[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3175509B1 - Logarithmisch-periodische antenne mit breitem frequenzband - Google Patents

Logarithmisch-periodische antenne mit breitem frequenzband Download PDF

Info

Publication number
EP3175509B1
EP3175509B1 EP15745187.3A EP15745187A EP3175509B1 EP 3175509 B1 EP3175509 B1 EP 3175509B1 EP 15745187 A EP15745187 A EP 15745187A EP 3175509 B1 EP3175509 B1 EP 3175509B1
Authority
EP
European Patent Office
Prior art keywords
radiating
log
radiating elements
dipole
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15745187.3A
Other languages
English (en)
French (fr)
Other versions
EP3175509A1 (de
Inventor
Antoine CHAULOUX
Mohamed Himdi
Franck Colombel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3175509A1 publication Critical patent/EP3175509A1/de
Application granted granted Critical
Publication of EP3175509B1 publication Critical patent/EP3175509B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • H01Q11/105Logperiodic antennas using a dielectric support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/085Flexible aerials; Whip aerials with a resilient base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the invention relates to a wide frequency band antenna and, more particularly, to a wide frequency band log-periodic antenna.
  • Maintaining the radioelectric characteristics of antennas over a wide frequency band is a permanent concern in the field of communications. This is the case, for example, with maintaining constant illumination over a wide band of frequencies.
  • WO 98/21779 A1 discloses an array of log-periodic antennas that include dipoles. All antennas are arranged perpendicular to the ground plane.
  • UK 2 485 643 C1 discloses an array of 3 log-periodic antennas whose first ends are closer than the second ends.
  • WO 2006/096402 A2 discloses an array of log-periodic antennas that include dipoles.
  • WO 00/31826 A1 discloses a log-periodic antenna disposed on a substrate. The arms of each dipole are distributed over the two substrate surfaces.
  • the invention does not have this drawback.
  • the invention relates to a log-periodic antenna which comprises at least one set of three radiating elements with a log-periodic pattern and a substrate which defines an electrical ground of the antenna, the radiating elements with a log-periodic pattern being positioned above a first face of the substrate, each radiating element with a log-periodic pattern comprising a succession of radiating dipoles distributed on either side of a rectilinear electrically conductive line, perpendicular to said line, the radiating dipoles having an increasing dimension between a first end of said line and a second end of said line located closer to the first face than the first end, a first radiating element having a rectilinear electrically conductive line substantially perpendicular to the first face of the substrate, a second radiating element and a third radiating element being located on either side of the first radiating element, symmetrically to the first radiating element, the first ends of the electrically conductive lines of the various radiating elements being separated from each other and substantially aligned in one
  • each radiating element consists of a flat dielectric substrate on which the log-periodic patterns are printed on either side of the flat dielectric substrate.
  • the flat dielectric substrate has a thickness of 0.8 mm and a relative dielectric constant equal to 3, the width of the first and second tracks of the various radiating dipoles is equal to 5 mm, the quantities L and D are respectively equal to 70mm and 15.77mm and the coefficient ⁇ is equal to 0.824.
  • the log-periodic antenna comprises means for supplying the first ends of the electrically conductive lines of the various radiating elements with electromagnetic waves whose electric field vectors have a direction parallel to the axis radiating dipoles.
  • the means for supplying the first ends of the electrically conductive lines comprise a power divider fixed to the electrically conductive face of the substrate which is opposite to the face above which the radiating elements are located.
  • the log-periodic antenna comprises at least two sets of three radiating elements and the radiating dipoles of the three radiating elements of the same set of three radiating elements are substantially perpendicular to the plane which contains the rectilinear electrically conductive lines of the three radiating elements
  • the first faces of the substrates which define the electrical masses of the log-periodic antennas are located in the same plane
  • the planes which contain the rectilinear electrically conductive lines of the different sets of three radiating elements are parallel to each other and the rectilinear electrically conductive lines of the first radiating elements of the different sets of three radiating elements are located in the same plane.
  • the log-periodic antenna comprises at least two sets of three radiating elements and the radiating dipoles of the three radiating elements of the same set of radiating elements are in the plane which contains the lines electrically rectilinear conductive lines of the three radiating elements
