EP2473743B1 - Compressor blade for an axial compressor - Google Patents
Compressor blade for an axial compressor Download PDFInfo
- Publication number
- EP2473743B1 EP2473743B1 EP10743094.4A EP10743094A EP2473743B1 EP 2473743 B1 EP2473743 B1 EP 2473743B1 EP 10743094 A EP10743094 A EP 10743094A EP 2473743 B1 EP2473743 B1 EP 2473743B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blade
- profile
- profiles
- leading edge
- compressor rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 claims description 28
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005494 tarnishing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/711—Shape curved convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/712—Shape curved concave
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S416/00—Fluid reaction surfaces, i.e. impellers
- Y10S416/02—Formulas of curves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S416/00—Fluid reaction surfaces, i.e. impellers
- Y10S416/05—Variable camber or chord length
Definitions
- the invention relates to a compressor blade for an axial compressor according to the features of the preamble of claim 1.
- Compressor blades for axial compressors are known from the prior art in a large scale.
- the EP 0 991 866 B1 a compressor blade having a profile whose suction side contour has a radius of curvature smaller than half the length of the chord on a suction side intersection with a reference line perpendicular to the chord at 5% of the chord length. This is to be achieved that after a comparatively short distance of the flow around the blade on the suction side, the maximum velocity is reached and the location of the envelope of flow from laminar to turbulent coincides with the location of the maximum velocity, whereby this profile has a particularly large work area in the It efficiently compresses the gas flow.
- Radialspaltmanne is, for example, from SU 1 751 430-A1 known to form the blade tip of blades of an axial compressor S shape.
- the skeleton line of the profile is formed by two mutually opposite circular arcs, which merge into one another at a turning point.
- the inflection point is in the range between 5% and 15% of the relative chord length.
- the leading edge portion is rotated toward the suction side of the airfoil, whereby the forward, ie upstream, portion of the profile has a reverse curvature as compared to the aft, ie, downstream, portion of the airfoil.
- the object of the invention is to provide a compressor blade with a blade tip, which has particularly low leakage currents and radial gap losses during operation in a turbomachine.
- a compressor rotor blade for an axial compressor with a curved blade, which comprises a pressure side wall and a suction side wall, which in each case from a common leading edge to a common trailing edge and on the other hand to form a span from a mounting side end of the blade to a
- the airfoil has a profile with a suction side contour and a pressure side contour, an at least partially curved skeleton line, and a straight chord, which contours, skeleton line, and chord each extend from a leading edge point located on the leading edge to an airfoil extending at the trailing edge edge point, wherein that at least one of the skeleton lines of the profile in a region of the blade tip (ie, some skeleton lines of the blade tip profile) have at least two turning points.
- the invention is based on the finding that losses in the radial gap can be reduced if a gap vortex responsible for the losses is also influenced accordingly.
- the gap vortex which is generated and driven by the gap mass flow, compared to a conventional airfoil tip profile, now later, ie at a downstream point, arise.
- the thus resulting relative to the conventional profile gap vortex can be explained by a lower load on the improved profile at the front edge.
- a stronger local impulse for generating the crevice vertebra should now be generated, in which case its fluidic support should decrease considerably more than in the conventional profile. Overall, this leads to low flow losses in the radial gap.
- the skeleton lines In order to produce the desired gap vortex, at least some of the skeleton lines, preferably all the skeleton lines of the blade tip-side profiles, have at least two inflection points. Due to the presence of two inflection points in the skeleton line and the use of a conventional thickness distribution, the blade tip-side profiles, and also the suction side contour and the pressure side contour have a rather unusual for the expert eye kink, which is hereinafter referred to as profiled buckling in relation to the relevant profile.
- profile crease itself causes in its place a local increase in the split mass flow, which drives the crevice vortex more than before, as desired, and expels it from the suction side of the airfoil.
- the mass flow density in the radial gap drops considerably more than when using previous profilings on the blade tip. Overall, this results in a reduced gap mass flow, compared with the conventional profilings. Due to the suction-side contour of the profile bend, the gap vortex develops along a line which also has a bend downstream of the bend of the suction side contour. The Early kinking of the crevice vortex coincides with the sharp increase in the mass flow density in the radial gap to its maximum and the subsequent decrease of the same. The gap vortex line is after her kink at a larger angle from the suction side wall than in the conventional profile of the case.
- the profiling according to the invention causes less radial gap losses and less blocking of the flow field at the outlet of the blade row.
- the first of the two turning points in the case of perpendicular projection on the chord on this one first projection point, which is removed from the leading edge point between 10% and 30% of the length of the chord.
- the second of the two inflection points in the case of perpendicular projection onto the chord on this one second projection point, which is located from the leading edge point between 30% and 50% of the length of the chord.
- the two turning points are at least 3% of the length of the profile chord apart.
- the skeleton lines of the profiles comprise a front portion which extends from the leading edge point up to extends an end point of the front portion, the projection point is at a vertical projection on the chord from the leading edge point between 2% and 10% of the length of the chord, at least some of the front portions, preferably all of the front portions of the blade tip profile having a radius of curvature, which greater than 100 times the chord.
- the front portions of the skeleton line of blade tip side profiles respectively correspond to a straight line, or at least almost.
- the profile in the respective front section is symmetrical-virtually without buckling-which means that even the local velocity distribution around the blade tip-side leading edge region of the blade leaves virtually no pressure potential from the pressure side to the suction side. Since the pressure potential between the pressure side and the suction side in the leading edge region is considered as the cause of the crevice vortex and thus as a cause for the gap losses, this relief of the leading edge region causes a weakening and a delayed, ie downstream occurrence of the crevice vortex.
- the suction side contour and the pressure side contour of blade tip side profiles in the front portion of the skeleton line are symmetrical or in a wedge shape with almost straight contour sections on the suction side and pressure side.
- each front section has an angle of attack with respect to an incoming gas flow, wherein in addition to or instead of the almost straight front skeleton line section at least some of the angles, but preferably all angles of attack of the blade tip side profiles are smaller than the angle of attack of the other profiles of the airfoil.
- the angle of attack of the front skeleton line section blade tip side profiles are less than 10 °, preferably even equal to 0 °.
- the metal entry angle of the blade tip-side profiles is significantly smaller than the metal entry angle of the others Profiles of the airfoil.
- leading edge region of the blade tip in contradiction to the solution according to SU 1751430 A1 , is screwed into the flow, which also ensures that a pressure potential between the pressure and suction side in the leading edge region is avoided shovel tip side. This also prevents the generation of the gap vortex in the leading edge region.
- leading edge points preferably all the leading edge points of the blade tip-side profiles
- leading edge points of the blade tip-side profiles can be arranged further upstream than the leading edge points of the remaining profiles of the blade leaf.
- leading edge of the profiles for blade tips is preceded by an extension of the profile to the front - in the upstream direction - compared to the rest of the leading edge. This has the consequence that no radial pressure gradient can act in the leading edge region of the blade tip, so that it can not come to a potential between the pressure side and suction side even with the radial pressure distribution.
- only the skeleton lines of the profiles present in the area of the blade tip have two points of inflection, wherein the blade tip area comprises a maximum of 20% of the span from the blade tip.
- the remaining area of the airfoil, from a mounting-side airfoil end to a blade height of at least 80% of the span, may be profiled in a conventional manner.
- the invention relates to a modified airfoil tip of compressor rotor blades arranged in a rim for axial compressors.
- the skeleton lines comprise a rear portion, which in each case extends from a starting point of the rear portion to the trailing edge point, wherein the rear portion of at least some, preferably all blade tip side skeleton lines having a greater curvature than the rear portions of skeleton lines of the other profiles of the airfoil. Consequently, the outlet metal angles of blade tip-side profiles are smaller than the outlet metal angles of profiles at the level of half the span or in the region of the attachment-side, ie hub-side blade end.
- the section starting point of the rear skeleton line section when projected perpendicularly onto the chord, predetermines a projection point located on the chord, which is at most 60% of the length of the chord from the leading edge point.
- the trailing edge is therefore more curved in the blade tip area than in the remaining area of the blade.
- the increased curvature leads to a larger work conversion in the preferably rear 40% of the airfoil, so that overall the load of the airfoil is displaced to the rear.
- This embodiment can serve as a balance of relief on the leading edge to achieve despite the relief of the blade tip side profile in the front region of the chord still a high work transformation.
- the flow of the following guide blade in the outer annular wall region can thus also be improved by reducing the blockage in the blade tip region of the compressor blade. This reduces the local misfire of the downstream vanes.
- Preferred dimensions are at least some, preferably all of the blade tip side profiles in the "Aft-Loaded Design” and the rest, d. H. not blade tip-side profiles in the "front-loaded design” designed.
- the gap vortex responsible for the gap losses can be influenced extremely efficiently, although the suction side contour and the pressure side contour have at least three successive curved sections with alternating signs have, which adjoin adjacent curved portions in each case a turning point.
- This can be achieved with a suitable thickness distribution, which is applied in a conventional manner perpendicular and symmetrical, ie on both sides in equal parts on the skeleton line.
- Such measures lead on the suction side to concave contour sections and on the pressure side to convex contour sections with which the slit vertebrae can be influenced Economics to a particularly simple extent.
- the blade tip is freestanding.
- a velocity distribution of the gas adjusts along the suction side contour from the leading edge point to the trailing edge point when flowing around with a gas
- at least some, preferably all blade tip-side profiles are selected such that a maximum velocity occurs at a maximum location whose projection point is perpendicular to the chord on the chord from the leading edge point is between 10% and 30% of the length of the chord.
- the relevant profiles are selected so that in a subsequent to the maximum location suction side portion of Sauguzeenkontur with a maximum length of 15% of the length of the chord, a gradient of the speed sets, the slope is maximum.
- the gap vortex is severely underserved for its size, which causes it to move away from the surface of the suction side at a larger angle. This leads to particularly low gap losses in an axial compressor whose rotor is equipped with the compressor rotor blades according to the invention.
