[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3164525B1 - Coated flat component in a cvd reactor - Google Patents

Coated flat component in a cvd reactor Download PDF

Info

Publication number
EP3164525B1
EP3164525B1 EP15736214.6A EP15736214A EP3164525B1 EP 3164525 B1 EP3164525 B1 EP 3164525B1 EP 15736214 A EP15736214 A EP 15736214A EP 3164525 B1 EP3164525 B1 EP 3164525B1
Authority
EP
European Patent Office
Prior art keywords
component
coating
edge
cvd reactor
exhibits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15736214.6A
Other languages
German (de)
French (fr)
Other versions
EP3164525A1 (en
Inventor
Marcel Kollberg
Daniel Brien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP3164525A1 publication Critical patent/EP3164525A1/en
Application granted granted Critical
Publication of EP3164525B1 publication Critical patent/EP3164525B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors

Definitions

  • the invention relates to a CVD reactor with a flat component or a flat component.
  • the component has two preferably equally shaped, parallel and spaced apart width sides broadside, wherein an outer peripheral edge on each broad side adjacent to an edge of an outer peripheral side, an edge rounding with an edge radius of curvature and a Kantenlrundungsbogenleton, wherein the thickness is substantially smaller than a surface area equivalent to the broadside surface diameter, wherein the component forms a core body whose material has a greater coefficient of thermal expansion than the material of a coating with which the broad sides and the peripheral side at a coating temperature which is greater than the room temperature, coated so that at room temperature the coating has a compressive stress
  • the WO 2013/064613 describes a CVD reactor with a gas inlet member and a susceptor arranged therein, which has a circular disk shape and carrier of substrates in a coating process.
  • the WO 99/43874 also describes a CVD reactor with two disk-shaped components, namely a process chamber ceiling and a susceptor for receiving the substrates to be coated in the process chamber.
  • the US 2005/0183669 A1 describes in the FIG. 5 a cap formed by a flat cylindrical member.
  • the cap has a coating and two broadside facing away from each other.
  • a broadside goes to form an edge fillet with a fillet arc length of 90 ° in a peripheral surface over.
  • the peripheral surface merges with the formation of a bead and a kink in the second broad side.
  • the US 5,837,058 describes a susceptor for a CVD device in which a bead running on the edge merges to form a rounding in a peripheral surface.
  • the US 2003/0205324 A1 respectively US 2005/0092439 A1 describes in the FIG. 4 a susceptor with two facing away broad sides, which merge in each case to form an edge rounding in a peripheral surface.
  • the peripheral surface has a circumferentially extending notch.
  • Susceptors or ceiling panels in a CVD reactor are usually made of graphite.
  • the graphite components have a flat, disk-like shape. They have two generally identically designed, mutually parallel broadsides. It can be a cylindrical body. The thickness of the body is low compared with its diameter.
  • coated flat components are used in a CVD reactor, which have a different base area than a circular base. Again, the thickness relative to a diameter is relatively small, in which case the diameter of a circle is understood to mean that has the same base area as the broad side of the component.
  • the graphite body is coated with a few micrometers thick layer. The layer thickness of the coating is less than 1 mm.
  • SiC or TaC or other carbides or hard materials is used for coating usually SiC or TaC or other carbides or hard materials.
  • the application of the coating takes place at temperatures of more than 1000 ° C.
  • the core body has a larger thermal expansion coefficient than the coating, with which the broad side and the peripheral side is coated.
  • stresses within the coating occur. These are compressive stresses.
  • the compressive stresses are a consequence of the different shrinkage of the layer and the core body.
  • the shrinkage takes place in the direction of the center of gravity of the component. If it is a homogeneous body, this is the center of mass. Otherwise it is the volume center of gravity.
  • the peripheral sides are relatively far away from the center of gravity, so that there the greatest stresses occur in the layer or in the region of the interface between the coating and the core body.
  • Within the coating which shrinks on cooling to a lesser extent than the core body, forms a compressive stress. High compressive stresses can influence the quality of the coating in the long term.
  • the invention is therefore based on the object to take measures to make the coating more robust, in particular to reduce the occurring in the coating, critical maximum stresses at any time (at any temperature) to reduce.
  • This valley can turn into a surrounding mountain. The latter can go back to a valley.
  • the cross-sectional contour line of the peripheral side thus preferably extends undulating between the two broad sides. Since the components are coated when hot, the largest voltages occur in the cooled state, ie at room temperature. The stresses are reduced during operation, during which the component is heated to temperatures above 1000 ° C. It thus takes place at each temperature change, so with each use of the component, a load change. With the requirements of the invention, the negative influences of the frequent load changes can be reduced to the life of the component. It is advantageous if the arc length of the edge rounding is more than 90 °, preferably more than 95 °, 100 °, 105 °, 110 °, 115 or more than 120 °.
  • the cross-sectional contour line of the peripheral side has no kinks, but has a waveform.
  • the broad side of the component can be designed smooth. However, the broad side of the component can also have a plurality of depressions, in each case for receiving a circular disk-shaped wafer or a substrate carrier. Also, the downward-facing broad side of the component, which is a susceptor, may have a structuring. The same applies to a ceiling tile.
  • the component has a hole. It may be a central hole of a circular cylindrical component.
  • the inner wall of the opening also forms a circumferential side of the component, which is structured as already described above. It has rounded edges, where the radius of curvature is less than or equal to 1 mm.
  • the wide side surface goes kink-free over the edge rounding in the peripheral side, wherein in viewing a cross-sectional area of the broad side surface corresponding straight bend-free a continuous curved arc line connects.
  • the broad side surface is virtually smooth in a curved line, which curves without changing the direction of curvature by more than 90 ° before it turns into a curved turning point in an oppositely curved portion, which either merges into a rectilinear portion of the peripheral side or wavy continues.
  • the edges of the broad side of the component run along two parallel lines.
  • the two parallel lines correspond to the broad side surfaces and are spaced by less than half, preferably less than a quarter of their length.
  • these lines merge into arcuate lines associated with the edge fillets.
  • These arc lines preferably run on circular arcs or circular arcs.
  • the circumferential length of these sheets is greater than 90 °, preferably at least 95 ° or at least 100 °.
  • a first end of a bow joins without kinks to each one of the parallel lines.
  • the second end of the arch preferably merges into an oppositely curved arc section, so that at least one valley forms on the peripheral surface, the base of which springs back against the imaginary line through the vertexes of the second arches.
  • the component has over its entire circumference the above-described cross section of the edge region.
  • the thickness of the component is preferably at least a factor of 5, preferably a factor of 10, less than the surface-equivalent circular diameter.
  • the component may have a circular cylindrical ground plan. But it can also have a deviating from the circular shape floor plan.
  • the invention relates to the configuration of the peripheral edge of a coated component of a CVD reactor, wherein the component may be a susceptor, a substrate holder in a pocket of a susceptor, a ceiling plate of a process chamber or the gas outlet plate of a showerhead.
  • the FIG. 1 schematically shows a CVD reactor.
  • the CVD reactor 10 has a housing in which a gas inlet member 13 is arranged, with which process gases can be fed into a process chamber of the CVD reactor 10.
  • a process chamber ceiling 11 is formed by a graphite part having a hole in the middle.
  • the graphite part has a circular disk-shaped outline contour.
  • a bottom of the process chamber which is formed by a susceptor 12 which can be heated from below by means of a heater 14 to a process temperature of more than 1000 ° C.
  • the susceptor is formed by a graphite part 12 which has a has circular outline.
  • the top of the susceptor 12 is provided with structures that form pockets for receiving substrates.
  • the two graphite components 11, 12 have identically designed upper sides and lower sides with regard to their outline contour.
  • the components are schematically in the Figures 2 and 8, wherein the edge radii of curvature are shown for clarity much larger than they should be according to the invention.
  • FIG. 2 It represents a circular disk-shaped graphite body 1 with a thickness d of 1 - 4 cm and a diameter D of more than 20 cm, in particular more than 30 cm.
  • the entire outer surface of the graphite core body 1 is provided with a coating 2. It is a 50 to 200 ⁇ m or 75 to 150 ⁇ m thick coating of SiC or TaC.
  • the coating is applied to the core body 1 at a temperature of more than 1000 ° C. Since silicon carbide or tantalum carbide have a lower thermal expansion than graphite, the graphite core body 1 shrinks to a greater extent along in the FIG. 3 marked and marked K in the direction of the center of gravity M as the coating 2. This has a slight bowls of the two facing away from each other, from the outline of the same designed broadsides 3 result. Also in the peripheral pages 4 a slight constriction when cooling the coated component 12 is observed.
  • the marginal edges 5 of the component 12 are provided with a slight rounding.
  • the radius of curvature R is greater than the thickness of the coating, but not more than 1 mm.
  • the peripheral edge 5 has a rounding with a radius of curvature R of 1 mm.
  • the arc length ⁇ of the Kantenverrundung 5 is here greater than 90 °.
  • the Kantenverrundungsbogenin ⁇ has a value of about 120 °. This has the consequence that the force acting vertically on the peripheral side 4, due to the shrinkage force K does not attack vertically on the surface, but at an angle to it. The force K thus splits into mutually perpendicular partial forces P and S.
  • the force component S acting perpendicularly to the interface between the core body 1 and the coating 2 has an amount which is less than the magnitude of the force K. This leads to a reduction in the pressure forces within the coating or at the interface between the coating 2 and the core body 1.
  • FIG. 6 illustrated embodiment shows a component with a graphite core part 1, which is provided with a silicon carbide coating.
  • the marginal edges 5 are provided with a rounding by almost 180 °. The rounding extends beyond the plane of the broad side 3. Between the two edge roundings 5, with which the peripheral side 4 merges into the respective broad side 3, a valley 6 is formed.
  • the cross-sectional contour line of the peripheral side 4 is wavy, so that mountains 7 and valleys 6 alternate. Between the two edges 5, the peripheral side 4 runs without kinks. Convex rounding sections go smoothly into concave rounding sections. Thus, valleys 6 extending in the circumferential direction around the component and mountains 7 lying between valleys 6 are formed.
  • the FIG. 8 shows a further embodiment.
  • the component 11 is a ceiling plate. which has a hole 8 in the center.
  • the hole 8 forms a peripheral side 4, which merges over a rounded edge 5 in the broad side 3.
  • a valley 6 is formed between two edge fillets 5.
  • the invention is based on the finding that fillets should pass into the peripheral side 4 or the broad side surface 2 with the formation of constrictions, or may not be greater than a minimum value. This leads to a voltage compensation. Furthermore, it is advantageous if the individual surface sections 3, 4, 5, 6, 7 pass without kinks, ie smoothly with the formation of rounding zones with low rounding radii.
  • graphite bodies are described which have a circular cylindrical shape.
  • the invention also relates to such flat graphite bodies which have a broad-side contour which deviates from the circular shape.
  • the radius of the transition region between the broad side surface and the peripheral surface should be less than 1 mm and the radius section should be more than 90 °.
  • FIG. 10 schematically shows a further embodiment of a process chamber of a CVD reactor with a gas inlet member 13, which as Showerhead is trained. It has a graphite gas outlet plate 15, the gas outlet openings 16 has.
  • the outer peripheral surface of the gas outlet plate 15 has a cross-sectional contour, as they FIG. 11 shows. At least in the edge portion of the two opposite broad sides 3, 3 'extend the broad sides 3, 3' parallel to each other. There, the broad side surface passes in each case without kinks in a Kantenverrundung 5, which has a rounding radius R 1 , R 2 , which is about 1 mm.
  • an arc section with a radius R 3 follows without kinks. Relative to a median plane extending between the two broad sides 3, 3 ', the cross section of the edge of the gas outlet plate 15 is symmetrical. This means that the radii R 1 , R 2 are the same size.
  • An imaginary straight line g which is defined by the vertices of the edge fillets 5, spans a valley 6 whose bottom is formed by the radius R 3 .
  • the process chamber shown has a susceptor 12 which can be heated from below by means of a heating device 14.
  • the peripheral side 4 of the susceptor 12 may have a contour as shown in the cross-sectional views of Figures 11 . 13 . 14 and 15 is shown.
  • FIG. 12 shows a further embodiment of a susceptor, wherein in the pockets of the susceptor 12 substrate carrier 17 eino.
  • the substrate carriers 17 are rotationally driven in the coating operation by a gas flow and are mounted on a gas bearing generated by the gas stream.
  • the FIG. 13 shows the edge cross section of the susceptor 12 and the FIG. 14 shows the edge cross section of the substrate carrier 17. From the Figures 13 and 14 shows that the cross section of the peripheral side 4 of a series arrangement of three Arcs is composed, which arcs with the radii R 1 , R 2 , R 3 transition points 18 without kinks into each other.
  • the radii R1, R2 are about 1 mm.
  • the radius R 3 depends on the thickness d of the core 1, which is coated with a maximum of 0.5 mm thick coating 2 and can be substantially larger than the radii R 1 and R 2 .
  • the radius R 3 can be between 8 and 9 mm with a thickness of the component of 13 cm.
  • the cross-sectional radius of the valley 6 between the two edge fillets 5 can thus preferably be at least five times greater than the edge radius of curvature.
  • the radius R 3 is further selected so that a transition point 18 is formed in which only the direction of curvature changes, but otherwise the contour lines merge into one another without kinks.
  • FIG. 15 illustrated embodiment shows a variant in which in each case at the edge fillets 5 opposite curved arches connect with radii R3, which pass into a running on a straight valley 6, wherein the flat valley 6 kinks at transition points 19 in the hollow rounding with the radius R. 3 passes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