  • the first faces of the substrates which define the electrical masses of the log-periodic antennas are located in the same plane
  • the planes which contain the rectilinear electrically conductive lines of the different sets of three radiating elements are mutually parallel and the rectilinear electrically conductive lines of the first radiating elements of the different sets of three radiating elements are located in the same plane.
  • the electrically conductive substrates which define the electrical masses of two neighboring log-periodic antennas are electrically connected to each other by an extensible metal mesh making it possible to move away or bring together two sets of three radiating elements neighbors.
  • FIG. 1 represents an example of a radiating element which participates in the broadband log-periodic antenna of the invention.
  • the radiating element consists of an electrically conductive log-periodic pattern 1 printed symmetrically on the two opposite faces of a flat dielectric substrate 2.
  • the printed log-periodic pattern comprises, by way of non-limiting example, six arms B 1 - B 6 distributed either side of a central rectilinear track R.
  • the arms B 1 - B 6 are perpendicular to the track R.
  • two arms located opposite each other, on either side other of the dielectric substrate 2 constitute a radiating dipole.
  • the arm B6 which has the greatest length is preferentially folded in order to limit the interaction of the radiating element with the ground plane on which the radiating element is positioned (cf. figure 2A And 2B ).
  • the track R has, for example, a width U equal to 1.5 mm.
  • the radiating element is optimized, for example, in the 2 GHz - 4 GHz frequency band.
  • the dielectric substrate 2 has, for example, a thickness equal to 0.8 mm and, for example, a relative dielectric constant ⁇ r equal to 3.
  • the scale factor ⁇ is preferably between 0.7 and 0.9. It is, for example, equal to 0.824.
  • the size D is equal to 15.77 mm and the size L is equal to 70 mm.
  • the widths of the arms B 1 - B 6 are respectively equal to W ⁇ ⁇ 7.5 , W ⁇ ⁇ 6 , W ⁇ ⁇ 4.5 , W ⁇ ⁇ 3 , W ⁇ ⁇ 1.5 and W, the magnitude W being equal, for example, to 5 mm.
  • FIG. 2A And 2B show respectively a perspective view and a side view of a broadband log-periodic antenna according to the first embodiment of the invention.
  • the broadband log-periodic antenna comprises three radiating elements E 1 , E 2 , E 3 located above a first face of a planar electrically conductive substrate 3 which defines the electrical ground of the antenna.
  • the substrates of the radiating elements E 1 and E 3 are located on either side of the substrate of the radiating element E 2 , symmetrically to the substrate of the radiating element E 2 .
  • the central rectilinear track R 2 of the central radiating element E 2 is perpendicular to the first face of the electrically conductive substrate 3.
  • the three radiating elements are networked so that the rectilinear tracks R 1 , R 2 and R 3 of the three radiating elements are located in the same plane P which is the plane H of the radiating elements.
  • the arms of the radiating dipoles of the various radiating elements are parallel to each other.
  • the H plane of an antenna is, by definition, the plane which contains the direction of propagation of the wave radiated by the antenna and the direction of the magnetic field of the antenna. radiated wave.
  • the plane E of an antenna is the plane which contains the direction of propagation of the wave radiated by the antenna and the direction of the electric field of the wave radiated.
  • the first ends of the central rectilinear tracks R 1 , R 2 and R 3 are separated from each other and substantially aligned in a plane parallel to the electrically conductive substrate 3, the first ends of the rectilinear tracks R 1 and R 3 being closer one from the other than are the second ends of these same tracks.
  • the three radiating elements E 1 , E 2 and E 3 are connected, at the level of the first ends of the respective tracks R 1 , R 2 and R 3 , to the three respective coaxial cables K 1 , K 2 , K 3 .
  • the core and the electrically conductive sheath of a coaxial cable are electrically connected to the printed patterns which are respectively located on either side of the dielectric substrate of a radiating element.
  • the electrically conductive sheath is welded to the printed pattern of a first face of the radiating element, while the core is brought into electrical contact with the printed pattern on the other face, for example by welding.
  • a drilling of the dielectric substrate is therefore made at the level of the first end of the track of each radiating element in order to allow the passage of the core of the coaxial.
  • An electrically conductive rectangular pad can be added to the interface between the pattern printed on the first face and the sheath of the coaxial cable, with the aim of promoting electrical contact.
  • the coaxial cables K 1 and K 3 are mounted outside the space located between the radiating elements E 1 and E 3 and the coaxial cable K 2 is positioned between the radiating elements E 2 and E 3 .
