[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2184803B1 - Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne - Google Patents

Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne Download PDF

Info

Publication number
EP2184803B1
EP2184803B1 EP09175194.1A EP09175194A EP2184803B1 EP 2184803 B1 EP2184803 B1 EP 2184803B1 EP 09175194 A EP09175194 A EP 09175194A EP 2184803 B1 EP2184803 B1 EP 2184803B1
Authority
EP
European Patent Office
Prior art keywords
differential
strip
conducting strips
filter
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09175194.1A
Other languages
German (de)
English (en)
Other versions
EP2184803A1 (fr
Inventor
Raffi Bourtoutian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2184803A1 publication Critical patent/EP2184803A1/fr
Application granted granted Critical
Publication of EP2184803B1 publication Critical patent/EP2184803B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/006Meander lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/026Coplanar striplines [CPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/04Interdigital lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to a coplanar differential bi-ribbon delay line. It also relates to a higher order differential filter and a filter antenna equipped with such a bi-ribbon delay line.
  • Radio frequency transmit / receive systems powered by differential electrical signals are very attractive for current and future wireless communications systems, especially for autonomous communicating object concepts.
  • a differential supply is a supply of two signals of equal amplitude in phase opposition. It helps reduce, or even eliminate, unwanted "common mode” noise in transmit and receive systems.
  • a non-differential power supply causes the radiation of an undesired cross component due to the common mode flowing on the non-symmetrical power cables.
  • the use of a differential power supply eliminates the cross-radiation of the measurement cables and thus makes it possible to obtain reproducible measurements independent of the measurement context as well as perfectly symmetrical radiation diagrams.
  • the "push-pull" power amplifiers whose structure is differential have several advantages, such as the doubling of the output power and the elimination of higher order harmonics.
  • the low noise differential amplifiers offer several perspectives in terms of reduction of the noise factor. Also, the use of a differential structure prevents unwanted triggering of the oscillators by common mode noise.
  • a differential bi-ribbon delay line as described in document WO 2006/088227 may be useful for connecting two differential devices, such as for example two filter devices, so as to form a higher order filter.
  • the differential bi-ribbon delay line must have the characteristics of a quarter-wave phase shift line ( ⁇ / 2) to be used as an impedance inverter.
  • a differential bi-band delay line may be useful in a large number of applications requiring the connection of differential devices, including as a phase-shifter.
  • a phase-shifter for example, in a power application of an antenna array, where several different antennas are powered by one or more sources, at least one phase shifter of this type can be advantageously envisaged.
  • differential CPS CoPlanar Stripline
  • coplanar band line For “coplanar band line”
  • differential CPS CoPlanar Stripline
  • the differential CPS technology makes it possible to benefit from the advantages of the differential structures while allowing a simple coplanar integration with discrete elements: it is not necessary to create connections of type via to connect the elements between them.
  • ground plane makes it possible to envisage a simple and less disturbing connection with, for example, a differential antenna.
  • a bi-ribbon line for propagation of a differential signal comprises two rectilinear conductive strips arranged in parallel on the same face of a dielectric substrate and each comprising a first and a second end.
  • the first two ends of the two conductive strips form two conductors of a first bi-ribbon port connecting to a first external differential device.
  • the two second ends of the two conductive strips form two conductors of a second bi-ribbon port connecting to a second external differential device.
  • a differential bi-band delay line designed in this way can optimally connect to external devices designed in differential CPS technology.
  • the delay that it induces and its impedance are directly related to its length, the spacing between its two conductive strips and their width.
  • bi-ribbon delay line having a better compactness while maintaining the same performance in terms of phase shift and impedance matching as a bi-ribbon propagation line. predetermined phase shift delay.
  • the subject of the invention is therefore a coplanar differential bi-ribbon delay line, comprising two conductive strips disposed on the same face of a dielectric substrate and each comprising a first and a second end, the first two ends of the two conductive strips forming two conductors of a first bi-ribbon port connecting to a first external differential device, the two second ends of the two conductive strips forming two conductors of a second bi-ribbon port connecting to a second external differential device, this bi-ribbon line wafer being further shaped in the form of a printed circuit for presenting structural discontinuities generating at least one impedance jump and at least one capacitive coupling with interdigitated capacitance between its two conducting strips so as to reproduce a predetermined phase shift , the interdigital capacitance being formed by at least one pair of fingers ductors connected respectively by one of their ends to the two conductive strips.
  • the printed circuit of the L, C type thus created has, thanks to its discontinuities (impedance jump and capacitive coupling), an inductance L and a capacitance C such that it can reproduce the phase shift characteristics of a propagation line.
  • a phase shift is thus created which, in the case of a propagation line, is normally a function of its length.
  • At least one of the structural discontinuities comprises a variation of the distance between the two conductive strips for performing an impedance jump.
  • a first discontinuity of increasing the distance between the two conductive strips and a second discontinuity of reduction of the distance between the two conductive strips form an area of the substrate in which the bi-ribbon line has a spacing between its conductive strips greater than the spacing between the two conductors of each of its bi-ribbon connection ports.
  • the interdigitated capacitance is formed in the area of the substrate in which the bi-ribbon line has a greater spacing between its conductive strips, the pair of conductive fingers extending laterally inwardly of this area from two conductive strips.
  • the structure discontinuities are generating at least one impedance jump and at least one capacitive coupling between its two conductive strips so as to reproduce a quarter-wave phase shift.
  • the subject of the invention is also a higher order differential filter comprising two coplanar coupled resonator differential filtering devices and a bi-band transmission line of a differential signal as defined above, this bi-ribbon line being connected, via its first bi-ribbon port, to one of the two filtering devices and, via its second bi-ribbon port, to the other of the two filtering devices.
  • each of the two coplanar coupled resonator differential filtering devices comprises a pair of coupled resonators disposed on the same face of a dielectric substrate, each resonator comprising two conductive strips positioned symmetrically with respect to a plane perpendicular to the face on which the resonator is arranged, these two conductive strips being respectively connected to two conductors of a differential bi-ribbon port of the corresponding differential filtering device, each conducting band of each resonator being further folded back on itself so as to form a capacitive coupling between its two ends.
  • each conductive strip makes it possible to envisage a smaller filter size, for geometrical reasons. Furthermore, the fact that this refolding is designed to form a capacitive coupling between the two ends of each conductive strip creates at least one additional frequency transmission zero ensuring high bandwidth and out-of-band rejection performance. filtering device. Finally, the capacitive coupling by folding also generating a magnetic coupling, the size of each conductive strip can be further reduced while ensuring the same filtering function of the assembly.
  • the subject of the invention is also a differential dipole filter antenna comprising at least one higher order differential filter as defined above.
  • a differential dipole filter antenna according to the invention may comprise a radiating structure shaped to integrate in its external dimensions said differential filter of higher order.
  • the coplanar differential bi-ribbon delay line 10 shown in FIG. figure 1 comprises two conductive strips 12 and 14 disposed on the same flat face 16 of a dielectric substrate.
  • the conductive strip 12 comprises a first end E1 and a second end S1.
  • the second conductive strip 14 comprises a first end E2 and a second end S2.
  • the first two ends E1 and E2 of the two conductive strips 12 and 14 respectively form two conductors of a first bi-ribbon port 18 for connection to a first external differential device (not shown) and the two second ends S1 and S2 of the two bands. Conductors respectively form two conductors of a second bi-ribbon port 20 for connection to a second external differential device (not shown).
  • the two conductive strips 12 and 14 are rectilinear. They are also parallel and symmetrical with respect to a plane P perpendicular to the plane face 16 and forming a virtual electric ground plane of the differential bi-ribbon line. They are of a width w and distant from each other by a distance s, these two parameters w and s defining the characteristic impedance of the bi-ribbon line 10.
  • this length I defining the phase shift generated by the bi-ribbon line on a differential signal that it propagates and therefore its impedance matching. This is why, for a predetermined phase shift, for example a quarter-wave phase shift, a certain length of this bi-ribbon propagation line is necessary, which generates an additional bulk of the device in which the bi-ribbon line 10 is integrated.
  • This electrical circuit comprises two conducting wires 22 and 24 between which a capacitor C is arranged in parallel. Each portion of conducting wire 22 or 24, between one of the terminals of the capacitor C and one of the ends E1, E2, S1 and S2 of the circuit further comprises an inductance L.
  • This electric circuit model produces a bi-ribbon delay line, of predetermined phase shift and obtained by given values of the capacitance C and inductances L.
  • the same electric circuit with discrete elements L and C can be realized using a bi-ribbon line 30 such as that shown on FIG. figure 3 according to one embodiment of the invention.
  • This bi-ribbon line 30 can therefore be modeled by the same electrical circuit as the bi-ribbon line 10.
  • the bi-ribbon line 10 Like the bi-ribbon line 10, it comprises two conductive strips 32 and 34 disposed on the same plane face 36 of a dielectric substrate. But unlike the bi-ribbon line 10, the two conductive strips 32 and 34 are shaped as a printed circuit having discontinuities in structure.
  • the conductive strip 32 comprises a first end E'1 and a second end S'1.
  • the second conductive strip 34 comprises a first end E'2 and a second end S'2.
  • the first two ends E'1 and E'2 of the two conductive strips 32 and 34 respectively form two conductors of a first bi-ribbon port 38 for connection to a first external differential device (not shown) and the two second ends S ' 1 and S'2 of the two conductive strips respectively form two conductors of a second bi-ribbon port 40 for connection to a second external differential device (not shown).
  • the capacitive coupling and the impedance jumps of the bi-ribbon line 30, conferring on it a predetermined phase shift, are directly generated by structural discontinuities themselves generating an inductance and a capacitance. More specifically, these structural discontinuities comprise, on the one hand, linearity failures of the conductive strips 32 and 34 and, on the other hand, additional conductive branch formations extending from the conductive strips 32 and 34.
  • the breaks in linearity make it possible to vary the distance between the two conductive strips for achieving at least one impedance jump.
  • the first conductive strip 32 has several linearity breaks allowing a portion 32A of this conductive strip 32 to be further from the plane of symmetry P than the portions E'1 and S'1 forming the ends of this conductive strip 32 , while maintaining the portions E'1, S'1 and 32A parallel to the plane of symmetry P.
  • These linearity breaks are made by a portion 32B of the conductive strip 32, extending laterally and orthogonally to the plane P of one end of the portion E'1 towards one end of the portion 32A, and by a portion 32C of the conductive strip 32, extending laterally and orthogonally at the plane P of the other end of the portion 32A towards one end of the portion S'1.
  • the second conductive strip 34 has a plurality of linearity breaks enabling a portion 34A of this conductive strip 34 to be further from the plane of symmetry P than the portions E '2 and S'2 forming the ends of this conductive strip. 34, while maintaining the portions E'2, S'2 and 34A parallel to the plane of symmetry P.
  • These linearity breaks are made by a portion 34B of the conductive strip 34, extending laterally and orthogonally to the plane P d one end of the portion E'2 to one end of the portion 34A, and a portion 34C of the conductive strip 34, extending laterally and orthogonally to the plane P of the other end of the portion 34A towards one end of the serving S'2.
  • the bi-ribbon line 30 has a first structure discontinuity, increasing the distance between its two conductive strips 32 and 34, made by the portions 32B and 34B, for the realization of a first impedance jump. by increasing this impedance. Indeed, the impedance increases with the distance between the two conductive strips.
  • It also has a second structure discontinuity, reducing the distance between its two conductive strips 32 and 34, made by the portions 32C and 34C, for performing a second impedance jump by reducing this impedance.
  • additional conductive branches extending from the conductive strips 32 and 34 make it possible to create at least one interdigitated capacitor for carrying out the capacitive coupling between the two conductive strips 32 and 34.
  • an interdigitated capacitance is formed by two conductive fingers 32D and 34D extending parallel to each other and orthogonal to the plane P, facing each other over at least a part of their length.
  • the conductive finger 32D consists of a portion of a band rectilinear conductor whose one end is secured to the portion 32A of the first conductive strip 32 and the other end remains free, while the conductive finger 34D consists of a rectilinear conductive strip portion whose end is secured to the portion 34A of the second conductive strip 34 and the other end remains free.
  • the pair of conductive fingers thus extends laterally inwardly of the rectangular zone defined above from the portions 32A and 34A of the two conductive strips 32 and 34, which makes it possible to take advantage of the zone of the substrate in which the bi-line -tape 30 has a greater spacing between its conductive strips 32 and 34 to form the interdigitated capacitance.
  • the length I 'of the bi-ribbon line 30 thus produced is substantially smaller than the length I of a bi-ribbon line 10 of the state of the art with an identical equivalent electrical circuit, thanks to the structural discontinuities.
  • a bi-ribbon line according to the invention has a better compactness while retaining the same characteristics as a bi-ribbon line of the state of the art.
  • a higher order differential filter according to the invention therefore comprises at least two differential coplanar coupled resonator filtering devices and at least one differential bi-ribbon line according to the invention, for example that described with reference to FIG. figure 3 this bi-ribbon line being connected via its first bi-ribbon port 38, to one of the two filtering devices and, via its second bi-ribbon port 40, to the other of the two filtering devices.
  • Each of the two filtering devices can for example be designed according to the example illustrated by the figure 12 of the document "Broadband and compact coupled coplanar stripline filters with impedance steps", by Ning Yang et al, IEEE Transactions on Microwave Theory and Techniques, vol. 55, No. 12, December 2007 .
  • the compactness of the filtering devices to which the differential bi-ribbon line is connected could also be advantageously improved. Combined with the improved compactness of the bi-ribbon line according to the invention, it would then allow to consider a higher order filter even more compact.
  • the differential filter device 50 with coupled resonators shown in FIG. figure 4 comprises at least one pair of resonators 52 and 54, coupled to one another by capacitive coupling and arranged on the same plane face 56 of a dielectric substrate.
  • the first resonator 52 consisting of a bi-ribbon line portion, is connected to two conductors E “1 and E” 2 of a bi-ribbon connection port to a transmission line of a differential signal.
  • These two conductors E “1 and E” 2 of the bi-ribbon port are symmetrical with respect to a plane P 'perpendicular to the plane face 56 and forming a virtual electric ground plane. They are of a width w and distant from each other by a distance s, these two parameters s and w defining the impedance of the bi-ribbon port.
  • the second resonator 54 also consisting of a bi-ribbon line portion, is connected to two conductors S “1 and S" 2 of a bi-ribbon connection port to a transmission line of a differential signal.
  • These two conductors S “1 and S” 2 of the bi-ribbon port are also symmetrical with respect to the virtual electrical ground plane P '.
  • the two resonators 52 and 54 are themselves symmetrical with respect to an axis normal to the plane P 'situated on the plane face 56. Therefore, the filtering device 50 is symmetrical between its differential input and output so that These can be totally reversed.
  • the two conductors E “1 and E” 2 will be chosen by convention as the dual-input port of the filtering device 50, for receiving an unfiltered differential signal.
  • the two conductors S “1 and S" 2 will be chosen by convention as being the dual-band output port of the filtering device 50, for the supply of the filtered differential signal.
  • the first resonator 52 comprises two conductive strips identified by their references LE1 and LE2. These two conductive strips LE1 and LE2 are positioned symmetrically with respect to the virtual electrical ground plane P '. They are respectively connected to the two conductors E “1 and E” 2 of the input port.
  • the second resonator 54 comprises two conductive strips identified by their references LS1 and LS2. These two conductive strips LS1 and LS2 are also positioned symmetrically with respect to the virtual electrical ground plane P '. They are respectively connected to the two conductors S "1 and S" 2 of the output port.
  • the capacitive coupling of the two resonators 52 and 54 is ensured by the arrangement in opposite but non-contact of their respective pairs of conductive strips.
  • the conductive strips LE1 and LS1 located on the same side with respect to the virtual electrical ground plane P ', are arranged facing each other at a distance e from one another.
  • This distance e between the two resonators 52 and 54 mainly influences the bandwidth of the filtering device 50 and has a side effect on its characteristic impedance.
  • the distance e must be small enough to increase the bandwidth but also sufficiently important not to generate unwanted reflection within the bandwidth.
  • each conductive strip must be of length ⁇ / 4, where ⁇ is the apparent wavelength, for a substrate considered, corresponding to the frequency high operating filter device.
  • the conductive strips LE1, LE2, LS1 and LS2 are advantageously folded back on themselves so as to locally form additional capacitive and magnetic couplings between their two ends.
  • the size of the filtering device 50 is thus reduced for at least two reasons: the collapses geometrically generate a size reduction of the assembly, but moreover, thanks to the capacitive and magnetic couplings, the size of each conductive strip can be further reduced. while ensuring a good functioning of the resonators.
  • This capacitive and magnetic coupling further generates a feedback between the input and the output of each conductive strip, so as to create one or more additional transmission zeros at frequencies higher than the upper limit of the bandwidth of the filter device 50 The high band rejection is thus improved.
  • the four conductive strips are of generally annular shape, their ends being folded inside this annular general shape over a portion of predetermined length thereof.
  • the folding of the ends of each conductive strip is located on a portion of this conductive strip disposed vis-à-vis the other conductive strip of the same resonator.
  • the folds of ends of the conductive strips LE1 and LE2 are arranged vis-à-vis on both sides of the plane of symmetry P 'and close thereto.
  • the conductive strip LE1 is generally rectangular in shape and consists of rectilinear conductive segments.
  • a first segment LE1 1 having a first free end of the conductive strip LE1 extends inwardly of the rectangle formed by the conductive strip over a length L in a direction orthogonal to the virtual ground plane P '.
  • a second segment LE1 2 connected to this first segment at right angles, constitutes a part of the rectangle side parallel to the virtual ground plane P 'and close to it.
