EP3390783B1 - Turbine shroud assembly and corresponding turbine - Google Patents
Turbine shroud assembly and corresponding turbine Download PDFInfo
- Publication number
- EP3390783B1 EP3390783B1 EP16825493.6A EP16825493A EP3390783B1 EP 3390783 B1 EP3390783 B1 EP 3390783B1 EP 16825493 A EP16825493 A EP 16825493A EP 3390783 B1 EP3390783 B1 EP 3390783B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ring
- turbine
- sectors
- cmc
- annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 13
- 239000011153 ceramic matrix composite Substances 0.000 claims description 10
- 230000014759 maintenance of location Effects 0.000 claims 5
- 230000000717 retained effect Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000009941 weaving Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 229920006184 cellulose methylcellulose Polymers 0.000 description 2
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 2
- 229910000816 inconels 718 Inorganic materials 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- YPIMMVOHCVOXKT-UHFFFAOYSA-N Multisatin Natural products O=C1C(C)C2C=CC(=O)C2(C)C(OC(=O)C(C)=CC)C2C(=C)C(=O)OC21 YPIMMVOHCVOXKT-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001247 waspaloy Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/246—Fastening of diaphragms or stator-rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
- F01D11/025—Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/16—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
- F01D11/18—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/64—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
- F05D2230/642—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/64—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
- F05D2230/644—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins for adjusting the position or the alignment, e.g. wedges or eccenters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/11—Shroud seal segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/603—Composites; e.g. fibre-reinforced
- F05D2300/6033—Ceramic matrix composites [CMC]
Definitions
- the field of application of the invention is in particular that of aeronautical gas turbine engines.
- the invention is however applicable to other turbomachines, for example industrial turbines.
- Ceramic matrix composite materials are known to retain their mechanical properties at high temperatures, which makes them suitable for constituting hot structural elements.
- a set of metal turbine ring deforms under the effect of heat flow, which changes the clearance at the flow path and, therefore, the performance of the turbine.
- ring segments in CMC significantly reduces the ventilation required to cool the turbine ring.
- maintaining the ring sectors in position remains a problem in particular with respect to the differential expansions that can occur between the metal support structure and the CMC ring sectors.
- another problem lies in controlling the shape of the vein both cold and hot without generating too much stress on the ring sectors.
- the invention proposes, according to a first aspect, a turbine ring assembly according to claim 1.
- the ring sectors are kept cold due to the cooperation between the protruding portions and the housings present on the annular flanges opposite them. Maintaining ring areas by this relief cooperation may no longer be ensured hot due to the expansion of the annular flanges.
- the holding force is resumed by the expansion of the holding elements, which expansion does not entail significant stress on the ring sectors because of the presence of a cold clearance between the holding elements and the openings on the legs of the ring sector.
- the housing of the annular flange has at least first and second inclined portions bearing on the projecting portion cooperating with said housing, said first and second inclined portions each forming, when observed in meridian section, a non-zero angle relative to in the radial direction and in the axial direction.
- the radial direction corresponds to the direction along a radius of the turbine ring (straight connecting the center of the turbine ring to its periphery).
- the axial direction corresponds to the direction along the axis of revolution of the turbine ring and the flow direction of the gas flow in the vein.
- the first inclined portion may bear on the radially inner half of the projecting portion and the second inclined portion may be supported on the radially outer half of the projecting portion.
- said at least one inclined portion may form an angle of between 30 ° and 60 ° with the radial direction.
- the ratio (diameter of the part of the holding element present in said opening) / (diameter of said opening) can be between (1 + ⁇ CMC ) / (1 + ⁇ m ) and 1.1x (1 + ⁇ CMC ) / (1 + ⁇ m ) where ⁇ m denotes the coefficient of thermal expansion of said part of the holding element and ⁇ CMC denotes the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors, ⁇ m and ⁇ CMC being measured at 900 ° C. and expressed as 10 -6 ° C -1 .
- each ring sector may have a shape in Pi ( ⁇ ) in axial section.
- the present invention also relates to a turbomachine comprising a turbine ring assembly as described above.
- the figure 1 shows a high pressure turbine ring assembly comprising a turbine ring 1 made of a ceramic matrix composite material (CMC) and a ring support metal structure 3.
- the turbine ring 1 surrounds a set of rotary blades 5.
- the turbine ring 1 is formed of a plurality of ring sectors 10, the figure 1 being a radial sectional view along a plane passing between two sectors of consecutive rings.
- Ring sectors 10 present in the illustrated example a shape in Pi ( ⁇ ) in axial section.
- the arrow DA indicates the axial direction with respect to the turbine ring 1 while the arrow DR indicates the radial direction with respect to the turbine ring 1.
- Each ring sector 10 has a substantially P-shaped section ( ⁇ ) inverted with an annular base 12 whose inner face coated with a layer 13 of abradable material defines the flow stream of gas flow in the turbine.
- Upstream and downstream tabs 14, 16 extend from the outer face of the annular base 12 in the radial direction DR.
- upstream and downstream are used herein with reference to the flow direction of the gas flow in the turbine (arrow F).
- the ring support structure 3 which is integral with a turbine casing 30 comprises an annular upstream radial flange 32 and an annular downstream radial flange 36.
- the lugs 14 and 16 of each ring sector 10 are held between the flanges. 32 and 36.
- Each of the annular flanges 32 and 36 defines a housing 320 and 360.
- the housings 320 and 360 cooperate with a respective projecting portion 140 and 160 to ensure the cold maintenance of the ring sectors 10 on the structure ring support 3.
- cold is meant in the present invention, the temperature at which the ring assembly is located when the turbine does not run, that is to say at room temperature which may be for example about 25 ° C.
- each tab 14 and 16 comprises a portion of extra thickness forming the projecting portion 140 or 160.
- the housings 320 and 360 each have, in the illustrated example, two inclined portions.