  • the log-periodic pattern of the radiating element E 1 is a mirror pattern with respect to the patterns of the two other radiating elements E 2 and E 3 .
  • Two patterns mirroring each other are depicted on the figures 3A and 3B .
  • the Figure 3A represents a top view of the log-periodic pattern of the radiating elements E 2 and E 3 which is electrically connected to the core of the respective coaxial cables K 2 and K 3
  • the Figure 3B represents the top view of the log-periodic pattern of the radiating element E 1 which is also connected to the core of the coaxial cable K 1 .
  • the distance which separates each of the radiating elements E 1 , E 3 from the central element E 2 is governed by the ratio of the distances between the active zones of the radiating elements, a ratio which is inversely proportional to the ratio of the operating frequencies.
  • the emission zone Z 1 of a radiating element is located on the large dipoles whereas, for the operation of the antenna system at the highest frequencies , the emission zone Z 2 is located on the small dipoles.
  • the emission zone is therefore different depending on whether the emission frequency is higher or lower.
  • the distance D BF which separates the two emission zones Z 1 from two neighboring radiating elements is substantially equal to 0.65 ⁇ BF and the distance D HF which separates the two emission zones Z 2 from two neighboring elements is substantially equal to 0.65 ⁇ HF , the magnitudes ⁇ BF and ⁇ HF being respectively the wavelength in vacuum which corresponds to the lowest emission frequency emitted by the antenna system and the wavelength in vacuum which corresponds to the highest transmission frequency emitted by the antenna system. It is an advantage of the invention to provide a compact structure.
  • the useful frequency band is between 2 GHz and 4 GHz.
  • D HF 0.65 ⁇ 75 mm
  • D BF 48.75 mm
  • the distance which separates the radiating elements from the ground plane is moreover chosen to ensure correct operation of the antenna.
  • the distance which separates the radiating element E 2 from the ground plane 3 is between 2 mm and 5 mm.
  • an angular aperture at 3 dB of between 25° and 28° has been observed over the entire 2 GHz-4 GHz frequency band.
  • FIG 4 shows a side view of a broadband antenna of the invention equipped with a power divider.
  • the figure 5A And 5B represent, respectively, a profile view and an exploded view, in perspective, of the power divider represented in figure 4 .
  • the power divider is fixed to the substrate 3 and it is designed in the air in order to guarantee high power handling.
  • the invention also relates to other embodiments for which the power divider is not formed in the air and/or is not fixed on the substrate 3.
  • the power divider consists of a copper pattern 6 placed facing a ground plane 7.
  • the power divider delivers three electromagnetic waves in phase from an electromagnetic wave that it receives at its input.
  • the three outputs of the power divider are connected to respective coaxial cables K 1 , K 2 , K 3 .
  • the input of the power divider 6 is connected, via a coaxial cable K A , to a source which emits the electromagnetic wave to be radiated (source not shown in the figures).
  • the lengths of the cables K 1 , K 2 , K 3 are adjusted so that the waves received by the radiating elements are in phase.
  • Metal pads 4, 5 fix the copper pattern 6 and the ground plane 7 which constitute the power divider on the face of the ground plane 3 which is opposite to the first face.
  • the electromagnetic waves which supply the first ends of the conductive lines R 1 , R 2 , R 3 are in phase and come from the same source. This results in an antenna radiation pattern whose axis of the main lobe is aligned along the conductive line R 2 .
  • the first ends of the conductive lines R 1 , R 2 , R 3 are powered by electromagnetic waves whose phases can vary independently of each other. This results in an antenna radiation pattern, the axis of the main lobe of which varies according to the phase shifts existing between the phases of the electromagnetic waves which feed the conductive lines R 1 , R 2 , R 3 .
  • the system of figure 6 comprises two metal deflectors D 1 , D 2 fixed to the ground plane 3.
  • the deflectors D 1 , D 2 are positioned on either side of the central radiating element E 2 . They achieve better electromagnetic insulation of the radiating elements between them. The adaptation of the antenna system is thereby improved, which leads to an improvement in the gain of the antenna.
  • FIG. 7 shows an example of networking a plurality of broadband log-periodic antennas according to the first embodiment of the invention.
  • the wideband log-periodic antenna according to the first embodiment of the invention ensures the maintenance of a constant radiation only in the plane H of the radiating elements which constitute it.
  • FIG 7 illustrates the networking of a plurality of broadband antennas in the E-plane of the radiating elements.