  • a third segment LE1 3 connected to this second segment at right angles, constitutes the side of the rectangle orthogonal to the virtual ground plane P 'and connected to the conductor E "1 of the input port
  • a fourth segment LE1 4 connected to this third segment at right angles, constitutes the side of the rectangle parallel to the virtual ground plane P 'and close to an outer edge of the substrate
  • a fifth segment LE1 5 connected to this fourth segment at right angles, constitutes the side of the orthogonal rectangle to the virtual ground plane P 'and opposite the side LE1 3.
  • a sixth segment LE1 6 connected to this fifth segment at right angles, constitutes as the second segment LE1 2 a portion of the side of the rectangle parallel to the virtual ground plane P'
  • ur L in a direction orthogonal to the virtual ground plane P ', that is to say parallel to the segment LE1 1 and vis-à-vis it over the entire length L of folding.
  • the segments LE1 1 and LE1 7 are spaced a constant distance e S over their entire length which ensures their capacitive coupling.
  • the conductive strip LE1 can also be seen as consisting of a folded main conductive strip connected at one of its ends to the conductor E "1, this main conductive strip comprising the segments LE1 1 , LE1 2 and the part of the segment LE1 3 located between the segment LE1 2 and the conductor E "1, and a stub-type branch folded on the main conductive strip, this stub-type branch comprising the other part of the segment LE1 3 , and the segments LE1 4 to LE1 7 .
  • the "stub" type branch is then considered to be placed at the junction between the main conducting strip and the conductor E "1. It should theoretically have a total length of ⁇ / 4, but the capacitive and magnetic couplings generated by the folding of the conductive strip LE1 on itself can reduce this length, especially 10 to 20% on the derivation in "stub".
  • segment LE1 4 makes it possible to bring the segments LE1 3 and LE1 5 closer together, but also the segments LE1 3 and LE1 1 , or the segments LE1 5 and LE1 7 , so as to multiply the number of capacitive and magnetic couplings generated by the folding of the conductive strip LE1 on itself. These multiple couplings improve the operation of the filtering device 50.
  • the coupling length L between the two folded ends ie the two segments LE1 1 and LE1 7 , mainly influences the bandwidth of the filtering device 50, but also has a side effect on the high band rejection. The more it increases, the lower the bandwidth but the higher the band rejection is improved.
  • the distance e S between the two folded ends mainly influences the high-band rejection of the filtering device 50: the smaller it is, the higher the rejection in the high band. It should be noted, however, that this distance can not be less than a limit imposed by the precision of the etching of the conductive strip LE1 on the substrate.
  • the conductive strip LE2 consists, like the conductive strip LE1, of seven conductive segments LE2 1 to LE2 7 disposed on the plane face 56 of the substrate symmetrically to the seven segments LE1 1 to LE1 7 with respect to the virtual ground plane P ' .
  • the two conductive strips LE1 and LE2 are spaced a constant distance e 1 , corresponding to the distance separating the segments LE1 2 and LE1 6 , on the one hand, the segments LE2 2 and LE2 6 , on the other hand.
  • This distance e 1 mainly influences the impedance of the first resonator 52, that is to say the input impedance of the filtering device 50, but also has a side effect on the bandwidth of the filtering device 50. More it increases, the more the impedance increases and less markedly, the more the bandwidth is reduced.
  • the conductive strips LS1 and LS2 each consist, like the conductive strips LE1 and LE2, of seven conducting segments. LS1 1 to LS1 7 and LS2 1 to LS2 7 respectively, printed on the flat face 56 of the substrate symmetrically to the segments of the conductive strips LE1 and LE2 with respect to this axis.
  • the two conductive strips LS1 and LS2 are spaced a constant distance e 2 equal to e 1 , corresponding to the distance separating the segments LS1 2 and LS1 6 , on the one hand, of the segments LS2 2 and LS2 6 , on the other hand.
  • This distance e 2 also mainly influences the impedance of the second resonator 54, that is to say the output impedance of the filtering device 50, but also a side effect on the bandwidth of the filter device 50. The more it increases, the more the impedance increases and less markedly, the lower the bandwidth is reduced.
  • the distance e separating the two resonators 52 and 54 corresponds to the distance separating the segments LE1 5 and LE2 5 , on the one hand, from the segments LS1 5 and LS2 5 , on the other hand.
  • the capacitive coupling between the two resonators 52 and 54 is thus established over the entire length of the segments LE1 5 and LE2 5 , on the one hand, and the segments LS1 5 and LS2 5 , on the other hand.
  • the figure 5 schematically presents an equivalent electric circuit of the filtering device 50 previously described.
  • a first inverter 60 represents an impedance jump, from Z 0 to Z 1 , at the input of the filtering device 50.
  • the impedance Z 0 is determined by the parameters s and w of the conductors E “1 and E. 2 of the input port, while the impedance Z 1 is determined in particular by the distance e 1 between the conductive strips LE 1 and LE 2.
  • a second inverter 62 represents the corresponding impedance jump, from Z 1 to Z 0 , at the output of the filtering device 50.
  • the first and second coupled resonators 52 and 54 are each represented by an LC circuit with capacitance C and inductance L in parallel. These two LC circuits are connected, on the one hand, respectively to the first and second inverters 60 and 62 and, on the other hand, to ground.
  • a feedback circuit LC 64 with capacitance C1 and inductance L1. parallel, connected, on the one hand, to the junction 66 between the first resonator 52 and the first inverter 60 and, on the other hand, to the junction 68 between the second resonator 54 and the second inverter 62.
  • This LC feedback circuit 64 improves the high band rejection of the filtering device 50 by adding one or more transmission zeros in the high frequencies.
  • the graphic shown on the figure 6 represents the characteristic of a frequency response in transmission and reflection of the filtering device described above.
  • the reflection coefficient S 11 of this frequency response shows a bandwidth of -10 dB (generally accepted definition of the bandwidth in reflection) of between about 3.2 and 4.4 GHz.
  • -10 dB generally accepted definition of the bandwidth in reflection
  • the bandwidth is widened by the presence of two distinct reflection zeros within this bandwidth, these two zeros being due to the presence of the two coupled resonators remote from e in the filtering device 50.
  • the portion of curve S 11 situated between these two reflection zeros can go back up to -10 dB, which generates a separation of the enlarged bandwidth into two distinct bandwidths. Therefore, the distance e should not be too small not to cause reflection greater than -10 dB in the extended bandwidth.
  • the transmission coefficient S 21 of the frequency response shows a bandwidth of -3 dB (generally accepted definition of the bandwidth in transmission), between about 2.7 and 4.5 GHz, as well as two transmission zeros at about 5.1 and 6.9 GHz.
  • One of these two out-of-band transmission zeros is due to the coupling between the two resonators of the filter device 50 over the entire length of their portions LE1 5 , LE2 5 on the one hand and LS1 5 , LS2 5 on the other hand .
  • the other of these two transmission zeros is due to the additional intra-resonator couplings created by the folding of the conductive strips on themselves.
  • These two transmission zeros cause a high rejection of the high band filter and an asymmetry of the frequency response due to the low band mean rejection. But this asymmetry can be advantageous, especially for a direct integration application of the filtering device 50 in a differential antenna. Indeed, such antennas generally have high resonances low frequency and therefore equivalent to high-pass filters, which compensates for the asymmetry of the filter device 50 by improving its low band rejection.
  • FIG. 7 A second example of differential filtering device with improved compactness is shown schematically on the figure 7 .
  • This device 50 ' comprises a pair of resonators 52' and 54 ', coupled to each other by capacitive coupling and disposed on the same plane face 56 of a dielectric substrate. These two resonators are similar to those, 52 and 54, of the device of the figure 4 .
  • the two resonators 52 'and 54' are not symmetrical with respect to an axis normal to the plane P 'situated on the plane face 56. Indeed, the distance e 1 separating the two conductive strips LE1 and LE2 of the first resonator 52 'is distinct from the distance e 2 between the two conductive strips LS1 and LS2 of the second resonator 52'. In the illustrated example, the distance e 2 is greater than the distance e 1 .
  • the capacitive coupling between the two resonators 52 'and 54' is not broken so far. Indeed, due to the folding of the conductive strips on themselves, they remain in vis-à-vis at least a portion of their length, more specifically at least a portion of the lengths LE1 5 and LS1 5, d the one hand, and lengths LS2 and LE2 5 5, on the other hand. In comparison with the existing one, it would not be possible, for example, to conceive of such a difference between the distances e 1 and e 2 in the filtering device described with reference to FIG.
  • these distances e 1 and e 2 make it possible to adjust respectively the input and output impedances of the filtering device 50 ', it is thus possible to design a bandpass filtering device which also fulfills an adaptation function of impedances between the circuits to which it is intended to be connected.
  • the distance e 1 thus generates an input impedance Z 1 smaller than the output impedance Z 2 generated by the distance e 2 .
  • This second example allows the direct integration of a filtering device according to the invention with differential antennas and differential active circuits of different impedances. Note, however, that such a direct integration with a single filter device works all the better that the difference between the impedances Z 1 and Z 2 is small.
  • a set of several filtering devices according to the second example of the invention added in series can be used to facilitate the impedance matching between very different impedance circuits.
  • Such a set with two filtering devices is for example represented diagrammatically on the figure 8 .
  • an amplifier 70 is connected to the input of a first filtering device 72, via the input port 74 of this first filtering device. Since the impedance of the amplifier 70 has a value Z 1 , the first filtering device 72 is designed, by adjusting the distance between the folded conductive strips of its first resonator, to present a conjugate value input impedance Z 1 * thus ensuring a maximum power transfer between the first filtering device 72 and the amplifier 70.
  • An antenna 76 is connected to the output of a second filtering device 78 via the output port 80 of this second filtering device. Since the impedance of the antenna 76 has a value Z 2 , the second filtering device 78 is designed, by adjusting the distance between the folded conductive strips of its second resonator, to present a conjugate value output impedance Z 2 * thus ensuring maximum power transfer between the second filter device 78 and the antenna 76.
  • the two filtering devices 72 and 78 are advantageously connected to each other via a quarter-wave line 82 according to the invention fulfilling an inverter function, the output of the first filtering device 72 and the input of the second device.
  • filtering 78 being designed, by adjusting the distance between the folded conductive strips of the second resonator of the first filtering device 72 and the distance between the folded conductive strips of the first resonator of the second filtering device 78, to present the same impedance Z 0 .
  • This same impedance Z 0 ensures the adaptation of impedances and can be chosen so as to ensure the best possible rejection.
  • the adaptation of the impedances Z 1 and Z 2 which can be very different is via an intermediate impedance Z 0 through the assembly comprising the two asymmetric filtering devices 72 and 78 and the quarter wave line 82 .
  • the presence of the quarter wave line 82 between the two filtering devices 72 and 78 also makes it possible to improve overall the performance of the higher order filter thus constituted, in terms of bandwidth.
  • FIG. 9 A third example of differential filtering device with improved compactness is shown schematically on the figure 9 .
  • This filtering device 50 "comprises a pair of resonators 52" and 54 ", coupled together by capacitive coupling and disposed on the same plane face 56 of a dielectric substrate.
  • the two resonators 52 "and 54" are symmetrical with respect to an axis normal to the plane P 'situated on the plane face 56.
  • these two distances could be different, as in the second example, for the filtering device to further fulfill an impedance matching function.
  • this third example is distinguished from the first and second examples by the general shape of the folded conductive strips.
  • the four conductive strips are of generally annular shape, their ends being folded inside this annular general shape over a portion of predetermined length thereof, but they are more precisely of generally square shape. .
  • each of them has additional folding on at least a portion of the sides of the square general shape.
  • the conductive strip LE1 comprises three additional folds LE1 8 , LE1 9 and LE1 10 in the three sides of the square general shape not having the folding of its two ends.
  • the three additional folds are directed towards the inside of the square general shape. They are for example in the form of niche.
  • the conductive strips LE2, LS1 and LS2 comprise the same additional folds, referenced LE2 8 , LE2 9 and LE2 10 for the conductive strip LE2; LS1 8 , LS1 9 and LS1 10 for the conductive strip LS1; LS2 8 , LS2 9 and LS2 10 for the conductive strip LS2.
  • each conductive strip LE1, LE2, LS1 and LS2 implies a generally square shape of the filtering device 50 ", so the compactness of the latter is optimal.
  • the additional folds create additional capacitive and magnetic couplings that can further improve the performance of the filter device 50 ".
  • the length L of the folding of the two ends of each conductive strip within its square general shape can be adjusted to adjust the bandwidth of the filter device 50 ".
  • the dimensions of the filter device 50 "are obtained close to ⁇ / 20 per side.
  • an improved compactness filter device is not limited to the examples described above. Other geometric shapes are possible for such a filtering device, from the moment they provide for a folding of each conductive strip of each resonator on itself so as to form a capacitive coupling between its two ends.
  • This filter device with improved compactness is particularly suitable for the design, with a bi-ribbon line according to the invention, of a smaller order of higher order filter.
  • a higher order differential filter 90 etched on a substrate 92 has two coplanar coupled resonator differential filtering devices 94 and 96 in accordance with the first example shown in FIG. figure 4 . It further comprises a differential bi-ribbon line 98 conforming to that shown in FIG. figure 3 connected, via one of its two bi-ribbon ports, to one of the two differential filtering devices and, via its other bi-ribbon port, to the other of the two differential filtering devices.
  • a higher order differential filter 100 etched on a substrate 102 comprises two coplanar coupled resonator differential filtering devices 104 and 106 in accordance with the third example illustrated in FIG. figure 9 . It further comprises a differential bi-ribbon line 108 conforming to that shown in FIG. figure 3 connected, via one of its two bi-ribbon ports, to one of the two differential filtering devices and, via its other bi-ribbon port, to the other of the two differential filtering devices.
  • this higher order filter is for example designed to operate in a high frequency band allocated to Ultra Wide Band communications, according to the European ULB standard, or even between 6 and 9 GHz.
  • the dimensions of this higher order filter 100 with improved compactness are then 6 mm long by 3.5 mm wide.
  • the graphic shown on the figure 12 represents the characteristic of a frequency response in transmission and in reflection of the higher-order filter illustrated on the figure 11 .
  • the reflection coefficient S 11 of this frequency response shows a bandwidth of -10 dB (generally accepted definition of the bandwidth in reflection) of between about 6 and 9 GHz and has four reflection zeros in the bandwidth.
  • the transmission coefficient S 21 of this frequency response shows a bandwidth of -3 dB (generally accepted definition of the bandwidth in transmission), also between about 6 and 9 GHz, and a transmission zero at about 9.8 GHz.
  • This transmission zero causes a high rejection of the high band filter and an asymmetry of the frequency response due to the low band mean rejection. Rejections of the order of 50 dB in the high band and 30 dB in the low band are obtained. However, as indicated above, this asymmetry may be advantageous, especially for a direct integration application of this filter 100 in a differential antenna.
  • FIG. 13 to 15 schematically illustrate three examples of differential filter dipole antennas each advantageously incorporating a differential filter of higher order with improved compactness such as that illustrated in FIG. figure 11 .
  • the filtering dipole antenna 110 shown in FIG. figure 13 comprises on the one hand a radiating electric dipole 112 and on the other hand a higher order differential filter 100 such as that described with reference to FIG. figure 11 .
  • the electric dipole 112 is more precisely a coplanar thick dipole etched on a substrate and whose radiating structure is of elliptical shape. This type of dipole is very wide bandwidth.
  • the relative bandwidth defined by the relationship ⁇ f / f 0 , where ⁇ f is the width of the bandwidth and f 0 the central operating frequency of the antenna, may exceed 100%.
  • the two arms of the dipole 112 are directly connected to the two conductors of the output port of the filter 100.
  • the two conductors of the input port of the filter 100 are for their part to be supplied with a differential signal.
  • the filtering dipole antenna 120 shown on the figure 14 comprises on the one hand a radiating electric dipole 122 and on the other hand a higher order differential filter 100 such as that described with reference to FIG. figure 11 .
  • the electric dipole 122 is more precisely a coplanar thick dipole etched on a substrate and whose radiating structure is of "butterfly" shape. More specifically, the radiating structure of the dipole has a thin portion, in a central zone of the antenna comprising the connection to the filter 100, which widens outwardly of the antenna on both sides of the dipole.
  • This type of radiating dipole is medium bandwidth. Its relative bandwidth ⁇ f / f 0 is of the order of 20%.
  • the two arms of the dipole 122 are directly connected to the two conductors of the output port of the filter 100.
  • the conductors of the input port of the filter 100 are intended to be fed with a differential signal.
  • the filtering dipole antenna 130 represented on the figure 15 comprises on the one hand a radiating electric dipole 132 and on the other hand a differential filter of higher order 100 such as that described with reference to FIG. figure 11 .
  • the electric dipole 132 is more precisely a coplanar thick dipole etched on a substrate and whose radiating structure is of "butterfly" shape. However, it differs from the electric dipole 122 in particular in that the two broad ends of its radiating structure, oriented towards the outside of the antenna, are shaped to integrate in their external dimensions (ie greater length and greater width) the filter This results in a further gain in compactness of the filter antenna 130 relative to the filter antenna 120.
  • the two arms of the dipole 132 are directly connected to the two conductors of the output port of the filter 100.
  • the two conductors of the input port of the filter 100 are for their part to be supplied with a differential signal.
  • a differential dipole filter antenna according to the invention is smaller than a conventional corresponding antenna, in particular due to the better compactness of the differential bi-ribbon line used.
  • a differential dipole filter antenna according to the invention is more efficient because it may comprise a larger number of filtering devices to achieve an even higher order filtering, thus more efficient in terms of bandwidth.
  • this differential bi-ribbon delay line also facilitates its realization in hybrid technology and its integration in monolithic technology with structures comprising discrete elements mounted on area.
  • it is simple to conceive of it as an element of a higher order filter in integration with a differential dipole antenna with a broadband coplanar radiating structure, as has been illustrated by several examples, by chemical or mechanical etching on substrates with low or high permittivity depending on the applications and desired performance.
  • a higher order filter according to the invention can also find applications in the millimeter frequency band where its small size and its high performance allow it to be integrated in monolithic technology with antennas and active circuits.
  • a bi-ribbon line according to the invention can be used as a phase-shifter, for example in a power supply application of an antenna array where several different antennas with different phase-shifts are fed by the same source.
  • the antennas can be connected to each other by bi-ribbon lines according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

