50a in Fluidverbindung. Der Sammel-Leitungsauslass 50a kann mit dem Sammel-Leitungseinlass 49a zur Bildung eines Wärmeträger-Fluid-Kreislaufes in Fluidverbindung stehen. Bestandteil dieses Kreislaufes kann eine in der Zeichnung ebenfalls nicht dargestellte Pumpe für das Wärmeträger-Fluid 37 sein.
  • Für den Schlangen-Leitungsweg 41 sind die 180°-Umlenkabschnitte 47 zwischen dem hierüber verbundenen beiden Rohrabschnitten 36 aus der Anordnungsebene 35 herausgeführt, nämlich stumpfwinklig herausgebogen. Ein Biegewinkel β zwischen der Anordnungsebene 35 und einer Anordnungsebene der 180°-Umlenkabschnitte 47 (vgl. Fig. 2, dort dargestellt beim Rohrwärmetauscher 12) beträgt bei der dargestellten Ausführung etwa 150°. Dieser Biegewinkel kann im Bereich zwischen 120° und 165° liegen.
  • Dieses Herausführen der 180°-Umlenkabschnitte 47 aus der Anordnungsebene 35 führt dazu, dass zwischen den 180°-Umlenkabschnitten 47, 48 der verschiedenen Schlauch-Leitungswege 41, 44 kein Bauraumkonflikt auftritt.
  • Ein Schlauch-Rohrwärmetauscher nach Art der Schlauch-Rohrwärmetauscher 11 und 12 des Backofenmoduls 6 wird folgendermaßen hergestellt:
    Zunächst wird ein Rohr bereitgestellt, das ein Mehrfaches der Länge eines der Rohrabschnitte 36 zwischen den jeweiligen Umlenkabschnitten 47, 48 hat. Anschließend wird ein erster Schlauch-Leitungsweg, beispielsweise der Schlauch-Leitungsweg 41, durch Biegen des Rohres im Bereich der Umlenkabschnitte 47 zwischen den Rohrabschnitten 36 hergestellt. Anschließend wird ein zweiter Schlauch-Leitungsweg, in diesem Fall der Schlauch-Leitungsweg 44, durch Biegen des Rohres der Umlenkabschnitte 48 zwischen den Rohrabschnitten 36 hergestellt. Sobald bei diesen Herstell-Biegeschritten das Ende des Rohres erreicht ist, wird gegebenenfalls ein weiteres Rohr mit gleichem Durchmesser angestückelt, also mit dem gerade bearbeiteten Rohr verbunden, beispielsweise mit diesem stirnseitig verschweißt.
  • Nach Herstellen der beiden Schlauch-Leitungswege 41, 44 werden die beiden Schlauch-Leitungswege 41, 44 ineinander in der Anordnungsebene 35 eingesetzt. Es können dann die Hosenrohrstücke 49, 50 mit den Schlangen-Leitungseinlässen 42, 45 und den Schlangen-Leitungsauslässen 43, 46 verbunden, beispielsweise mit diesen verschweißt und gegebenenfalls ein Fluiddurchgang zwischen dem jeweiligen Hosenrohrstück 49, 50 und den jeweiligen Leitungseinlässen 42, 45 einerseits und Auslässen 43, 46 andererseits geschaffen werden.
  • Bei einer Variante des Herstellungsverfahrens werden vor dem Einsetzen der beiden Schlauch-Leitungswege 41, 44 ineinander die 180°-Umlenkabschnitte 47 zwischen den Rohrabschnitten 36 des gleichen Schlauch-Leitungsweges 41 aus der Anordnungsebene 35 herausgebogen. Dieses Herausbiegen kann beim Herstellen dieses Schlangen-Leitungsweges 41 durch Verwenden eines entsprechenden, insbesondere flächigen, Biegewerkzeugs gleichzeitig erfolgen.
