EP1654441B1 - Run-in coating of a gas turbine and method for fabricating such a coating - Google Patents
Run-in coating of a gas turbine and method for fabricating such a coating Download PDFInfo
- Publication number
- EP1654441B1 EP1654441B1 EP04762528A EP04762528A EP1654441B1 EP 1654441 B1 EP1654441 B1 EP 1654441B1 EP 04762528 A EP04762528 A EP 04762528A EP 04762528 A EP04762528 A EP 04762528A EP 1654441 B1 EP1654441 B1 EP 1654441B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- run
- titanium
- housing
- aluminium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12389—All metal or with adjacent metals having variation in thickness
Definitions
- the invention relates to an inlet lining for gas turbines according to the preamble of patent claim 1, as from the publication US 4,155,755 A and US 5667898 is known. Furthermore, the invention relates to a method for producing a Einlaufbelags according to the preamble of claim 9.
- Gas turbines such as aircraft engines, typically include a plurality of rotating blades and a plurality of fixed vanes, the blades rotating together with a rotor, and wherein the blades and the vanes are enclosed by a fixed housing of the gas turbine.
- sealing systems include the so-called sealing systems in aircraft engines.
- Particularly problematic in aircraft engines is keeping clean a minimum gap between the rotating blades and the stationary housing of a high pressure compressor. Namely, the highest absolute temperatures and temperature gradients occur in high-pressure compressors, which makes it more difficult for the rotating blades to cling to the stationary housing of the compressor. This is partly due to the fact that in compressor blades on shrouds, such as those used in turbines, is dispensed with.
- blades in the compressor have no shroud.
- tips of the rotating blades are exposed to direct frictional contact with the housing during so-called rubbing into the stationary housing.
- Such a rubbing of the tips of the blades into the housing is caused by setting a minimum radial gap by manufacturing tolerances.
- As is removed by the frictional contact of the tips of the rotating blades on the same material can over the entire circumference of the housing and rotor set an undesirable gap magnification.
- the present invention is based on the problem of creating a novel inlet lining for gas turbines.
- the inlet lining for gas turbines serves to seal a radial gap between a stationary housing of the gas turbine and rotating blades thereof.
- the inlet lining is attached to the housing.
- the inlet lining is produced from an intermetallic titanium-aluminum material, wherein the inlet lining made of the Ti-Al material has a graduated or graded material composition over the thickness of the inlet lining.
- the inlet lining of the titanium-aluminum material has a graded or graded porosity.
- the inlet lining in an inner, directly adjacent to the housing area and at an outer, immediately adjacent to the blades lying area is less porous than between these two areas.
- the inlet lining is accordingly denser and harder on the inner region immediately adjacent to the housing and on the outer region immediately adjacent to the rotor blades.
- the inner, immediately adjacent to the housing area serves to provide adhesion; the outer area immediately adjacent the blades serves to provide erosion protection.
- Fig. 1 shows a highly schematic of a rotating blade 10 of a gas turbine, which rotates relative to a fixed housing 11 in the direction of the arrow 12.
- an inlet lining 13 is arranged on the housing 11.
- the inlet lining 13 serves to seal a radial gap between a tip or end 14 of the rotating blade 10 and the stationary housing 11.
- the requirements placed on such an inlet lining are very complex.
- the inlet lining must have an optimized abrasion behavior, ie it must be ensured good chip formation and Entfemles the abrasion.
- no transfer of material to the rotating blades 10 may take place.
- the inlet lining 13 must furthermore have a low frictional resistance.
- the inlet lining 13 must not ignite when rubbed by the rotating blades 10.
- its here the erosion resistance, temperature resistance, thermal shock resistance, corrosion resistance to lubricants and seawater exemplified.
- Fig. 1 illustrates that due to the centrifugal forces occurring during operation of the gas turbine and the heating of the gas turbine, the ends 14 of the blades 10 come into contact with the inlet lining 13 and so an abrasion 15 is released. This pulverized abrasion 15 must not cause any damage to the rotating blades 10.