- the housing 360 has a first inclined portion 360a and a second inclined portion 360b each forming a non-zero angle with the radial directions DR and axial DA.
- the first and second inclined portions 360a and 360b bear on the projecting portion 160 cooperating with said housing 360.
- the first 360a and second 360b inclined portions may not be parallel to each other, as illustrated.
- the housing 360 may furthermore have a radial portion 360c extending along the radial direction DR and located between the first inclined portion 360a and the second inclined portion 360b.
- the first 360a and second 360b inclined portions each form, when observed in meridian section, an angle of between 30 ° and 60 ° with the radial direction DR.
- ⁇ 1 denotes the angle formed between the first inclined portion 360a and the radial direction DR
- ⁇ 2 denotes the angle formed between the first inclined portion 360a and the axial direction DA
- ⁇ 3 denotes the angle formed between the second portion inclined 360b and the radial direction DR
- ⁇ 4 designates the angle formed between the second inclined portion 360b and the axial direction DA.
- the first inclined portion 360a rests on the radially inner half Mi of the projecting portion 160 and the second inclined portion 360b bears against the radially outer half Me of the projecting portion 160.
- the housing 320 located on the upstream flange 32 has a structure similar to that just described for housing 360.
- each hoop 40a passes respectively through an orifice 35 formed in the radial flange.
- annular upstream 32 and an orifice 15 formed in each upstream lug 14, the orifices 35 and 15 being aligned during the assembly of the ring sectors 10 on the ring support structure 3.
- each hoop 40b passes respectively through an orifice 37 formed in the annular downstream radial flange 36 and a orifice 17 formed in each downstream tab 16, the orifices 37 and 17 being aligned during assembly of the ring sectors 10 on the ring support structure 3.
- the locking frets 40a and 40b are made of a material having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors 10.
- the locking frets 40a and 40b may for example be made of metal material, for example alloy AM1 or Inconel 718.
- a game J is present cold between the frets of block 40a, respectively 40b, and the orifices 15, 17 respectively, of the tabs 14, respectively 16.
- the expansion of the locking bands 40a and 40b in the orifices 15 and 17 contributes to the hot maintenance of the ring sectors 10 on the structure ring support 3 reducing or even filling the clearance J.
- the ratio between the diameter d 1 of the part of the frets 40b present in the orifice 17 and the diameter d 2 of said orifice 17 is between (1 + ⁇ CMC ) / (1 + ⁇ m ) and 1.1x (1 + ⁇ CMC ) / (1 + ⁇ m ) where ⁇ m denotes the coefficient of thermal expansion of said portion of the frets 40b and ⁇ CMC denotes the coefficient of thermal expansion of the material
- inter-sector sealing is provided by sealing tabs housed in grooves facing in the opposite edges of two neighboring ring sectors.
- a tongue 22a extends over almost the entire length of the annular base 12 in the middle portion thereof.
- Another tab 22b extends along the tab 14 and on a portion of the annular base 12.
- Another tab 22c extends along the tab 16. At one end, the tab 22c abuts the tab 22a and on the tongue 22b.
- the tabs 22a, 22b, 22c are for example metallic and are mounted with cold clearance in their housings to ensure the sealing function at the temperatures encountered in operation.
- Ventperes 33 formed in the flange 32 make it possible to bring cooling air to the outside of the turbine ring 1.
- FIG. figure 1 The assembly of an exemplary turbine ring assembly as shown in FIG. figure 1 .
- Each ring sector 10 described above is made of a ceramic matrix composite material (CMC) by forming a fibrous preform having a shape close to that of the ring sector and densifying the preform with a ceramic matrix.
- CMC ceramic matrix composite material
- the fiber preform it is possible to use ceramic fiber yarns, for example SiC fiber yarns, such as those marketed by the Japanese company Nippon Carbon under the name "Nicalon", or carbon fiber yarns.
- the fibrous preform is advantageously made by three-dimensional weaving, or multilayer weaving with the provision of debonding zones enabling the parts of preforms corresponding to the lugs 14 and 16 of the sectors 10 to be spaced apart.
- the weaving may be of the interlock type, as illustrated.
- the ring support structure 3 is made of a metallic material such as a Waspaloy® or Inconel 718 alloy.
- the realization of the turbine ring assembly is continued by mounting the ring sectors 10 on the ring support structure 3.
- the illustrated ring support structure 3 comprises at least one flange, here the flange radial downstream annular 36, which is elastically deformable in the axial direction DA of the ring.
- the annular downstream radial flange 36 is pulled in the direction DA as shown in FIG. figure 3 in order to increase the spacing between the flanges 32 and 36 and to allow the insertion of the ring sector 10 between the flanges 32 and 36 without risk of damage to the ring sector 10.
- the annular downstream radial flange 36 In order to facilitate pulling apart the annular downstream radial flange 36, it comprises a plurality of hooks 39 distributed on its face 36b, which face is opposite the face 36a of the flange 36 opposite the downstream tabs 16 of the ring sectors 10.
- the traction in the axial direction DA exerted on the elastically deformable flange 36 is here carried out by means of a tool 50 comprising at least one arm 51 whose end comprises a hook 510 which is engaged in a hook 39 present on the outer face 36a of the flange 36.
- the number of square brackets 39 distributed on the face 36a of the flange 36 is defined according to the number of tensile points that one wishes to have on the flange 36. This number depends mainly on the elastic nature of the flange.
- Other forms and arrangements of means for exerting traction in the axial direction DA on one of the flanges of the ring support structure can of course be considered within the scope of the present invention.
- the ring sector 10 is inserted between the annular flanges 32 and 36.
- the projecting portion 140 is engaged in the housing 120 and the orifices 15 and 35 are aligned.
- the flange 36 is then released in order to introduce the protruding portion 160 into the housing 360 and to align the orifices 17 and 37.