- FIG. 9 and FIG. 10 each show a freestanding compressor blade 10 from different perspectives. their The airfoil 12 comprises a pressure side wall 14 and a suction side wall 16, which on the one hand each from a common, flowed by the gas flow leading edge 18 to a common trailing edge 20 and the other to form a span of one in 9 and FIG. 10 not shown fastening side airfoil end to a blade tip 22 extend.
- FIG. 9 the perspective is chosen so that the view of the trailing edge 20 of the airfoil 12 falls
- FIG. 10 the view of the leading edge 18 of the blade 12 falls on the attachment side airfoil end can be provided in a known manner, a platform and arranged thereon a blade root.
- the manner of attachment of the blade root of the compressor blade 10 is designed either dovetail, fir-tree or hammer-shaped.
- the compressor blade may also be welded to a rotor.
- the orientation of the airfoil 12 is such that the airfoil 12 extends from the leading edge 18 to the trailing edge 20 in approximately the axial direction of the axial compressor which is in the 9 and FIG. 10 associated coordinate system with the axis X is designated.
- the radial direction of the axial compressor coincides with the Z axis of the illustrated coordinate system and the tangential direction, ie the circumferential direction with the Y axis.
- a span of the airfoil 12 is thus detected in the Z-axis direction.
- compressor blades 10 are designed for axial compressors in such a way that different or even identical profiles are strung together along a rectilinear or even slightly curved stacking axis, the enclosed space of which Define the blade 12.
- each profile has a centroid on the stack axis.
- a profile is understood in detail to mean an endless polyline which comprises a suction side contour and a pressure side contour of an airfoil.
- the contours meet on the one hand in a leading edge point and on the other hand in a trailing edge point, which are also part of the profile and lie on the corresponding edge of the airfoil.
- the profile represents the contour of a cross section through the airfoil for a particular blade height, wherein the cross section either perpendicular to the radial direction of the axial compressor or even slightly inclined - may be oriented - according to a Ringkanalkontratation.
- FIG. 9 are printed page contours 40 of three profiles 28, 30 shown in full line.
- a plurality of suction side contours 42 of profiles 28, 30 different blade heights are also shown in solid lines.
- FIG. 10 illustrated curved airfoil 12 has a comparison with the prior art according to the invention modified blade tip region 43, the specific configuration and operation will be described in more detail below in detail.
- the first profile 28 shown in dotted line style shows a cross section through the compressor blade 10 according to FIG. 10 at an airfoil height of half the span of the airfoil 12.
- the profile 28 may be a conventional profile known in the art.
- the profile 30 shown in full line shows a cross section through the compressor blade 10 according to the invention FIG. 10 in the area 43 of the blade tip 22.
- Each profile 28, 30 according to FIG. 1 has a skeleton line associated with it, for reasons of clarity in FIG. 1 only one skeleton line 32 of the blade tip side profile 30 is shown in dashed line style.
- the skeleton line 32 begins at a leading edge point 24, terminates at an associated trailing edge point 26, and is always centered between the pressure side contour 40 and suction side contour 42. It is also known as the profile centerline.
- profiles are also defined in the prior art with the aid of a straight chord.
- the chord is a straight line which extends from the leading edge point to the trailing edge point.
- FIG. 1 only one profile chord 34 for the blade tip-side profile 30 is shown. Since the profile chord 34 is subsequently used for the geometric definition of significant points of the profile 30, its length is normalized to one, wherein in the leading edge point 24, the length of the chord 0% and in the trailing edge point 26, the length of the chord 100%. This also means a relative chord length.
- the normalized chord 34 is indicated by x / c.
- This in FIG. 1 represented profile 30 is representative of the radially outermost of the blade tip-side profiles 30.
- Das in FIG. 1 The conventional profile 28 illustrated on the one hand is representative of the profiles known from the prior art and on the other hand for the remaining profiles of the compressor blade 10.
- the other profiles 28 are understood to mean those which are not arranged on the blade tip side and thus, for example, in the attachment-side region of the blade 12 or can be arranged centrally between the blade tip 22 and the attachment-side blade end.
- the transition from the conventional Profile 28 to the blade tip-side profile 30 takes place here, as FIG. 10 shows, stepless.
- Characteristic of a compressor blade 10 according to the invention is that the skeleton lines 32 of the blade tip-side profiles 30 have at least two turning points 36, 38. That is, the skeleton line 32 upstream of the foremost inflection point 36 has a first curvature portion A of a first curvature and downstream of the first inflection point 36 to the second inflection point 38 a second curvature portion B of a second curvature. The signs of the first curvature and the second curvature are different. Downstream of the second curvature section B, in the second inflection point 38, a third curvature section C follows, whose curvature in turn has a different sign than that of the second curvature.
- the predominantly convex curved suction side contour 42 has a concave shape in a section D between 35% and 50% of the relative chord length.
- the mainly concave curved pressure side contour 40 has a portion E which is convex. Contrary to the previous known from the prior art profile shapes for compressor blades of axial compressors this concave Sauguzeenkonturabrough D and convex pressure side contour section E leads to a locally kinking profiling, which is referred to here as a profile kink.
- the first of the two turning points 36 predestinates on perpendicular to the chord on this a first projection point AP, which is removed from the leading edge point 24 between 10% and 30% of the length of the chord 34 and at the second of the two Turning points 38 in perpendicular projection on the chord 34 on this one second projection point BP predetermines which of the leading edge point 24 between 30% and 50% of the length the chord 34 is removed.
- FIG. 1 clearly shows that the blade tip-side profile 30 relative to the conventional profile 28 has a forwardly displaced leading edge 18 toward the oncoming gas flow.
- the pre-displaced leading edge 18 of the blade tip-side profile 30 is particularly in the perspective views according to 9 and FIG. 10 recognizable.
- the skeleton line 32 of blade tip side profiles 30 in a rear portion G has a greater curvature than the rear portions of skeleton lines of the remaining profiles 28 of the airfoil 12.
- the rear portion G of the skeleton line 32 extends from the section start point GA to the trailing edge point 26 of the skeleton line 32, which section start point GA when projecting onto the chord 34 on this one projection point GP, which is removed from the leading edge point 24 a maximum of 60% of the length of the chord 34.
- the blade tip-side profile 30 comprises a skeleton line 32 with a front portion H.
- the front portion H of the skeleton line 32 extends from the leading edge point 24 to a projection point HP of the skeleton line 32, which is located at 10% of the length of the chord 34.
- the projection point HP results from the projection of an end point HE of the front portion H perpendicular to the chord 34.
- the skeleton line 32 is almost not arched, ie approximately straight.
- the thickness distribution which is known to be applied perpendicular to the skeleton line 32 on both sides in equal parts, chosen here so that there is a wedge-shaped leading edge region for the blade tip side profiles 30 in principle.
- a symmetrical course of the suction side contour 42 and pressure side contour 40 is symmetrically desirable.
- FIG. 2 The velocity distributions along the blade tip side profile 30 and along the conventional profile 28 are contrasted for both the suction side flow and the pressure side flow.
- Each velocity distribution is plotted along the normalized chord x / c.
- the velocity distribution was detected at that blade height of compressor blades, which is 0.5% of the gap of a radial gap between the blade tip 22 and the surrounding annular wall of the axial compressor of the blade tip 22 away.
- dashed line style are in FIG. 2 . 3 and FIG. 6 the velocity distributions 48, 50 of a conventional profile 28 for the suction side wall 16 and pressure side wall 14 are shown.
- the velocity distributions 44, 46 for the suction side wall 16 and pressure side wall 14 of the blade tip-side profile 30 are shown in full line.
- the lower line represents the velocity distribution for the corresponding pressure side
- the upper line represents the velocity distribution for the corresponding suction side.
- the suction side velocity distribution for the blade tip side profile 30 is denoted 44, the pressure side velocity distribution for the blade tip profile 46, the suction side velocity distribution for the conventional profile 28 at 48 and the pressure side velocity distribution for the conventional profile 28 with 50.
- FIG. 2 shows that with the aid of the invention modified blade tip portion 43, the blade 12 in the front half, ie in particular on the first 15% of the chord 34 seen from the leading edge point 24, has been relieved.
- the profile shape of the blade 12 is selected blade tip side so that the speed increase is achieved to a maximum speed in a maximum location at about 20% of the length of the chord 34 in the shortest possible chord section. Furthermore, a comparatively large decrease in the speed of the suction-side gas flow in a profile chord section that is as short as possible is desired in the subsequent 15% of the chord 34 following the maximum location.
- this speed course along the suction side wall 16 causes a gap vortex responsible for the gap losses is generated with comparatively more energy, but the comparatively low energy is further supplied to this by the large deceleration after reaching the maximum speed, which weakens him all the more , Overall, this leads to reduced radial gap losses.
- FIG. 4 describes the blade tip-side profile 30 in the un-graded m'-theta coordinate system.
- the lower picture, FIG. 5 represents a curvature 52 of the suction side contour 42 and a curvature 54 of the pressure side contour 40 over the m 'coordinate.
- FIG. 7 shows the mass flow density of the mass flow, which flows orthogonal to the chord 34 through the radial gap, based on the considered local area.
- the mass flow density for a conventional profile 28 is indicated at 58, that for the blade tip-side profile 30 at 60.
- For the blade tip-side profile 30 is a clear relationship between the increase of the pressure potential and the increase in the mass flow density in the radial gap recognize.
- the mass flow density in the radial gap also reaches its global maximum shortly after the described profile break.
- the global maximum of the mass flow density for the blade tip-side profile 30 is higher than in the conventional case.
- the drop in the mass flow density in the radial gap to its maximum is also greater than in the conventional profiling 28th
- FIG. 8 shows the topology of the Spaltwirbeltrajektoren (slit vortex lines) for the two profiles 28, 30.
- the gap vortex line for the conventional profile 28 is designated 62, the gap vortex line for the blade tip profile with 64. Relative to the leading edge 18 of the gap vortex occurs at the blade tip side profile 30 much later - Based on the relative chord length of the respective profile - and then kinks from the suction side wall 16 with a larger angle than in the conventional profiling 28.