  • the antenna resulting from this networking advantageously retains constant radiation not only in the H plane, but also in the E plane.
  • the antenna shown in figure 7 consists, by way of non-limiting example, of four broadband log-periodic antennas A 1 , A 2 , A 3 , A 4 conforming to the antenna shown in figure 6 .
  • the electrically conductive substrates 3 of the different antennas A 1 -A 4 are located in the same plane Q.
  • the radiating dipoles of the central radiating elements E 2 of the different antennas A 1 -A 4 are also located in the same plane perpendicular to the plane Q and which is the plane E of the central radiating elements E 2 .
  • the same distance ⁇ separates the central rectilinear tracks R 2 from two neighboring central radiating elements E 2 .
  • the distance ⁇ is chosen according to the operating frequency of the antenna.
  • mobile supports (not shown in the figure) make it possible to bring the log-periodic antennas A 1 -A 4 closer together or further apart.
  • This modification of the distance ⁇ advantageously makes it possible to guarantee a constant illumination of the antenna which results from the association of the four elementary antennas A 1 -A 4 , that is to say an invariant angle of the opening at mid- power of the main lobe radiated by the antenna.
  • the distance ⁇ is equal to 135 mm for a transmission frequency equal to 2 GHz and to 67.5 mm for a transmission frequency equal to 4 GHz.
  • This mesh makes it possible to define a continuity of the electrical ground. It is able to deploy or retract depending on changes in the distance ⁇ .
  • the size of an elementary mesh is much less than a tenth of the wavelength of the radiated wave so that the electrically conductive substrates 3 and the metal mesh M constitute, for the wave radiated by the antenna, an electrically continuous ground plane.
  • FIG 8 shows a top view of an example of a broadband log-periodic antenna according to a second embodiment of the invention.
  • the log-periodic patterns of the three radiating elements E 1 , E 2 , E 3 are printed symmetrically on the two opposite faces of the same flat dielectric substrate 4 which is parallel to the plane E radiating elements.
  • the material which constitutes the flat dielectric substrate 4 has, for example, a relative dielectric constant equal to 3 and a thickness equal to 0.8 mm.
  • the radiating element E 2 is central with respect to the two other radiating elements E 1 and E 3 .
  • the rectilinear track R 2 of the radiating element E 2 is perpendicular to the electrically conductive substrate 3.
  • the rectilinear tracks R 1 and R 3 of the respective radiating elements E 1 and E 3 are arranged on either side of the rectilinear track R 2 , symmetrically to the rectilinear track R 2 .
  • the first ends of the rectilinear tracks R 1 , R 2 and R 3 are substantially aligned along a straight line parallel to the electrically conductive substrate 3.
  • the rectilinear tracks R 1 and R 3 of the respective radiating elements E 1 and E 3 are inclined with respect to the track R 2 of the central radiating element E 2 and the first ends of the rectilinear tracks R 1 and R 3 are closer to each other than are the second ends of these tracks.
  • the previous distances D BF and D HF given for the first embodiment of the invention are also valid for the second embodiment.
  • the radiating elements E 1 , E 2 , E 3 are connected to an electromagnetic wave source via coaxial cables and a power divider (not shown in the figure). Like the first embodiment of the invention, the radiating elements E 1 , E 2 , E 3 are connected to the coaxial cables at the level of the first ends of the respective tracks R 1 , R 2 , R 3 and the dielectric substrate dish 4 is fixed to the electrically conductive substrate 3 via the coaxial cables. The substrate 4 is then held in position thanks to the rigidity of the coaxial cables.
  • the dielectric substrate 4 is substantially perpendicular to the conductive substrate 3.
  • the distance which separates the dielectric substrate 4 from the electrically conductive substrate 3 is comprised, for example, between 2 mm and 5 mm.
  • the waves radiated by the various radiating elements are in phase.
  • the log-periodic patterns of the different radiating elements are arranged accordingly.
  • FIG. 9 shows an example of networking a plurality of broadband log-periodic antennas according to the second embodiment of the invention.
  • the dielectric substrates 4 of the different log-periodic antennas are mutually parallel, two neighboring dielectric substrates being separated by the same distance ⁇ .
  • the distance ⁇ is chosen according to the operating frequency of the antenna.
  • means are provided for bringing the various electrically conductive substrates 3 closer together or further apart.
  • an extensible electrically conductive mesh M is provided between the various substrates 3. This mesh allows advantageously to define a continuity of the electrical ground. Whatever the extension of the mesh M, the size of an elementary mesh is much less than a tenth of the wavelength of the wave radiated by the antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Claims (9)