- the structure illustrated in FIG. figure 4 in which the ring sectors 10 are kept cold by cooperation of the projecting portions 140 and 160 and the housings 320 and 360.
- a band 40a is then engaged in the aligned orifices 35 and 15 respectively formed in the annular upstream radial flange 32 and in the upstream lug 14.
- a hoop 40b is engaged in the aligned orifices 37 and 17 respectively formed in the annular downstream radial flange 36 and in the downstream lug 16.
- the frets 40a and 40b are forced into the annular flanges 32 and 36 to ensure their maintenance cold (mounting H6P6 for example or other tight fixtures).
- Each lug 14 or 16 of ring sector may comprise one or more orifices for the passage of one or more frets.
- the ring sectors 10 are maintained by cooperation between the protruding portions 140 and 160 and the housings 320 and 360.
- the expansion of the annular flanges 32 and 36 may no longer make it possible to maintain the sectors ring 10 at the housing 320 and 360.
- the hot maintenance of the ring sectors 10 is then ensured by the expansion of the bands 40a and 40b in the orifices 15 and 17 which reduces or cancels the game J.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Le domaine d'application de l'invention est notamment celui des moteurs aéronautiques à turbine à gaz. L'invention est toutefois applicable à d'autres turbomachines, par exemple à des turbines industrielles.The field of application of the invention is in particular that of aeronautical gas turbine engines. The invention is however applicable to other turbomachines, for example industrial turbines.
Les matériaux composites à matrice céramique, ou CMC, sont connus pour conserver leurs propriétés mécaniques à des températures élevées, ce qui les rend aptes à constituer des éléments de structure chaude.Ceramic matrix composite materials, or CMCs, are known to retain their mechanical properties at high temperatures, which makes them suitable for constituting hot structural elements.
Dans le cas d'ensembles d'anneau de turbine entièrement métalliques, il est nécessaire de refroidir tous les éléments de l'ensemble et en particulier l'anneau de turbine qui est soumis à des flux particulièrement chauds. Ce refroidissement a un impact significatif sur la performance du moteur puisque le flux de refroidissement utilisé est prélevé sur le flux principal du moteur. En outre, l'utilisation de métal pour l'anneau de turbine limite les possibilités d'augmenter la température au niveau de la turbine, ce qui permettrait pourtant d'améliorer les performances des moteurs aéronautiques.In the case of all-metal turbine ring assemblies, it is necessary to cool all the elements of the assembly and in particular the turbine ring which is subjected to particularly hot flows. This cooling has a significant impact on the engine performance since the cooling flow used is taken from the main flow of the engine. In addition, the use of metal for the turbine ring limits the possibilities of increasing the temperature at the turbine, which would however improve the performance of aircraft engines.
Par ailleurs, un ensemble d'anneau de turbine métallique se déforme sous l'effet des flux thermiques, ce qui modifie les jeux au niveau de la veine d'écoulement et, par conséquent, les performances de la turbine.Furthermore, a set of metal turbine ring deforms under the effect of heat flow, which changes the clearance at the flow path and, therefore, the performance of the turbine.
C'est pourquoi l'utilisation de CMC pour différentes parties chaudes des moteurs a déjà été envisagée, d'autant que les CMC présentent comme avantage complémentaire une masse volumique inférieure à celle de métaux réfractaires traditionnellement utilisés.This is why the use of CMC for different hot parts of the engines has already been considered, especially since CMCs have the additional advantage of lower density than refractory metals traditionally used.
L'utilisation de secteurs d'anneau en CMC permet de réduire significativement la ventilation nécessaire au refroidissement de l'anneau de turbine. Toutefois, le maintien en position des secteurs d'anneau demeure un problème en particulier vis-à-vis des dilatations différentielles qui peuvent se produire entre la structure métallique de support et les secteurs d'anneau en CMC. En outre, une autre problématique réside dans le contrôle de la forme de la veine aussi bien à froid qu'à chaud sans générer de contraintes trop importantes sur les secteurs d'anneau.The use of ring segments in CMC significantly reduces the ventilation required to cool the turbine ring. However, maintaining the ring sectors in position remains a problem in particular with respect to the differential expansions that can occur between the metal support structure and the CMC ring sectors. In addition, another problem lies in controlling the shape of the vein both cold and hot without generating too much stress on the ring sectors.
On connaît par ailleurs le document
Il existe donc un besoin pour améliorer les ensembles d'anneau de turbine existants mettant en oeuvre un matériau CMC afin d'assurer le maintien en position des secteurs d'anneau malgré les dilatations différentielles tout en limitant l'intensité des contraintes mécaniques auxquelles les secteurs d'anneau en CMC sont soumis lors du fonctionnement.There is therefore a need to improve existing turbine ring assemblies employing a CMC material in order to maintain the ring sectors in position despite the differential expansions while limiting the intensity of the mechanical stresses to the sectors. CMC ring are subjected during operation.
A cet effet, l'invention propose, selon un premier aspect, un ensemble d'anneau de turbine selon la revendication 1.For this purpose, the invention proposes, according to a first aspect, a turbine ring assembly according to
Dans l'ensemble d'anneau selon l'invention, les secteurs d'anneau sont maintenus à froid du fait de la coopération entre les portions en saillie et les logements présents sur les brides annulaires en regard de celles-ci. Le maintien des secteurs d'anneau par cette coopération de reliefs peut ne plus être assuré à chaud en raison de la dilatation des brides annulaires. A chaud, l'effort de maintien est repris par la dilatation des éléments de maintien, dilatation qui n'entraîne pas de contrainte significative sur les secteurs d'anneau en raison de la présence d'un jeu à froid entre les éléments de maintien et les ouvertures situées sur les pattes du secteur d'anneau.In the ring assembly according to the invention, the ring sectors are kept cold due to the cooperation between the protruding portions and the housings present on the annular flanges opposite them. Maintaining ring areas by this relief cooperation may no longer be ensured hot due to the expansion of the annular flanges. When hot, the holding force is resumed by the expansion of the holding elements, which expansion does not entail significant stress on the ring sectors because of the presence of a cold clearance between the holding elements and the openings on the legs of the ring sector.