  • Beim Backen mit dem Tunnel-Durchlauf-Backofen 1 wird das auf dem Fördertrum 19 durch die Ofenmodule 2 bis 6 hindurchgeführte Backgut einerseits durch Strahlungswärme von den Rohrwärmetauschern 11, 12, die in den jeweiligen Ofenmodulen 2 bis 6 untergebracht sind, und andererseits über die Umluft, die durch den jeweiligen Backraum 10 des Ofenmoduls 2 bis 6 strömt, erwärmt. Die Wärmebeiträge "Strahlungswärme" einerseits und "Umluftwärme" (Wärmeabgabe an durchströmendes Fluid) andererseits können durch entsprechende Auslegung der Rohrwärmetauscher 11, 12 sowie durch die Temperatur und den Fluss des Wärmeträger-Fluids 37 durch die Rohrwärmetauscher 11, 12 und anderseits durch die durch die Backräume 10 jeweils strömende Luftmenge vorgegeben werden.
  • Eine Luftströmung durch den Backraum 10 (vgl. z.B. die Luftströmung 40 in der Fig. 2) kann je nach Auslegung des Ofenmoduls 2 bis 6 von unten nach oben oder auch von oben nach unten gerichtet sein.
  • Beim Strömungsbeispiel nach Fig. 2 sorgt der in der Fig. 2 linke Lüfter 31 dafür, dass die Umluft durch den Zuluftkanal 27 zunächst in den unteren Umluftkanal 26 einströmt. Gleichzeitig sorgt der in der Fig. 2 rechte Lüfter 32 dafür, dass die Umluft durch den rechten Zuluftkanal 28 in den unteren Umluftkanal 26 einströmt. Bedingt durch den im unteren Umluftkanal 26 dann entstehenden Überdruck strömt die Umluft aus dem unteren Umluftkanal 26 nach oben und zwischen den benachbarten Rohrabschnitten 36 des unteren Rohrwärmetauschers 12 hindurch, wie vorstehend im Zusammenhang mit der Fig. 6 bereits beschrieben. Anschließend durchströmt die Umluft das obere Fördertrum 19 des Endlos-Förderbandes 20 und umströmt dann die hierauf geförderten Teiglinge durch den Backraum 10. Die Umluft durchströmt dann die Durchgänge zwischen den Rohrabschnitten 36 des oberen Rohrwärmetauschers 11 und strömt dann in den oberen Umluftkanal 24, von wo aus die Umluft dann über die Lüfter 31, 32 und die Abluftkanäle 29, 30 zur Vervollständigung des jeweiligen Umluftkreislaufes wieder abgesaugt wird. Ein Überdruck im Umluftkreislauf kann über ein klappengesteuertes Abgasrohr 51 (vgl. Fig. 2) entweichen.
  • Je nach Aufbau des Ofenmoduls 2 bis 6 kann das Ofenmodul 2 Lüfter wie bei der Ausführung nach Fig. 2 oder auch nur einen Axial-Radiallüfter aufweisen, der dann auf der einen oder auf der anderen Seite des Ofenmoduls angebracht sein kann. Soweit mehrere Ofenmodule in der Förderrichtung 9 hintereinander mit genau einem derartigen Lüfter ausgerüstet sind, kann die Anordnung dieses Lüfters zwischen den beiden Seiten des Durchlauf-Backofens 1 beispielsweise alternieren, sodass beispielsweise beim Ofenmodul 3 der Lüfter nach Art des Lüfters 32 rechts angeordnet ist, beim darauffolgenden Ofenmodul 4 links und beim darauffolgenden Ofenmodul 5 wiederum rechts. Alternativ oder zusätzlich kann die Strömungsrichtung der Umluft durch den Backraum 10 durch entsprechende Ansteuerung des jeweiligen Lüfters 31, 32 von unten nach oben oder von oben nach unten vorgegeben werden.
  • In den Ofenmodulen 2 bis 6 können verschiedene Temperaturzonen vorgegeben werden. Dies kann durch Vorgabe der Temperatur und/oder der Durchflussmenge des Thermoöls und/oder der Umluftmenge sowie der Umluftrichtung von unten nach oben/von oben nach unten vorgegeben werden. Hierfür dient eine zentrale Steuereinrichtung des Backofens 1.