Die Erfindung betrifft einen CVD-Reaktor mit einem flachen Bauteil bzw. ein flaches Bauteil. Das Bauteil weist zwei bevorzugt gleich gestaltete, parallel zueinander verlaufende und um eine Dicke voneinander beabstandete Breitenseiten auf, wobei eine äußere Randkante auf jeder Breitseite, die an einen Rand einer äußeren Umfangsseite angrenzt, eine Kantenverrundung mit einem Kantenverrundungsradius und eine Kantenverrundungsbogenlänge aufweist, wobei die Dicke wesentlich kleiner ist, als ein zur Breitseitenfläche oberflächenäquivalenter Kreisdurchmesser, wobei das Bauteil einen Kernkörper ausbildet, dessen Werkstoff einen größeren Wärmeausdehnungskoeffizienten aufweist als der Werkstoff einer Beschichtung, mit der die Breitseiten und die Umfangsseite bei einer Beschichtungstemperatur, die größer ist als die Raumtemperatur, beschichtet ist, so dass bei Raumtemperatur die Beschichtung eine Druckspannung aufweistThe invention relates to a CVD reactor with a flat component or a flat component. The component has two preferably equally shaped, parallel and spaced apart width sides broadside, wherein an outer peripheral edge on each broad side adjacent to an edge of an outer peripheral side, an edge rounding with an edge radius of curvature and a Kantenlrundungsbogenlänge, wherein the thickness is substantially smaller than a surface area equivalent to the broadside surface diameter, wherein the component forms a core body whose material has a greater coefficient of thermal expansion than the material of a coating with which the broad sides and the peripheral side at a coating temperature which is greater than the room temperature, coated so that at room temperature the coating has a compressive stress

Die WO 2013/064613 beschreibt einen CVD-Reaktor mit einem Gaseinlassorgan und einem darin angeordneten Suszeptor, der eine Kreisscheibenform aufweist und Träger von Substraten bei einem Beschichtungsprozess ist.The WO 2013/064613 describes a CVD reactor with a gas inlet member and a susceptor arranged therein, which has a circular disk shape and carrier of substrates in a coating process.

Die WO 99/43874 beschreibt ebenfalls einen CVD-Reaktor mit zwei scheibenförmigen Bauteilen, nämlich einer Prozesskammerdecke und einem Suszeptor zur Aufnahme der in der Prozesskammer zu beschichtenden Substrate.The WO 99/43874 also describes a CVD reactor with two disk-shaped components, namely a process chamber ceiling and a susceptor for receiving the substrates to be coated in the process chamber.