Le logement de la bride annulaire présente au moins une première et une deuxième portions inclinées en appui sur la portion en saillie coopérant avec ledit logement, lesdites première et deuxième portions inclinées formant chacune, lorsqu'observées en coupe méridienne, un angle non nul par rapport à la direction radiale et à la direction axiale.The housing of the annular flange has at least first and second inclined portions bearing on the projecting portion cooperating with said housing, said first and second inclined portions each forming, when observed in meridian section, a non-zero angle relative to in the radial direction and in the axial direction.
La direction radiale correspond à la direction selon un rayon de l'anneau de turbine (droite reliant le centre de l'anneau de turbine à sa périphérie). La direction axiale correspond à la direction selon l'axe de révolution de l'anneau de turbine ainsi qu'à la direction d'écoulement du flux gazeux dans la veine.The radial direction corresponds to the direction along a radius of the turbine ring (straight connecting the center of the turbine ring to its periphery). The axial direction corresponds to the direction along the axis of revolution of the turbine ring and the flow direction of the gas flow in the vein.
La mise en oeuvre de telles portions inclinées au niveau des brides annulaires de la structure de support d'anneau participe à compenser les différences de dilatation entre les brides annulaires et les pattes des secteurs d'anneau et donc à réduire les contraintes mécaniques auxquelles les secteurs d'anneau sont soumis lors du fonctionnement.The implementation of such inclined portions at the annular flanges of the ring support structure contributes to compensating for the differences in expansion between the annular flanges and the legs of the ring sectors and thus to reducing the mechanical stresses to which the sectors ring are subjected during operation.
Dans un exemple de réalisation, la première portion inclinée peut être en appui sur la moitié radialement interne de la portion en saillie et la deuxième portion inclinée peut être en appui sur la moitié radialement externe de la portion en saillie.In an exemplary embodiment, the first inclined portion may bear on the radially inner half of the projecting portion and the second inclined portion may be supported on the radially outer half of the projecting portion.
Dans un exemple de réalisation, ladite au moins une portion inclinée peut former un angle compris entre 30° et 60° avec la direction radiale.In an exemplary embodiment, said at least one inclined portion may form an angle of between 30 ° and 60 ° with the radial direction.
Dans un exemple de réalisation, le rapport (diamètre de la partie de l'élément de maintien présente dans ladite ouverture)/(diamètre de ladite ouverture) peut être compris entre (1+αCMC)/(1+αm) et 1,1x(1+αCMC)/(1+αm) où αm désigne le coefficient de dilatation thermique de ladite partie de l'élément de maintien et αCMC désigne le coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau, αm et αCMC étant mesurés à 900°C et exprimés en
10-6.°C-1.In an exemplary embodiment, the ratio (diameter of the part of the holding element present in said opening) / (diameter of said opening) can be between (1 + α CMC ) / (1 + α m ) and 1.1x (1 + α CMC ) / (1 + α m ) where α m denotes the coefficient of thermal expansion of said part of the holding element and α CMC denotes the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors, α m and α CMC being measured at 900 ° C. and expressed as
10 -6 ° C -1 .
De telles valeurs pour le rapport entre le diamètre de la partie de l'élément de maintien présente dans ladite ouverture et le diamètre de ladite ouverture permettent d'obtenir un maintien des secteurs d'anneau optimal à chaud du fait du comblement intégral ou sensiblement intégral du jeu présent entre l'ouverture et l'élément de maintien obtenu par dilatation de l'élément de maintien.Such values for the ratio between the diameter of the part of the holding element present in said opening and the diameter of said opening make it possible to obtain a maintenance of the optimum ring sectors when hot because of the integral or substantially integral filling. the game present between the opening and the holding member obtained by expansion of the holding member.
Dans un exemple de réalisation, chaque secteur d'anneau peut présenter une forme en Pi (Π) en coupe axiale.In an exemplary embodiment, each ring sector may have a shape in Pi (Π) in axial section.
La présente invention vise également une turbomachine comprenant un ensemble d'anneau de turbine tel que décrit plus haut.The present invention also relates to a turbomachine comprising a turbine ring assembly as described above.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante d'un exemple particulier de réalisation de l'invention, non limitatif, en référence aux dessins annexés, sur lesquels :
- la
figure 1 est une vue en section radiale d'un exemple d'ensemble d'anneau de turbine selon l'invention, - la
figure 2 est un détail de lafigure 1 , et - les
figures 3 et4 illustrent schématiquement le montage d'un secteur d'anneau dans la structure de support d'anneau de l'ensemble d'anneau de lafigure 1 .
- the
figure 1 is a radial sectional view of an exemplary turbine ring assembly according to the invention, - the
figure 2 is a detail of thefigure 1 , and - the
figures 3 and4 schematically illustrate the mounting of a ring sector in the ring support structure of the ring assembly of thefigure 1 .