  1. Logarithmisch-periodische Antenne, umfassend mindestens eine Einheit von drei Strahlungselementen mit logarithmisch-periodischen Motiven (E1, E2, E3) und ein flaches Substrat (3), das eine elektrische Masse der Antenne definiert, wobei die Strahlungselemente mit logarithmisch-periodischen Motiven oberhalb einer ersten Seite des flachen Substrats (3) positioniert sind, wobei jedes Strahlungselement mit logarithmisch-periodischen Motiven eine Folge von Strahlungsdipolen umfasst, die beiderseits einer geradlinigen elektrisch leitfähigen Leitung (R1, R2, R3) verteilt sind, wobei die Strahlungsdipole senkrecht zur Leitung eine zunehmende Abmessung zwischen einem ersten Ende der Leitung und einem zweiten Ende der Leitung aufweisen, das sich näher zur ersten Seite befindet, als das erste Ende, wobei ein erstes Strahlungselement (E2) eine geradlinige elektrisch leitfähige Leitung im Wesentlichen senkrecht zur ersten Seite aufweist, sich ein zweites Strahlungselement (E1) und ein drittes Strahlungselement (E3) beiderseits des ersten Strahlungselements (E2), symmetrisch zum ersten Strahlungselement (E2) befinden, die ersten Enden der elektrisch leitfähigen Leitungen der verschiedenen Strahlungselemente voneinander entfernt sind, und im Wesentlichen in einer Richtung parallel zur ersten Seite ausgerichtet sind, wobei sich die geradlinigen elektrisch leitfähigen Leitungen der zweiten und dritten Strahlungselemente in einer selben Ebene wie die geradlinige elektrisch leitfähige Leitung des ersten Strahlungselements befinden, die Strahlungsdipole der drei Strahlungselemente entweder im Wesentlichen senkrecht zur Ebene liegen, die die geradlinigen elektrisch leitfähigen Leitungen der drei Strahlungselemente enthält, oder im Wesentlichen in der Ebene, die die geradlinigen elektrisch leitfähigen Leitungen der drei Strahlungselemente enthält,
    dadurch gekennzeichnet, dass jedes erste Ende elektrisch mit einem anderen koaxialen Kabel verbunden ist,
    - die geradlinigen elektrisch leitfähigen Leitungen der zweiten und dritten Strahlungselemente in Bezug auf die elektrisch leitfähige Leitung des ersten Strahlungselements derart geneigt sind, dass die ersten Enden der geradlinigen elektrisch leitfähigen Leitungen der zweiten und dritten Strahlungselemente näher sind, als die zweiten Enden der geradlinigen elektrisch leitfähigen Leitungen der zweiten und dritten Strahlungselemente, wobei:
    - Der Abstand, der den Strahlungsdipol mit kleineren Abmessungen des zweiten Strahlungselements (E2) vom Strahlungsdipol mit kleineren Abmessungen des ersten Strahlungselements (E1) trennt, und der Abstand, der den Strahlungsdipol mit kleineren Abmessungen des dritten Strahlungselements (E3) vom Strahlungsdipol mit geringeren Abmessungen des ersten Strahlungselements (E1) trennt, im Wesentlichen zwischen 0,6λ HF und 0,7λ HF liegt, wobei λ HF eine Wellenlänge einer Welle mit hoher Frequenz ist, die von der logarithmisch-periodischen Antenne abgestrahlt wird, und