- the early kinking of the crevasse vertebra falls with the strong increase of the mass flow density to its maximum and on it following decrease of the same together.
- the larger angle is due to the larger gradient in both the increase and decrease in mass flow density.
- the relative to the conventional profile 28 relatively late emergence of the crevice vertebra can be explained by the low load on the improved profile 30 at the front edge 18.
- the formation of the gap vortex is delayed. This is followed in the region of the suction-side profile bend by a strong increase in the gap mass flow, which drives the gap vortex and expels it from the suction side wall 16 of the blade tip-side profile 30. In the zone downstream of the suction-side profile bend, the mass flow density in the radial gap drops considerably more than in conventional profiling 28. Overall, this results in a lower gap mass flow.
- the gap vortex line bends after the suction-side profile bend at a higher angle from the suction side wall 16 than in the conventional profiling 28 is the case. From now on, it runs away from the suction sidewall 16 at a greater distance than in the conventional profiling 28.
- the split flow in the modified profiling 30 thus causes less losses and less blockage of the flow field at the outlet of the blade row.
- the load is increased by a higher curvature of the profile 30 in the rear 40% of the chord 34.
- Table 1 Parameter: Shovel No. 1 Shovel No. 2 Position of the first inflection point (AP) of the skeleton line [percent of chord length] 28 18 Position of the second inflection point (BP) of the skeleton line [percent of profile chord length] 49 47 Length of non-curved leading edge [percent of chord length] 10 5 Angle of blade tip profiles [degrees] 5 7 Angle of the other profiles [degrees] 25 25 Position of section start point GA [percent of chord length] 51 53 Curvature of blade tip profiles in the rear section [] 1 / (2 * chord length) 2 / chord length Curvature of the other profiles in the rear section [] 1 / (10 * chord length) 1 / (10 * chord length) Length of the blade tip area [percent of span] 20 10 Position of the suction side, blade tip side speed maximum [percent of chord length] 20 10 Length of the blade tip area [percent of span] 20 10 Position of the suction side, blade tip side speed maximum [percent of chord length] 20 10 Leng
- the invention thus relates to a compressor blade 10 for axially flowed compressor preferably stationary gas turbines.
- the invention provides that in order to reduce radial gap losses, the skeleton line 32 of the blade tip-side profiles 30 of the blade 12 of the compressor blade 10 have at least two inflection points 36, 38. Due to the presence of two inflection points 36, 38, a suction side contour section D which is concave is formed for the suction side contour 42 in the section of 35% to 50%, and a pressure side contour section E, which is convex, for the pressure side contour 40. With the aid of this geometry, it is possible to generate lower-loss splitter vortices in order to increase the overall efficiency of an axial compressor equipped with these compressor rotor blades 10.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft eine Verdichterlaufschaufel für einen Axialverdichter gemäß den Merkmalen des Oberbegriffs von Anspruch 1.The invention relates to a compressor blade for an axial compressor according to the features of the preamble of
Verdichterschaufeln für Axialverdichter sind aus dem Stand der Technik in umfangreicher Art bekannt. Beispielsweise offenbart die
Des Weiteren ist bekannt, dass an den Schaufelblattspitzen von Verdichterlaufschaufeln sogenannte Radialspaltverluste auftreten. Hierbei geht ein Teil des Druckgewinns beim Betrieb des Axialverdichters dadurch verloren, dass über die Schaufelblattspitze hinweg von einer Druckseite des Schaufelblatts zu einer Saugseite des Schaufelblatts sich eine Leckageströmung einstellt. Um diese Leckageströmung zu reduzieren, ist es bekannt, dass ein zwischen den Schaufelblattspitzen und einer dieser gegenüberliegenden Ringwand des Verdichterkanals ausgebildeter Radialspalt stets möglichst klein zu halten ist. Nichtsdestotrotz müssen dabei Mindestgrößen von Spaltmaßen eingehalten werden, um ein Anstreifen von Schaufelblattspitzen an der Ringwand zu vermeiden. Dies gilt dabei insbesondere für instationäre Betriebszustände, bei denen thermisch bedingte Dehnungen sowohl von Kanalwand als auch Laufschaufeln noch nicht abgeschlossen sind.Furthermore, it is known that so-called radial gap losses occur at the blade tips of compressor rotor blades. In this case, part of the pressure gain during operation of the axial compressor is lost in that a leakage flow is established across the blade tip from a pressure side of the blade to a suction side of the blade. In order to reduce this leakage flow, it is known that a radial gap formed between the blade blade tips and an annular wall of the compressor channel opposite this is always to be kept as small as possible. Nevertheless, minimum sizes of gaps must be adhered to in order to avoid tarnishing of blade tips on the annular wall. This applies especially for transient operating conditions in which thermally induced strains of both the channel wall and blades are not yet completed.
Zudem war es häufig so, dass die bisherige Profilierung von Schaufelblattspitzen lediglich auf die besonderen Zuströmbedingungen im Bereich der Ringwand angepasst war. Die eigentliche Profilierung erfolgte allerdings nicht unter Berücksichtigung der tatsächlichen dreidimensionalen Strömungseffekte an der Schaufelblattspitze. Konventionell ausgelegte Schaufelblattprofilierungen wurden daher nicht optimal an die komplexen Strömungsbedingungen im Bereich der Schaufelblattspitze angepasst. Dadurch besteht insbesondere bei Verdichterlaufschaufeln mit kleiner Spannweite und großen relativen Spalthöhen (in Bezug auf Spannweite) ein beachtliches Verbesserungspotential.In addition, it was often the case that the previous profiling of blade tips was adapted only to the particular inflow conditions in the area of the annular wall. The actual profiling, however, did not take into account the actual three-dimensional flow effects at the blade tip. Conventionally designed airfoil profilings were therefore not optimally adapted to the complex flow conditions in the area of the blade tip. As a result, there is a considerable potential for improvement in particular with compressor wings with a small span and large relative gap heights (in terms of span).
Da moderne, wie aus der
Um diese Radialspaltverluste zu reduzieren, ist beispielsweise aus der
Weitere Verdichterlaufschaufeln gemäß des Oberbegriffs des Anspruchs 1 sind auch aus der
Ungeachtet der bereits vorhandenen Lösungen besteht weiterhin ein großes Interesse an der Reduzierung von Radialspaltverlusten von Turbomaschinen, um die Effizienz dieser Maschinen weiter zu vergrößern.Regardless of existing solutions, there is still a great deal of interest in reducing radial gap losses of turbomachinery in order to further increase the efficiency of these machines.
Aufgabe der Erfindung ist die Bereitstellung einer Verdichterlaufschaufel mit einer Schaufelblattspitze, die besonders geringe Leckageströmungen und Radialspaltverluste beim Betrieb in einer Turbomaschine aufweist.The object of the invention is to provide a compressor blade with a blade tip, which has particularly low leakage currents and radial gap losses during operation in a turbomachine.
Diese Aufgabe wird mit einer Verdichterlaufschaufel für einen Axialverdichter, mit einem gekrümmten Schaufelblatt gelöst, welches eine Druckseitenwand und eine Saugseitenwand umfasst, die sich zum einen jeweils von einer gemeinsamen Vorderkante zu einer gemeinsamen Hinterkante und zum anderen unter Bildung einer Spannweite von einem befestigungsseitigen Schaufelblattende zur einer Schaufelblattspitze erstrecken, wobei für jede entlang der Spannweite vorhandene Schaufelblatthöhe das Schaufelblatt ein Profil mit einer Saugseitenkontur und einer Druckseitenkontur, eine zumindest teilweise gewölbte Skelettlinie und eine geradlinige Profilsehne aufweist, welche Konturen, Skelettlinie und Profilsehne sich jeweils von einem auf der Vorderkante angeordneten Vorderkantenpunkt zu einem auf der Hinterkante angeordneten Hinterkantenpunkt erstrecken, wobei dass zumindest eine der Skelettlinien des Profils in einem Bereich der Schaufelblattspitze (also einige Skelettlinien der schaufelspitzseitigen Profile) mindestens zwei Wendepunkte aufweisen.This object is achieved with a compressor rotor blade for an axial compressor, with a curved blade, which comprises a pressure side wall and a suction side wall, which in each case from a common leading edge to a common trailing edge and on the other hand to form a span from a mounting side end of the blade to a For each span along the span, the airfoil has a profile with a suction side contour and a pressure side contour, an at least partially curved skeleton line, and a straight chord, which contours, skeleton line, and chord each extend from a leading edge point located on the leading edge to an airfoil extending at the trailing edge edge point, wherein that at least one of the skeleton lines of the profile in a region of the blade tip (ie, some skeleton lines of the blade tip profile) have at least two turning points.