  • La présente invention concerne une ligne à retard bi-ruban différentielle coplanaire. Elle concerne également un filtre différentiel d'ordre supérieur et une antenne filtrante munis d'une telle ligne à retard bi-ruban.
  • Les systèmes d'émission/réception radiofréquence alimentés par des signaux électriques différentiels sont très attrayants pour les systèmes de communications sans fil actuels et futurs, notamment pour les concepts d'objets communicants autonomes. Une alimentation différentielle est une alimentation par deux signaux d'égale amplitude en opposition de phase. Elle contribue à réduire, voire à éliminer, le bruit dit « de mode commun » indésirable dans les systèmes d'émission et de réception.
  • Dans le domaine de la téléphonie mobile par exemple, lorsqu'un système non différentiel est utilisé, une dégradation importante des performances du rayonnement est en effet observée quand l'opérateur tient un combiné muni d'un tel système. Cette dégradation est causée par la variation, due à la main de l'opérateur, de la distribution du courant sur le châssis du combiné utilisé comme plan de masse. L'utilisation d'une alimentation différentielle rend le système symétrique et réduit ainsi la concentration de courant sur le boîtier du combiné : elle rend donc le combiné moins sensible au bruit de mode commun introduit par la main de l'opérateur.
  • Dans le domaine des antennes, une alimentation non différentielle entraîne le rayonnement d'une composante croisée indésirable due au mode commun circulant sur les câbles d'alimentation non symétriques. L'utilisation d'une alimentation différentielle élimine le rayonnement croisé des câbles de mesure et permet ainsi l'obtention de mesures reproductibles et indépendantes du contexte de mesure ainsi que des diagrammes de rayonnement parfaitement symétriques.
  • Dans le domaine des composants actifs, les amplificateurs de puissance de type « push-pull » dont la structure est différentielle présentent plusieurs avantages, tels que le dédoublement de la puissance en sortie et l'élimination des harmoniques d'ordres supérieurs. En réception, les amplificateurs différentiels à faible bruit présentent plusieurs perspectives en terme de réduction du facteur de bruit. Aussi, l'utilisation d'une structure différentielle empêche le déclenchement indésirable des oscillateurs par le bruit de mode commun.
  • Une ligne à retard bi-ruban différentielle telle que celle est décrite dans document WO 2006/088227 , peut être utile pour raccorder deux dispositifs différentiels, tels que par exemple deux dispositifs de filtrage, de manière à former un filtre d'ordre supérieur. Dans le cas particulier du raccordement de deux dispositifs de filtrage, la ligne à retard bi-ruban différentielle doit avoir les caractéristiques d'une ligne de déphasage quart d'onde (Π/2) pour pouvoir être utilisée comme inverseur d'impédance.
  • Plus généralement, une ligne à retard bi-ruban différentielle peut être utile dans un grand nombre d'applications nécessitant de raccorder des dispositifs différentiels, y compris en tant que déphaseur. Par exemple, dans une application d'alimentation d'un réseau d'antennes, où plusieurs antennes différentes sont alimentées par une ou plusieurs sources, au moins un déphaseur de ce type peut être avantageusement envisagé.
  • Or, de plus en plus de dispositifs différentiels tels que des dispositifs de filtrage ou des antennes dipôles sont conçus en technologie CPS différentielle (de l'anglais « CoPlanar Stripline », pour « ligne en bande coplanaire »). En effet, la technologie CPS différentielle permet de profiter des avantages des structures différentielles tout en permettant une intégration coplanaire simple avec des éléments discrets : il n'est pas nécessaire de créer des raccordements de type via pour relier les éléments entre eux. En outre, l'absence de plan de masse permet d'envisager un raccordement simple et moins perturbant avec, par exemple, une antenne différentielle.
  • II est donc avantageux d'utiliser aussi cette technologie pour réaliser une ligne à retard bi-ruban différentielle, notamment une ligne quart d'onde. Selon cette technique, une ligne bi-ruban de propagation d'un signal différentiel comporte deux bandes conductrices rectilignes disposées parallèlement sur une même face d'un substrat diélectrique et comprenant chacune une première et une seconde extrémités. Les deux premières extrémités des deux bandes conductrices forment deux conducteurs d'un premier port bi-ruban de connexion à un premier dispositif différentiel externe. Les deux secondes extrémités des deux bandes conductrices forment deux conducteurs d'un second port bi-ruban de connexion à un second dispositif différentiel externe.
  • Ainsi, une ligne à retard bi-ruban différentielle conçue de cette manière peut se raccorder de façon optimale à des dispositifs externes conçus en technologie CPS différentielle. Le retard qu'elle induit et son impédance sont directement liés à sa longueur, l'écartement entre ses deux bandes conductrices et leur largeur.
  • Par exemple, le document « Broadband and compact coupled coplanar stripline filters with impedance steps », de Ning Yang et al, IEEE Transactions on Microwave Theory and Techniques, vol. 55, n° 12, décembre 2007, décrit la réalisation d'un filtre en technologie CPS différentielle, notamment en référence à la figure 12. Cette topologie compacte permet d'atteindre des bandes passantes élevées à forte réjection hors bande pour des filtres d'ordre 2, 3 ou 4. Malheureusement, l'interposition d'une ligne à retard quart d'onde en technologie CPS différentielle entre deux dispositifs de filtrages tels que celui illustré dans le document précité, bien que nécessaire pour obtenir un filtre d'ordre supérieur aux bonnes propriétés de réjection, augmente sensiblement l'encombrement du dispositif complet, principalement à cause de sa longueur.
  • II peut ainsi être souhaité de concevoir, en technologie CPS différentielle, une ligne à retard bi-ruban présentant une meilleure compacité tout en conservant les mêmes performances en termes de déphasage et d'adaptation d'impédance qu'une ligne bi-ruban de propagation à retard de déphasage prédéterminé.
  • L'invention a donc pour objet une ligne à retard bi-ruban différentielle coplanaire, comportant deux bandes conductrices disposées sur une même face d'un substrat diélectrique et comprenant chacune une première et une seconde extrémités, les deux premières extrémités des deux bandes conductrices formant deux conducteurs d'un premier port bi-ruban de connexion à un premier dispositif différentiel externe, les deux secondes extrémités des deux bandes conductrices formant deux conducteurs d'un second port bi-ruban de connexion à un second dispositif différentiel externe, cette ligne bi-ruban étant en outre conformée sous forme de circuit imprimé pour présenter des discontinuités de structure génératrices d'au moins un saut d'impédance et d'au moins un couplage capacitif à capacité interdigitée entre ses deux bandes conductrices de manière à reproduire un déphasage prédéterminé, la capacité interdigitée étant formée par au moins une paire de doigts conducteurs raccordés respectivement par l'une de leurs extrémités aux deux bandes conductrices.
  • Le circuit imprimé de type L, C ainsi créé présente, grâce à ses discontinuités (saut d'impédance et couplage capacitif), une inductance L et une capacité C telles qu'il peut reproduire les caractéristiques de déphasage d'une ligne de propagation à retard classique. En effet, le déphasage ϕ de ce circuit peut s'exprimer en fonction de L et C de la façon suivante : φ = 2 π LC .
    Figure imgb0001
    On crée donc un déphasage qui, dans le cas d'une ligne de propagation, est normalement fonction de sa longueur.
  • De façon optionnelle, au moins l'une des discontinuités de structure comporte une variation de la distance entre les deux bandes conductrices pour la réalisation d'un saut d'impédance.
  • De façon optionnelle également, une première discontinuité d'augmentation de la distance entre les deux bandes conductrices et une deuxième discontinuité de réduction de la distance entre les deux bandes conductrices forment une zone du substrat dans laquelle la ligne bi-ruban présente un écartement entre ses bandes conductrices supérieur à l'écartement entre les deux conducteurs de chacun de ses ports bi-ruban de connexion.
  • De façon optionnelle également, la capacité interdigitée est formée dans la zone du substrat dans laquelle la ligne bi-ruban présente un écartement plus grand entre ses bandes conductrices, la paire de doigts conducteurs s'étendant latéralement vers l'intérieur de cette zone à partir des deux bandes conductrices.
  • De façon optionnelle également, les discontinuités de structure sont génératrices d'au moins un saut d'impédance et d'au moins un couplage capacitif entre ses deux bandes conductrices de manière à reproduire un déphasage quart d'onde.
  • L'invention a également pour objet un filtre différentiel d'ordre supérieur comportant deux dispositifs de filtrage différentiel à résonateurs couplés coplanaires et une ligne bi-ruban de transmission d'un signal différentiel telle que définie précédemment, cette ligne bi-ruban étant raccordée, via son premier port bi-ruban, à l'un des deux dispositifs de filtrage et, via son second port bi-ruban, à l'autre des deux dispositifs de filtrage.
  • De façon optionnelle, chacun des deux dispositifs de filtrage différentiel à résonateurs couplés coplanaires comporte une paire de résonateurs couplés disposés sur une même face d'un substrat diélectrique, chaque résonateur comportant deux bandes conductrices positionnées de façon symétrique par rapport à un plan perpendiculaire à la face sur laquelle est disposé le résonateur, ces deux bandes conductrices étant raccordées respectivement à deux conducteurs d'un port bi-ruban différentiel du dispositif de filtrage différentiel correspondant, chaque bande conductrice de chaque résonateur étant en outre repliée sur elle-même de manière à former un couplage capacitif entre ses deux extrémités.
  • Ainsi, le repliement de chaque bande conductrice sur elle-même permet d'envisager une taille de filtre inférieure, pour des raisons géométriques. En outre, le fait que ce repliement soit conçu de manière à former un couplage capacitif entre les deux extrémités de chaque bande conductrice crée au moins un zéro de transmission en fréquence supplémentaire assurant une haute performance en largeur de bande passante et en réjection hors bande du dispositif de filtrage. Enfin, le couplage capacitif par repliement générant aussi un couplage magnétique, la taille de chaque bande conductrice peut encore être réduite tout en assurant une même fonction filtrante de l'ensemble.
  • Enfin, l'invention a également pour objet une antenne dipôle filtrante différentielle comportant au moins un filtre différentiel d'ordre supérieur tel que défini précédemment.
  • De façon optionnelle, une antenne dipôle filtrante différentielle selon l'invention peut comporter une structure rayonnante conformée pour intégrer dans ses dimensions extérieures ledit filtre différentiel d'ordre supérieur.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
    • la figure 1 représente schématiquement la structure générale d'une ligne bi-ruban différentielle de l'état de la technique en technologie CPS,
    • la figure 2 représente un circuit électrique équivalent de la ligne bi-ruban de la figure 1,
    • la figure 3 représente schématiquement la structure générale d'une ligne à retard bi-ruban différentielle selon un mode de réalisation de l'invention,
    • la figure 4 représente schématiquement la structure générale d'un premier exemple de dispositif de filtrage pour la réalisation d'un filtre d'ordre supérieur selon l'invention,
    • la figure 5 représente un schéma électrique équivalent du dispositif de filtrage de la figure 4,
    • la figure 6 illustre la caractéristique d'une réponse fréquentielle en transmission et en réflexion du dispositif de filtrage de la figure 4,
    • la figure 7 représente schématiquement la structure générale d'un deuxième exemple de dispositif de filtrage pour la réalisation d'un filtre d'ordre supérieur selon l'invention,
    • la figure 8 représente schématiquement la structure générale d'un troisième exemple de dispositif de filtrage pour la réalisation d'un filtre d'ordre supérieur selon l'invention,
    • la figure 9 représente schématiquement la structure générale d'un ensemble de filtrage et d'adaptation d'impédances à deux filtres tels que celui de la figure 8, selon un mode de réalisation de l'invention,
    • la figure 10 représente schématiquement la structure générale d'un filtre d'ordre supérieur selon un premier mode de réalisation de l'invention,
    • la figure 11 représente schématiquement la structure générale d'un filtre d'ordre supérieur selon un second mode de réalisation de l'invention,
    • la figure 12 illustre la caractéristique d'une réponse fréquentielle en transmission et en réflexion du filtre de la figure 11,
    • les figures 13, 14 et 15 représentent schématiquement trois modes de réalisation d'antennes filtrantes selon l'invention.
  • La ligne à retard bi-ruban différentielle coplanaire 10 représentée sur la figure 1 comporte deux bandes conductrices 12 et 14 disposées sur une même face plane 16 d'un substrat diélectrique.
  • La bande conductrice 12 comprend une première extrémité E1 et une seconde extrémité S1. De même, la seconde bande conductrice 14 comprend une première extrémité E2 et une seconde extrémité S2.
  • Les deux premières extrémités E1 et E2 des deux bandes conductrices 12 et 14 forment respectivement deux conducteurs d'un premier port bi-ruban 18 de connexion à un premier dispositif différentiel externe (non représenté) et les deux secondes extrémités S1 et S2 des deux bandes conductrices forment respectivement deux conducteurs d'un second port bi-ruban 20 de connexion à un second dispositif différentiel externe (non représenté).
  • Les deux bandes conductrices 12 et 14 sont rectilignes. Elles sont également parallèles et symétriques par rapport à un plan P perpendiculaire à la face plane 16 et formant un plan de masse électrique virtuel de la ligne bi-ruban différentielle. Elles sont d'une largeur w et distantes entre elles d'une distance s, ces deux paramètres w et s définissant l'impédance caractéristique de la ligne bi-ruban 10.