Die US 2005/0183669 A1 beschreibt in der Figur 5 eine Kappe, die von einem flachzylindrischen Bauteil ausgebildet ist. Die Kappe besitzt eine Beschichtung und zwei voneinander wegweisende Breitseiten. Eine Breitseite geht unter Ausbildung einer Kantenverrundung mit einer Verrundungsbogenlänge von 90° in eine Umfangsfläche über. Die Umfangsfläche geht unter Ausbildung eines Wulstes und einer Knickstelle in die zweite Breitseite über.The US 2005/0183669 A1 describes in the FIG. 5 a cap formed by a flat cylindrical member. The cap has a coating and two broadside facing away from each other. A broadside goes to form an edge fillet with a fillet arc length of 90 ° in a peripheral surface over. The peripheral surface merges with the formation of a bead and a kink in the second broad side.

Die US 5,837,058 beschreibt einen Suszeptor für eine CVD-Einrichtung, bei der ein am Rand verlaufender Wulst unter Ausbildung einer Verrundung in eine Umfangsfläche übergeht.The US 5,837,058 describes a susceptor for a CVD device in which a bead running on the edge merges to form a rounding in a peripheral surface.

Die US 2003/0205324 A1 beziehungsweise US 2005/0092439 A1 beschreibt in der Figur 4 einen Suszeptor mit zwei voneinander wegweisenden Breitseiten, die jeweils unter Ausbildung einer Kantenverrundung in eine Umfangsfläche übergehen. Die Umfangsfläche besitzt eine sich in Umfangsrichtung erstreckende Kerbe.The US 2003/0205324 A1 respectively US 2005/0092439 A1 describes in the FIG. 4 a susceptor with two facing away broad sides, which merge in each case to form an edge rounding in a peripheral surface. The peripheral surface has a circumferentially extending notch.

Suszeptoren bzw. Deckenplatten in einem CVD-Reaktor werden in der Regel aus Graphit gefertigt. Die Graphitbauteile haben eine flache, scheibenförmige Gestalt. Sie haben zwei in der Regel gleich gestaltete, parallel zueinander verlaufende Breitseiten. Es kann sich um einen zylindrischen Körper handeln. Die Dicke des Körpers ist vergleichen mit seinem Durchmesser gering. Neben Bauteilen, die einen kreisförmigen Grundriss aufweisen, werden in einem CVD-Reaktor aber auch beschichtete flache Bauteile verwendet, die eine andere Grundfläche als eine kreisförmige Grundfläche aufweisen. Auch hier ist die Dicke gegenüber einem Durchmesser verhältnismäßig klein, wobei hier als Durchmesser der Durchmesser eines Kreises verstanden wird, der die selbe Grundfläche wie die Breitseite des Bauteiles aufweist. Der Graphitkörper ist mit einer wenige Mikrometer dicken Schicht beschichtet. Die Schichtdicke der Beschichtung ist geringer als 1 mm. Zur Beschichtung wird üblicherweise SiC oder TaC oder andere Carbide oder Hartstoffe verwendet. Das Aufbringen der Beschichtung findet bei Temperaturen von mehr als 1000°C statt. Der Kernkörper besitzt einen größeren Wärmeausdehnungskoeffizienten als die Beschichtung, mit der die Breitseite und die Umfangsseite beschichtet ist. Beim Abkühlen des beschichteten Bauteils von der Beschichtungstemperatur herunter zur Raumtemperatur treten Spannungen innerhalb der Beschichtung auf. Es handelt sich dabei um Druckspannungen. Die Druckspannungen sind eine Folge der unterschiedlichen Schrumpfung von Schicht und Kernkörper. Die Schrumpfung findet in Richtung zum Schwerpunkt des Bauteils statt. Handelt es sich um einen homogenen Körper, so ist dies der Massenschwerpunkt. Ansonsten ist es der Volumenschwerpunkt. Aufgrund der Scheibenform des Bauteils sind die Umfangsseiten verhältnismäßig weit vom Schwerpunkt entfernt, so dass dort die größten Spannungen in der Schicht bzw. im Bereich der Grenzfläche zwischen Beschichtung und Kernkörper auftreten. Innerhalb der Beschichtung, die beim Abkühlen um ein geringeres Maß schrumpft als der Kernkörper, bildet sich eine Druckspannung aus. Hohe Druckspannungen können langfristig die Qualität der Beschichtung beeinflussen.Susceptors or ceiling panels in a CVD reactor are usually made of graphite. The graphite components have a flat, disk-like shape. They have two generally identically designed, mutually parallel broadsides. It can be a cylindrical body. The thickness of the body is low compared with its diameter. In addition to components that have a circular plan, but coated flat components are used in a CVD reactor, which have a different base area than a circular base. Again, the thickness relative to a diameter is relatively small, in which case the diameter of a circle is understood to mean that has the same base area as the broad side of the component. The graphite body is coated with a few micrometers thick layer. The layer thickness of the coating is less than 1 mm. For coating usually SiC or TaC or other carbides or hard materials is used. The application of the coating takes place at temperatures of more than 1000 ° C. The core body has a larger thermal expansion coefficient than the coating, with which the broad side and the peripheral side is coated. As the coated component cools from the coating temperature down to room temperature, stresses within the coating occur. These are compressive stresses. The compressive stresses are a consequence of the different shrinkage of the layer and the core body. The shrinkage takes place in the direction of the center of gravity of the component. If it is a homogeneous body, this is the center of mass. Otherwise it is the volume center of gravity. Due to the disc shape of the component, the peripheral sides are relatively far away from the center of gravity, so that there the greatest stresses occur in the layer or in the region of the interface between the coating and the core body. Within the coating, which shrinks on cooling to a lesser extent than the core body, forms a compressive stress. High compressive stresses can influence the quality of the coating in the long term.

Der Erfindung liegt daher die Aufgabe zugrunde, Maßnahmen zu ergreifen, um die Beschichtung robuster zu machen, insbesondere die in der Beschichtung auftretenden, kritischen maximalen Spannungen zu jedem Zeitpunkt (bei jeder Temperatur) zu reduzieren.The invention is therefore based on the object to take measures to make the coating more robust, in particular to reduce the occurring in the coating, critical maximum stresses at any time (at any temperature) to reduce.

Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung.The object is achieved by the invention specified in the claims.