    - der Abstand, der den Strahlungsdipol mit größeren Abmessungen des zweiten Strahlungselements (E2) vom Strahlungsdipol mit größeren Abmessungen des ersten Strahlungselements (E1) trennt, und der Abstand, der den Strahlungsdipol mit größeren Abmessungen des dritten Strahlungselements (E3) vom Strahlungsdipol mit größeren Abmessungen des ersten Strahlungselements (E1) trennt, im Wesentlichen zwischen 0,6λ BF und 0,7λ BF liegt, wobei λ BF eine Wellenlänge einer Welle mit niedriger Frequenz ist, die von der logarithmisch-periodischen Antenne abgestrahlt wird.
  2. Logarithmisch-periodische Antenne nach einem der vorstehenden Ansprüche, wobei jedes Strahlungselement (E1, E2, E3) aus logarithmisch-periodischen Motiven besteht, die beiderseits eines flachen dielektrischen Substrats (2) aufgedruckt sind.
  3. Antenne nach Anspruch 2, wobei jedes Strahlungselement (E1, E2, E3) sechs Strahlungsdipole umfasst, die zwischen dem ersten Ende und dem zweiten Ende positioniert sind, wobei die sechs Strahlungsdipole derart angeordnet sind, dass, ausgehend von dem ersten Ende:
    - Ein erster Strahlungsdipol aus einer ersten und zweiten Bahn mit einer Länge L × τ 5 besteht, wobei τ ein Koeffizient kleiner als 1 ist;
    - ein zweiter Strahlungsdipol, der sich in einem Abstand von D × τ 4 von dem ersten Dipol befindet, aus einer ersten und zweiten Bahn mit einer Länge L × τ 4 besteht;
    - ein dritter Strahlungsdipol, der sich in einem Abstand von D × τ 3 von dem zweiten Dipol befindet, aus einer ersten und zweiten Bahn mit einer Länge L × τ 3 besteht;
    - ein vierter Strahlungsdipol, der sich in einem Abstand von D × τ 2 von dem dritten Dipol befindet, aus einer ersten und zweiten Bahn mit einer Länge L × τ 2 besteht;
    - ein fünfter Strahlungsdipol, der sich in einem Abstand von D × τ von dem vierten Dipol befindet, aus einer ersten und zweiten Bahn mit einer Länge L × τ besteht;
    - der sechste Strahlungsdipol, der sich in einem Abstand D von dem fünften Dipol befindet, aus einer ersten und zweiten Bahn mit einer Länge L besteht.
  4. Logarithmisch-periodische Antenne nach Anspruch 3, wobei das flache dielektrische Substrat (2) eine Dicke von 0,8 mm und eine relative dielektrische Konstante gleich 3 aufweist, wobei die Breite der ersten und zweiten Bahn der verschiedenen Strahlungsdipole gleich 5 mm ist, die Größen L und D jeweils gleich 70 mm und 15,77 mm sind, und der Koeffizient τ gleich 0,824 ist.
  5. Logarithmisch-periodische Antenne nach einem der vorstehenden Ansprüche, und die Mittel zum Versorgen der ersten Enden der elektrisch leitfähigen Leitungen der verschiedenen flachen Strahlungselemente (E1, E2, E3) durch elektromagnetische Wellen in Phase umfasst, deren elektrische Feldvektoren eine Richtung parallel zur Achse der Strahlungsdipole aufweisen.