  • Elles sont en outre d'une longueur I, cette longueur I définissant le déphasage généré par la ligne bi-ruban sur un signal différentiel qu'elle propage et donc son adaptation d'impédance. C'est pourquoi, pour un déphasage prédéterminé, par exemple un déphasage quart d'onde, une certaine longueur de cette ligne bi-ruban de propagation est nécessaire, ce qui génère un encombrement supplémentaire du dispositif dans lequel la ligne bi-ruban 10 est intégrée.
  • Un circuit électrique équivalent de cette ligne bi-ruban 10 est représenté sur la figure 2. Ce circuit électrique comporte deux fils conducteurs 22 et 24 entre lesquels une capacité C est disposée en parallèle. Chaque portion de fil conducteur 22 ou 24, entre l'une des bornes de la capacité C et l'une des extrémités E1, E2, S1 et S2 du circuit comporte en outre une inductance L. Ce modèle de circuit électrique réalise une ligne à retard bi-ruban, de déphasage prédéterminé et obtenu par des valeurs données de la capacité C et des inductances L.
  • Le même circuit électrique à éléments discrets L et C peut être réalisé à l'aide d'une ligne bi-ruban 30 telle que celle représentée sur la figure 3, conformément à un mode de réalisation de l'invention. Cette ligne bi-ruban 30 peut donc être modélisée par le même circuit électrique que la ligne bi-ruban 10.
  • Comme la ligne bi-ruban 10, elle comporte deux bandes conductrices 32 et 34 disposées sur une même face plane 36 d'un substrat diélectrique. Mais contrairement à la ligne bi-ruban 10, les deux bandes conductrices 32 et 34 sont conformées sous forme d'un circuit imprimé présentant des discontinuités de structure.
  • La bande conductrice 32 comprend une première extrémité E'1 et une seconde extrémité S'1. De même, la seconde bande conductrice 34 comprend une première extrémité E'2 et une seconde extrémité S'2.
  • Les deux premières extrémités E'1 et E'2 des deux bandes conductrices 32 et 34 forment respectivement deux conducteurs d'un premier port bi-ruban 38 de connexion à un premier dispositif différentiel externe (non représenté) et les deux secondes extrémités S'1 et S'2 des deux bandes conductrices forment respectivement deux conducteurs d'un second port bi-ruban 40 de connexion à un second dispositif différentiel externe (non représenté).
  • Le couplage capacitif et les sauts d'impédance de la ligne bi-ruban 30, lui conférant un déphasage prédéterminé, sont directement générés par des discontinuités de structure elles-mêmes génératrices d'une inductance et d'une capacité. Plus précisément, ces discontinuités de structure comprennent, d'une part, des ruptures de linéarité des bandes conductrices 32 et 34 et, d'autre part, des formations de branches conductrices supplémentaires s'étendant à partir des bandes conductrices 32 et 34.
  • Les ruptures de linéarité permettent de faire varier la distance entre les deux bandes conductrices pour la réalisation d'au moins un saut d'impédance.
  • Ainsi, la première bande conductrice 32 présente plusieurs ruptures de linéarités permettant à une portion 32A de cette bande conductrice 32 d'être plus éloignée du plan de symétrie P que les portions E'1 et S'1 formant les extrémités de cette bande conductrice 32, tout en maintenant les portions E'1, S'1 et 32A parallèles au plan de symétrie P. Ces ruptures de linéarité sont réalisées par une portion 32B de la bande conductrice 32, s'étendant latéralement et orthogonalement au plan P d'une extrémité de la portion E'1 vers une extrémité de la portion 32A, et par une portion 32C de la bande conductrice 32, s'étendant latéralement et orthogonalement au plan P de l'autre extrémité de la portion 32A vers une extrémité de la portion S'1.
  • Par symétrie, la seconde bande conductrice 34 présente plusieurs ruptures de linéarités permettant à une portion 34A de cette bande conductrice 34 d'être plus éloignée du plan de symétrie P que les portions E'2 et S'2 formant les extrémités de cette bande conductrice 34, tout en maintenant les portions E'2, S'2 et 34A parallèles au plan de symétrie P. Ces ruptures de linéarité sont réalisées par une portion 34B de la bande conductrice 34, s'étendant latéralement et orthogonalement au plan P d'une extrémité de la portion E'2 vers une extrémité de la portion 34A, et par une portion 34C de la bande conductrice 34, s'étendant latéralement et orthogonalement au plan P de l'autre extrémité de la portion 34A vers une extrémité de la portion S'2.
  • Par conséquent, la ligne bi-ruban 30 présente une première discontinuité de structure, d'augmentation de la distance entre ses deux bandes conductrices 32 et 34, réalisée par les portions 32B et 34B, pour la réalisation d'un premier saut d'impédance par augmentation de cette impédance. En effet, l'impédance augmente avec la distance entre les deux bandes conductrices.
  • Elle présente également une seconde discontinuité de structure, de réduction de la distance entre ses deux bandes conductrices 32 et 34, réalisée par les portions 32C et 34C, pour la réalisation d'un second saut d'impédance par réduction de cette impédance.
  • Ces deux discontinuités de structure créent une zone rectangulaire, essentiellement délimitée par les portions 32B, 32A, 32C, 34C, 34A et 34B, dans laquelle la ligne bi-ruban 30 présente un écartement entre ses bandes conductrices 32 et 34 supérieur à l'écartement entre les deux conducteurs E'1, E'2 et S'1, S'2 de chacun de ses ports bi-ruban de connexion 38 et 40.
  • Les formations de branches conductrices supplémentaires s'étendant à partir des bandes conductrices 32 et 34 permettent de créer au moins une capacité interdigitée pour la réalisation du couplage capacitif entre les deux bandes conductrices 32 et 34.
  • Plus précisément, dans l'exemple de la figure 3, une capacité interdigitée est formée par deux doigts conducteurs 32D et 34D s'étendant parallèlement l'un par rapport à l'autre et orthogonalement au plan P, en vis-à-vis sur au moins une partie de leur longueur. Le doigt conducteur 32D est constitué d'une portion de bande conductrice rectiligne dont une extrémité est solidaire de la portion 32A de la première bande conductrice 32 et l'autre extrémité reste libre, tandis que le doigt conducteur 34D est constitué d'une portion de bande conductrice rectiligne dont une extrémité est solidaire de la portion 34A de la seconde bande conductrice 34 et l'autre extrémité reste libre.
  • La paire de doigts conducteurs s'étend donc latéralement vers l'intérieur de la zone rectangulaire définie précédemment à partir des portions 32A et 34A des deux bandes conductrices 32 et 34, ce qui permet de profiter de la zone du substrat dans laquelle la ligne bi-ruban 30 présente un écartement plus grand entre ses bandes conductrices 32 et 34 pour former la capacité interdigitée.
  • En variante, il est possible de créer plusieurs capacités interdigitées parallèles dans la zone rectangulaire définie précédemment. Cela permet d'augmenter la capacité du circuit imprimé formé par la ligne bi-ruban 30 sans changer son inductance. En d'autres termes, il s'agit d'un paramètre supplémentaire de réglage de l'impédance caractéristique de la ligne bi-ruban 30 à déphasage donné. On notera cependant que l'ajout de capacités interdigitées augmente la longueur et donc l'encombrement de la ligne bi-ruban, ce qui n'est pas toujours souhaitable.
  • De façon concrète, il est simple pour l'homme du métier de régler les dimensions des différents éléments précités de la ligne bi-ruban 30, de manière à obtenir une ligne à retard de déphasage prédéterminé par réglage, notamment, de son couplage capacitif et de ses sauts d'impédance.
  • La longueur I' de la ligne bi-ruban 30 ainsi réalisée est nettement inférieure à la longueur I d'une ligne bi-ruban 10 de l'état de la technique à circuit électrique équivalent identique, grâce aux discontinuités de structure. II en résulte qu'une ligne bi-ruban selon l'invention présente une meilleure compacité tout en conservant les mêmes caractéristiques qu'une ligne bi-ruban de l'état de la technique.
  • En pratique, il est notamment possible de concevoir une ligne quart d'onde selon l'invention pour relier, avec une meilleure compacité, deux dispositifs de filtrage différentiel à résonateurs couplés coplanaires et réaliser ainsi un filtre d'ordre supérieur en technologie CPS.
  • Un filtre différentiel d'ordre supérieur selon l'invention comporte donc au moins deux dispositifs de filtrage différentiel à résonateurs couplés coplanaires et au moins une ligne bi-ruban différentielle selon l'invention, par exemple celle décrite en référence à la figure 3, cette ligne bi-ruban étant raccordée, via son premier port bi-ruban 38, à l'un des deux dispositifs de filtrage et, via son second port bi-ruban 40, à l'autre des deux dispositifs de filtrage.
  • Chacun des deux dispositifs de filtrage peut par exemple être conçu conformément à l'exemple illustré par la figure 12 du document « Broadband and compact coupled coplanar stripline filters with impedance steps », de Ning Yang et al, IEEE Transactions on Microwave Theory and Techniques, vol. 55, n° 12, décembre 2007.
  • Cependant, la compacité des dispositifs de filtrage auxquels la ligne bi-ruban différentielle est raccordée pourrait être également avantageusement améliorée. Combinée à la compacité améliorée de la ligne bi-ruban selon l'invention, elle permettrait alors d'envisager un filtre d'ordre supérieur encore plus compact.
  • On va maintenant décrire de façon détaillée et en référence aux figures 4 à 8 plusieurs exemple de dispositifs de filtrage différentiel à résonateurs couplés à compacité améliorée, particulièrement adaptés à la réalisation de filtres d'ordre supérieur incluant au moins une ligne bi-ruban selon l'invention.
  • Le dispositif 50 de filtrage différentiel à résonateurs couplés représenté sur la figure 4 comporte au moins une paire de résonateurs 52 et 54, couplés entre eux par couplage capacitif et disposés sur une même face plane 56 d'un substrat diélectrique.
  • Le premier résonateur 52, constitué d'une portion de ligne bi-ruban, est relié à deux conducteurs E"1 et E"2 d'un port bi-ruban de connexion à une ligne de transmission d'un signal différentiel. Ces deux conducteurs E"1 et E"2 du port bi-ruban sont symétriques par rapport à un plan P' perpendiculaire à la face plane 56 et formant un plan de masse électrique virtuel. Ils sont d'une largeur w et distants entre eux d'une distance s, ces deux paramètres s et w définissant l'impédance du port bi-ruban.
  • De même, Le second résonateur 54, lui aussi constitué d'une portion de ligne bi-ruban, est relié à deux conducteurs S"1 et S"2 d'un port bi-ruban de connexion à une ligne de transmission d'un signal différentiel. Ces deux conducteurs S"1 et S"2 du port bi-ruban sont également symétriques par rapport au plan de masse électrique virtuel P'.
  • Les deux résonateurs 52 et 54 sont eux-mêmes symétriques par rapport à un axe normal au plan P' situé sur la face plane 56. Par conséquent, le dispositif de filtrage 50 est symétrique entre son entrée et sa sortie différentielles de sorte que celles-ci peuvent tout à fait être inversées. Ainsi, dans la suite de la description du mode de réalisation représenté sur la figure 4, les deux conducteurs E"1 et E"2 seront choisis par convention comme étant le port bi-ruban d'entrée du dispositif de filtrage 50, pour la réception d'un signal différentiel non filtré. Les deux conducteurs S"1 et S"2 seront choisis par convention comme étant le port bi-ruban de sortie du dispositif de filtrage 50, pour la fourniture du signal différentiel filtré.
  • Plus précisément, le premier résonateur 52 comporte deux bandes conductrices identifiées par leurs références LE1 et LE2. Ces deux bandes conductrices LE1 et LE2 sont positionnées de façon symétrique par rapport au plan de masse électrique virtuel P'. Elles sont respectivement reliées aux deux conducteurs E"1 et E"2 du port d'entrée. Le second résonateur 54 comporte deux bandes conductrices identifiées par leurs références LS1 et LS2. Ces deux bandes conductrices LS1 et LS2 sont également positionnées de façon symétrique par rapport au plan de masse électrique virtuel P'. Elles sont respectivement reliées aux deux conducteurs S"1 et S"2 du port de sortie.
  • Le couplage capacitif des deux résonateurs 52 et 54 est assuré par la disposition en vis-à-vis mais sans contact de leurs paires de bandes conductrices respectives. Ainsi, les bandes conductrices LE1 et LS1, situées d'un même côté par rapport au plan de masse électrique virtuel P', sont disposées en vis-à-vis à une distance e l'une de l'autre. De même, les bandes conductrices LE2 et LS2, situées de l'autre côté par rapport au plan de masse électrique virtuel P', sont disposées en vis-à-vis à la même distance e l'une de l'autre.
  • Cette distance e entre les deux résonateurs 52 et 54 influence principalement la bande passante du dispositif de filtrage 50 et a un effet secondaire sur son impédance caractéristique. Plus e diminue, c'est-à-dire plus le couplage capacitif est fort entre les deux résonateurs, plus la bande passante est large. Cela a aussi pour effet d'augmenter l'impédance. Plus précisément, la bande passante est élargie par l'apparition de deux zéros de réflexion distincts à l'intérieur de cette bande passante, correspondant à deux fréquences de résonance distinctes, lorsque e est suffisamment petit pour réaliser le couplage capacitif entre les deux résonateurs. Plus la distance e est faible, plus les deux zéros de réflexion créés s'éloignent l'un de l'autre, élargissant ainsi la bande passante. Cependant, s'ils sont trop éloignés, ils peuvent engendrer la séparation de la bande passante élargie en deux bandes passantes distinctes par réapparition d'une réflexion importante entre les deux zéros, ce qui va à l'encontre de l'effet recherché. Par conséquent, la distance e doit être suffisamment petite pour augmenter la bande passante mais aussi suffisamment importante pour ne pas générer de réflexion non souhaitée à l'intérieur de la bande passante.
  • De façon classique, pour un bon fonctionnement des résonateurs d'un dispositif de filtrage à résonateurs couplés, chaque bande conductrice doit être de longueur λ/4, où λ est la longueur d'onde apparente, pour un substrat considéré, correspondant à la fréquence haute de fonctionnement du dispositif de filtrage. Ainsi, si les bandes conductrices étaient disposés linéairement dans le prolongement des ports d'entrée et sortie du dispositif de filtrage 50, l'ensemble atteindrait une longueur voisine de λ/2 : en pratique, pour une fréquence de 3 GHz, on obtiendrait par exemple une longueur proche de 3 cm.