Modellrechnungen haben ergeben, dass große Kantenverrundungsradien zu großen Maximalspannungen im Bereich der Grenzfläche zwischen Beschichtung und Kernkörper führen. Dies ist eine Folge der geometrisch bedingten Stabilität des durch die Kantenverrundung gebildeten Bogens der Beschichtung. Der Bogen besitzt eine relativ große Stabilität in Radialrichtung. Überraschend hat sich ergeben, dass eine Kantenverrundung mit einer Bogenlänge von mehr als 90° zu einer nennenswerten Verringerung der Maximalspannung führt. Eine nennenswerte Verringerung der Maximalspannung tritt auch dann ein, wenn der Kantenverrundungsradius etwa 1 mm beträgt bzw. geringer ist als 1 mm. Bei einer bevorzugten Ausgestaltung eines flachen Bauteils, bei dem die Breitseiten gleich gestaltet sind, das Bauteil somit gewissermaßen ein Flachzylinder ist, ist es von Vorteil, wenn sich an die Verrundung auf der Umfangs seite ein hinterschnittenes umlaufendes Tal anschließt. Dieses Tal kann in einen umlaufenden Berg übergehen. Letzterer kann wieder in ein Tal übergehen. Die Querschnittskonturlinie der Umfangsseite verläuft somit bevorzugt wellenförmig zwischen den beiden Breitseiten. Da die Bauteile im heißen Zustand beschichtet werden, treten die größten Spannungen im abgekühlten Zustand, also bei Raumtemperatur, auf. Die Spannungen vermindern sich beim Betrieb, währenddessen das Bauteil auf Temperaturen bis über 1000°C aufgeheizt wird. Es findet somit bei jedem Temperaturwechsel, also bei jeder Benutzung des Bauteils ein Lastwechsel statt. Mit den erfindungsgemäßen Vorgaben lassen sich die negativen Einflüsse des oftmaligen Lastwechsels auf die Standzeit des Bauteils vermindern. Es ist von Vorteil, wenn die Bogenlänge der Kantenverrundung mehr als 90°, bevorzugt mehr als 95°, 100°, 105°, 110°, 115 oder mehr als 120° beträgt. Die Querschnittskonturlinie der Umfangsseite hat keine Knickstellen, sondern besitzt eine Wellenform. Die Breitseite des Bauteils kann glatt gestaltet sein. Die Breitseite des Bauteils kann aber auch eine Vielzahl von Vertiefungen besitzen, jeweils zur Aufnahme eines kreisscheibenförmigen Wavers oder eines Substratträgers. Auch die nach unten weisende Breitseite des Bauteils, bei dem es sich um einen Suszeptor handelt, kann eine Strukturierung aufweisen. Selbiges gilt auch für eine Deckenplatte. Ferner kann vorgesehen sein, dass das Bauteil ein Loch besitzt. Es kann sich um zentrales Loch eines kreiszylindrischen Bauteils handeln. Die Innenwandung der Öffnung bildet ebenfalls eine Umfangsseite des Bauteils aus, die wie oben bereits beschrieben strukturiert ist. Sie besitzt verrundete Kanten, wobei der Rundungsradius kleiner als oder gleich 1 mm ist. Die Breitseitenfläche geht knickstellenfrei über die Kantenverrundung in die Umfangsseite über, wobei sich bei der Betrachtung einer Querschnittsfläche einer der Breitseitenfläche entsprechenden Gerade knickfrei eine durchgehend gekrümmte Bogenlinie anschließt. Die Breitseitenfläche geht gewissermaßen glatt in eine Bogenlinie über, die sich ohne Wechsel der Krümmungsrichtung um mehr als 90° krümmt bevor sie in einem Krümmungswendepunkt in einen entgegengerichtet gekrümmten Abschnitt übergeht, der entweder in einen geradlinig verlaufenden Abschnitt der Umfangsseite übergeht oder sich wellenförmig fortsetzt. In einer Querschnittsebene durch das Bauteil verlaufen die Ränder der Breitseite des Bauteils entlang zweier paralleler Linien. Die beiden parallelen Linien entsprechen den Breitseitenflächen und sind um weniger als die Hälfte, bevorzugt um weniger als ein Viertel ihrer Länge voneinander beabstandet. An ihren Enden gehen diese Linien in Bogenlinien über, die den Kantenverrundungen zugeordnet sind. Diese Bogenlinien verlaufen bevorzugt auf Kreisbögen oder kreisähnlichen Bögen. Die Umfangslänge dieser Bögen ist größer als 90°, bevorzugt mindestens 95° oder mindestens 100°. Ein erstes Ende eines Bogens schließt sich knickstellenfrei an jeweils eine der parallelen Linien an. Das zweite Ende des Bogens geht bevorzugt in einen entgegengerichtet gekrümmten Bogenabschnitt über, so dass sich auf der Umfangsfläche zumindest ein Tal ausbildet, dessen Grund gegenüber einer gedachten Linie durch die Scheitel zweiter Bögen zurückspringt. Bevorzugt besitzt das Bauteil auf seinem gesamten Umfang den zuvor beschriebenen Querschnitt des Randbereichs. Wegen der mehr als 90° betragenden Bogenlänge der Verrundung entsteht ein umlaufendes, zumindestens im Randbereichquerschnitt gerundetes Tal zwischen den beiden verrundeten Randkanten der Breitseitenflächen des Bauteils. Die Dicke des Bauteils ist bevorzugt um mindestens einen Faktor 5, bevorzugt einen Faktor 10 geringer als der oberflächenäquivalente Kreisdurchmesser. Das Bauteil kann einen kreiszylindrischen Grundriss aufweisen. Es kann aber auch einen von der Kreisform abweichenden Grundriss aufweisen. Die Erfindung betrifft die Ausgestaltung des Umfangsrandes eines beschichteten Bauteils eines CVD-Reaktors, wobei es sich bei dem Bauteil um einen Suszeptor, einen in einer Tasche einliegenden Substrathalter eines Suszeptors, einer Deckenplatte einer Prozesskammer oder um die Gasaustrittsplatte eines Showerheads handeln kann.Model calculations have shown that large edge radii lead to large maximum stresses in the region of the interface between the coating and the core body. This is a consequence of the geometric stability of the arc of the coating formed by the edge rounding. The bow has a relatively high stability in the radial direction. Surprisingly, it has been found that an edge rounding with an arc length of more than 90 ° leads to a significant reduction in the maximum stress. A Significant reduction of the maximum stress also occurs when the edge radius of curvature is about 1 mm or less than 1 mm. In a preferred embodiment of a flat component in which the broad sides are designed the same, the component is thus effectively a flat cylinder, it is advantageous if the recut side on the peripheral side followed by an undercut circumferential valley. This valley can turn into a surrounding mountain. The latter can go back to a valley. The cross-sectional contour line of the peripheral side thus preferably extends undulating between the two broad sides. Since the components are coated when hot, the largest voltages occur in the cooled state, ie at room temperature. The stresses are reduced during operation, during which the component is heated to temperatures above 1000 ° C. It thus takes place at each temperature change, so with each use of the component, a load change. With the requirements of the invention, the negative influences of the frequent load changes can be reduced to the life of the component. It is advantageous if the arc length of the edge rounding is more than 90 °, preferably more than 95 °, 100 °, 105 °, 110 °, 115 or more than 120 °. The cross-sectional contour line of the peripheral side has no kinks, but has a waveform. The broad side of the component can be designed smooth. However, the broad side of the component can also have a plurality of depressions, in each case for receiving a circular disk-shaped wafer or a substrate carrier. Also, the downward-facing broad side of the component, which is a susceptor, may have a structuring. The same applies to a ceiling tile. Furthermore, it can be provided that the component has a hole. It may be a central hole of a circular cylindrical component. The inner wall of the opening also forms a circumferential side of the component, which is structured as already described above. It has rounded edges, where the radius of curvature is less than or equal to 1 mm. The wide side surface goes kink-free over the edge rounding in the peripheral side, wherein in viewing a cross-sectional area of the broad side surface corresponding straight bend-free a continuous curved arc line connects. The broad side surface is virtually smooth in a curved line, which curves without changing the direction of curvature by more than 90 ° before it turns into a curved turning point in an oppositely curved portion, which either merges into a rectilinear portion of the peripheral side or wavy continues. In a cross-sectional plane through the component, the edges of the broad side of the component run along two parallel lines. The two parallel lines correspond to the broad side surfaces and are spaced by less than half, preferably less than a quarter of their length. At their ends, these lines merge into arcuate lines associated with the edge fillets. These arc lines preferably run on circular arcs or circular arcs. The circumferential length of these sheets is greater than 90 °, preferably at least 95 ° or at least 100 °. A first end of a bow joins without kinks to each one of the parallel lines. The second end of the arch preferably merges into an oppositely curved arc section, so that at least one valley forms on the peripheral surface, the base of which springs back against the imaginary line through the vertexes of the second arches. Preferably, the component has over its entire circumference the above-described cross section of the edge region. Because of the more than 90 ° amount of arc length of the rounding creates a circumferential, at least in the edge region cross-section rounded valley between the two rounded edges of the broad side surfaces of the component. The thickness of the component is preferably at least a factor of 5, preferably a factor of 10, less than the surface-equivalent circular diameter. The component may have a circular cylindrical ground plan. But it can also have a deviating from the circular shape floor plan. The invention relates to the configuration of the peripheral edge of a coated component of a CVD reactor, wherein the component may be a susceptor, a substrate holder in a pocket of a susceptor, a ceiling plate of a process chamber or the gas outlet plate of a showerhead.