  • Anhand der Fig. 8 und 9 wird nachfolgend eines der Bandglieder 21 des Endlos-Förderbandes 20 näher erläutert. Da alle Bandglieder 21 des Endlos-Förderbandes 20 gleich aufgebaut sind, genügt die Beschreibung eines der Bandglieder 21.
  • Das Bandglied 21 erstreckt sich quer zur Förderrichtung 9 zwischen seitlichen Führungen 53, 54 für das Endlos-Förderband 20, die für das obere Fördertrum 19 im Backraummodul 18 untergebracht sind. Mit diesen Führungen 53, 54 ist das jeweilige Bandglied 21 über Aufhängungs-Montageplatten 55 verbunden.
  • Das obere Fördertrum 19 erstreckt sich in einer Förderebene 56, die parallel zu den Anordnungsebenen der Rohrwärmetauscher 11, 12 (vgl. Anordnungsebene 35) verläuft.
  • In Projektion in einer Richtung senkrecht zur Förderebene 56, gesehen also in Blickrichtung der Fig. 9, hat das Bandglied 21 Gas-Durchtrittsöffnungen 57, 58. Diese Gas-Durchtrittsöffnungen 57, 58 haben eine Gesamt-Öffnungsfläche, die mindestens 30% einer Gesamtfläche der Projektion des Bandgliedes 21 beträgt.
  • Das Bandglied 21 hat zwischen den seitlichen Führungen, also zwischen den beiden Aufhängungs-Montageplatten 55, mehrere und bei der dargestellten Ausführung 2 voneinander senkrecht zur Förderebene 56 beabstandete Gliederebenen 59, 60.
  • Die erste, obere Gliederebene 59 fällt mit der Förderebene 56 zusammen und wird definiert durch eine Mehrzahl von sich längs der Förderrichtung 9 zwischen seitlichen Gliederwangen 61, 62 erstreckenden Doppel-Gliederbügeln 63. Die Gas-Durchtrittsöffnungen 58 sind dabei zwischen den Bügeln des jeweiligen Doppel-Gliederbügels 63 ausgeführt. Weitere Gas-Durchtrittsöffnungen in der oberen Gliederebene 59 sind zwischen jeweils zwei benachbarten Doppel-Gliederbügeln 63 ausgeführt.
  • Die zweite, untere Gliederebene 60 ist bei den momentan das obere Fördertrum 19 bildenden Bandgliedern 21 unterhalb der ersten Gliederebene 59 ausgebildet. Dort verläuft zwischen den Gliederwangen 61, 62 eine Versteifungsplatte 64, in der die Gas-Durchtrittsöffnungen 57 ausgeführt sind. Die Gas-Durchtrittsöffnungen 57 in der Versteifungsplatte 64 verlaufen nach Art von Langlöchern. Die Gas-Durchtrittsöffnungen 57 haben eine Längserstreckung in Richtung der Längserstreckung des Bandgliedes 21.
  • Die Gas-Durchtrittsöffnungen 58 zwischen den Bügeln der jeweiligen Doppel-Gliederbügel 63 sind nach Art von Langlöchern ausgeführt. Die Gas-Durchtrittsöffnungen 58 haben eine Längserstreckung quer zur Längserstreckung des Bandgliedes 21, also, solange das Bandglied 21 Bestandteil des oberen Fördertrums 19 ist, parallel zur Förderrichtung 9.
  • Zwischen den Aufhängungs-Montageplatten 55 ist das Bandglied 21 selbsttragend ausgeführt.
  • Die Bandglieder 21 laufen im Betrieb des Tunnel-Durchlauf-Backofens 1 nach Art von Kettengliedern zwischen den Führungen 53, 54 endlos um, wobei das obere Fördertrum 19 in der Förderrichtung 9 läuft und das untere Bandtrum 22 entgegen der Förderrichtung 9. Im Bereich des führenden Backofenmoduls 21 und des abschließenden Backofenmoduls 2N findet eine 180°-Umlenkung über die entsprechend ausgeführten Führungen 53, 54 zwischen dem oberen Fördertrum 19 und dem unteren Bandtrum 22 statt.