  • Mais en fait, les bandes conductrices LE1, LE2, LS1 et LS2 sont avantageusement repliées sur elles-mêmes de manière à former localement des couplages capacitifs et magnétiques supplémentaires entre leurs deux extrémités. La taille du dispositif de filtrage 50 est ainsi réduite pour au moins deux raisons : les repliements engendrent géométriquement une réduction de taille de l'ensemble, mais en outre, grâce aux couplages capacitifs et magnétiques, la taille de chaque bande conductrice peut encore être réduite tout en assurant un bon fonctionnement des résonateurs. Ce couplage capacitif et magnétique génère en outre une rétroaction entre l'entrée et la sortie de chaque bande conductrice, de manière à créer un ou plusieurs zéros de transmission supplémentaires à des fréquences supérieures à la limite supérieure de la bande passante du dispositif de filtrage 50. La réjection en bande haute est ainsi améliorée.
  • Dans le mode de réalisation illustré sur la figure 4 les quatre bandes conductrices sont de forme générale annulaire, leurs extrémités étant repliées à l'intérieur de cette forme générale annulaire sur une portion de longueur prédéterminée de celles-ci.
  • Pour un bon fonctionnement du dispositif de filtrage 50, le repliement des extrémités de chaque bande conductrice est situé sur une portion de cette bande conductrice disposée en vis-à-vis de l'autre bande conductrice du même résonateur. Ainsi, les repliements d'extrémités des bandes conductrices LE1 et LE2 sont disposés en vis-à-vis de part et d'autre du plan de symétrie P' et à proximité de celui-ci.
  • Plus précisément, la bande conductrice LE1 est de forme générale rectangulaire et constituée de segments conducteurs rectilignes. Un premier segment LE11 comportant une première extrémité libre de la bande conductrice LE1 s'étend vers l'intérieur du rectangle formé par la bande conductrice sur une longueur L dans une direction orthogonale au plan de masse virtuel P'. Un deuxième segment LE12, raccordé à ce premier segment à angle droit, constitue une partie du côté du rectangle parallèle au plan de masse virtuel P' et proche de celui-ci. Un troisième segment LE13, raccordé à ce deuxième segment à angle droit, constitue le côté du rectangle orthogonal au plan de masse virtuel P' et relié au conducteur E"1 du port d'entrée. Un quatrième segment LE14, raccordé à ce troisième segment à angle droit, constitue le côté du rectangle parallèle au plan de masse virtuel P' et proche d'un bord extérieur du substrat. Un cinquième segment LE15, raccordé à ce quatrième segment à angle droit, constitue le côté du rectangle orthogonal au plan de masse virtuel P' et opposé au côté LE13. Un sixième segment LE16, raccordé à ce cinquième segment à angle droit, constitue comme le deuxième segment LE12 une partie du côté du rectangle parallèle au plan de masse virtuel P' et proche de celui-ci. Enfin, un septième segment LE17 comportant la deuxième extrémité libre de la bande conductrice LE1, raccordé au sixième segment à angle droit, s'étend vers l'intérieur du rectangle sur la longueur L dans une direction orthogonale au plan de masse virtuel P', c'est-à-dire parallèlement au segment LE11 et en vis-à-vis de celui-ci sur toute la longueur L de repliement.
  • Les segments LE11 et LE17 sont distants d'une distance constante eS sur toute leur longueur ce qui assure leur couplage capacitif.
  • La bande conductrice LE1 peut aussi être vue comme constituée d'une bande conductrice principale pliée raccordée à l'une de ses extrémités au conducteur E"1, cette bande conductrice principale comportant les segments LE11, LE12 et la partie du segment LE13 située entre le segment LE12 et le conducteur E"1, et d'une dérivation de type « stub » repliée sur la bande conductrice principale, cette dérivation de type « stub » comportant l'autre partie du segment LE13, et les segments LE14 à LE17. La dérivation de type « stub » est alors considérée comme posée à la jonction entre la bande conductrice principale et le conducteur E"1. Elle devrait théoriquement présenter une longueur totale de λ/4, mais les couplages capacitifs et magnétiques engendrés par le repliement de la bande conductrice LE1 sur elle-même permettent de réduire cette longueur, notamment de 10 à 20 % sur la dérivation en « stub ».
  • II est en outre intéressant de noter qu'une taille suffisamment réduite du segment LE14 permet de rapprocher les segments LE13 et LE15, mais aussi les segments LE13 et LE11, ou les segments LE15 et LE17, de manière à multiplier le nombre de couplages capacitifs et magnétiques engendrés par le repliement de la bande conductrice LE1 sur elle-même. Ces multiples couplages améliorent le fonctionnement du dispositif de filtrage 50.
  • La longueur L de couplage entre les deux extrémités repliées, i.e. les deux segments LE11 et LE17, influence principalement la bande passante du dispositif de filtrage 50, mais a également un effet secondaire sur la réjection en bande haute. Plus elle augmente, plus la bande passante est réduite mais plus la réjection en bande haute est améliorée.
  • La distance eS entre les deux extrémités repliées influence principalement la réjection en bande haute du dispositif de filtrage 50 : plus elle est réduite, plus la réjection en bande haute est améliorée. On notera cependant que cette distance ne peut être inférieure à une limite imposée par la précision de la gravure de la bande conductrice LE1 sur le substrat.
  • La bande conductrice LE2 est constituée, comme la bande conductrice LE1, de sept segments conducteurs LE21 à LE27 disposés sur la face plane 56 du substrat de façon symétrique aux sept segments LE11 à LE17 par rapport au plan de masse virtuel P'. Les deux bandes conductrices LE1 et LE2 sont distantes d'une distance constante e1, correspondant à la distance qui sépare les segments LE12 et LE16, d'une part, des segments LE22 et LE26, d'autre part.
  • Cette distance e1 influence principalement l'impédance du premier résonateur 52, c'est-à-dire l'impédance d'entrée du dispositif de filtrage 50, mais a également un effet secondaire sur la bande passante du dispositif de filtrage 50. Plus elle augmente, plus l'impédance augmente et de façon moins marquée, plus la bande passante est réduite.
  • Les deux résonateurs 52 et 54 étant symétriques par rapport à un axe normal au plan de masse virtuel P' situé sur la face plane 56, les bandes conductrices LS1 et LS2 sont constituées chacune, comme les bandes conductrices LE1 et LE2, de sept segments conducteurs LS11 à LS17 et LS21 à LS27 respectivement, imprimés sur la face plane 56 du substrat de façon symétrique aux segments des bandes conductrices LE1 et LE2 par rapport à cet axe. Par symétrie également, les deux bandes conductrices LS1 et LS2 sont distantes d'une distance constante e2 égale à e1, correspondant à la distance qui sépare les segments LS12 et LS16, d'une part, des segments LS22 et LS26, d'autre part.
  • Cette distance e2 influence également principalement l'impédance du second résonateur 54, c'est-à-dire l'impédance de sortie du dispositif de filtrage 50, mais a également un effet secondaire sur la bande passante du dispositif de filtrage 50. Plus elle augmente, plus l'impédance augmente et de façon moins marquée, plus la bande passante est réduite.
  • La distance e séparant les deux résonateurs 52 et 54 correspond à la distance qui sépare les segments LE15 et LE25, d'une part, des segments LS15 et LS25, d'autre part. Le couplage capacitif entre les deux résonateurs 52 et 54 est donc établi sur toute la longueur des segments LE15 et LE25, d'une part, et des segments LS15 et LS25, d'autre part.
  • Dans une topologie telle que celle illustrée sur la figure 4, où la longueur du rectangle formé par l'une quelconque des bandes conductrices est environ deux fois supérieure à sa largeur et où le repliement de longueur L se fait sur la moitié de la longueur du rectangle à l'intérieur de celui-ci, on obtient des dimensions du rectangle formé par chaque bande conductrice voisines de λ/30 par λ/60, soit des dimensions du dispositif de filtrage 50 voisines de λ/15 par λ/30. Ces dimensions permettent d'atteindre une compacité nettement meilleure que celles des dispositifs existants.
  • La figure 5 présente schématiquement un circuit électrique équivalent du dispositif de filtrage 50 précédemment décrit.
  • Dans ce circuit, un premier inverseur 60 représente un saut d'impédance, de Z0 à Z1, en entrée du dispositif de filtrage 50. L'impédance Z0 est déterminée par les paramètres s et w des conducteurs E"1 et E"2 du port d'entrée, tandis que l'impédance Z1 est déterminée notamment par la distance e1 entre les bandes conductrices LE1 et LE2.
  • Un second inverseur 62 représente le saut d'impédance correspondant, de Z1 à Z0, en sortie du dispositif de filtrage 50.
  • Les premier et second résonateurs couplés 52 et 54 sont représentés chacun par un circuit LC à capacité C et inductance L en parallèle. Ces deux circuits LC sont reliés, d'une part, respectivement aux premier et second inverseurs 60 et 62 et, d'autre part, à la masse.
  • Enfin, le repliement des bandes conductrices LE1, LE2, LS1 et LS2 crée des couplages supplémentaires, à l'intérieur de chaque résonateur mais également entre les résonateurs, pouvant être représentés par un circuit LC de rétroaction 64, à capacité C1 et inductance L1 en parallèle, relié, d'une part, à la jonction 66 entre le premier résonateur 52 et le premier inverseur 60 et, d'autre part, à la jonction 68 entre le second résonateur 54 et le second inverseur 62. Ce circuit LC de rétroaction 64 améliore la réjection en bande haute du dispositif de filtrage 50 par l'ajout d'un ou de plusieurs zéros de transmission dans les fréquences élevées.
  • Le graphique illustré sur la figure 6 représente la caractéristique d'une réponse fréquentielle en transmission et en réflexion du dispositif de filtrage décrit précédemment.
  • Le coefficient de réflexion S11 de cette réponse fréquentielle montre une bande passante à -10 dB (définition généralement admise de la bande passante en réflexion) comprise entre environ 3,2 et 4,4 GHz. Comme indiqué précédemment, la bande passante est élargie par la présence de deux zéros de réflexion distincts à l'intérieur de cette bande passante, ces deux zéros étant dus à la présence des deux résonateurs couplés distants de e dans le dispositif de filtrage 50. Cependant, on voit bien sur la figure 6 que s'ils sont trop éloignés, la portion de courbe S11 située entre ces deux zéros de réflexion peut remonter au dessus de -10 dB, ce qui engendre une séparation de la bande passante élargie en deux bandes passantes distinctes. Par conséquent, la distance e ne doit pas être trop faible pour ne pas provoquer de réflexion supérieure à -10 dB dans la bande passante élargie.
  • Le coefficient de transmission S21 de la réponse fréquentielle montre une bande passante à -3 dB (définition généralement admise de la bande passante en transmission), comprise entre environ 2,7 et 4,5 GHz, ainsi que deux zéros de transmission à environ 5,1 et 6,9 GHz.
  • L'un de ces deux zéros de transmission hors bande est dû au couplage entre les deux résonateurs du dispositif de filtrage 50 sur toute la longueur de leurs portions LE15, LE25 d'une part et LS15, LS25 d'autre part. L'autre de ces deux zéros de transmission est dû aux couplages intra-résonateurs supplémentaires créés par le repliement des bandes conductrices sur elles-mêmes. Ces deux zéros de transmission entraînent une forte réjection du filtre en bande haute et une asymétrie de la réponse fréquentielle du fait de la réjection moyenne en bande basse. Mais cette asymétrie peut s'avérer avantageuse, notamment pour une application d'intégration directe du dispositif de filtrage 50 dans une antenne différentielle. En effet, de telles antennes présentent généralement de fortes résonances à basse fréquence et équivalent par conséquent à des filtres passe-haut, ce qui compense l'asymétrie du dispositif de filtrage 50 en améliorant sa réjection en bande basse.
  • Un deuxième exemple de dispositif de filtrage différentiel à compacité améliorée est représenté schématiquement sur la figure 7. Ce dispositif 50' comporte une paire de résonateurs 52' et 54', couplés entre eux par couplage capacitif et disposés sur une même face plane 56 d'un substrat diélectrique. Ces deux résonateurs sont similaires à ceux, 52 et 54, du dispositif de la figure 4.
  • En revanche, dans ce deuxième exemple, les deux résonateurs 52' et 54' ne sont pas symétriques par rapport à un axe normal au plan P' situé sur la face plane 56. En effet, la distance e1 séparant les deux bandes conductrices LE1 et LE2 du premier résonateur 52' est distincte de la distance e2 séparant les deux bandes conductrices LS1 et LS2 du second résonateur 52'. Dans l'exemple illustré, la distance e2 est supérieure à la distance e1.
  • Cependant, le couplage capacitif entre les deux résonateurs 52' et 54' n'est pas rompu pour autant. En effet, du fait du repliement des bandes conductrices sur elles-mêmes, celles-ci restent en vis-à-vis sur au moins une portion de leur longueur, plus précisément sur au moins une portion des longueurs LE15 et LS15, d'une part, et des longueurs LE25 et LS25, d'autre part. En comparaison avec l'existant, il ne serait par exemple pas possible de concevoir une telle différence entre les distances e1 et e2 dans le dispositif de filtrage décrit en référence à la figure 12 du document « Broadband and compact coupled coplanar stripline filters with impedance steps » précité, parce que dans ce document, ce sont les extrémités libres des bandes conductrices qui sont disposées en vis-à-vis de sorte qu'un décalage, même léger, entre elles romprait le couplage capacitif entre les deux résonateurs.
  • Puisque ces distances e1 et e2 permettent de régler respectivement les impédances d'entrée et de sortie du dispositif de filtrage 50', il est ainsi possible de concevoir un dispositif de filtrage passe bande qui remplisse en outre une fonction d'adaptation d'impédances entre les circuits auxquels il est destiné à être connecté. Dans l'exemple illustré sur la figure 7, la distance e1 engendre ainsi une impédance d'entrée Z1 inférieure à l'impédance de sortie Z2 engendrée par la distance e2.
  • Ce deuxième exemple permet l'intégration directe d'un dispositif de filtrage selon l'invention avec des antennes différentielles et des circuits actifs différentiels d'impédances différentes. On notera cependant qu'une telle intégration directe avec un seul dispositif filtrant fonctionne d'autant mieux que la différence entre les impédances Z1 et Z2 est faible.