Ausführungsbeispiele werden nachfolgend anhand beigefügter Zeichnungen erläutert. Es zeigen:

Figur 1
schematisch einen CVD-Reaktor mit darin angeordneten flachen Bauteilen 11, 12,
Figur 2
ein erstes flaches Bauteil 12 in Form eines Kreiszylinders,
Figur 3
den Schnitt gemäß der Linie 3 - 3 in Figur 2,
Figur 4
eine Darstellung gemäß Figur 3 eines zweiten Ausführungsbeispiels,
Figur 5
eine vergrößerte Darstellung gemäß Ausschnitt V in Figur 4,
Figur 6
eine Darstellung gemäß Figur 5 eines dritten Ausführungsbeispiels,
Figur 7
eine Darstellung gemäß Figur 5 eines vierten Ausführungsbeispiels,
Figur 8
ein fünftes Ausführungsbeispiel in Form einer Kreisscheibe 11 mit einem zentralen Loch 8,
Figur 9
den Schnitt gemäß der Linie IX-IX in Figur 8,
Figur 10
eine Darstellung ähnlich der Figur 1, schematisch einen CVD-Reaktor mit einem Gaseinlassorgan 13, welches eine beschichtete Gasauslassplatte 15 mit Gasaustrittsöffnungen 16 aufweist,
Figur 11
den Ausschnitt XI in Figur 10,
Figur 12
einen beschichteten Suszeptor 12 mit Taschen, in denen beschichtete Substratträger 17 angeordnet sind,
Figur 13
vergrößert den Ausschnitt XIII in Figur 12,
Figur 14
vergrößert den Ausschnitt XIV in Figur 12 und
Figur 15
ein weiteres Querschnittsprofil ähnlich der Figuren 11, 13, 14.
Embodiments are explained below with reference to the accompanying drawings. Show it:
FIG. 1
1 schematically shows a CVD reactor with flat components 11, 12,
FIG. 2
a first flat component 12 in the form of a circular cylinder,
FIG. 3
the section according to the line 3 - 3 in FIG. 2 .
FIG. 4
a representation according to FIG. 3 a second embodiment,
FIG. 5
an enlarged view according to section V in FIG. 4 .
FIG. 6
a representation according to FIG. 5 a third embodiment,
FIG. 7
a representation according to FIG. 5 a fourth embodiment,
FIG. 8
A fifth embodiment in the form of a circular disk 11 with a central hole 8,
FIG. 9
the section according to the line IX-IX in FIG. 8 .
FIG. 10
a representation similar to the FIG. 1 schematically a CVD reactor with a gas inlet member 13, which has a coated gas outlet plate 15 with gas outlet openings 16,
FIG. 11
the cutout XI in FIG. 10 .
FIG. 12
a coated susceptor 12 having pockets in which coated substrate carriers 17 are disposed,
FIG. 13
Enlarges the section XIII in FIG. 12 .
FIG. 14
Enlarges the XIV section in FIG. 12 and
FIG. 15
another cross-sectional profile similar to the Figures 11 . 13 . 14 ,

Die Figur 1 zeigt schematisch einen CVD-Reaktor. Der CVD-Reaktor 10 besitzt ein Gehäuse, in dem ein Gaseinlassorgan 13 angeordnet ist, mit dem Prozessgase in eine Prozesskammer des CVD-Reaktors 10 eingespeist werden können. Eine Prozesskammerdecke 11 wird von einem Graphitteil ausgebildet, welches in der Mitte ein Loch aufweist. Das Graphitteil besitzt eine kreisscheibenförmige Umrisskontur.The FIG. 1 schematically shows a CVD reactor. The CVD reactor 10 has a housing in which a gas inlet member 13 is arranged, with which process gases can be fed into a process chamber of the CVD reactor 10. A process chamber ceiling 11 is formed by a graphite part having a hole in the middle. The graphite part has a circular disk-shaped outline contour.

Unterhalb der Decke 11 der Prozesskammer befindet sich ein Boden der Prozesskammer, der von einem Suszeptor 12 ausgebildet wird, der von unten mittels einer Heizung 14 auf eine Prozesstemperatur von mehr als 1000°C aufheizbar ist. Der Suszeptor wird von einem Graphitteil 12 ausgebildet, welches einen kreisförmigen Umriss aufweist. Die Oberseite des Suszeptors 12 ist mit Strukturen versehen, die Taschen ausbilden zur Aufnahme von Substraten.Below the ceiling 11 of the process chamber is a bottom of the process chamber, which is formed by a susceptor 12 which can be heated from below by means of a heater 14 to a process temperature of more than 1000 ° C. The susceptor is formed by a graphite part 12 which has a has circular outline. The top of the susceptor 12 is provided with structures that form pockets for receiving substrates.

Die beiden Graphitbauteile 11, 12 besitzen hinsichtlich ihrer Umrisskontur gleichgestaltete Oberseiten und Unterseiten. Die Bauteile sind schematisch in den Figuren 2 bzw. 8 dargestellt, wobei die Kantenverrundungsradien zur Verdeutlichung wesentlich größer dargestellt sind, als sie es erfindungsgemäß sein sollen.The two graphite components 11, 12 have identically designed upper sides and lower sides with regard to their outline contour. The components are schematically in the Figures 2 and 8, wherein the edge radii of curvature are shown for clarity much larger than they should be according to the invention.

Das in der Figur 2 dargestellte Bauteil repräsentiert einen Suszeptor 12. Es handelt sich um einen kreisscheibenförmigen Graphitkörper 1 mit einer Dicke d von 1 - 4 cm und einem Durchmesser D von mehr als 20 cm, insbesondere von mehr als 30 cm. Die gesamte Außenoberfläche des aus Graphit bestehenden Kernkörpers 1 ist mit einer Beschichtung 2 versehen. Es handelt sich dabei um eine 50 bis 200 µm bzw. 75 - 150 µm dicke Beschichtung aus SiC bzw. TaC. Die Beschichtung wird bei einer Temperatur von mehr als 1000°C auf den Kernkörper 1 aufgebracht. Da Siliciumcarbid bzw. Tantalcarbid eine geringere thermische Ausdehnung besitzen als Graphit, schrumpft der Graphitkernkörper 1 um ein stärkeres Maß entlang der in der Figur 3 eingezeichneten und mit K markierten Linie in Richtung auf den Schwerpunkt M als die Beschichtung 2. Dies hat ein leichtes Schüsseln der beiden voneinander weg weisenden, vom Umriss her gleich gestalteten Breitseiten 3 zur Folge. Auch in den Umfangsseiten 4 ist eine leichte Einschnürung beim Erkalten des beschichteten Bauteils 12 zu beobachten.That in the FIG. 2 It represents a circular disk-shaped graphite body 1 with a thickness d of 1 - 4 cm and a diameter D of more than 20 cm, in particular more than 30 cm. The entire outer surface of the graphite core body 1 is provided with a coating 2. It is a 50 to 200 μm or 75 to 150 μm thick coating of SiC or TaC. The coating is applied to the core body 1 at a temperature of more than 1000 ° C. Since silicon carbide or tantalum carbide have a lower thermal expansion than graphite, the graphite core body 1 shrinks to a greater extent along in the FIG. 3 marked and marked K in the direction of the center of gravity M as the coating 2. This has a slight bowls of the two facing away from each other, from the outline of the same designed broadsides 3 result. Also in the peripheral pages 4 a slight constriction when cooling the coated component 12 is observed.

Erfindungsgemäß sind die Randkanten 5 des Bauteils 12 mit einer geringfügigen Verrundung versehen. Der Rundungsradius R ist größer als die Dicke der Beschichtung, aber maximal 1 mm.According to the invention, the marginal edges 5 of the component 12 are provided with a slight rounding. The radius of curvature R is greater than the thickness of the coating, but not more than 1 mm.

Bei dem in den Figuren 4 und 5 dargestellten Ausführungsbeispiel besitzt die Randkante 5 eine Verrundung mit einem Rundungsradius R von 1 mm. Die Bogenlänge α der Kantenverrundung 5 ist hier größer als 90°. Die Kantenverrundungsbogenlänge α hat hier einen Wert von etwa 120°. Dies hat zur Folge, dass die vertikal an der Umfangsseite 4 angreifende, auf die Schrumpfung zurückzuführende Kraft K nicht vertikal an der Oberfläche angreift, sondern in einem Winkel dazu. Die Kraft K spaltet sich somit in senkrecht zueinander stehende Teilkräfte P und S auf. Die senkrecht zur Grenzfläche zwischen Kernkörper 1 und Beschichtung 2 wirkende Kraftkomponente S, hat einen Betrag, der geringer ist als der Betrag der Kraft K. Dies führt zu einer Verminderung der Druckkräfte innerhalb der Beschichtung bzw. an der Grenzfläche zwischen Beschichtung 2 und Kernkörper 1.In the in the FIGS. 4 and 5 illustrated embodiment, the peripheral edge 5 has a rounding with a radius of curvature R of 1 mm. The arc length α of the Kantenverrundung 5 is here greater than 90 °. The Kantenverrundungsbogenlänge α has a value of about 120 °. This has the consequence that the force acting vertically on the peripheral side 4, due to the shrinkage force K does not attack vertically on the surface, but at an angle to it. The force K thus splits into mutually perpendicular partial forces P and S. The force component S acting perpendicularly to the interface between the core body 1 and the coating 2 has an amount which is less than the magnitude of the force K. This leads to a reduction in the pressure forces within the coating or at the interface between the coating 2 and the core body 1.