- housing 11 is in the preferred embodiment, the housing of a high pressure compressor.
- Such housing of high-pressure compressors are increasingly made of intermetallic materials of the type TiAl or Ti 3 Al.
- Such titanium-aluminum intermetallic materials have a lower density and are superior in temperature resistance to conventional titanium alloys.
- an inlet lining 13 also applied from an intermetallic titanium-aluminum material. It should be noted that such an inlet lining of an intermetallic titanium-aluminum material can also be applied to a housing which consists of a conventional titanium alloy.
- the inlet lining 13 of the intermetallic titanium-aluminum material has a stepped, i. gradually changing, or over a graded, i. over a nearly infinitely variable, material composition and / or porosity.
- a stepped, i. gradually changing, or over a graded, i. over a nearly infinitely variable, material composition and / or porosity By the targeted adjustment of the material composition and / or porosity, the properties of the inlet lining 13 can be adapted to the specific requirements of the same.
- the inlet lining 13 has a low porosity in an inner region 16 immediately adjacent to the housing 11, as well as in an outer region 17 immediately adjacent to the moving blades 10. Between this inner region 16 and this outer region 17, on the other hand, the porosity of the inlet lining is increased.
- the inner, directly on the housing 11 adjacent area 16 of the inlet lining 13 serves for bonding between inlet lining 13 and housing 11.
- the outer, immediately adjacent to the blades 10 area 17 of the inlet lining 13 forms an erosion protection. Depending on the requirements of the inlet lining 13, however, this erosion protection can also be dispensed with.
- the ratio of titanium and aluminum within the inlet lining 13 produced from the intermetallic titanium-aluminum material is preferably approximately constant. This means that in this case only the porosity of the inlet lining 13 is graded or graded to influence the hardness and strength thereof.
- the ratio of titanium and aluminum within the inlet lining 13 is graded or graded.
- more titanium is preferably contained in the inner lining immediately adjacent to the housing 11 in the inlet lining 13 than in the outer region 17 of the inlet lining 13. This means that in the outer region 17 of the inlet lining 13 more aluminum is contained than in the inner region 16 thereof, which is adjacent to the housing 11.
- an inlet lining of a titanium-aluminum intermetallic material on a housing which is also formed of an intermetallic titanium-aluminum material or a titanium alloy, has the advantage that the connection of the inlet lining to the housing takes place via chemical bonds and so that the connection is safer and more durable than with inlet coverings according to the prior art. Furthermore, there will be no high-temperature diffusion between the housing and the inlet lining between an inlet lining and a housing, which have the same basic composition. Furthermore, there are no thermal expansion problems, since the housing and inlet lining evenly expand or contract with temperature increase or decrease in temperature. As a result, a more uniform gap position and a longer service life of the inlet lining can be achieved.
- An inventively formed inlet lining further has a high oxidation resistance and high thermal shock resistance. The blade tips of the rotating blades are subject to minimal blade tip abrasion.
- the inlet lining 13 by providing the inlet lining 13 in the form of a slip material and applying it to the housing 11 using the slip technique.
- a slip material based on an intermetallic Titanium-aluminum material is preferably applied to the housing 11 by brushing, dipping or spraying. This is preferably done in several steps or layers, so that a multi-layer inlet lining 13 is formed.
- additional materials are incorporated into the slip material.
- hardening or burning in of the slip material takes place on the housing 11.
- the additives added to the slip material evaporate, as a result of which the pores within the inlet lining 13 remain.
- the number and type of added additives allows the porosity, namely the number and size of the pores, to be adjusted.
- the run-in pad 13 can also be made by applying it using a directional matter vapor jet.
- a directed matter vapor jet may be generated by a PVD (Physical Vapor Deposition) process or a CVD (Chemical Vapor Deposition) process.
- PVD Physical Vapor Deposition
- CVD Chemical Vapor Deposition
- the porosity adjunct additives may be so-called microballs, i. filled or hollow plastic beads, polystyrene beads, or other materials that vaporize upon firing of the titanium-aluminum intermetallic material.