Der Erfindung liegt die Erkenntnis zugrunde, dass Verluste im Radialspalt reduziert werden können, wenn ein für die Verluste auch verantwortlicher Spaltwirbel entsprechend beeinflusst wird. Erfindungsgemäß soll der Spaltwirbel, welcher von dem Spaltmassenstrom erzeugt und angetrieben wird, verglichen mit einem herkömmlichen Schaufelblattspitzenprofil, nun später, d. h. an einer stromabwärtigeren Stelle, entstehen. Der somit relativ zum herkömmlichen Profil später entstehende Spaltwirbel lässt sich durch eine geringere Belastung des verbesserten Profils an der Vorderkante erklären. Entgegen dem bisherigen generellen Bestreben, den Spaltwirbel insgesamt zu schwächen, soll erfindungsgemäß nun ein stärkerer lokaler Impuls zur Erzeugung des Spaltwirbels generiert werden, wobei dann dessen strömungstechnische Unterstützung jedoch wesentlich stärker abnehmen soll als beim herkömmlichen Profil. Insgesamt führt dies zu geringen Strömungsverlusten im Radialspalt. Um den gewünschten Spaltwirbel zu erzeugen, weisen zumindest einige der Skelettlinien, vorzugsweise alle Skelettlinien der schaufelspitzseitigen Profile mindestens zwei Wendepunkte auf. Durch das Vorhandensein zweier Wendepunkte in der Skelettlinie und durch die Verwendung einer herkömmlichen Dickenverteilung weisen die schaufelspitzseitigen Profile, und auch die Saugseitenkontur und die Druckseitenkontur einen für das fachmännische Auge eher außergewöhnlichen Knick auf, welcher in Bezug für das betreffende Profil nachfolgend als Profilknick bezeichnet wird. Der Profilknick an sich verursacht an seiner Stelle einen lokalen Anstieg des Spaltmassenstroms, der den Spaltwirbel, wie gewünscht, stärker als bisher antreibt und ihn von der Saugseite des Schaufelblatts wegtreibt. In der stromabwärtigen Zone hinter dem Knick in der Saugseitenkontur fällt die Massenstromdichte im Radialspalt wesentlich stärker ab als beim Verwenden von bisherigen Profilierungen an der Schaufelblattspitze. Insgesamt ergibt sich so ein verringerter Spaltmassenstrom, verglichen mit den herkömmlichen Profilierungen. Durch die saugseitige Kontur des Profilknicks entwickelt sich der Spaltwirbel entlang einer Linie, welche ebenfalls einen Knick stromab des Knicks der Saugseitenkontur aufweist. Das frühe Abknicken des Spaltwirbels fällt mit dem starken Anstieg der Massenstromdichte im Radialspalt zu ihrem Maximum und dem darauf folgenden Absinken desselben zusammen. Die Spaltwirbellinie steht nach ihrem Knick unter einem größeren Winkel von der Saugseitenwand ab als dies bei dem herkömmlichen Profil der Fall ist. Hierdurch läuft fortan der Spaltwirbel mit größer werdendem Abstand von der Saugseite weg als bei der herkömmlichen Profilierung. Der größere Winkel ist dem größeren Gradienten der Massenstromdichte der Spaltströmung sowohl beim Anstieg als auch beim Abfall geschuldet. Insgesamt verursacht die erfindungsgemäße Profilierung weniger Radialspaltverluste und eine geringere Verblockung des Strömungsfeldes am Austritt der Laufschaufelreihe.The invention is based on the finding that losses in the radial gap can be reduced if a gap vortex responsible for the losses is also influenced accordingly. According to the invention, the gap vortex, which is generated and driven by the gap mass flow, compared to a conventional airfoil tip profile, now later, ie at a downstream point, arise. The thus resulting relative to the conventional profile gap vortex can be explained by a lower load on the improved profile at the front edge. Contrary to the previous general effort to weaken the crevice vertebrae as a whole, according to the invention, a stronger local impulse for generating the crevice vertebra should now be generated, in which case its fluidic support should decrease considerably more than in the conventional profile. Overall, this leads to low flow losses in the radial gap. In order to produce the desired gap vortex, at least some of the skeleton lines, preferably all the skeleton lines of the blade tip-side profiles, have at least two inflection points. Due to the presence of two inflection points in the skeleton line and the use of a conventional thickness distribution, the blade tip-side profiles, and also the suction side contour and the pressure side contour have a rather unusual for the expert eye kink, which is hereinafter referred to as profiled buckling in relation to the relevant profile. The profile crease itself causes in its place a local increase in the split mass flow, which drives the crevice vortex more than before, as desired, and expels it from the suction side of the airfoil. In the downstream zone behind the bend in the suction side contour, the mass flow density in the radial gap drops considerably more than when using previous profilings on the blade tip. Overall, this results in a reduced gap mass flow, compared with the conventional profilings. Due to the suction-side contour of the profile bend, the gap vortex develops along a line which also has a bend downstream of the bend of the suction side contour. The Early kinking of the crevice vortex coincides with the sharp increase in the mass flow density in the radial gap to its maximum and the subsequent decrease of the same. The gap vortex line is after her kink at a larger angle from the suction side wall than in the conventional profile of the case. As a result, from now on, the gap vortex with increasing distance from the suction side away than in the conventional profiling. The larger angle is due to the larger gradient of mass flow density of the slit flow in both ascent and waste. Overall, the profiling according to the invention causes less radial gap losses and less blocking of the flow field at the outlet of the blade row.
Durch die erzielte Verminderung der Radialspaltverluste lassen sich der Wirkungsgrad der Beschaufelung und somit auch der Wirkungsgrad einer mit der Verdichterlaufschaufel ausgestatteten Turbomaschine wesentlich verbessern.By reducing the radial gap losses achieved, the efficiency of the blading and thus also the efficiency of a turbomachine equipped with the compressor blade can be substantially improved.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.Advantageous embodiments are specified in the subclaims.
Bevorzugtermaßen gibt der erste der beiden Wendepunkte bei senkrechter Projektion auf die Profilsehne auf dieser einen ersten Projektionspunkt vor, welcher vom Vorderkantenpunkt zwischen 10% und 30% der Länge der Profilsehne entfernt ist. Gleichzeitig gibt der zweite der beiden Wendepunkte bei senkrechter Projektion auf die Profilsehne auf dieser einen zweiten Projektionspunkt vor, welcher vom Vorderkantenpunkt zwischen 30% und 50% der Länge der Profilsehne entfernt ist. Insbesondere treten bei derartig angeordneten Wendepunkten die mit der Erfindung einhergehenden Vorteile in besonders großem Maße auf. Die beiden Wendepunkte liegen dabei mindestens 3 % der Länge der Profilsehne auseinander.Preferred dimensions of the first of the two turning points in the case of perpendicular projection on the chord on this one first projection point, which is removed from the leading edge point between 10% and 30% of the length of the chord. At the same time, the second of the two inflection points in the case of perpendicular projection onto the chord on this one second projection point, which is located from the leading edge point between 30% and 50% of the length of the chord. In particular, with such arranged inflection points, the advantages associated with the invention occur to a particularly great extent. The two turning points are at least 3% of the length of the profile chord apart.
Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung umfassen die Skelettlinien der Profile einen vorderen Abschnitt, welcher sich jeweils vom Vorderkantenpunkt bis zu einem Endpunkt des vorderen Abschnitts erstreckt, dessen Projektionspunkt bei senkrechter Projektion auf die Profilsehne vom Vorderkantenpunkt zwischen 2% und 10% der Länge der Profilsehne entfernt ist, wobei zumindest einige der vorderen Abschnitte, vorzugsweise alle der vorderen Abschnitte der schaufelspitzseitigen Profile einen Krümmungsradius aufweisen, welche größer als das 100-fache der Profilsehne ist. Mit anderen Worten gesagt entsprechen die vorderen Abschnitte der Skelettlinie von schaufelspitzseitigen Profilen jeweils einer Geraden, oder zumindest nahezu. Dementsprechend ist das Profil im betreffenden vorderen Abschnitt symmetrisch - praktisch ohne Wölbung -, was bedeutet, dass auch aus der lokalen Geschwindigkeitsverteilung um den schaufelspitzseitigen Vorderkantenbereich des Schaufelblatts praktisch kein Druckpotential von Druckseite zur Saugseite entsteht. Da das Druckpotential zwischen Druckseite und Saugseite im Vorderkantenbereich als Ursache für das Entstehen des Spaltwirbels und somit als eine Ursache für die Spaltverluste angesehen wird, bewirkt hier diese Entlastung des Vorderkantenbereichs eine Abschwächung und ein verzögertes, d. h. stromabwärtiges Auftreten des Spaltwirbels. Vorzugsweise sind die Saugseitenkontur und die Druckseitenkontur von schaufelspitzseitigen Profilen im vorderen Abschnitt der Skelettlinie dabei symmetrisch ausgebildet oder auch in einer Keilform mit nahezu geradlinigen Konturabschnitten auf Saugseite und Druckseite.According to a further preferred embodiment of the invention, the skeleton lines of the profiles comprise a front portion which extends from the leading edge point up to extends an end point of the front portion, the projection point is at a vertical projection on the chord from the leading edge point between 2% and 10% of the length of the chord, at least some of the front portions, preferably all of the front portions of the blade tip profile having a radius of curvature, which greater than 100 times the chord. In other words, the front portions of the skeleton line of blade tip side profiles respectively correspond to a straight line, or at least almost. Accordingly, the profile in the respective front section is symmetrical-virtually without buckling-which means that even the local velocity distribution around the blade tip-side leading edge region of the blade leaves virtually no pressure potential from the pressure side to the suction side. Since the pressure potential between the pressure side and the suction side in the leading edge region is considered as the cause of the crevice vortex and thus as a cause for the gap losses, this relief of the leading edge region causes a weakening and a delayed, ie downstream occurrence of the crevice vortex. Preferably, the suction side contour and the pressure side contour of blade tip side profiles in the front portion of the skeleton line are symmetrical or in a wedge shape with almost straight contour sections on the suction side and pressure side.
Gemäß einer weiteren vorteilhaften Ausgestaltung weist jeder vordere Abschnitt einen Anstellwinkel gegenüber einer ankommenden Gasströmung auf, wobei in Ergänzung oder anstelle des nahezu geraden vorderen Skelettlinienabschnitts zumindest einige der Anstellwinkel, vorzugsweise jedoch alle Anstellwinkel der schaufelspitzseitigen Profile kleiner sind als die Anstellwinkel der übrigen Profile des Schaufelblattes. Vorzugsweise sind die Anstellwinkel des vorderen Skelettlinienabschnitts schaufelspitzseitiger Profile dabei kleiner als 10°, vorzugsweise sogar gleich 0°. Mit anderen Worten: der Metalleintrittswinkel der schaufelspitzseitigen Profile ist signifikant kleiner als der Metalleintrittswinkel der übrigen Profile des Schaufelblatts. Es kann somit gesagt werden, dass der Vorderkantenbereich der Schaufelblattspitze, im Widerspruch zur Lösung gemäß
Alternativ oder ergänzend zu den vorgeschlagenen Weiterbildungen können vorzugsweise zumindest einige der Vorderkantenpunkte, vorzugsweise alle Vorderkantenpunkte der schaufelspitzseitigen Profile weiter stromauf angeordnet sein als die Vorderkantenpunkte der übrigen Profile des Schaufelblatts. Mit anderen Worten: die Vorderkante der Profile für Schaufelblattspitzen ist durch eine Verlängerung des Profils nach vorne - in stromaufwärtiger Richtung - gegenüber der übrigen Vorderkante vorgelagert. Dies hat zur Folge, dass kein radialer Druckgradient im Vorderkantenbereich der Schaufelblattspitze wirken kann, so dass es auch bei der radialen Druckverteilung nicht zu einem Potential zwischen Druckseite und Saugseite kommen kann.As an alternative or in addition to the proposed further developments, preferably at least some of the leading edge points, preferably all the leading edge points of the blade tip-side profiles, can be arranged further upstream than the leading edge points of the remaining profiles of the blade leaf. In other words, the leading edge of the profiles for blade tips is preceded by an extension of the profile to the front - in the upstream direction - compared to the rest of the leading edge. This has the consequence that no radial pressure gradient can act in the leading edge region of the blade tip, so that it can not come to a potential between the pressure side and suction side even with the radial pressure distribution.