  • De façon alternative, un ensemble de plusieurs dispositifs de filtrage selon le deuxième exemple de l'invention ajoutés en série peut être utilisé de manière à faciliter l'adaptation d'impédance entre des circuits à impédances très différentes.
  • Un tel ensemble à deux dispositifs de filtrage est par exemple représenté schématiquement sur la figure 8.
  • Dans cet ensemble, un amplificateur 70 est raccordé à l'entrée d'un premier dispositif de filtrage 72, via le port d'entrée 74 de ce premier dispositif de filtrage. L'impédance de l'amplificateur 70 ayant une valeur Z1, le premier dispositif de filtrage 72 est conçu, par réglage de la distance entre les bandes conductrices repliées de son premier résonateur, pour présenter une impédance d'entrée de valeur conjuguée Z1* assurant ainsi un transfert de puissance maximal entre le premier dispositif de filtrage 72 et l'amplificateur 70.
  • Une antenne 76 est raccordée à la sortie d'un second dispositif de filtrage 78, via le port de sortie 80 de ce second dispositif de filtrage. L'impédance de l'antenne 76 ayant une valeur Z2, le second dispositif de filtrage 78 est conçu, par réglage de la distance entre les bandes conductrices repliées de son second résonateur, pour présenter une impédance de sortie de valeur conjuguée Z2* assurant ainsi un transfert de puissance maximal entre le second dispositif de filtrage 78 et l'antenne 76.
  • Enfin, les deux dispositifs de filtrage 72 et 78 sont avantageusement raccordés entre eux via une ligne quart d'onde 82 selon l'invention remplissant une fonction d'inverseur, la sortie du premier dispositif de filtrage 72 et l'entrée du second dispositif de filtrage 78 étant conçues, par réglage de la distance entre les bandes conductrices repliées du second résonateur du premier dispositif de filtrage 72 et de la distance entre les bandes conductrices repliées du premier résonateur du second dispositif de filtrage 78, pour présenter une même impédance Z0. Cette même impédance Z0 assure l'adaptation d'impédances et peut être choisie de façon à assurer la meilleure réjection possible.
  • Ainsi, l'adaptation des impédances Z1 et Z2 qui peuvent être très différentes se fait en passant par une impédance intermédiaire Z0 grâce à l'ensemble comportant les deux dispositifs de filtrage asymétriques 72 et 78 et la ligne quart d'onde 82.
  • La présence de la ligne quart d'onde 82 entre les deux dispositifs de filtrage 72 et 78 permet en outre d'améliorer globalement les performances du filtre d'ordre supérieur ainsi constitué, en termes de bande passante.
  • Un troisième exemple de dispositif de filtrage différentiel à compacité améliorée est représenté schématiquement sur la figure 9. Ce dispositif de filtrage 50" comporte une paire de résonateurs 52" et 54", couplés entre eux par couplage capacitif et disposés sur une même face plane 56 d'un substrat diélectrique.
  • Dans ce troisième exemple, les deux résonateurs 52" et 54" sont symétriques par rapport à un axe normal au plan P' situé sur la face plane 56. Par conséquent, la distance e1 séparant les deux bandes conductrices LE1 et LE2 du premier résonateur 52" est égale à la distance e2 séparant les deux bandes conductrices LS1 et LS2 du second résonateur 54". En variante, ces deux distances pourraient être différentes, comme dans le deuxième exemple, pour que le dispositif de filtrage remplisse en outre une fonction d'adaptation d'impédances.
  • En revanche, ce troisième exemple se distingue des premier et deuxième exemples par la forme générale des bandes conductrices repliées.
  • En effet, dans cet exemple, les quatre bandes conductrices sont de forme générale annulaire, leurs extrémités étant repliées à l'intérieur de cette forme générale annulaire sur une portion de longueur prédéterminée de celles-ci, mais elles sont plus précisément de forme générale carrée. En outre, chacune d'entre elles comporte des repliement supplémentaires sur au moins une partie des côtés de la forme générale carrée.
  • Par exemple, la bande conductrice LE1 comporte trois repliements supplémentaires LE18, LE19 et LE110 dans les trois côtés de la forme générale carrée ne comportant pas le repliement de ses deux extrémités. Pour améliorer la compacité de l'ensemble, les trois repliements supplémentaires sont dirigés vers l'intérieur de la forme générale carrée. Ils sont par exemple en forme de créneau. Par symétrie, les bandes conductrices LE2, LS1 et LS2 comportent les mêmes repliements supplémentaires, référencés LE28, LE29 et LE210 pour la bande conductrice LE2 ; LS18, LS19 et LS110 pour la bande conductrice LS1 ; LS28, LS29 et LS210 pour la bande conductrice LS2.
  • Dans cet exemple, la forme générale carrée de chaque bande conductrice LE1, LE2, LS1 et LS2 implique une forme générale carrée du dispositif de filtrage 50". La compacité de ce dernier est donc optimale.
  • De plus, les repliements supplémentaires créent des couplages capacitifs et magnétiques supplémentaires susceptibles d'améliorer davantage les performances du dispositif de filtrage 50".
  • Comme indiqué précédemment, la longueur L du repliement des deux extrémités de chaque bande conductrice à l'intérieur de sa forme générale carrée peut être réglée de manière à régler la largeur de bande du dispositif de filtrage 50".
  • Dans cette topologie carrée, on obtient par exemple des dimensions du dispositif de filtrage 50" voisines de λ/20 par côté.
  • On notera qu'un dispositif de filtrage à compacité améliorée n'est pas limité aux exemples décrits ci-dessus. D'autres formes géométriques sont envisageables pour un tel dispositif de filtrage, à partir du moment où elles prévoient un repliement de chaque bande conductrice de chaque résonateur sur elle-même de manière à former un couplage capacitif entre ses deux extrémités.
  • Ce dispositif de filtrage à compacité améliorée est particulièrement adapté pour la conception, avec une ligne bi-ruban selon l'invention, d'un filtre d'ordre supérieur de taille réduite.
  • Par exemple, comme illustré sur la figure 10, un filtre différentiel d'ordre supérieur 90 gravé sur un substrat 92 comporte deux dispositifs de filtrage différentiel à résonateurs couplés coplanaires 94 et 96 conformes au premier exemple illustré sur la figure 4. II comporte en outre une ligne bi-ruban différentielle 98 conforme à celle représentée sur la figure 3 raccordée, via l'un de ses deux ports bi-ruban, à l'un des deux dispositifs de filtrage différentiel et, via son autre port bi-ruban, à l'autre des deux dispositifs de filtrage différentiel.
  • Par exemple également, comme illustré sur la figure 11, un filtre différentiel d'ordre supérieur 100 gravé sur un substrat 102 comporte deux dispositifs de filtrage différentiel à résonateurs couplés coplanaires 104 et 106 conformes au troisième exemple illustré sur la figure 9. II comporte en outre une ligne bi-ruban différentielle 108 conforme à celle représentée sur la figure 3 raccordée, via l'un de ses deux ports bi-ruban, à l'un des deux dispositifs de filtrage différentiel et, via son autre port bi-ruban, à l'autre des deux dispositifs de filtrage différentiel.
  • Concrètement, ce filtre d'ordre supérieur est par exemple dimensionné pour fonctionner dans une bande de fréquence haute allouée aux communications à Ultra Large Bande, selon le standard ULB Européen, voire entre 6 et 9 GHz. Le substrat 102 est par exemple un substrat à forte permittivité (εr = 10). Les dimensions de ce filtre d'ordre supérieur 100 à compacité améliorée sont alors de 6 mm de longueur par 3,5 mm de largeur.
  • Le graphique illustré sur la figure 12 représente la caractéristique d'une réponse fréquentielle en transmission et en réflexion du filtre d'ordre supérieur illustré sur la figure 11.
  • Le coefficient de réflexion S11 de cette réponse fréquentielle montre une bande passante à -10 dB (définition généralement admise de la bande passante en réflexion) comprise entre environ 6 et 9 GHz et présente quatre zéros de réflexion dans la bande passante.
  • Le coefficient de transmission S21 de cette réponse fréquentielle montre une bande passante à -3 dB (définition généralement admise de la bande passante en transmission), comprise également entre environ 6 et 9 GHz, ainsi qu'un zéro de transmission à environ 9,8 GHz.
  • Ce zéro de transmission entraîne une forte réjection du filtre en bande haute et une asymétrie de la réponse fréquentielle du fait de la réjection moyenne en bande basse. Des réjections de l'ordre de 50 dB en bande haute et de 30 dB en bande basse sont obtenues. Mais, comme indiqué précédemment, cette asymétrie peut s'avérer avantageuse, notamment pour une application d'intégration directe de ce filtre 100 dans une antenne différentielle.
  • Les figures 13 à 15 illustrent schématiquement trois exemples d'antennes dipôles filtrantes différentielles intégrant chacune avantageusement un filtre différentiel d'ordre supérieur à compacité améliorée tel que celui illustré sur la figure 11.
  • L'antenne dipôle filtrante 110 représentée sur la figure 13 comporte d'une part un dipôle électrique rayonnant 112 et d'autre part un filtre différentiel d'ordre supérieur 100 tel que celui décrit en référence à la figure 11. Le dipôle électrique 112 est plus précisément un dipôle épais coplanaire gravé sur un substrat et dont la structure rayonnante est de forme elliptique. Ce type de dipôle est à très large bande passante. La bande passante relative définie par la relation Δf/f0, où Δf est la largeur de la bande passante et f0 la fréquence centrale de fonctionnement de l'antenne, peut dépasser 100 %.
  • Les deux bras du dipôle 112 sont directement connectés aux deux conducteurs du port de sortie du filtre 100. Les deux conducteurs du port d'entrée du filtre 100 sont quant à eux destinés à être alimentés en signal différentiel.
  • L'antenne dipôle filtrante 120 représentée sur la figure 14 comporte d'une part un dipôle électrique rayonnant 122 et d'autre part un filtre différentiel d'ordre supérieur 100 tel que celui décrit en référence à la figure 11. Le dipôle électrique 122 est plus précisément un dipôle épais coplanaire gravé sur un substrat et dont la structure rayonnante est de forme « papillon ». Plus précisément, la structure rayonnante du dipôle présente une partie fine, dans une zone centrale de l'antenne comportant la connexion au filtre 100, qui s'élargit vers l'extérieur de l'antenne des deux côtés du dipôle. Ce type de dipôle rayonnant est à bande passante moyenne. Sa bande passante relative Δf/f0 est de l'ordre de 20 %.
  • Comme précédemment, les deux bras du dipôle 122 sont directement connectés aux deux conducteurs du port de sortie du filtre 100. Les deux conducteurs du port d'entrée du filtre 100 sont quant à eux destinés à être alimentés en signal différentiel.
  • Enfin, l'antenne dipôle filtrante 130 représentée sur la figure 15 comporte d'une part un dipôle électrique rayonnant 132 et d'autre part un filtre différentiel d'ordre supérieur 100 tel que celui décrit en référence à la figure 11. Le dipôle électrique 132 est plus précisément un dipôle épais coplanaire gravé sur un substrat et dont la structure rayonnante est de forme « papillon ». II diffère cependant du dipôle électrique 122 notamment en ce que les deux extrémités larges de sa structure rayonnante, orientées vers l'extérieur de l'antenne, sont conformées pour intégrer dans leurs dimensions extérieures (i.e. plus grande longueur et plus grande largeur) le filtre 100. II en résulte un gain supplémentaire en compacité de l'antenne filtrante 130 par rapport à l'antenne filtrante 120.
  • Par ailleurs, comme précédemment, les deux bras du dipôle 132 sont directement connectés aux deux conducteurs du port de sortie du filtre 100. Les deux conducteurs du port d'entrée du filtre 100 sont quant à eux destinés à être alimentés en signal différentiel.
  • A nombre de dispositifs de filtrage constant, une antenne dipôle filtrante différentielle selon l'invention est plus petite qu'une antenne correspondante classique, notamment grâce à la meilleure compacité de la ligne bi-ruban différentielle utilisée. De façon alternative, à taille globale constante, une antenne dipôle filtrante différentielle selon l'invention est plus performante parce qu'elle peut comporter un plus grand nombre de dispositifs de filtrage permettant de réaliser un filtrage d'ordre encore plus élevé, donc plus performant en terme de bande passante.
  • II apparaît clairement qu'une ligne à retard bi-ruban différentielle telle que celle décrite précédemment en référence à la figure 3 peut atteindre une compacité bien meilleure que celle des lignes bi-ruban différentielles connues réalisées en technologie CPS, tout en conservant leurs caractéristiques.
  • Compte tenu des bandes de fréquences dans lesquelles elle peut fonctionner lorsqu'elle est associée à des dispositifs de filtrage réalisés en technologie CPS, elle est particulièrement adaptée aux nouveaux protocoles de radiocommunication qui requièrent des bandes passantes très larges. Sa compacité la rend en outre avantageuse pour des objets miniatures communicants.
  • La structure coplanaire de cette ligne à retard bi-ruban différentielle facilite en outre sa réalisation en technologie hybride et son intégration en technologie monolithique avec des structures comportant des éléments discrets montés en surface. Notamment, il est simple de la concevoir comme élément d'un filtre d'ordre supérieur en intégration avec une antenne dipôle différentielle à structure rayonnante coplanaire large bande, comme cela a été illustré par plusieurs exemples, par gravure chimique ou mécanique sur des substrats à faible ou haute permittivité selon les applications et performances voulues.
  • Un filtre d'ordre supérieur selon l'invention peut aussi trouver des applications dans la bande des fréquences millimétriques où sa faible taille et ses fortes performances lui permettent d'être intégré en technologie monolithique avec des antennes et des circuits actifs.
  • Enfin, on notera que d'autres applications que celles présentées ci-dessus sont également envisageables pour une ligne bi-ruban selon l'invention. Notamment, une ligne bi-ruban selon l'invention peut être utilisée comme déphaseur, par exemple dans une application d'alimentation d'un réseau d'antennes où plusieurs antennes différentes à déphasages différents sont alimentées par une même source. Dans ce cas, les antennes peuvent être reliées les unes aux autres par des lignes bi-ruban selon l'invention.