Claims (11)

  1. Rohrwärmetauscher (11, 12) für einen Backofen (1),
    - mit einer Mehrzahl von in einer Anordnungsebene (35) nebeneinander angeordneten Wärmetauscher-Rohrabschnitten (36) zur Führung eines Wärmeträger-Fluids (37),
    - wobei ein Abstand (A) benachbarter Rohrabschnitte (36) kleiner ist als ein Rohrdurchmesser (D) und größer ist als 1% des Rohrdurchmesser (D),
    - wobei der Rohrwärmetauscher (11, 12) als schlangen-Rohrwärmetauscher ausgebildet ist und aufweist:
    - einen ersten Schlangen-Leitungsweg (41), ausgebildet zwischen einem ersten Schlangen-Leitungseinlass (42) und einem ersten Schlangen-Leitungsauslass (43), und
    - einen zweiten Schlangen-Leitungsweg (44), ausgebildet zwischen einem zweiten Schlangen-Leitungseinlass (45) und einem zweiten Schlangen-Leitungsauslass (46), dadurch gekennzeichnet, dass 180°-Umlenkabschnitte (47) zwischen zwei Rohrabschnitten (36) des gleichen Schlangen-Leitungsweges (41) für genau einen der Schlangen-Leitungswege (41) aus der Anordnungsebene (35) herausgeführt sind.
  2. Rohrwärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass sich ein Durchgang zwischen den Rohrabschnitten (36) abgesehen von Unterbrechungen durch Halterungskomponenten, längs der gesamten Rohrabschnitte (36) erstreckt.
  3. Rohrwärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass er mehr als zwei Schlangen-Leitungswege aufweist.
  4. Rohrwärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jeweils zwei in der Anordnungsebene (35) einander benachbarte Rohrabschnitte (36) zu verschiedenen Schlangen-Leitungswegen (41, 44) gehören.
  5. Rohrwärmetauscher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die beiden Schlangen-Leitungseinlässe (42, 45) über ein Hosenrohrstück (49) mit einem Sammel-Leitungseinlass (49a) in Fluidverbindung stehen.
  6. Rohrwärmetauscher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die beiden Schlangen-Leitungsauslässe (43, 46) über ein Hosenrohrstück (5) mit einem Sammel-Leitungsauslass (50a) in Fluidverbindung stehen.
  7. Verfahren zur Herstellung eines Schlangen-Rohrwärmetauscher nach einem der Ansprüche 1 bis 6, gekennzeichnet durch beugende Schritte:
    - Bereitstellen eines Rohres, das ein Mehrfaches der Länge eines der Rohrabschnitte (36) hat,
    - Herstellen eines ersten Schlangen-Leitungsweges (41) durch Biegen des Rohres im Bereich von Umlenkabschnitten (47) zwischen den Rohrabschnitten (36),
    - Herstellen eines zweiten Schlangen-Leitungsweges (44) durch Biegen des Rohres im Bereich von Umlenkabschnitten (48) zwischen den Rohrabschnitten (36),
    - Einsetzen der beiden Schlangen-Leitungswege (41, 44) ineinander in der Anordnungsebene (35).
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass vor dem Einsetzen 180°-Umlenkabschnitte (47) zwischen zwei Rohrabschnitten (36) des gleichen Schlangen-Leitungsweges (41) für genau einen der Schlangen-Leitungswege (41) aus der Anordnungsebene (35) herausgebogen werden.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die an einem Ende des Schlangen-Rohrwärmetauschers (11, 12) angeordneten 180°-Umlenkabschnitte (47) des Schlangen-Leitungsweges (41) gleichzeitig aus der Anordnungsebene (35) herausgebogen werden.
  10. Backofenmodul (2i, 3i) mit mindestens einem Rohrwärmetauscher (11, 12) nach einem der Ansprüche 1 bis 6 und mit einem Backraum (10), der über den Rohrwärmetauscher (11, 12) beheizt wird.
  11. Backofen (1) mit mindestens einem Rohrwärmetauscher (11, 12) nach einem der Ansprüche 1 bis 6 und mit einem Backraum (10), der über den Rohrwärmetauscher (11, 12) beheizt wird.
EP19176648.4A 2018-06-06 2019-05-27 Rohrwärmetauscher für einen backofen Active EP3578911B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL19176648T PL3578911T3 (pl) 2018-06-06 2019-05-27 Rurowy wymiennik ciepła do pieca piekarniczego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018208952.3A DE102018208952A1 (de) 2018-06-06 2018-06-06 Rohrwärmetauscher für einen Backofen