Vorzugsweise weisen ausschließlich die Skelettlinien der im Bereich der Schaufelblattspitze vorhandenen Profile zwei Wendepunkte auf, wobei die Schaufelblattspitzenseite einen Bereich von maximal 20% der Spannweite von der Schaufelblattspitze aus umfasst. Der übrige Bereich des Schaufelblatts, von einem befestigungsseitigen Schaufelblattende bis zu einer Schaufelblatthöhe von minimal 80% der Spannweite, kann nach herkömmlicher Art profiliert sein.Preferably, only the skeleton lines of the profiles present in the area of the blade tip have two points of inflection, wherein the blade tip area comprises a maximum of 20% of the span from the blade tip. The remaining area of the airfoil, from a mounting-side airfoil end to a blade height of at least 80% of the span, may be profiled in a conventional manner.
Dementsprechend betrifft die Erfindung prinzipiell eine modifizierte Schaufelblattspitze von in einem Kranz angeordneten Verdichterlaufschaufeln für Axialverdichter.Accordingly, in principle, the invention relates to a modified airfoil tip of compressor rotor blades arranged in a rim for axial compressors.
Gemäß einer weiteren vorteilhaften Ausgestaltung umfassen die Skelettlinien einen hinteren Abschnitt, welcher sich jeweils von einem Anfangspunkt des hinteren Abschnitts bis zum Hinterkantenpunkt erstreckt, wobei der hintere Abschnitt von zumindest einigen, vorzugsweise allen schaufelspitzseitigen Skelettlinien eine größere Krümmung aufweist als die hinteren Abschnitte von Skelettlinien der übrigen Profile des Schaufelblatts. Demzufolge sind die Austrittsmetallwinkel von schaufelspitzseitigen Profilen kleiner als die Austrittsmetallwinkel von Profilen auf Höhe der halben Spannweite oder im Bereich des befestigungsseitigen, d.h. nabenseitigen Schaufelblattendes. Bevorzugtermaßen gibt der Abschnittsanfangspunkt des hinteren Skelettlinienabschnitts bei senkrechter Projektion auf die Profilsehne einen auf der Profilsehne angeordneten Projektionspunkt vor, welcher vom Vorderkantenpunkt maximal 60% der Länge der Profilsehne entfernt ist. Die Hinterkante ist im schaufelspitzseitigen Bereich folglich mehr gewölbt als im übrigen Bereich des Schaufelblatts. Die erhöhte Wölbung führt zu einer größeren Arbeitsumsetzung in den vorzugsweise hinteren 40% des Schaufelblatts, so dass insgesamt die Belastung des Schaufelblatts nach hinten verlagert wird. Diese Ausgestaltung kann als Ausgleich der Entlastung an der Vorderkante dienen, um trotz der Entlastung des schaufelspitzenseitigen Profils im vorderen Bereich der Profilsehne noch eine hohe Arbeitsumsetzung zu erreichen. Insgesamt kann damit auch durch die Reduktion der Blockade im Schaufelblattspitzenbereich der Verdichterlaufschaufel die Anströmung der nachfolgenden Leitschaufel im äußeren Ringwandbereich verbessert werden. Dies reduziert die lokale Fehlanströmung der nachgeordneten Leitschaufeln.According to a further advantageous embodiment, the skeleton lines comprise a rear portion, which in each case extends from a starting point of the rear portion to the trailing edge point, wherein the rear portion of at least some, preferably all blade tip side skeleton lines having a greater curvature than the rear portions of skeleton lines of the other profiles of the airfoil. Consequently, the outlet metal angles of blade tip-side profiles are smaller than the outlet metal angles of profiles at the level of half the span or in the region of the attachment-side, ie hub-side blade end. Preferably, the section starting point of the rear skeleton line section, when projected perpendicularly onto the chord, predetermines a projection point located on the chord, which is at most 60% of the length of the chord from the leading edge point. The trailing edge is therefore more curved in the blade tip area than in the remaining area of the blade. The increased curvature leads to a larger work conversion in the preferably rear 40% of the airfoil, so that overall the load of the airfoil is displaced to the rear. This embodiment can serve as a balance of relief on the leading edge to achieve despite the relief of the blade tip side profile in the front region of the chord still a high work transformation. Overall, the flow of the following guide blade in the outer annular wall region can thus also be improved by reducing the blockage in the blade tip region of the compressor blade. This reduces the local misfire of the downstream vanes.
Bevorzugtermaßen sind zumindest einige, vorzugsweise alle der schaufelspitzseitigen Profile im "Aft-Loaded-Design" und die übrigen, d. h. nicht schaufelspitzseitigen Profile im "Front-Loaded-Design" ausgestaltet.Preferred dimensions are at least some, preferably all of the blade tip side profiles in the "Aft-Loaded Design" and the rest, d. H. not blade tip-side profiles in the "front-loaded design" designed.
Der für die Spaltverluste verantwortliche Spaltwirbel kann äußerst effizient beeinflusst werden, wenn auch die Saugseitenkontur und die Druckseitenkontur zumindest drei aufeinanderfolgende Krümmungsabschnitte mit alternierenden Vorzeichen aufweisen, welche benachbarten Krümmungsabschnitte in jeweils einem Wendepunkt angrenzen. Dies kann mit einer geeigneten Dickenverteilung erreicht werden, die nach herkömmlicher Art senkrecht und symmetrisch, d.h. beidseitig zu gleichen Teilen auf die Skelettlinie aufgetragen wird. Derartige Maßnahmen führen auf der Saugseite zu konkaven Konturabschnitten und auf der Druckseite zu konvexen Konturabschnitten, mit denen die Spaltwirbel in besonders einfachem Maße ideegemäß beeinflusst werden können.The gap vortex responsible for the gap losses can be influenced extremely efficiently, although the suction side contour and the pressure side contour have at least three successive curved sections with alternating signs have, which adjoin adjacent curved portions in each case a turning point. This can be achieved with a suitable thickness distribution, which is applied in a conventional manner perpendicular and symmetrical, ie on both sides in equal parts on the skeleton line. Such measures lead on the suction side to concave contour sections and on the pressure side to convex contour sections with which the slit vertebrae can be influenced ideegemäß to a particularly simple extent.
Zweckmäßigerweise ist die Schaufelblattspitze freistehend ausgebildet.Conveniently, the blade tip is freestanding.
Wenn sich entlang der Saugseitenkontur vom Vorderkantenpunkt zum Hinterkantenpunkt bei einer Umströmung mit einem Gas eine Geschwindigkeitsverteilung des Gases einstellt, sind zumindest einige, vorzugsweise alle schaufelspitzseitigen Profile so gewählt, dass an einem Maximumort ein Geschwindigkeitsmaximum auftritt, dessen Projektionspunkt bei senkrechter Projektion auf die Profilsehne auf dieser vom Vorderkantenpunkt zwischen 10% und 30% der Länge der Profilsehne entfernt ist. Diese Maßnahme gewährleistet einen besonders großen Impuls zur Entstehung des Spaltwirbels. Um dann die Radialspaltverluste möglichst gering zu halten, ist vorgesehen, dass die Energiezufuhr für den Spaltwirbel besonders schnell, d. h. auf besonders kurzer Länge, in besonders starkem Maße abnimmt. Dazu ist vorgesehen, dass die betreffenden Profile so gewählt sind, dass sich in einem an dem Maximumort anschließenden Saugseitenabschnitt der Saugseitenkontur mit einer Länge von maximal 15% der Länge der Profilsehne sich ein Gradient der Geschwindigkeit einstellt, dessen Gefälle maximal ist. Dies führt dazu, dass der Spaltwirbel für seine Größe stark unterversorgt wird, was dazu führt, dass sich dieser in einem größeren Winkel von der Oberfläche der Saugseite entfernt. Dies führt zu besonders geringen Spaltverlusten bei einem Axialverdichter, dessen Rotor mit den erfindungsgemäßen Verdichterlaufschaufeln ausgestattet ist.If a velocity distribution of the gas adjusts along the suction side contour from the leading edge point to the trailing edge point when flowing around with a gas, at least some, preferably all blade tip-side profiles are selected such that a maximum velocity occurs at a maximum location whose projection point is perpendicular to the chord on the chord from the leading edge point is between 10% and 30% of the length of the chord. This measure ensures a particularly large impulse for the formation of the crevice vortex. In order then to keep the radial gap losses as low as possible, it is provided that the energy supply for the gap vortex decreases particularly rapidly, ie, on a particularly short length, particularly rapidly. For this purpose, it is provided that the relevant profiles are selected so that in a subsequent to the maximum location suction side portion of Saugseitenenkontur with a maximum length of 15% of the length of the chord, a gradient of the speed sets, the slope is maximum. As a result, the gap vortex is severely underserved for its size, which causes it to move away from the surface of the suction side at a larger angle. This leads to particularly low gap losses in an axial compressor whose rotor is equipped with the compressor rotor blades according to the invention.