- the inlet lining according to the invention can be produced particularly favorable.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
Die Erfindung betrifft einen Einlaufbelag für Gasturbinen gemäß dem Oberbegriff des Patentanspruchs 1, wie aus der Druckschrift
Gasturbinen, wie zum Beispiel Flugtriebwerke, umfassen in der Regel mehrere rotierende Laufschaufeln sowie mehrere feststehende Leitschaufeln, wobei die Laufschaufeln zusammen mit einem Rotor rotieren und wobei die Laufschaufeln sowie die Leitschaufeln von einem feststehenden Gehäuse der Gasturbine umschlossen sind. Zur Leistungssteigerung eines Flugtriebwerks ist es von Bedeutung, alle Komponenten und Subsysteme zu optimieren. Hierzu zählen auch die sogenannten Dichtsysteme in Flugtriebwerken. Besonders problematisch ist bei Flugtriebwerken die Reinhaltung eines minimalen Spalts zwischen den rotierenden Laufschaufeln und dem feststehenden Gehäuse eines Hochdruckverdichters. Bei Hochdruckverdichtern treten nämlich die größten absoluten Temperaturen sowie Temperaturengradienten auf, was die Spalthaltung der rotierenden Laufschaufeln zum feststehenden Gehäuse des Verdichters erschwert. Dies liegt unter anderem auch darin begründet, dass bei Verdichterlaufschaufeln auf Deckbänder, wie sie bei Turbinen verwendet werden, verzichtet wird.Gas turbines, such as aircraft engines, typically include a plurality of rotating blades and a plurality of fixed vanes, the blades rotating together with a rotor, and wherein the blades and the vanes are enclosed by a fixed housing of the gas turbine. To increase the performance of an aircraft engine, it is important to optimize all components and subsystems. These include the so-called sealing systems in aircraft engines. Particularly problematic in aircraft engines is keeping clean a minimum gap between the rotating blades and the stationary housing of a high pressure compressor. Namely, the highest absolute temperatures and temperature gradients occur in high-pressure compressors, which makes it more difficult for the rotating blades to cling to the stationary housing of the compressor. This is partly due to the fact that in compressor blades on shrouds, such as those used in turbines, is dispensed with.
Wie bereits erwähnt, verfügen Laufschaufeln im Verdichter über kein Deckband. Daher sind Enden bzw. Spitzen der rotierenden Laufschaufeln beim sogenannten Anstreifen in das feststehende Gehäuse einem direkten Reibkontakt mit dem Gehäuse ausgesetzt. Ein solches Anstreifen der Spitzen der Laufschaufeln in das Gehäuse wird bei Einstellung eines minimalen Radialspalts durch Fertigungstoleranzen hervorgerufen. Da durch den Reibkontakt der Spitzen der rotierenden Laufschaufeln an denselben Material abgetragen wird, kann sich über den gesamten Umfang von Gehäuse und Rotor eine unerwünschte Spaltvergrößerung einstellen. Um dies zu vermeiden ist es aus dem Stand der Technik bereits bekannt, die Enden bzw. Spitzen der rotierenden Laufschaufeln mit einem harten Belag oder mit abrasiven Partikeln zu panzern.As mentioned earlier, blades in the compressor have no shroud. Thus, tips of the rotating blades are exposed to direct frictional contact with the housing during so-called rubbing into the stationary housing. Such a rubbing of the tips of the blades into the housing is caused by setting a minimum radial gap by manufacturing tolerances. As is removed by the frictional contact of the tips of the rotating blades on the same material, can over the entire circumference of the housing and rotor set an undesirable gap magnification. To avoid this, it is already known from the prior art to armor the ends or tips of the rotating blades with a hard coating or with abrasive particles.