La
Chaque secteur d'anneau 10 a une section sensiblement en forme de Pi (Π) inversé avec une base annulaire 12 dont la face interne revêtue d'une couche 13 de matériau abradable définit la veine d'écoulement de flux gazeux dans la turbine. Des pattes amont et aval 14, 16 s'étendent à partir de la face externe de la base annulaire 12 dans la direction radiale DR. Les termes "amont" et "aval" sont utilisés ici en référence au sens d'écoulement du flux gazeux dans la turbine (flèche F).Each
La structure de support d'anneau 3 qui est solidaire d'un carter de turbine 30 comprend une bride radiale amont annulaire 32 et une bride radiale aval annulaire 36. Les pattes 14 et 16 de chaque secteur d'anneau 10 sont maintenues entre les brides 32 et 36. Chacune des brides annulaires 32 et 36 définit un logement 320 et 360. Les logements 320 et 360 coopèrent avec une portion en saillie respective 140 et 160 afin d'assurer le maintien à froid des secteurs d'anneau 10 sur la structure de support d'anneau 3. Par « à froid », on entend dans la présente invention, la température à laquelle se trouve l'ensemble d'anneau lorsque la turbine ne fonctionne pas, c'est-à-dire à une température ambiante qui peut être par exemple d'environ 25°C. La portion en saillie 140 est située sur la face 14a de la patte 14 située en regard de la bride 32. La portion en saillie 160 est, quant à elle, située sur la face 16a de la patte 16 située en regard de la bride 36. Dans l'exemple illustré, chaque patte 14 et 16 comprend une portion de surépaisseur formant la portion en saillie 140 ou 160.The
Les logements 320 et 360 présentent chacun, dans l'exemple illustré, deux portions inclinées. Ainsi, comme illustré à la
Par ailleurs, les secteurs d'anneau 10 sont en outre maintenus par des éléments de maintien, ici sous forme de frettes de blocage 40a et 40b, par exemple sous la forme de pions 40a et 40b. Un premier ensemble de frettes de blocage 40a est engagé à la fois dans la bride radiale amont annulaire 32 et dans les pattes amont 14 des secteurs d'anneau 10. A cet effet, chaque frette 40a traverse respectivement un orifice 35 ménagé dans la bride radiale amont annulaire 32 et un orifice 15 ménagé dans chaque patte amont 14, les orifices 35 et 15 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. De la même manière, un deuxième ensemble de frettes de blocage 40b est engagé à la fois dans la bride radiale aval annulaire 36 et dans les pattes aval 16 des secteurs d'anneau 10. A cet effet, chaque frette 40b traverse respectivement un orifice 37 ménagé dans la bride radiale aval annulaire 36 et un orifice 17 ménagé dans chaque patte aval 16, les orifices 37 et 17 étant alignés lors du montage des secteurs d'anneau 10 sur la structure de support d'anneau 3.Furthermore, the
Les frettes de blocage 40a et 40b sont réalisés en un matériau ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau 10. Les frettes de blocage 40a et 40b peuvent par exemple être réalisées en matériau métallique, par exemple en alliage AM1 ou en Inconel 718. Un jeu J est présent à froid entre les frettes de blocage 40a, respectivement 40b, et les orifices 15, respectivement 17, des pattes 14, respectivement 16. La dilatation des frettes de blocage 40a et 40b dans les orifices 15 et 17 participe au maintien à chaud des secteurs d'anneau 10 sur la structure de support d'anneau 3 en réduisant, voire en comblant, le jeu J. Par « à chaud », on entend ici les températures auxquelles sont soumises les pattes des secteurs d'anneau lors du fonctionnement de la turbine, ces températures pouvant être comprises entre 600°C et 900°C. Dans l'exemple illustré, le rapport entre le diamètre d1 de la partie des frettes 40b présente dans l'orifice 17 et le diamètre d2 dudit orifice 17 (i.e. d1/d2) est compris entre (1+αCMC)/(1+αm) et 1,1x(1+αCMC)/(1+αm) où αm désigne le coefficient de dilatation thermique de ladite partie des frettes 40b et αCMC désigne le coefficient de dilatation thermique du matériau composite à matrice céramique des secteurs d'anneau 10. Cette caractéristique peut aussi être vérifiée pour le rapport (diamètre de la partie des frettes 40a présente dans l'orifice 15)/(diamètre dudit orifice 15).The locking frets 40a and 40b are made of a material having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the ceramic matrix composite material of the
En outre, l'étanchéité inter-secteurs est assurée par des languettes d'étanchéité logées dans des rainures se faisant face dans les bords en regard de deux secteurs d'anneau voisins. Une languette 22a s'étend sur presque toute la longueur de la base annulaire 12 dans la partie médiane de celle-ci. Une autre languette 22b s'étend le long de la patte 14 et sur une partie de la base annulaire 12. Une autre languette 22c s'étend le long de la patte 16. A une extrémité, la languette 22c vient en butée sur la languette 22a et sur la languette 22b. Les languettes 22a, 22b, 22c sont par exemple métalliques et sont montées avec jeu à froid dans leurs logements afin d'assurer la fonction d'étanchéité aux températures rencontrées en fonctionnement.In addition, the inter-sector sealing is provided by sealing tabs housed in grooves facing in the opposite edges of two neighboring ring sectors. A
De façon classique, des orifices de ventilation 33 formés dans la bride 32 permettent d'amener de l'air de refroidissement du côté extérieur de l'anneau de turbine 1.Conventionally,
On va à présent décrire le montage d'un exemple d'ensemble d'anneau de turbine tel que représenté à la
Chaque secteur d'anneau 10 décrit ci-avant est réalisé en matériau composite à matrice céramique (CMC) par formation d'une préforme fibreuse ayant une forme voisine de celle du secteur d'anneau et densification de la préforme par une matrice céramique. Pour la réalisation de la préforme fibreuse, on peut utiliser des fils en fibres céramique, par exemple des fils en fibres SiC tels que ceux commercialisés par la société japonaise Nippon Carbon sous la dénomination "Nicalon", ou des fils en fibres de carbone. La préforme fibreuse est avantageusement réalisée par tissage tridimensionnel, ou tissage multicouches avec aménagement de zones de déliaison permettant d'écarter les parties de préformes correspondant aux pattes 14 et 16 des secteurs 10. Le tissage peut être de type interlock, comme illustré. D'autres armures de tissage tridimensionnel ou multicouches peuvent être utilisées comme par exemple des armures multi-toile ou multi-satin. On pourra se référer au document
La structure de support d'anneau 3 est quant à elle réalisée en un matériau métallique tel qu'un alliage Waspaloy® ou Inconel 718.The
La réalisation de l'ensemble d'anneau de turbine se poursuit par le montage des secteurs d'anneau 10 sur la structure de support d'anneau 3. La structure de support d'anneau 3 illustrée comprend au moins une bride, ici la bride radiale aval annulaire 36, qui est élastiquement déformable dans la direction axiale DA de l'anneau. Lors du montage d'un secteur d'anneau 10, la bride radiale aval annulaire 36 est tirée dans la direction DA comme montré sur la
Une fois la bride annulaire 36 écartée dans la direction DA, le secteur d'anneau 10 est inséré entre les brides annulaires 32 et 36. Lors de l'insertion du secteur d'anneau 10, la portion en saillie 140 est engagée dans le logement 120 et les orifices 15 et 35 sont alignés. La bride 36 est ensuite relâchée afin d'introduire la portion en saillie 160 dans le logement 360 et aligner les orifices 17 et 37. On obtient alors la structure illustrée à la
A froid, les secteurs d'anneaux 10 sont maintenus par coopération entre les portions en saillie 140 et 160 et les logements 320 et 360. A chaud, la dilatation des brides annulaires 32 et 36 peut ne plus permettre d'assurer le maintien des secteurs d'anneau 10 au niveau des logements 320 et 360. Le maintien à chaud des secteurs d'anneau 10 est alors assuré par la dilatation des frettes 40a et 40b dans les orifices 15 et 17 qui réduit ou annule le jeu J.In cold, the
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.The expression "understood between ... and ..." must be understood as including boundaries.