Die weitere Erläuterung der Erfindung erfolgt anhand des in der Zeichnung dargestellten Ausführungsbeispiels.The further explanation of the invention is based on the embodiment shown in the drawing.
Im Einzelnen zeigen:
- FIG 1
- ein erfindungsgemäßes Profil und ein aus dem Stand der Technik bekanntes Profil für eine Verdichterlaufschaufel;
- FIGs 2, 3, 6
- die Geschwindigkeitsverteilungen entlang der Saugseitenkontur und der Druckseitenkontur des erfindungsgemäßen Profils und des herkömmlichen Profils aus
FIG 1 ; - FIG 4
- die Kontur von Saugseite und Druckseite des erfindungsgemäßen Profils für eine Verdichterlaufschaufel;
- FIG 5
- den Krümmungsverlauf des erfindungsgemäßen Profils entlang der Saugseite und Druckseite;
- FIG 7
- die Massenstromdichte des Massenstrom in einem Radialspalt bei Verwendung eines erfindungsgemäßen Profils für eine freistehende Schaufelblattspitze;
- FIG 8
- die Topologie der Spaltwirbeltrajektoren für das erfindungsgemäße Profil und das konventionelle Profil und
- FIG 9, 10
- perspektivische Darstellungen auf die freistehende Schaufelblattspitze einer erfindungsgemäßen Verdichterlaufschaufel.
- FIG. 1
- an inventive profile and a known from the prior art profile for a compressor blade;
- FIGS. 2, 3, 6
- the velocity distributions along the suction side contour and the pressure side contour of the profile according to the invention and of the conventional profile
FIG. 1 ; - FIG. 4
- the contour of the suction side and pressure side of the profile according to the invention for a compressor blade;
- FIG. 5
- the curvature of the profile according to the invention along the suction side and pressure side;
- FIG. 7
- the mass flow density of the mass flow in a radial gap when using a profile according to the invention for a free-standing blade tip;
- FIG. 8
- the topology of the Spaltwirbeltrajektoren for the inventive profile and the conventional profile and
- 9, 10
- perspective views of the freestanding airfoil tip of a compressor blade according to the invention.
In
In dem Rotor eines Axialverdichters befestigt ist die Orientierung des Schaufelblatts 12 dergestalt, dass sich das Schaufelblatt 12 von der Vorderkante 18 zur Hinterkante 20 in etwa der Axialrichtung des Axialverdichters erstreckt, welche in dem zu
Eine Spannweite des Schaufelblatts 12 wird somit in Richtung der Z-Achse erfasst.A span of the
Bekanntermaßen werden Verdichterlaufschaufeln 10 für Axialverdichter dergestalt ausgelegt, dass entlang einer nicht dargestellten geradlinigen oder auch geringfügig gekrümmten Stapelachse unterschiedliche oder auch identische Profile aneinandergereiht werden, deren eingeschlossener Raum das Schaufelblatt 12 vorgeben. Jedes Profil weist prinzipiell einen Flächenschwerpunkt auf, der auf der Stapelachse liegt.As is known,
Unter einem Profil wird im Detail ein endloser Linienzug verstanden, welcher eine Saugseitenkontur und eine Druckseitenkontur eines Schaufelblatts umfasst. Die Konturen treffen sich einerseits in einem Vorderkantenpunkt und andererseits in einem Hinterkantenpunkt, welche auch Teil des Profils sind und dabei auf der entsprechenden Kante des Schaufelblatts liegen. Für jede entlang der Spannweite vorhandene Schaufelblatthöhe existiert ein solches Profil. Insofern stellt das Profil die Kontur eines Querschnitts durch das Schaufelblatt für eine bestimmte Schaufelblatthöhe dar, wobei der Querschnitt entweder senkrecht zur Radialrichtung des Axialverdichters oder auch dazu geringfügig geneigt - entsprechend einer Ringkanalkontraktion - orientiert sein kann. In
Das in
In
Neben der Skelettlinie 32 werden im Stand der Technik Profile auch mit Hilfe einer geradlinigen Profilsehne definiert. Die Profilsehne ist eine Gerade, welche sich vom Vorderkantenpunkt bis zum Hinterkantenpunkt erstreckt. In
Selbstverständlich existiert auch für das aus dem Stand der Technik bekannte Profil 28 eine Profilsehne. Diese Profilsehne ist jedoch der Klarheit halber in
Die normierte Profilsehne 34 wird dabei mit x/c angegeben. Das in
Kennzeichnend für eine erfindungsgemäße Verdichterlaufschaufel 10 ist, dass die Skelettlinien 32 der schaufelspitzseitigen Profile 30 mindestens zwei Wendepunkte 36, 38 aufweisen. Das bedeutet, dass die Skelettlinie 32 stromauf des vordersten Wendepunkts 36 einen ersten Krümmungsabschnitt A mit einer ersten Krümmung aufweist und stromab des ersten Wendepunkts 36 bis zum zweiten Wendepunkt 38 einen zweiten Krümmungsabschnitt B mit einer zweiten Krümmung. Die Vorzeichen der ersten Krümmung und der zweiten Krümmung sind dabei unterschiedlich. Stromab des zweiten Krümmungsabschnitts B schließt sich im zweiten Wendepunkt 38 ein dritter Krümmungsabschnitt C an, dessen Krümmung wiederum ein anderes Vorzeichen aufweist als das der zweiten Krümmung. Durch die unterschiedlichen Vorzeichen der Krümmungen der Krümmungsabschnitte A, B, C weisen auch Saugseitenkontur 42 und Druckseitenkontur 40 entsprechende Krümmungsabschnitte auf: die hauptsächlich konvex gekrümmte Saugseitenkontur 42 weist in einem Abschnitt D zwischen 35% und 50% der relativen Sehnenlänge eine konkave Gestalt auf. Die hauptsächlich konkav gekrümmte Druckseitenkontur 40 weist einen Abschnitt E auf, welcher konvex ist. Entgegen den bisherigen, aus dem Stand der Technik bekannten Profilformen für Verdichterlaufschaufeln von Axialverdichtern führt dieser konkave Saugseitenkonturabschnitt D und konvexe Druckseitenkonturabschnitt E zu einer lokal abknickenden Profilierung, die hier als Profilknick bezeichnet wird.Characteristic of a
Es ist dabei vorgesehen, dass der erste der beiden Wendepunkte 36 bei senkrechter Projektion auf die Profilsehne auf dieser einen ersten Projektionspunkt AP vorgibt, welcher vom Vorderkantenpunkt 24 zwischen 10 % und 30% der Länge der Profilsehne 34 entfernt ist und bei der der zweite der beiden Wendepunkte 38 bei senkrechter Projektion auf die Profilsehne 34 auf dieser einen zweiten Projektionspunkt BP vorgibt, welcher vom Vorderkantenpunkt 24 zwischen 30% und 50% der Länge der Profilsehne 34 entfernt ist. Des Weiteren geht aus
Des Weiteren ist vorgesehen, dass die Skelettlinie 32 von schaufelspitzseitigen Profilen 30 in einem hinteren Abschnitt G eine größere Krümmung aufweist als die hinteren Abschnitte von Skelettlinien der übrigen Profile 28 des Schaufelblatts 12. Der hintere Abschnitt G der Skelettlinie 32 erstreckt sich vom Abschnittsanfangspunkt GA bis zu dem Hinterkantenpunkt 26 der Skelettlinie 32, welcher Abschnittsanfangspunkt GA bei Projektion auf die Profilsehne 34 auf dieser einen Projektionspunkt GP vorgibt, welcher vom Vorderkantenpunkt 24 maximal 60 % der Länge der Profilsehne 34 entfernt ist.Furthermore, it is provided that the
Des Weiteren geht aus der
In
Durch die sich einstellenden Geschwindigkeitsverteilungen 44, 46 tritt eine höhere Belastung im hinteren Abschnitt G des schaufelspitzseitigen Profils 30 auf, da die Fläche zwischen saugseitiger Geschwindigkeitsverteilung 44 und druckseitiger Geschwindigkeitsverteilung 46 für einen hinteren Profilabschnitt von 60% der Profilsehne 34 bis 100% der Profilsehne 34 größer ist als die entsprechende Fläche zwischen den entsprechenden Geschwindigkeitsverteilungen 48, 50 des aus dem Stand der Technik bekannten herkömmlichen Profils 28. Da das herkömmliche Profil 28 für nicht schaufelspitzseitige Bereiche der Verdichterlaufschaufel 10 vorgesehen ist, tritt somit entlang der Schaufelblatthöhe ein Wechsel der Belastung vom vorderen Abschnitt ("Front-Loaded-Design") zum hinteren Abschnitt des Schaufelblattes ("Aft-Loaded-Design"). Charakteristisch ist, dass die Profilform des Schaufelblatts 12 schaufelspitzseitig so gewählt ist, dass der Geschwindigkeitsanstieg zu einem Geschwindigkeitsmaximum in einem Maximumsort bei ca. 20% der Länge der Profilsehne 34 in einem möglichst kurzen Profilsehnenabschnitt erreicht wird. Weiter ist in den sich an den Maximumsort anschließenden nachfolgenden 15% der Profilsehne 34 eine vergleichsweise große Abnahme der Geschwindigkeit der saugseitigen Gasströmung in einem möglichst kurzen Profilsehnenabschnitt gewünscht. Insbesondere dieser Geschwindigkeitsverlauf entlang der Saugseitenwand 16 führt dazu, dass ein für die Spaltverluste verantwortlicher Spaltwirbel mit vergleichsweise mehr Energie erzeugt wird, wobei durch den großen Geschwindigkeitsrückgang nach dem Erreichen des Geschwindigkeitsmaximums diesem jedoch nur vergleichsweise wenig Energie weiter zugeführt wird, was ihn dann umso mehr schwächt. Dies führt insgesamt zu reduzierten Radialspaltverlusten.Due to the self-adjusting
Die Abbildungen 3 bis 8 geben einen weiteren Überblick über die durch den Profilknick auftretenden Effekte. In
Durch die Entlastung der Schaufelblattspitze 22 im Vorderkantenbereich wird die Bildung des Spaltwirbels verzögert. Anschließend folgt im Bereich des saugseitigen Profilknicks ein starker Anstieg des Spaltmassenstroms, der den Spaltwirbel antreibt und von der Saugseitenwand 16 des schaufelspitzseitigen Profils 30 wegtreibt. In der Zone nach dem saugseitigen Profilknick fällt die Massenstromdichte im Radialspalt wesentlich stärker ab als bei der herkömmlichen Profilierung 28. Insgesamt ergibt sich so ein geringerer Spaltmassenstrom. Die Spaltwirbellinie knickt nach dem saugseitigen Profilknick mit einem höheren Winkel von der Saugseitenwand 16 ab als dies bei der herkömmlichen Profilierung 28 der Fall ist. Sie läuft fortan mit einem größeren Abstand von der Saugseitenwand 16 weg als bei der herkömmlichen Profilierung 28. Insgesamt verursacht die Spaltströmung bei der modifizierten Profilierung 30 somit weniger Verluste und eine geringere Verblockung des Strömungsfeldes am Austritt der Laufschaufelreihe. Um trotz der Entlastung des Profils 30 in der vorderen Hälfte der Profilsehne 34 noch eine hohe Arbeitsumsetzung zu erreichen, wird die Belastung durch eine höhere Wölbung des Profils 30 in den hinteren 40% der Profilsehne 34 erhöht.By relieving the