In dem Bereich der Kantenverrundungen 5 baut sich innerhalb der gerundeten Beschichtung 2 eine Druckspannung auf, die nicht vertikal über die Grenzfläche zwischen Beschichtung 2 und Kernkörper 1 in den Kernkörper 1 abgeleitet werden kann. Aufgrund der geometrischen Stabilität des Bogens werden die Kräfte vielmehr tangential in die Beschichtungsabschnitte der Breitseite 3 bzw. der Umfangsseite 4 eingeleitet. Eine Reduzierung des Verrundungsradius R auf Werte unterhalb 1 mm führt zu einer signifikanten Verminderung dieser Spannungen.In the area of the edge fillets 5, a compressive stress builds up within the rounded coating 2 which can not be discharged vertically into the core body 1 via the interface between the coating 2 and the core body 1. Due to the geometric stability of the sheet, the forces are rather tangentially introduced into the coating sections of the broad side 3 and the peripheral side 4. A reduction of the radius of curvature R to values below 1 mm leads to a significant reduction of these stresses.

Das in der Figur 6 dargestellte Ausführungsbeispiel zeigt ein Bauteil mit einem aus Graphit bestehenden Kernteil 1, welches mit einer Siliciumcarbidbeschichtung versehen ist. Die Randkanten 5 sind mit einer Verrundung um nahezu 180° versehen. Die Verrundung erstreckt sich bis über die Ebene der Breitseite 3. Zwischen den beiden Kantenverrundungen 5, mit denen die Umfangsseite 4 in die jeweilige Breitseite 3 übergeht, bildet sich ein Tal 6.That in the FIG. 6 illustrated embodiment shows a component with a graphite core part 1, which is provided with a silicon carbide coating. The marginal edges 5 are provided with a rounding by almost 180 °. The rounding extends beyond the plane of the broad side 3. Between the two edge roundings 5, with which the peripheral side 4 merges into the respective broad side 3, a valley 6 is formed.

Bei dem in der Figur 7 dargestellten Ausführungsbeispiel verläuft die Querschnittskonturlinie der Umfangsseite 4 wellenförmig, so dass sich Berge 7 und Täler 6 abwechseln. Zwischen den beiden Randkanten 5 verläuft die Umfangsseite 4 knickstellenfrei. Konvexe Rundungsabschnitte gehen glattwandig in konkave Rundungsabschnitte über. Es bilden sich somit in Umfangsrichtung um das Bauteil verlaufende Täler 6 und zwischen Tälern 6 liegenden Bergen 7.In the in the FIG. 7 illustrated embodiment, the cross-sectional contour line of the peripheral side 4 is wavy, so that mountains 7 and valleys 6 alternate. Between the two edges 5, the peripheral side 4 runs without kinks. Convex rounding sections go smoothly into concave rounding sections. Thus, valleys 6 extending in the circumferential direction around the component and mountains 7 lying between valleys 6 are formed.

Die Figur 8 zeigt ein weiteres Ausführungsbeispiel. Hier ist das Bauteil 11 eine Deckenplatte. die im Zentrum ein Loch 8 besitzt. Das Loch 8 bildet eine Umfangsseite 4 aus, die über eine verrundete Randkante 5 in die Breitseite 3 übergeht. Auch hier bildet sich zwischen zwei Kantenverrundungen 5 ein Tal 6 aus.The FIG. 8 shows a further embodiment. Here, the component 11 is a ceiling plate. which has a hole 8 in the center. The hole 8 forms a peripheral side 4, which merges over a rounded edge 5 in the broad side 3. Here too, a valley 6 is formed between two edge fillets 5.

Der Erfindung liegt die Erkenntnis zugrunde, dass Verrundungen unter Ausbildung von Einschnürungen in die Umfangsseite 4 bzw. die Breitenseitenfläche 2 übergehen sollten bzw. nicht größer als ein Minimalwert sein dürfen. Dies führt zu einer Spannungskompensation. Des Weiteren ist es von Vorteil, wenn die einzelnen Flächenabschnitte 3, 4, 5, 6, 7 knickstellenfrei, also glatt unter Ausbildung von Verrundungszonen mit geringen Rundungsradien ineinander übergehen.The invention is based on the finding that fillets should pass into the peripheral side 4 or the broad side surface 2 with the formation of constrictions, or may not be greater than a minimum value. This leads to a voltage compensation. Furthermore, it is advantageous if the individual surface sections 3, 4, 5, 6, 7 pass without kinks, ie smoothly with the formation of rounding zones with low rounding radii.

Im Ausführungsbeispiel werden Graphitkörper beschrieben, die eine Kreiszylinderform besitzen. Die Erfindung betrifft aber auch solche flachen Graphitkörper, die eine von der Kreisform abweichende Breitseitenumrisskontur aufweisen. Auch hier sollte der Radius des Übergansbereichs zwischen der Breitseitenfläche und der Umfangsfläche kleiner als 1 mm sein und der Radiusabschnitt mehr als 90° betragen.In the exemplary embodiment, graphite bodies are described which have a circular cylindrical shape. However, the invention also relates to such flat graphite bodies which have a broad-side contour which deviates from the circular shape. Again, the radius of the transition region between the broad side surface and the peripheral surface should be less than 1 mm and the radius section should be more than 90 °.

Die Figur 10 zeigt schematisch ein weiteres Ausführungsbeispiel einer Prozesskammer eines CVD-Reaktors mit einem Gaseinlassorgan 13, welches als Showerhead ausgebildet ist. Es besitzt eine aus Graphit bestehende Gasaustrittsplatte 15, die Gasaustrittsöffnungen 16 aufweist. Die Außenumfangsfläche der Gasaustrittsplatte 15 besitzt eine Querschnittskontur, wie sie die Figur 11 zeigt. Zumindest im Randabschnitt der beiden sich gegenüberliegenden Breitseiten 3, 3' verlaufen die Breitseiten 3, 3' parallel zueinander. Die Breitseitenfläche geht dort jeweils knickstellenfrei in eine Kantenverrundung 5 über, die einen Verrundungsradius R1, R2 besitzt, der etwa 1 mm beträgt. An einer Übergangsstelle 18 etwa nach einer Bogenlänge der Kantenverrundung 5 von 120° schließt sich knickstellenfrei ein Bogenabschnitt mit einem Radius R3 an. Bezogen auf eine Mittelebene, die zwischen den beiden Breitseiten 3, 3' verläuft, ist der Querschnitt des Randes der Gasaustrittsplatte 15 symmetrisch. Dies bedeutet, dass die Radien R1, R2 gleich groß sind. An die Kantenverrundung 5 mit dem Radius R2 schließt sich an einer Übergangsstelle 18 der Bogen mit dem Radius R3 an. Eine gedachte Gerade g, die durch die Scheitelpunkte der Kantenverrundungen 5 gelegt ist, überspannt ein Tal 6, dessen Boden vom Radius R3 gebildet ist.The FIG. 10 schematically shows a further embodiment of a process chamber of a CVD reactor with a gas inlet member 13, which as Showerhead is trained. It has a graphite gas outlet plate 15, the gas outlet openings 16 has. The outer peripheral surface of the gas outlet plate 15 has a cross-sectional contour, as they FIG. 11 shows. At least in the edge portion of the two opposite broad sides 3, 3 'extend the broad sides 3, 3' parallel to each other. There, the broad side surface passes in each case without kinks in a Kantenverrundung 5, which has a rounding radius R 1 , R 2 , which is about 1 mm. At a transition point 18, for example, after an arc length of the edge rounding 5 of 120 °, an arc section with a radius R 3 follows without kinks. Relative to a median plane extending between the two broad sides 3, 3 ', the cross section of the edge of the gas outlet plate 15 is symmetrical. This means that the radii R 1 , R 2 are the same size. At the edge rounding 5 with the radius R 2 joins at a transition point 18 of the arc with the radius R 3 . An imaginary straight line g, which is defined by the vertices of the edge fillets 5, spans a valley 6 whose bottom is formed by the radius R 3 .