  6. Logarithmisch-periodische Antenne nach Anspruch 5, wobei die Mittel zum Versorgen der ersten Enden der elektrisch leitfähigen Leitungen einen Leistungsteiler umfassen, der auf einer elektrisch leitfähigen Seite des Substrats (3) gegenüber der Seite befestigt ist, oberhalb derer sich die Strahlungselemente befinden.
  7. Logarithmisch-periodische Antenne nach einem der vorstehenden Ansprüche, und die mindestens zwei Einheiten mit drei Strahlungselementen umfasst, wobei, wenn die logarithmisch-periodischen Motive der drei Strahlungselemente einer selben Einheit mit drei Strahlungselementen im Wesentlichen senkrecht zur Ebene sind, die die geradlinigen elektrisch leitfähigen Leitungen der drei Strahlungselemente enthält, sich die ersten Seiten der Substrate (3) der verschiedenen Einheiten an Strahlungselementen in einer selben Ebene befinden, die Ebenen, die die geradlinigen elektrisch leitfähigen Leitungen der verschiedenen Einheiten mit drei Strahlungselementen parallel zueinander sind, und sich die geradlinigen elektrisch leitfähigen Leitungen der ersten Strahlungselemente der verschiedenen Einheiten mit drei Strahlungselementen in einer selben Ebene befinden.
  8. Logarithmisch-periodische Antenne nach einem der Ansprüche 1 bis 6, und die mindestens zwei Einheiten mit drei Strahlungselementen umfasst, wobei, wenn die Strahlungsdipole der drei Strahlungselemente einer selben Einheit an Strahlungselementen in der Ebene sind, die die geradlinigen elektrisch leitfähigen Leitungen der drei Strahlungselemente enthält, sich die ersten Seiten der Substrate (3) der verschiedenen Einheiten an Strahlungselementen in einer selben Ebene befinden, die Ebenen, die die geradlinigen elektrisch leitfähigen Leitungen der verschiedenen Einheiten mit drei Strahlungselementen parallel zueinander sind, und sich die geradlinigen elektrisch leitfähigen Leitungen der ersten Strahlungselemente der verschiedenen Einheiten mit drei Strahlungselementen in einer selben Ebene befinden.
  9. Logarithmisch-periodische Antenne nach einem der Ansprüche 7 oder 8, wobei die Substrate (3) mit zwei benachbarten Einheiten mit drei Strahlungselementen elektrisch durch ein erweiterbares Drahtgeflecht (M) miteinander verbunden sind, das es ermöglicht, zwei benachbarte Einheiten mit drei Strahlungselementen voneinander zu entfernen oder einander näher zu bringen.
EP15745187.3A 2014-07-31 2015-07-30 Logarithmisch-periodische antenne mit breitem frequenzband Active EP3175509B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1457419A FR3024595B1 (fr) 2014-07-31 2014-07-31 Antenne log-periodique a large bande de frequences
PCT/EP2015/067490 WO2016016361A1 (fr) 2014-07-31 2015-07-30 Antenne log-periodique a large bande de frequences