Besonders bevorzugt ist die Ausgestaltung, bei der das Zusammenspiel der Verschiebung der Belastung von vorne nach hinten mit der besonderen Krümmungsverteilung des neuen Profils 30 bei etwa 20% der Profilsehne 34 ausmacht.Particularly preferred is the embodiment in which the interaction of the displacement of the load from front to back with the particular curvature distribution of the
Insbesondere die in der nachfolgenden Tabelle angegebenen Verdichterschaufeln, deren übrige Profile weitestgehend der in
Insgesamt betrifft die Erfindung somit eine Verdichterlaufschaufel 10 für axial durchströmte Verdichter vorzugsweise stationärer Gasturbinen. Die Erfindung sieht vor, dass zur Reduzierung von Radialspaltverlusten die Skelettlinie 32 der schaufelspitzseitigen Profile 30 des Schaufelblatts 12 der Verdichterlaufschaufel 10 mindestens zwei Wendepunkte 36, 38 aufweisen. Durch das Vorhandensein zweier Wendepunkte 36, 38 ergeben sich für die Saugseitenkontur 42 im Abschnitt von 35% bis 50% ein Saugseitenkonturabschnitt D, der konkav ausgebildet ist und für die Druckseitenkontur 40 ein Druckseitenkonturabschnitt E, welcher konvex ausgebildet ist. Mit Hilfe dieser Geometrie ist es möglich, verlustärmere Spaltwirbel zu generieren, um den Gesamtwirkungsgrad eines mit diesen Verdichterlaufschaufeln 10 ausgestatteten Axialverdichters zu erhöhen.Overall, the invention thus relates to a
Claims (17)
- Compressor rotor blade (10) for an axial compressor, having a curved blade airfoil (12) which comprises a pressure-side wall (14) and a suction-side wall (16) which, on the one hand, extend in each case from a common leading edge (18) to a common trailing edge (20) and, on the other hand, extend from a fastening-side blade airfoil end to a blade airfoil tip (22), forming a span,
wherein for each blade airfoil height which exists along the span the blade airfoil (12) has• a profile (28, 30) with a suction-side contour (42) and a pressure-side contour (40),• an at least partially curved camber line (32) and• a rectilinear profile chord (34),which contours (40, 42), camber line (32) and profiled chord (34) extend in each case from a leading edge point (24) to a trailing edge point (26),
characterized in that
at least some of the camber lines (32) of the blade tip-side profiles (30) have at least two inflection points (36, 38). - Compressor rotor blade (10) according to Claim 1,
in which the first (36) of the two inflection points, with a perpendicular projection onto the profile chord (34), defines a first projection point (AP) on this, which is at a distance of between 10% and 30% of the length of the profile chord (34) from the leading edge point (24) and
in which the second (38) of the two inflection points, with a perpendicular projection onto the profile chord (34), defines a second projection point (BP) on this, which is at a distance of between 30% and 50% of the length of the profile chord (34) from the leading edge point (24). - Compressor rotor blade (10) according to Claim 1 or 2,
in which the camber lines (32) comprise a front section (H), which extends from the leading edge point (24) to a section end point (HE), the projection point (HP) of which front section, with a perpendicular projection onto the profile chord (34), is at a distance of between 2% and 10% of the length of the profile chord (34) from the leading edge point (24),
wherein at least some of the front sections (H) of the blade tip-side profiles (30) have a curvature radius which is larger than 100-times the profile chord (34). - Compressor rotor blade (10) according to Claim 3,
in which each front section (H) has an incident angle in relation to an oncoming gas flow, wherein at least some of the incident angles of the blade tip-side profiles (30) are smaller than the incident angles of the remaining profiles (28) of the blade airfoil (12). - Compressor rotor blade (10) according to Claim 4,
in which the incident angle of the front section (H) of blade tip-side profiles (30) is less than 10°. - Compressor rotor blade (10) according to one of Claims 3 to 5,
of which the suction-side contour (42) and the pressure-side contour (40) of blade tip-side profiles (30) in the front section (H) of the camber line (32) are of a symmetrical design. - Compressor rotor blade (10) according to one of Claims 1 to 6,
in which at least some of the leading edge points (24) of the blade tip-side profiles (30) are arranged further upstream than the leading edge points (24) of the remaining profiles (28) of the blade airfoil (12). - Compressor rotor blade (10) according to one of Claims 1 to 7,
in which only the camber lines (32) of the profiles (30) existing in the region of the blade airfoil tip (22) have two inflection points (36, 38). - Compressor rotor blade (10) according to one of Claims 1 to 8,
in which the camber lines (32) comprise a rear section (G) which extends from a section starting point (GA) to the trailing edge point (26),
wherein the rear section (G) of at least some of the blade tip-side camber lines (32) has a greater curvature than the rear sections of camber lines (32) of the remaining profiles of the blade airfoil (12). - Compressor rotor blade (10) according to Claim 9,
in which the section starting point (GA), with a perpendicular projection onto the profile chord (34), defines a projection point (GP) which is arranged on the profile chord (34) and is at a distance of 60% at most of the length of the profile chord (34) from the leading edge point (24) . - Compressor rotor blade (10) according to one of Claims 1 to 10,
in which the suction-side contour (42) and the pressure-side contour (40) of blade tip-side profiles (30) have at least two inflection points in each case. - Compressor rotor blade (10) according to one of Claims 1 to 11,
in which the blade airfoil tip (22) is unshrouded. - Compressor rotor blade (10) according to one of Claims 1 to 12,
in which at least some of the blade tip-side profiles (30) are configured in the "aft-loaded design" and the remaining profiles (28) are configured in the "front-loaded design". - Compressor rotor blade (10) according to one of Claims 1 to 13,
in which the blade airfoil tip side comprises a region (43) of 20% at most of the span of the blade airfoil tip (22) . - Compressor rotor blade (10) according to one of Claims 1 to 14,
wherein a velocity distribution (44) of the gas is established along the suction-side contour (42) from the leading edge point (24) to the trailing edge point (26) during a circumflow by a gas,
wherein at least some of the blade tip-side profiles (30) are selected so that at a maximum location a velocity maximum occurs, the projection point of which velocity maximum, with a perpendicular projection onto the profile chord (34), is at a distance of between 10% and 30% of the length of the profile chord (34) from the leading edge point (24). - Compressor rotor blade (10) according to Claim 15,
in which the profiles (30) in question are selected so that in a suction-side section of the suction-side contour (42) adjoining the maximum location, with a length of 15% at most of the length of the profile chord (34), a gradient of the velocity is established, the slope of which is maximum. - Axial compressor with a rotor,
on the outer periphery of which at least one rotor blade ring with compressor rotor blades (10), according to one of Claims 1 to 16, is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10743094.4A EP2473743B1 (en) | 2009-09-04 | 2010-08-10 | Compressor blade for an axial compressor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09011392A EP2299124A1 (en) | 2009-09-04 | 2009-09-04 | Rotor blade for an axial compressor |
PCT/EP2010/061580 WO2011026714A1 (en) | 2009-09-04 | 2010-08-10 | Compressor blade for an axial compressor |
EP10743094.4A EP2473743B1 (en) | 2009-09-04 | 2010-08-10 | Compressor blade for an axial compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2473743A1 EP2473743A1 (en) | 2012-07-11 |
EP2473743B1 true EP2473743B1 (en) | 2015-07-29 |
Family
ID=41467191
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09011392A Withdrawn EP2299124A1 (en) | 2009-09-04 | 2009-09-04 | Rotor blade for an axial compressor |
EP10743094.4A Active EP2473743B1 (en) | 2009-09-04 | 2010-08-10 | Compressor blade for an axial compressor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09011392A Withdrawn EP2299124A1 (en) | 2009-09-04 | 2009-09-04 | Rotor blade for an axial compressor |
Country Status (8)
Country | Link |
---|---|
US (1) | US8911215B2 (en) |
EP (2) | EP2299124A1 (en) |
JP (1) | JP5678066B2 (en) |
CN (1) | CN102483072B (en) |
ES (1) | ES2548254T3 (en) |
HU (1) | HUE025789T2 (en) |
RU (1) | RU2534190C2 (en) |
WO (1) | WO2011026714A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11927109B2 (en) | 2019-12-20 | 2024-03-12 | MTU Aero Engines AG | Gas turbine blade |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201003084D0 (en) | 2010-02-24 | 2010-04-14 | Rolls Royce Plc | An aerofoil |
EP2703600B1 (en) * | 2011-04-28 | 2024-01-17 | IHI Corporation | Turbine blade |
GB201119531D0 (en) | 2011-11-14 | 2011-12-21 | Rolls Royce Plc | Aerofoils |
FR2991373B1 (en) * | 2012-05-31 | 2014-06-20 | Snecma | BLOWER DAWN FOR AIRBORNE AIRCRAFT WITH CAMBRE PROFILE IN FOOT SECTIONS |