Die in Figur 10 dargestellte Prozesskammer besitzt einen Suszeptor 12, der von unten mittels einer Heizeinrichtung 14 beheizbar ist. Die Umfangsseite 4 des Suszeptors 12 kann eine Kontur aufweisen, wie sie in den Querschnittsdarstellungen der Figuren 11, 13, 14 und 15 gezeigt ist.In the FIG. 10 The process chamber shown has a susceptor 12 which can be heated from below by means of a heating device 14. The peripheral side 4 of the susceptor 12 may have a contour as shown in the cross-sectional views of Figures 11 . 13 . 14 and 15 is shown.

Die Figur 12 zeigt ein weiteres Ausführungsbeispiel eines Suszeptors, bei dem in Taschen des Suszeptors 12 Substratträger 17 einliegen. Die Substratträger 17 werden im Beschichtungsbetrieb durch einen Gasstrom drehangetrieben und sind auf einem vom Gasstrom erzeugten Gaslager gelagert. Die Figur 13 zeigt den Randquerschnitt des Suszeptors 12 und die Figur 14 zeigt den Randquerschnitt des Substratträgers 17. Aus den Figuren 13 und 14 geht hervor, dass der Querschnitt der Umfangsseite 4 aus einer Hintereinander-Anordnung dreier Bögen zusammengesetzt ist, welche Bögen mit den Radien R1, R2, R3 an Übergangsstellen 18 knickstellenfrei ineinander übergehen. Die Radien R1, R2 betragen etwa 1 mm. Der Radius R3 hängt von der Dicke d des Kernes 1 ab, der mit einer maximal 0,5 mm dicken Beschichtung 2 beschichtet ist und kann wesentlich größer sein als die Radien R1 und R2. Der Radius R3 kann bei einer Dicke des Bauteils von 13 cm zwischen 8 und 9 mm liegen. Der Querschnittradius des Tals 6 zwischen den beiden Kantenverrundungen 5 kann somit bevorzugt mindestens fünfmal größer sein, als der Kantenverrundungsradius. Der Radius R3 ist ferner so gewählt, dass eine Übergangsstelle 18 entsteht, in der lediglich die Krümmungsrichtung wechselt, ansonsten die Konturlinien aber knickstellenfrei ineinander übergehen.The FIG. 12 shows a further embodiment of a susceptor, wherein in the pockets of the susceptor 12 substrate carrier 17 einliegen. The substrate carriers 17 are rotationally driven in the coating operation by a gas flow and are mounted on a gas bearing generated by the gas stream. The FIG. 13 shows the edge cross section of the susceptor 12 and the FIG. 14 shows the edge cross section of the substrate carrier 17. From the Figures 13 and 14 shows that the cross section of the peripheral side 4 of a series arrangement of three Arcs is composed, which arcs with the radii R 1 , R 2 , R 3 transition points 18 without kinks into each other. The radii R1, R2 are about 1 mm. The radius R 3 depends on the thickness d of the core 1, which is coated with a maximum of 0.5 mm thick coating 2 and can be substantially larger than the radii R 1 and R 2 . The radius R 3 can be between 8 and 9 mm with a thickness of the component of 13 cm. The cross-sectional radius of the valley 6 between the two edge fillets 5 can thus preferably be at least five times greater than the edge radius of curvature. The radius R 3 is further selected so that a transition point 18 is formed in which only the direction of curvature changes, but otherwise the contour lines merge into one another without kinks.

Das in der Figur 15 dargestellte Ausführungsbeispiel zeigt eine Variante, bei der sich jeweils an die Kantenverrundungen 5 entgegengerichtet gekrümmte Bögen mit Radien R3 anschließen, die in ein auf einer Geraden verlaufendes Tal 6 übergehen, wobei das ebene Tal 6 an Übergangsstellen 19 knickstellenfrei in die hohle Verrundung mit dem Radius R3 übergeht. Bezugszeichenliste: 1 Kernkörper α Bogenlänge 2 Beschichtung d Dicke 3, 3' Breitseite g Gerade 4 Umfangsseite 5 Randkante, Kantenverrundung 6 Tal D Kreisdurchmesser 7 Berg K Kraft 8 Loch P Teilkräfte 10 CVD-Reaktor R1 Radius 11 Deckenplatte R2 Radius 12 Suszeptor R3 Radius 13 Gaseinlassorgan S Teilkräfte 14 Heizeinrichtung M Schwerpunkt 15 Gasaustrittsplatte 16 Gasaustrittsöffnung 17 Substratträger 18 Übergangsstelle 19 Übergangsstelle That in the FIG. 15 illustrated embodiment shows a variant in which in each case at the edge fillets 5 opposite curved arches connect with radii R3, which pass into a running on a straight valley 6, wherein the flat valley 6 kinks at transition points 19 in the hollow rounding with the radius R. 3 passes. <B> LIST OF REFERENCES: </ b> 1 core body α arc length 2 coating d thickness 3, 3 ' broadside G Just 4 peripheral side 5 Marginal edge, edge rounding 6 valley D Circle diameter 7 mountain K force 8th hole P part forces 10 CVD reactor R1 radius 11 ceiling tile R2 radius 12 susceptor R3 radius 13 Gas inlet element S part forces 14 heater M main emphasis 15 Gas outlet plate 16 Gas outlet 17 substrate carrier 18 Checkpoint 19 Checkpoint

Claims (13)

  1. A CVD reactor with a flat component (11, 12), wherein the component (11, 12, 15, 17) exhibits two broad sides (3, 3') that run parallel to each other and are spaced apart from each other by a thickness (d), wherein an outer edge (5) of each broad side (3, 3') transitions without any kinks into an edge of an outer peripheral side (4), forming an edge rounding with an edge rounding radius (R) and an edge rounding arc length (α), wherein the thickness (d) is substantially less than a circle diameter (D) that is surface-equivalent to the broad side surface, wherein the component (11, 12, 15, 17) forms a core body (1) whose material exhibits a greater coefficient of thermal expansion than the material of a coating (2) with which the broad sides (3, 3') and peripheral side (4) are coated at a coating temperature greater than the room temperature, so that the coating exhibits a compressive stress at room temperature, characterized in that the edge rounding arc length (α) is greater than 90° to reduce the stress between the coating (2) and core body (1).
  2. A flat component for use in a CVD reactor, wherein the component exhibits two broad sides (3, 3') that run parallel to each other and are spaced apart from each other by a thickness (d), wherein an outer edge (5) of each broad side (3, 3') transitions without any kinks into an edge of an outer peripheral side (4), forming an edge rounding with an edge rounding radius (R) and an edge rounding arc length (α), wherein the thickness (d) is substantially less than a circle diameter (D) that is surface-equivalent to the broad side surface, wherein the component (11, 12, 15, 17) forms a core body (1) whose material exhibits a greater coefficient of thermal expansion than the material of a coating (2) with which the broad sides (3, 3') and peripheral side (4) are coated at a coating temperature greater than the room temperature, so that the coating exhibits a compressive stress at room temperature, characterized in that the edge rounding arc length (α) is greater than 90° to reduce the stress between the coating (2) and core body (1).
  3. The CVD reactor according to claim 1 or component according to claim 2, characterized in that the coating is SiC, TaC or another hard material.
  4. The CVD reactor or component according to one of the preceding claims, characterized in that the edge rounding radius (R) measures at most 1 mm and/or exceeds the thickness of the coating (2).
  5. The CVD reactor or component according to one of the preceding claims, characterized in that the core body (1) consists of graphite.
  6. The CVD reactor or component according to one of the preceding claims, characterized in that the coating (2) was applied at a temperature of >1000°C.
  7. The CVD reactor or component according to one of the preceding claims, characterized in that the peripheral side (4) exhibits rounding sections that transition into each other without any kinks and form at least one valley (6).
  8. The CVD reactor or component according to claim 7, characterized in that the peripheral side (4) is formed exclusively by circular arc sections in cross section.
  9. The CVD reactor or component according to one of the preceding claims, characterized in that the component (11, 12) is a susceptor (12) or a cover plate (11), a substrate carrier (17) or a gas outlet plate (15) of a gas inlet member (13).
  10. The CVD reactor or component according to one of the preceding claims, characterized in that the component (11, 12) exhibits a circle cylindrical shape, and in particular exhibits a diameter (D) of at least 20 cm, in particular at least 30 cm, and a thickness (d) of between 1 and 3 cm.
  11. The CVD reactor or component according to one of claims 1 to 9, characterized in that the component (11, 12) exhibits an outline that deviates from the circular shape.
  12. The CVD reactor or component according to one of the preceding claims, characterized in that, in a cross sectional plane through the component (11, 12, 15, 17), the cross section of the component exhibits two lines running parallel to each other at least near the edge of the component, which correspond to the edge regions of the broad sides (3, 3') of the component (11, 12, 15, 17), and the ends of these lines transition without any kinks into arc lines, which correspond to edge roundings (5), wherein the arc lines run on a circular arc or near-circular arc, and a curved connecting line joins the arc lines with each other without any kinks, and forms at least one valley (6), which jumps back relative to a straight line drawn through the vertices of the arc lines.
  13. The CVD reactor or component according to one of the preceding claims, characterized in that the peripheral side (4) is formed in cross section exclusively by circular arc lines with radii (R1, R2, R3) that are arranged one behind the other.
EP15736214.6A 2014-07-03 2015-06-25 Coated flat component in a cvd reactor Active EP3164525B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014109327.5A DE102014109327A1 (en) 2014-07-03 2014-07-03 Coated flat disc-shaped component in a CVD reactor
PCT/EP2015/064363 WO2016001053A1 (en) 2014-07-03 2015-06-25 Coated flat component in a cvd reactor