Publications (2)

Publication Number Publication Date
EP3578911A1 EP3578911A1 (de) 2019-12-11
EP3578911B1 true EP3578911B1 (de) 2021-04-07

Family

ID=66655183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19176648.4A Active EP3578911B1 (de) 2018-06-06 2019-05-27 Rohrwärmetauscher für einen backofen

Country Status (7)

Country Link
US (1) US11015881B2 (de)
EP (1) EP3578911B1 (de)
BR (1) BR102019011650A2 (de)
DE (1) DE102018208952A1 (de)
ES (1) ES2879425T3 (de)
PL (1) PL3578911T3 (de)
RU (1) RU2019115317A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019212937B3 (de) * 2019-08-28 2020-08-13 Werner & Pfleiderer Industrielle Backtechnik Gmbh Durchlauf-Backofen für den kontinuierlichen Backbetrieb

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT27736B (de) 1905-10-12 1907-03-11 Hitz Fa J Verfahren zur Herstellung von Raupenleim.
GB191416746A (en) * 1914-07-14 1915-07-01 Waerme Verwertungs Ges Mit Bes Improvements in Heat-exchanging Apparatus.
DE927861C (de) * 1951-06-24 1955-05-20 August Lemke Backoefen, insbesondere mit einem oder mehreren Einschiess- oder Auszugherden
AU524322B2 (en) * 1978-05-29 1982-09-09 South African Coal, Oil + Gas Corp. Ltd. + Gea G.m.b.H. Air cooled heat exchanger for cooling industrial liquids
FR2555723B1 (fr) 1983-11-25 1988-02-05 Stein Industrie Dispositif de solidarisation de troncons verticaux adjacents rapproches de tubes d'un echangeur de chaleur a boucles
US8714236B2 (en) * 2007-01-10 2014-05-06 John C. Karamanos Embedded heat exchanger for heating, ventilatiion, and air conditioning (HVAC) systems and methods
US20040069470A1 (en) * 2002-09-10 2004-04-15 Jacob Gorbulsky Bent-tube heat exchanger
CH709194A2 (de) 2014-01-17 2015-07-31 Joulia Ag Wärmetauscher für eine Dusche oder Badewanne.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2879425T3 (es) 2021-11-22
PL3578911T3 (pl) 2021-10-25
EP3578911A1 (de) 2019-12-11
US20190376751A1 (en) 2019-12-12
DE102018208952A1 (de) 2019-12-12
BR102019011650A2 (pt) 2019-12-24
RU2019115317A (ru) 2020-11-20
US11015881B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
DE10146179C1 (de) Anlage zum Trocknen von Gipskartonplatten
EP0854338B1 (de) Trockner für band- oder plattenförmiges Gut
EP3578911B1 (de) Rohrwärmetauscher für einen backofen
DE19922165A1 (de) Trockner für band- oder plattenförmiges Gut
WO2018086731A1 (de) Trockenraum
EP3578048B1 (de) Durchlauf-backofen für den kontinuierlichen backbetrieb
EP1729584B1 (de) Backofen
EP3578049B1 (de) Endlos-förderband für einen durchlauf-backofen
DE60218563T2 (de) Vorrichtung zur Behandlung von Nahrungsmitteln mit einem Zirkulationsystem; Verfahren
EP2601467B1 (de) Vorrichtung zur wärmebehandlung einer textilen warenbahn
DE102019212937B3 (de) Durchlauf-Backofen für den kontinuierlichen Backbetrieb
EP3151937B1 (de) Luftumlenkeinrichtung
DE2521683A1 (de) Heizvorrichtung
DE102016223041B4 (de) Backofen
EP0334001A1 (de) Durchlaufofen für Backwaren
DE102024113888B3 (de) Temperierungsanlage für die Wärmebehandlung von zu beschichtenden Werkstücken
EP3402919B1 (de) Vorrichtung zum mangeln von wäschestücken
DE2141692C3 (de) Vorrichtung zum kontinuierlichen Wärmebehandeln, wie Trocknen, von bahn- oder bandförmigem Textilgut
EP2870876B1 (de) Backofen
EP0392150B1 (de) Backofen mit Heizgasumwälzheizung
DE2836118C2 (de) Backofen
DE102016223040B4 (de) Heizplatte für Backöfen
CH659884A5 (de) Waermeaustauscher mit in laengsrichtung umstroemten rohrbuendel.
WO2002029343A1 (de) Wärmetauscher für textilmaschine
DE2110500A1 (de) Waermeaustauschermodul und dieses verwendender Ofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200603

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1380227

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001161

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2879425

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001161

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210527

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240614

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240417

Year of fee payment: 6

Ref country code: CZ

Payment date: 20240514

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240516

Year of fee payment: 6

Ref country code: SE

Payment date: 20240522

Year of fee payment: 6

Ref country code: BE

Payment date: 20240521

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240712

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20250522

Year of fee payment: 7