DE102012222953A1 (en) | 2012-12-12 | 2014-06-26 | Honda Motor Co., Ltd. | Wing profile for an axial flow compressor |
CN103867489B (en) * | 2012-12-14 | 2017-06-16 | 中航商用航空发动机有限责任公司 | Compressor blade, compressor and aero-engine |
FR3003908B1 (en) * | 2013-03-28 | 2017-07-07 | Turbomeca | DIFFUSER WITH FINES OF A RADIAL OR MIXED COMPRESSOR |
CN103470534A (en) * | 2013-08-23 | 2013-12-25 | 哈尔滨汽轮机厂有限责任公司 | High-pressure inlet guide blade of gas compressor for gas turbine |
US9790796B2 (en) * | 2013-09-19 | 2017-10-17 | General Electric Company | Systems and methods for modifying a pressure side on an airfoil about a trailing edge |
US9845684B2 (en) * | 2014-11-25 | 2017-12-19 | Pratt & Whitney Canada Corp. | Airfoil with stepped spanwise thickness distribution |
JP6364363B2 (en) * | 2015-02-23 | 2018-07-25 | 三菱日立パワーシステムズ株式会社 | Two-shaft gas turbine and control device and control method thereof |
EP3088663A1 (en) * | 2015-04-28 | 2016-11-02 | Siemens Aktiengesellschaft | Method for profiling a blade |
US10323528B2 (en) * | 2015-07-01 | 2019-06-18 | General Electric Company | Bulged nozzle for control of secondary flow and optimal diffuser performance |
JP5905985B1 (en) * | 2015-08-18 | 2016-04-20 | 山洋電気株式会社 | Axial flow fan and serial type axial flow fan |
JP6802270B2 (en) * | 2015-10-07 | 2020-12-16 | ミネベアミツミ株式会社 | Impeller and axial fan equipped with the impeller |
EP3205885A1 (en) * | 2016-02-10 | 2017-08-16 | Siemens Aktiengesellschaft | Compressor rotor blade and method for profiling said blade |
US11428241B2 (en) * | 2016-04-22 | 2022-08-30 | Raytheon Technologies Corporation | System for an improved stator assembly |
CN106089801B (en) * | 2016-08-11 | 2018-08-24 | 中国航空工业集团公司沈阳发动机设计研究所 | A kind of compressor blade formative method |
US10458426B2 (en) | 2016-09-15 | 2019-10-29 | General Electric Company | Aircraft fan with low part-span solidity |
US10774650B2 (en) * | 2017-10-12 | 2020-09-15 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US20200088161A1 (en) * | 2018-09-17 | 2020-03-19 | General Electric Company | Wind Turbine Rotor Blade Assembly for Reduced Noise |
US11608743B1 (en) * | 2022-02-04 | 2023-03-21 | General Electric Company | Low-noise blade for an open rotor |
US12049306B2 (en) | 2022-02-04 | 2024-07-30 | General Electric Company | Low-noise blade for an open rotor |
US11873730B1 (en) * | 2022-11-28 | 2024-01-16 | Rtx Corporation | Gas turbine engine airfoil with extended laminar flow |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU521401A1 (en) * | 1971-10-01 | 1976-07-15 | Рижский Краснознаменный Институт Инженеров Гражданской Авиации Имени Ленинского Комсомола | Axial compressor blade |
GB2106192A (en) * | 1981-09-24 | 1983-04-07 | Rolls Royce | Turbomachine blade |
SU1751430A1 (en) | 1989-05-03 | 1992-07-30 | Харьковский авиационный институт им.Н.Е.Жуковского | Blade of axial-flow compressor |
US5492448A (en) * | 1993-03-13 | 1996-02-20 | Westland Helicopters Limited | Rotary blades |
JP3186346B2 (en) * | 1993-06-28 | 2001-07-11 | 石川島播磨重工業株式会社 | Airfoil of compressor cascade |
JPH08114199A (en) * | 1994-10-19 | 1996-05-07 | Hitachi Ltd | Axial flow compressor |
JP3867812B2 (en) * | 1995-07-17 | 2007-01-17 | 石川島播磨重工業株式会社 | Axial compressor blade |
EP0991866B2 (en) * | 1997-06-24 | 2011-06-01 | Siemens Aktiengesellschaft | Compressor blade and use of the same |
US6116856A (en) * | 1998-09-18 | 2000-09-12 | Patterson Technique, Inc. | Bi-directional fan having asymmetric, reversible blades |
US6331100B1 (en) | 1999-12-06 | 2001-12-18 | General Electric Company | Doubled bowed compressor airfoil |
US6299412B1 (en) * | 1999-12-06 | 2001-10-09 | General Electric Company | Bowed compressor airfoil |
US20050141991A1 (en) * | 2001-10-17 | 2005-06-30 | Frutschi Hans U. | Method for conditioning a compressor airflow and device therefor |
US7195456B2 (en) * | 2004-12-21 | 2007-03-27 | United Technologies Corporation | Turbine engine guide vane and arrays thereof |
DE102005025213B4 (en) * | 2005-06-01 | 2014-05-15 | Honda Motor Co., Ltd. | Blade of an axial flow machine |
JP4863162B2 (en) | 2006-05-26 | 2012-01-25 | 株式会社Ihi | Fan blade of turbofan engine |
-
2009
- 2009-09-04 EP EP09011392A patent/EP2299124A1/en not_active Withdrawn
-
2010
- 2010-08-10 EP EP10743094.4A patent/EP2473743B1/en active Active
- 2010-08-10 JP JP2012527268A patent/JP5678066B2/en not_active Expired - Fee Related
- 2010-08-10 US US13/393,264 patent/US8911215B2/en active Active
- 2010-08-10 CN CN201080039406.0A patent/CN102483072B/en active Active
- 2010-08-10 ES ES10743094.4T patent/ES2548254T3/en active Active
- 2010-08-10 RU RU2012112930/06A patent/RU2534190C2/en not_active IP Right Cessation
- 2010-08-10 WO PCT/EP2010/061580 patent/WO2011026714A1/en active Application Filing
- 2010-08-10 HU HUE10743094A patent/HUE025789T2/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11927109B2 (en) | 2019-12-20 | 2024-03-12 | MTU Aero Engines AG | Gas turbine blade |
Also Published As
Publication number | Publication date |
---|---|
EP2473743A1 (en) | 2012-07-11 |
CN102483072B (en) | 2015-04-08 |
JP2013503999A (en) | 2013-02-04 |
JP5678066B2 (en) | 2015-02-25 |
ES2548254T3 (en) | 2015-10-15 |
EP2299124A1 (en) | 2011-03-23 |
RU2534190C2 (en) | 2014-11-27 |
HUE025789T2 (en) | 2016-05-30 |
US20120230834A1 (en) | 2012-09-13 |
RU2012112930A (en) | 2013-10-10 |
CN102483072A (en) | 2012-05-30 |
US8911215B2 (en) | 2014-12-16 |
WO2011026714A1 (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2473743B1 (en) | Compressor blade for an axial compressor | |
EP2623793B1 (en) | Flow machine with blade row | |
EP3176370B1 (en) | Blade cluster for a flow machine | |
DE102005025213B4 (en) | Blade of an axial flow machine | |
EP2626515B1 (en) | Tandem blade group assembly | |
EP0916812B1 (en) | Final stage for an axial turbine | |
EP0799973B1 (en) | Wall contour for an axial turbomachine | |
EP2132414B1 (en) | Shiplap arrangement | |
WO2007113149A1 (en) | Guide blade for turbomachinery, in particular for a steam turbine | |
EP2696031B1 (en) | Blade for a flow machine engine and corresponding flow machine engine. | |
EP3564483A1 (en) | Blade base for a turbine blade | |
DE1628237A1 (en) | Supersound grille | |
EP2538024A1 (en) | Blade of a turbomaschine | |
DE102014115475A1 (en) | Trailing edge rounding of a gas turbine guide vane | |
EP0978632A1 (en) | Turbomachine with intermediate blades as flow dividers | |
EP2607625B1 (en) | Turbomachine and stage of turbomachine | |
EP3056677B1 (en) | Blade and flow engine | |
EP2410131A2 (en) | Rotor of a turbomachine | |
WO2005116404A1 (en) | Vane comprising a transition zone | |
EP3401504A1 (en) | Blade grid | |
EP2896788B1 (en) | Extruded profile for producing a guide vane and fabrication method | |
EP3109520B1 (en) | Seal carrier, guide blade assembly and fluid flow engine | |
EP3719258B1 (en) | Rotor blade of a turbomachine | |
EP3163019B1 (en) | Rotor blade | |
EP3404211A1 (en) | Blade cascade segment for a turbine with contoured platform surface, corresponding blade cascade, blade channel, platform, turbine and aircraft engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V. |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V. Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150224 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 739552 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010009964 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2548254 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151030 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151029 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151130 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151129 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010009964 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E025789 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150810 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 739552 Country of ref document: AT Kind code of ref document: T Effective date: 20150810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUEA Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: FH1C Ref country code: HU Ref legal event code: GB9C Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Free format text: FORMER OWNER(S): SIEMENS AKTIENGESELLSCHAFT, DE; DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E. V., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170608 AND 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20170918 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: SIEMENS AG, DE Effective date: 20170918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20181004 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20181107 Year of fee payment: 9 Ref country code: ES Payment date: 20181123 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190811 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502010009964 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNERS: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502010009964 Country of ref document: DE Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Free format text: FORMER OWNERS: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE; SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502010009964 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220818 AND 20220824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502010009964 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240828 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240826 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240826 Year of fee payment: 15 |