Claims (6)
- A turbine ring assembly comprising a plurality of ring sectors (10) made of ceramic matrix composite material forming a turbine ring (1), and a ring support structure (3) having two annular flanges (32; 36), each ring sector (10) having a portion forming an annular base (12) with an inner face defining the inside face of the turbine ring and an outer face from which there project at least two tabs (14; 16), the tabs (14; 16) of each ring sector (10) being retained between the two annular flanges (32; 36) of the ring support structure (3),
each tab (14; 16) of the ring sectors (10) including a projecting portion (140; 160) on its face (14a; 16a) situated facing one of the two annular flanges (32; 36), this projecting portion (140; 160) co-operating with a housing (320; 360) present in the annular flange (32; 36), and
each tab (14; 16) of the ring sectors (10) including at least one opening (15; 17) in which there is received a portion of a retention element (40a; 40b) secured to the annular flange (32; 36) situated facing said tab (14; 16), clearance (J) being present between the opening (15; 17) of said tab (14; 16) and the portion of the retention element (40a; 40b) present in said opening (15; 17), said retention element (40a; 40b) being made of a material having a coefficient of thermal expansion that is greater than the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors (10),
characterized in that the housing (320; 360) in the annular flange (32; 36) presents at least first and second sloping portions (360a; 360b) bearing against the projecting portion (140; 160) co-operating with said housing (320; 360), said first and second sloping portions (360a; 360b), when observed in meridian section, each forming a non-zero angle (α1; α2; α3; α4) relative to the radial direction (DR) and relative to the axial direction (DA). - An assembly according to claim 1, wherein the first sloping portion (360a) bears against the radially inner half (Mi) of the projecting portion (140; 160), and wherein the second sloping portion (360b) bears against the radially outer half (Me) of the projecting portion (140; 160).
- An assembly according to claim 1 or claim 2, wherein at least one of the first and second sloping portions (360a; 360b) forms an angle (α1; α3) relative to the radial direction (DR) that lies in the range 30° to 60°.
- An assembly according to any one of claims 1 to 3, wherein the ratio of the diameter (d1) of the portion of the retention element (40a; 40b) that is present in said opening (15; 17) divided by the diameter (d2) of said opening (15; 17) lies in the range (1+αCMC)/(1+αm) to 1.1×(1+αCMC)/(1+αm), where αm designates the coefficient of thermal expansion of said portion of the retention element and αCMC designates the coefficient of thermal expansion of the ceramic matrix composite material of the ring sectors, αm and αCMC being measured at 900°C and being expressed as 10-6×°C-1.
- An assembly according to any one of claims 1 to 4, wherein each ring sector (10) presents a Pi-shape (Π-shape)in axial section.