Claims (6)

  1. Ligne à retard bi-ruban différentielle coplanaire (30), comportant deux bandes conductrices (32, 34) disposées sur une même face (36) d'un substrat diélectrique et comprenant chacune une première et une seconde extrémités (E'1, E'2, S'1, S'2), les deux premières extrémités (E'1, E'2) des deux bandes conductrices formant deux conducteurs d'un premier port bi-ruban (38) de connexion, pouvant être connecté à un premier dispositif différentiel externe, les deux secondes extrémités (S'1, S'2) des deux bandes conductrices formant deux conducteurs d'un second port bi-ruban (40) de connexion, pouvant être connecté à un second dispositif différentiel externe, la ligne à retard étant conformée sous forme de circuit imprimé pour présenter des discontinuités de structure (32B, 32C, 32D, 34B, 34C, 34D), où les discontinuités de structure sont génératrices d'au moins un saut d'impédance entre ses deux bandes conductrices (32, 34) de manière à reproduire un déphasage prédéterminé et comportent au moins :
    - une première discontinuité (32B, 34B) d'augmentation de la distance entre les deux bandes conductrices (32, 34), pour la réalisation d'au moins un saut d'impédance, et une deuxième discontinuité (32C, 34C) de réduction de la distance entre les deux bandes conductrices (32, 34), pour la réalisation d'au moins un saut d'impédance, formant une zone du substrat dans laquelle la ligne bi-ruban présente un écartement entre ses bandes conductrices supérieur à l'écartement entre les deux conducteurs (E'1, E'2, S'1, S'2) de chacun de ses ports bi-ruban de connexion (38, 40), et caracterisée en ce que la ligne à retard bi-ruban différentielle coplanaire comporte au moins
    - une capacité interdigitée formée, par au moins une paire de doigts conducteurs (32D, 34D) raccordés respectivement par l'une de leurs extrémités aux deux bandes conductrices, dans la zone du substrat dans laquelle la ligne bi-ruban présente un écartement plus grand entre ses bandes conductrices (32, 34), la paire de doigts conducteurs (32D, 34D) s'étendant latéralement vers l'intérieur de cette zone à partir des deux bandes conductrices.
  2. Ligne à retard bi-ruban différentielle coplanaire (30) selon la revendication 1, dans laquelle les discontinuités de structure (32B, 32C, 32D, 34B, 34C, 34D) sont génératrices d'au moins un saut d'impédance et d'au moins un couplage capacitif entre ses deux bandes conductrices (32, 34) de manière à reproduire un déphasage quart d'onde.
  3. Filtre différentiel d'ordre supérieur (90 ; 100) comportant deux dispositifs (94, 96 ; 104, 106) de filtrage différentiel à résonateurs couplés coplanaires et une ligne à retard bi-ruban différentielle coplanaire (98 ; 108) selon la revendication 1 ou 2, cette ligne bi-ruban étant raccordée, via son premier port bi-ruban, à l'un des deux dispositifs de filtrage et, via son second port bi-ruban, à l'autre des deux dispositifs de filtrage.
  4. Filtre différentiel d'ordre supérieur (90; 100) selon la revendication 3, dans lequel chacun des deux dispositifs (94, 96 ; 104, 106) de filtrage différentiel à résonateurs couplés coplanaires comporte une paire de résonateurs couplés (52, 54 ; 52', 54') disposés sur une même face (56) d'un substrat diélectrique, chaque résonateur comportant deux bandes conductrices (LE1, LE2, LS1, LS2) positionnées de façon symétrique par rapport à un plan perpendiculaire à la face (56) sur laquelle est disposé le résonateur (52, 54 ; 52', 54'), ces deux bandes conductrices (LE1, LE2, LS1, LS2) étant raccordées respectivement à deux conducteurs (E"1, E"2, S"1, S"2) d'un port bi-ruban différentiel du dispositif de filtrage différentiel correspondant, chaque bande conductrice (LE1, LE2, LS1, LS2) de chaque résonateur (52, 54 ; 52', 54') étant en outre repliée sur elle-même de manière à former un couplage capacitif entre ses deux extrémités.
  5. Antenne dipôle filtrante différentielle (110; 120; 130) comportant au moins un filtre différentiel d'ordre supérieur (90 ; 100) selon la revendications 3 ou 4.
  6. Antenne dipôle filtrante différentielle (130) selon la revendication 5, comportant une structure rayonnante (132) conformée pour intégrer dans ses dimensions extérieures ledit filtre différentiel d'ordre supérieur (90 ; 100).
EP09175194.1A 2008-11-07 2009-11-06 Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne Active EP2184803B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0806220A FR2938378B1 (fr) 2008-11-07 2008-11-07 Ligne a retard bi-ruban differentielle coplanaires, filtre differentiel d'ordre superieur et antenne filtrante munis d'une telle ligne