Publications (2)

Publication Number Publication Date
EP3164525A1 EP3164525A1 (en) 2017-05-10
EP3164525B1 true EP3164525B1 (en) 2019-11-06

Family

ID=53540728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15736214.6A Active EP3164525B1 (en) 2014-07-03 2015-06-25 Coated flat component in a cvd reactor

Country Status (8)

Country Link
US (1) US11053586B2 (en)
EP (1) EP3164525B1 (en)
JP (1) JP6576961B2 (en)
KR (1) KR102349341B1 (en)
CN (1) CN106488997B (en)
DE (1) DE102014109327A1 (en)
TW (1) TWI679300B (en)
WO (1) WO2016001053A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2659026B1 (en) * 2010-12-30 2015-06-17 Veeco Instruments Inc. Wafer processing with carrier extension
JP6562546B2 (en) * 2015-07-14 2019-08-21 昭和電工株式会社 Wafer support, wafer support, chemical vapor deposition equipment
DE102016110408A1 (en) 2016-06-06 2017-12-07 Aixtron Se Coated carbon body in a CVD reactor
CN112374891B (en) * 2020-11-16 2021-11-23 南京工业大学 Graphite base plate surface gradient TaC coating

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346436B2 (en) * 1973-07-05 1978-12-13
US5837058A (en) * 1996-07-12 1998-11-17 Applied Materials, Inc. High temperature susceptor
WO1999043874A1 (en) 1998-02-24 1999-09-02 Northrop Grumman Corporation Ceiling arrangement for an epitaxial growth reactor
JP3226038B2 (en) * 2000-03-15 2001-11-05 株式会社椿本チエイン Low noise silent chain
JP2001270789A (en) * 2000-03-29 2001-10-02 Ngk Insulators Ltd Method for forming silicon carbide film on aluminum nitride, coating film structure, and silicon carbide film
ITMI20020306A1 (en) * 2002-02-15 2003-08-18 Lpe Spa RECEIVER EQUIPPED WITH REENTRANCES AND EPITAXIAL REACTOR THAT USES THE SAME
US7070660B2 (en) * 2002-05-03 2006-07-04 Asm America, Inc. Wafer holder with stiffening rib
US20050092439A1 (en) * 2003-10-29 2005-05-05 Keeton Tony J. Low/high temperature substrate holder to reduce edge rolloff and backside damage
US7824498B2 (en) * 2004-02-24 2010-11-02 Applied Materials, Inc. Coating for reducing contamination of substrates during processing
WO2005111266A1 (en) * 2004-05-18 2005-11-24 Sumco Corporation Susceptor for vapor deposition apparatus
CN101001978B (en) * 2004-07-22 2010-10-13 东洋炭素株式会社 Susceptor
DE102007056587A1 (en) * 2007-11-23 2009-05-28 Sortech Ag Functional composite material
EP2404228B1 (en) * 2009-03-02 2020-01-15 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
EP2543063B1 (en) * 2010-03-03 2019-05-08 Veeco Instruments Inc. Wafer carrier with sloped edge
EP2400573A1 (en) * 2010-06-23 2011-12-28 Bayer MaterialScience AG Electromechanical converter, method for manufacture and use of same
EP2646221A1 (en) * 2010-12-03 2013-10-09 The Swisscore AG Device and method for producing a honeycomb structure and a honeycomb structure
DE102011055061A1 (en) 2011-11-04 2013-05-08 Aixtron Se CVD reactor or substrate holder for a CVD reactor
CN105088187B (en) * 2011-11-23 2018-09-18 中微半导体设备(上海)有限公司 CVD reactor or outer layer growth reactor and its support device
DE102012108986A1 (en) * 2012-09-24 2014-03-27 Aixtron Se Substrate holder for use in process chamber of semiconductor substrate treatment device, has recess having bearing surfaces which lie in common plane, and wall in region of projections in plan view of top face is straight
EP2722416A1 (en) * 2012-10-16 2014-04-23 Sandvik Intellectual Property AB Coated cemented carbide cutting tool with patterned surface area
US20160115623A1 (en) * 2013-06-06 2016-04-28 Ibiden Co., Ltd. Wafer carrier and epitaxial growth device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016001053A1 (en) 2016-01-07
US11053586B2 (en) 2021-07-06
EP3164525A1 (en) 2017-05-10
DE102014109327A1 (en) 2016-01-07
CN106488997A (en) 2017-03-08
TW201606123A (en) 2016-02-16
US20170152598A1 (en) 2017-06-01
JP2017522454A (en) 2017-08-10
CN106488997B (en) 2020-01-14
KR20170026618A (en) 2017-03-08
KR102349341B1 (en) 2022-01-07
JP6576961B2 (en) 2019-09-18
TWI679300B (en) 2019-12-11

Similar Documents

Publication Publication Date Title
DE69609884T2 (en) Cutting insert for rotary drilling milling cutter
EP3164525B1 (en) Coated flat component in a cvd reactor
DE69715057T2 (en) Polycrystalline diamond composite
DE69520527T2 (en) Tool insert made of abrasive material
DE602004007598T2 (en) Polishing pad with groove arrangement to reduce the sludge consumption
DE69422758T2 (en) Grinding tool insert
DE69514721T2 (en) Improvements in or regarding elements clad in super hard material
DE3509572C1 (en) Sliding element coated with ceramic material components and its use
EP3224386B1 (en) Substrate holder
DE20321341U1 (en) Indexable cutting insert for metal cutting processes, has peripheral side surface extending between two opposing end surfaces with four corners equidistant from major and minor planes
DE212009000038U1 (en) Thermally-insulated nozzle plate assembly for underwater granulation and the like
EP1694881B1 (en) Piston ring and method for the production thereof
EP0696943B1 (en) Cutting tool
CH657287A5 (en) CENTRIFUGAL SCREEN.
DE102012108986A1 (en) Substrate holder for use in process chamber of semiconductor substrate treatment device, has recess having bearing surfaces which lie in common plane, and wall in region of projections in plan view of top face is straight
WO2019233965A1 (en) Cvd reactor with carrying ring for substrate handling, and use of a carrying ring on a cvd reactor
DE112017005773T5 (en) Cutting insert and cutting tool
DE112015004652T5 (en) DEVICE AND METHOD FOR ATTACHING A POLYMER ON A SUBSTRATE
WO2018037014A1 (en) Susceptor for a chemical vapour deposition reactor
DE2711513A1 (en) LIQUID VESSEL AND PROCESS FOR THE PREPARATION
DE69820349T2 (en) Improvements to cutting elements with a surface made of super hard material
EP1504200A1 (en) Slide element and method for production of said slide element
EP2918702B1 (en) Coated component of a cvd reactor and method for producing the same
DE69622311T2 (en) Cutting element with a surface made of super hard material
WO2003057390A2 (en) Casting roll and a method for producing a casting roll

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C30B 25/08 20060101ALI20190514BHEP

Ipc: C30B 25/12 20060101ALI20190514BHEP

Ipc: C23C 16/458 20060101AFI20190514BHEP

INTG Intention to grant announced

Effective date: 20190528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1198815

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010861

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010861

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1198815

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240611

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240611

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240625

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240718

Year of fee payment: 10