- A turbine engine including a turbine ring assembly according to any one of claims 1 to 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1562741A FR3045715B1 (en) | 2015-12-18 | 2015-12-18 | TURBINE RING ASSEMBLY WITH COLD AND HOT HOLDING |
PCT/FR2016/053395 WO2017103451A1 (en) | 2015-12-18 | 2016-12-14 | Turbine ring assembly with support when cold and when hot |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3390783A1 EP3390783A1 (en) | 2018-10-24 |
EP3390783B1 true EP3390783B1 (en) | 2019-10-02 |
Family
ID=55411602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16825493.6A Active EP3390783B1 (en) | 2015-12-18 | 2016-12-14 | Turbine shroud assembly and corresponding turbine |
Country Status (5)
Country | Link |
---|---|
US (1) | US10378386B2 (en) |
EP (1) | EP3390783B1 (en) |
CN (1) | CN108699918B (en) |
FR (1) | FR3045715B1 (en) |
WO (1) | WO2017103451A1 (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3033825B1 (en) * | 2015-03-16 | 2018-09-07 | Safran Aircraft Engines | TURBINE RING ASSEMBLY OF CERAMIC MATRIX COMPOSITE MATERIAL |
FR3045716B1 (en) * | 2015-12-18 | 2018-01-26 | Safran Aircraft Engines | TURBINE RING ASSEMBLY WITH COLD ELASTIC SUPPORT |
FR3049003B1 (en) * | 2016-03-21 | 2018-04-06 | Safran Aircraft Engines | TURBINE RING ASSEMBLY WITHOUT COLD MOUNTING SET |
FR3056632B1 (en) * | 2016-09-27 | 2020-06-05 | Safran Aircraft Engines | TURBINE RING ASSEMBLY INCLUDING A COOLING AIR DISTRIBUTION ELEMENT |
US11015613B2 (en) * | 2017-01-12 | 2021-05-25 | General Electric Company | Aero loading shroud sealing |
FR3087825B1 (en) * | 2018-10-29 | 2020-10-30 | Safran Aircraft Engines | TURBINE RING SECTOR WITH COOLED SEALING TABS |
FR3090731B1 (en) * | 2018-12-19 | 2021-01-08 | Safran Aircraft Engines | Turbine ring assembly with curved rectilinear bearings. |
FR3090732B1 (en) * | 2018-12-19 | 2021-01-08 | Safran Aircraft Engines | Turbine ring assembly with indexed flanges. |
FR3093344B1 (en) * | 2019-03-01 | 2021-06-04 | Safran Ceram | SET FOR A TURBOMACHINE TURBINE |
FR3095668B1 (en) * | 2019-05-03 | 2021-04-09 | Safran Aircraft Engines | Spacer-mounted turbine ring assembly |
FR3100838B1 (en) * | 2019-09-13 | 2021-10-01 | Safran Aircraft Engines | TURBOMACHINE SEALING RING |
US11215075B2 (en) | 2019-11-19 | 2022-01-04 | Rolls-Royce North American Technologies Inc. | Turbine shroud assembly with flange mounted ceramic matrix composite turbine shroud ring |
US11174795B2 (en) * | 2019-11-26 | 2021-11-16 | Raytheon Technologies Corporation | Seal assembly with secondary retention feature |
US11220930B2 (en) | 2019-12-03 | 2022-01-11 | Rolls-Royce Corporation | Assembly with pin-mounted ceramic matrix composite material components |
US11066947B2 (en) | 2019-12-18 | 2021-07-20 | Rolls-Royce Corporation | Turbine shroud assembly with sealed pin mounting arrangement |
FR3107549B1 (en) * | 2020-02-24 | 2022-09-16 | Safran Ceram | Sealing of a turbine |
US11215064B2 (en) * | 2020-03-13 | 2022-01-04 | Raytheon Technologies Corporation | Compact pin attachment for CMC components |
US11208911B2 (en) | 2020-04-23 | 2021-12-28 | Rolls-Royce Plc | Turbine shroud ring segments with ceramic matrix composite components |
US11215065B2 (en) | 2020-04-24 | 2022-01-04 | Rolls-Royce Corporation | Turbine shroud assembly with ceramic matrix composite components having stress-reduced pin attachment |
JP7256282B2 (en) * | 2020-05-11 | 2023-04-11 | 中国航発商用航空発動機有限責任公司 | Connection material and connection device for preventing thermal mismatch |
CN113638774B (en) * | 2020-05-11 | 2022-06-28 | 中国航发商用航空发动机有限责任公司 | Connecting piece and thermal mismatch prevention connecting device |
CN113882910B (en) * | 2020-07-03 | 2024-07-12 | 中国航发商用航空发动机有限责任公司 | Turbine outer ring connection assembly, gas turbine engine and connection method |
US11220928B1 (en) | 2020-08-24 | 2022-01-11 | Rolls-Royce Corporation | Turbine shroud assembly with ceramic matrix composite components and cooling features |
US11208896B1 (en) | 2020-10-20 | 2021-12-28 | Rolls-Royce Corporation | Turbine shroud having ceramic matrix composite component mounted with cooled pin |
US11255210B1 (en) | 2020-10-28 | 2022-02-22 | Rolls-Royce Corporation | Ceramic matrix composite turbine shroud assembly with joined cover plate |
US11629607B2 (en) | 2021-05-25 | 2023-04-18 | Rolls-Royce Corporation | Turbine shroud assembly with radially and axially biased ceramic matrix composite shroud segments |
US11346251B1 (en) | 2021-05-25 | 2022-05-31 | Rolls-Royce Corporation | Turbine shroud assembly with radially biased ceramic matrix composite shroud segments |
US11761351B2 (en) | 2021-05-25 | 2023-09-19 | Rolls-Royce Corporation | Turbine shroud assembly with radially located ceramic matrix composite shroud segments |
US11346237B1 (en) | 2021-05-25 | 2022-05-31 | Rolls-Royce Corporation | Turbine shroud assembly with axially biased ceramic matrix composite shroud segment |
US11286812B1 (en) | 2021-05-25 | 2022-03-29 | Rolls-Royce Corporation | Turbine shroud assembly with axially biased pin and shroud segment |
US11959389B2 (en) * | 2021-06-11 | 2024-04-16 | Pratt & Whitney Canada Corp. | Turbine shroud segments with angular locating feature |
US11441441B1 (en) | 2021-06-18 | 2022-09-13 | Rolls-Royce Corporation | Turbine shroud with split pin mounted ceramic matrix composite blade track |
US11319828B1 (en) | 2021-06-18 | 2022-05-03 | Rolls-Royce Corporation | Turbine shroud assembly with separable pin attachment |
US11499444B1 (en) | 2021-06-18 | 2022-11-15 | Rolls-Royce Corporation | Turbine shroud assembly with forward and aft pin shroud attachment |
FR3142504A1 (en) * | 2022-11-24 | 2024-05-31 | Safran Ceramics | Turbine assembly for a turbomachine |
US12031443B2 (en) | 2022-11-29 | 2024-07-09 | Rolls-Royce Corporation | Ceramic matrix composite blade track segment with attachment flange cooling chambers |