Publications (2)

Publication Number Publication Date
EP2184803A1 EP2184803A1 (fr) 2010-05-12
EP2184803B1 true EP2184803B1 (fr) 2016-01-06

Family

ID=40792752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09175194.1A Active EP2184803B1 (fr) 2008-11-07 2009-11-06 Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne

Country Status (3)

Country Link
US (1) US8305283B2 (fr)
EP (1) EP2184803B1 (fr)
FR (1) FR2938378B1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI540787B (zh) * 2014-12-09 2016-07-01 啟碁科技股份有限公司 巴倫濾波器及射頻系統
US9991605B2 (en) 2015-06-16 2018-06-05 The Mitre Corporation Frequency-scaled ultra-wide spectrum element
US10056699B2 (en) 2015-06-16 2018-08-21 The Mitre Cooperation Substrate-loaded frequency-scaled ultra-wide spectrum element
FR3048143B1 (fr) * 2016-02-23 2018-06-15 Sagem Defense Securite Circuit imprime en technologie uniplanaire
CN107658553B (zh) * 2017-08-16 2024-01-09 深圳市维力谷无线技术股份有限公司 一种应用于uhf频段物联网天线
US10854993B2 (en) 2017-09-18 2020-12-01 The Mitre Corporation Low-profile, wideband electronically scanned array for geo-location, communications, and radar
US10886625B2 (en) 2018-08-28 2021-01-05 The Mitre Corporation Low-profile wideband antenna array configured to utilize efficient manufacturing processes
EP3913735A4 (fr) * 2019-01-17 2022-09-07 Rosenberger Technology (Kunshan) Co., Ltd. Filtre
CN109768357B (zh) * 2019-02-25 2020-12-08 广东曼克维通信科技有限公司 一种传输零点可控的基片集成波导滤波器
CN112909455B (zh) * 2019-11-19 2022-04-05 英业达科技有限公司 噪声抑制滤波器及制作噪声抑制滤波器的方法
CN111696959B (zh) * 2020-06-19 2022-07-01 安徽大学 晶圆级封装中球栅阵列毫米波宽带匹配结构及设计方法
CN112332048B (zh) * 2020-10-27 2021-06-25 南通大学 一种平衡式滤波移相器
CN118508085B (zh) * 2024-07-16 2024-11-05 佛山市粤海信通讯有限公司 一种具有宽带宽的偶极子全向天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946342A (en) * 1973-08-10 1976-03-23 Texas Instruments Incorporated Weighting surface wave filters by withdrawing electrodes
AU4038697A (en) * 1996-06-28 1998-01-21 Superconducting Core Technologies, Inc. Planar radio frequency filter
US5815050A (en) * 1996-12-27 1998-09-29 Thin Film Technology Corp. Differential delay line
US6029075A (en) * 1997-04-17 2000-02-22 Manoj K. Bhattacharygia High Tc superconducting ferroelectric variable time delay devices of the coplanar type
KR100549967B1 (ko) * 2003-12-10 2006-02-08 한국전자통신연구원 초고주파 가변 소자용 강유전체 에피택셜 박막 및 이를이용한 초고주파 가변 소자
US7642883B2 (en) * 2004-03-09 2010-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Tuneable ferroelectric delay line having mirror image conductors
WO2006088227A1 (fr) * 2005-02-16 2006-08-24 Nec Corporation Compensateur de dispersion et dispositif de communication optique comprenant celui-ci
CN100595974C (zh) * 2005-03-30 2010-03-24 松下电器产业株式会社 传输线
JP4565146B2 (ja) * 2005-09-06 2010-10-20 独立行政法人情報通信研究機構 マルチバンド超広帯域バンドパスフィルタ

Also Published As

Publication number Publication date
EP2184803A1 (fr) 2010-05-12
US8305283B2 (en) 2012-11-06
US20100117759A1 (en) 2010-05-13
FR2938378A1 (fr) 2010-05-14
FR2938378B1 (fr) 2015-09-04

Similar Documents

Publication Publication Date Title
EP2184803B1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
EP2184801B1 (fr) Dispositif de filtrage différentiel à résonateurs couplés coplanaires et antenne filtrante munie d'un tel dispositif
EP2345104B1 (fr) Systeme d'antenne dipole differentielle a structure rayonnante coplanaire et dispositif d'emission/reception
EP0285503B1 (fr) Filtre comportant des éléments à constantes réparties associant deux types de couplage
EP0714151A1 (fr) Antenne large bande monopÔle en technologie imprimée uniplanaire et dispositif d'émission et/ou de réception incorporant une telle antenne
EP2022129B1 (fr) Circulateur radiofrequence ou hyperfrequence
EP1601101B1 (fr) Transformateur à changement de mode et filtre passe-bas
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
EP3417507B1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP2202838B1 (fr) Condensateur commuté compact mems
EP1368895A1 (fr) Filtre a ondes acoustiques de surface
EP3224897B1 (fr) Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices
EP0015610B1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
FR2871618A1 (fr) Filtre basse-bande hyperfrequence de type finline
EP3605734B1 (fr) Dispositif d'antenne comportant au moins deux antennes à même substrat de raccordement électrique
EP0373028B1 (fr) Filtre passif passe-bande
EP2507865B1 (fr) Transformateur d'impedance de puissance vhf/uhf planaire compact
EP0487396A1 (fr) Filtre passif passe-bande
FR2849718A1 (fr) Filtre passe-bande hyperfrequence en guide d'ondes plan e, a reponse pseudo-elliptique
EP1568098B1 (fr) Dispositif separateur de bandes hyperfrequences a large bande
FR2911998A1 (fr) Antenne large bande
WO2019243232A2 (fr) Système hyperfréquence accordable
FR2712752A1 (fr) Filtres à ondes de surface à trajet acoustique replié.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

17P Request for examination filed

Effective date: 20101109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150811

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 769559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009035526

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160106

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 769559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009035526

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211123

Year of fee payment: 13

Ref country code: DE

Payment date: 20211122

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009035526

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221106

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231116

Year of fee payment: 15