Publications (2)

Publication Number Publication Date
EP3175509A1 EP3175509A1 (de) 2017-06-07
EP3175509B1 true EP3175509B1 (de) 2023-07-19

Family

ID=51987253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15745187.3A Active EP3175509B1 (de) 2014-07-31 2015-07-30 Logarithmisch-periodische antenne mit breitem frequenzband

Country Status (4)

Country Link
US (1) US10177456B2 (de)
EP (1) EP3175509B1 (de)
FR (1) FR3024595B1 (de)
WO (1) WO2016016361A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892796B1 (en) * 2020-03-20 2021-01-12 Rockwell Collins, Inc. UWB spread spectrum power spatial combining antenna array
CN114447605A (zh) * 2020-11-06 2022-05-06 华为技术有限公司 多频段融合天线组件
CN113488781B (zh) * 2021-06-09 2023-07-28 上海铂联通信技术有限公司 一种适用于多种环境下的测向天线系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249946A (en) * 1963-03-25 1966-05-03 Martin Marietta Corp Frequency independent antenna array with constant phase center spacing
US4198639A (en) * 1978-12-26 1980-04-15 Cubic Corporation Parabolic and log periodic antennas combined for compact high-gain broadband antenna system
US5917455A (en) * 1996-11-13 1999-06-29 Allen Telecom Inc. Electrically variable beam tilt antenna
US6094176A (en) * 1998-11-24 2000-07-25 Northrop Grumman Corporation Very compact and broadband planar log-periodic dipole array antenna
US6677913B2 (en) * 2001-06-19 2004-01-13 The Regents Of The University Of California Log-periodic antenna
US20060202900A1 (en) * 2005-03-08 2006-09-14 Ems Technologies, Inc. Capacitively coupled log periodic dipole antenna
US7911406B2 (en) * 2006-03-31 2011-03-22 Bradley Lee Eckwielen Modular digital UHF/VHF antenna
US7898456B2 (en) * 2008-02-19 2011-03-01 Prairielands Energy Marketing Inc. Apparatus and method for detecting and locating hidden objects
KR101289265B1 (ko) * 2009-12-21 2013-07-24 한국전자통신연구원 대수 주기 안테나
RU2485643C1 (ru) * 2012-01-24 2013-06-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Логопериодическая антенна

Also Published As

Publication number Publication date
US10177456B2 (en) 2019-01-08
EP3175509A1 (de) 2017-06-07
US20170222324A1 (en) 2017-08-03
FR3024595B1 (fr) 2017-12-15
WO2016016361A1 (fr) 2016-02-04
FR3024595A1 (fr) 2016-02-05

Similar Documents

Publication Publication Date Title
EP0145597B1 (de) Ebene periodische Antenne
EP0575211B1 (de) Strahlerelement einer Antenne mit breitbandigem Durchlassbereich und aus derartigen Elementen bestehende Gruppenantenne
EP1407512B1 (de) Antenne
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
FR2709833A1 (fr) Instrument d'écoute large bande et bande basse pour applications spatiales.
EP0462864A1 (de) Vorrichtung zur Speisung von Strahlungselementen einer Gruppenantenne und ihre Verwendung für eine Antenne eines Landungshilfssystems vom Typ MLS
EP3175509B1 (de) Logarithmisch-periodische antenne mit breitem frequenzband
EP1181744B1 (de) Antenne mit vertikaler polarisation
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2644937A1 (fr) Antenne omnidirective en polarisation circulaire transversale a maximum de gain sous l'horizon
EP3902059B1 (de) Breitband-richtantenne mit longitudinalwellen-übertragung
EP0520908A1 (de) Lineare Gruppenantenne
EP0337841A1 (de) Unsymmetrisch gespeiste breitbandige Sendeantennenschleife und Antennenfeld aus einer Vielzahl dieser Schleifen
FR3102311A1 (fr) Antenne-reseau
EP3155690B1 (de) Flachantenne zur satellitenkommunikation
EP0831550B1 (de) Vielseitige Gruppenantenne
EP3942649B1 (de) Kompakte richtantenne, vorrichtung mit einer solchen antenne
FR3022404A1 (fr) Antenne plate de telecommunication par satellite
EP4167378A1 (de) Isolierte hochfrequenzantennenanordnung
FR2842025A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires
FR2591807A1 (fr) Antenne dielectrique
WO2010119207A1 (fr) Antenne radioélectrique, procédé de dimensionnement d'un corps plat de l'antenne, et procédé de fabrication d'une telle antenne
EP0088681A1 (de) Doppelreflektorantenne mit eingebautem Polarisationswandler
FR2703516A1 (fr) Antenne à ondes progressives.
EP1873864A1 (de) Symmetrische Antenne für Mikrostreifenleitertechnologie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015084647

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230719

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1590412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015084647

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230730

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

26N No opposition filed

Effective date: 20240422

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230730

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231019

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240723

Year of fee payment: 10