US11773751B1 (en) | 2022-11-29 | 2023-10-03 | Rolls-Royce Corporation | Ceramic matrix composite blade track segment with pin-locating threaded insert |
US11713694B1 (en) | 2022-11-30 | 2023-08-01 | Rolls-Royce Corporation | Ceramic matrix composite blade track segment with two-piece carrier |
US11840936B1 (en) | 2022-11-30 | 2023-12-12 | Rolls-Royce Corporation | Ceramic matrix composite blade track segment with pin-locating shim kit |
US11732604B1 (en) | 2022-12-01 | 2023-08-22 | Rolls-Royce Corporation | Ceramic matrix composite blade track segment with integrated cooling passages |
US11885225B1 (en) | 2023-01-25 | 2024-01-30 | Rolls-Royce Corporation | Turbine blade track with ceramic matrix composite segments having attachment flange draft angles |
US20240309779A1 (en) * | 2023-03-14 | 2024-09-19 | Raytheon Technologies Corporation | Compressor case with a cooling cavity |
FR3146935A1 (en) * | 2023-03-23 | 2024-09-27 | Safran Aircraft Engines | Stator assembly for an aircraft turbomachine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016146942A1 (en) * | 2015-03-16 | 2016-09-22 | Herakles | Turbine ring assembly comprising a plurality of ring sectors made from ceramic matrix composite material |
WO2016189223A1 (en) * | 2015-05-22 | 2016-12-01 | Herakles | Turbine ring assembly |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2245316B (en) * | 1990-06-21 | 1993-12-15 | Rolls Royce Plc | Improvements in shroud assemblies for turbine rotors |
FR2887601B1 (en) | 2005-06-24 | 2007-10-05 | Snecma Moteurs Sa | MECHANICAL PIECE AND METHOD FOR MANUFACTURING SUCH A PART |
US7726936B2 (en) * | 2006-07-25 | 2010-06-01 | Siemens Energy, Inc. | Turbine engine ring seal |
US8070431B2 (en) * | 2007-10-31 | 2011-12-06 | General Electric Company | Fully contained retention pin for a turbine nozzle |
FR2938873B1 (en) * | 2008-11-21 | 2014-06-27 | Turbomeca | POSITIONING DEVICE FOR RING SEGMENT |
JP5646517B2 (en) | 2009-03-09 | 2014-12-24 | スネクマ | Turbine ring assembly |
FR2954400B1 (en) * | 2009-12-18 | 2012-03-09 | Snecma | TURBINE STAGE IN A TURBOMACHINE |
JP2012211527A (en) * | 2011-03-30 | 2012-11-01 | Mitsubishi Heavy Ind Ltd | Gas turbine |
EP3670844B1 (en) * | 2014-06-12 | 2022-01-05 | General Electric Company | Shroud hanger assembly |
-
2015
- 2015-12-18 FR FR1562741A patent/FR3045715B1/en active Active
-
2016
- 2016-12-14 CN CN201680079488.9A patent/CN108699918B/en active Active
- 2016-12-14 WO PCT/FR2016/053395 patent/WO2017103451A1/en active Application Filing
- 2016-12-14 EP EP16825493.6A patent/EP3390783B1/en active Active
- 2016-12-14 US US16/063,050 patent/US10378386B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016146942A1 (en) * | 2015-03-16 | 2016-09-22 | Herakles | Turbine ring assembly comprising a plurality of ring sectors made from ceramic matrix composite material |
WO2016189223A1 (en) * | 2015-05-22 | 2016-12-01 | Herakles | Turbine ring assembly |
Also Published As
Publication number | Publication date |
---|---|
CN108699918B (en) | 2020-10-30 |
WO2017103451A1 (en) | 2017-06-22 |
FR3045715A1 (en) | 2017-06-23 |
FR3045715B1 (en) | 2018-01-26 |
US20180363507A1 (en) | 2018-12-20 |
EP3390783A1 (en) | 2018-10-24 |
US10378386B2 (en) | 2019-08-13 |
CN108699918A (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3390783B1 (en) | Turbine shroud assembly and corresponding turbine | |
EP3298244B1 (en) | Turbine ring assembly with axial retention | |
EP3390782B1 (en) | Turbine ring assembly, elastically retained in a cold-state | |
EP3433471B1 (en) | Turbine shroud seal assembly with specific support in cold conditions | |
EP3298246B1 (en) | Turbine shroud assembly allowing a differential thermal expansion | |
EP3298245B1 (en) | Turbine ring assembly retained in the manner of a dog clutch | |
EP3298247B1 (en) | Turbine ring assembly supported by flanges | |
FR3055146A1 (en) | TURBINE RING ASSEMBLY | |
FR3056637A1 (en) | TURBINE RING ASSEMBLY WITH COLD SETTING | |
WO2018172655A1 (en) | Turbine ring assembly | |
EP2406466A1 (en) | Turbine ring assembly | |
EP3857030B1 (en) | Assembly for a turbine of a turbomachine and corresponding turbomachine | |
WO2016151233A1 (en) | Turbine ring assembly comprising a plurality of ceramic matrix composite ring segments | |
FR3041994A1 (en) | TURBINE RING ASSEMBLY | |
WO2017194860A1 (en) | Turbine ring assembly with cold setting | |
FR2942845A1 (en) | High pressure turbine ring assembly for gas turbine of aviation engine, has ring sectors with pie shaped section, and upstream and downstream end portions of tabs maintained without radial clearance by metallic ring support structure | |
WO2018130766A1 (en) | Turbine ring assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180530 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016021872 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01D0025240000 Ipc: F01D0011180000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 25/24 20060101ALN20190327BHEP Ipc: F01D 11/18 20060101AFI20190327BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190510 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1186392 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016021872 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1186392 Country of ref document: AT Kind code of ref document: T Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200203 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200103 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016021872 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
26N | No opposition filed |
Effective date: 20200703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191214 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221122 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231121 Year of fee payment: 8 Ref country code: FR Payment date: 20231122 Year of fee payment: 8 Ref country code: DE Payment date: 20231121 Year of fee payment: 8 |