Eine andere Möglichkeit, den Verschleiß an den Spitzen der rotierenden Laufschaufeln zu vermeiden und für eine optimierte Abdichtung zwischen den Enden bzw. Spitzen der rotierenden Laufschaufeln und dem feststehenden Gehäuse zu sorgen, besteht in der Beschichtung des Gehäuses mit einem sogenannten Einlaufbelag. Bei einem Materialabtrag an einem Einlaufbelag wird der Radialspalt nicht über den gesamten Umfang vergrößert, sondern in der Regel nur sichelförmig. Hierdurch wird ein Leistungsabfall des Triebwerks vermieden. Gehäuse mit einem Einlaufbelag sind aus dem Stand der Technik bekannt.Another way to avoid wear on the tips of the rotating blades and to provide an optimized seal between the ends or tips of the rotating blades and the fixed housing, consists in the coating of the housing with a so-called inlet lining. In a material removal at an inlet lining of the radial gap is not increased over the entire circumference, but usually only sickle-shaped. As a result, a power loss of the engine is avoided. Housings with an inlet lining are known from the prior art.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, einen neuartigen Einlaufbelag für Gasturbinen zu schaffen.On this basis, the present invention is based on the problem of creating a novel inlet lining for gas turbines.
Dieses Problem wird dadurch gelöst, dass der Eingangs genannte Einlaufbelag durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist.This problem is solved in that the input said inlet lining is further developed by the features of the characterizing part of claim 1.
Der erfindungsgemäße Einlaufbelag für Gasturbinen dient der Abdichtung eines radialen Spalts zwischen einem feststehenden Gehäuse der Gasturbine und rotierenden Laufschaufeln derselben. Der Einlaufbelag ist an dem Gehäuse angebracht. ErfindungsgemäB ist der Einlaufbelag aus einem intermetallischen Titan-Aluminium-Werkstoff hergestellt, wobei der Einlaufbelag aus dem Ti-Al-Werkstoff über eine über die Dicke des Einlaufbelags abgestufte oder gradierte Materialzusammensetzung verfügt.The inlet lining for gas turbines according to the invention serves to seal a radial gap between a stationary housing of the gas turbine and rotating blades thereof. The inlet lining is attached to the housing. According to the invention, the inlet lining is produced from an intermetallic titanium-aluminum material, wherein the inlet lining made of the Ti-Al material has a graduated or graded material composition over the thickness of the inlet lining.
Nach einer vorteilhaften Ausgestaltung der Erfindung verfügt der Einlaufbelag aus dem Titan-Aluminium-Werkstoff über eine abgestufte oder gradierte Porosität. Besonders bevorzugt ist eine Ausgestaltung bei welcher der Einlaufbelag in einem inneren, unmittelbar benachbart zum Gehäuse liegenden Bereich und an einem äußeren, unmittelbar benachbart zu den Laufschaufeln liegenden Bereich weniger porös ausgebildet ist als zwischen diesen beiden Bereichen. Der Einlaufbelag ist an dem inneren, unmittelbar benachbart zum Gehäuse liegenden Bereich und an dem äußeren, unmittelbar benachbart zu den Laufschaufeln liegenden Bereich demnach dichter und härter ausgebildet. Der innere, unmittelbar benachbart zum Gehäuse liegende Bereich dient dabei der Haftvermittlung; der äußere, unmittelbar benachbart zu den Laufschaufeln liegende Bereich dient der Bereitstellung eines Erosionsschutzes.According to an advantageous embodiment of the invention, the inlet lining of the titanium-aluminum material has a graded or graded porosity. Particularly preferred is an embodiment in which the inlet lining in an inner, directly adjacent to the housing area and at an outer, immediately adjacent to the blades lying area is less porous than between these two areas. The inlet lining is accordingly denser and harder on the inner region immediately adjacent to the housing and on the outer region immediately adjacent to the rotor blades. The inner, immediately adjacent to the housing area serves to provide adhesion; the outer area immediately adjacent the blades serves to provide erosion protection.
Das erfindungsgemäße Verfahren zur Herstellung eines Einlaufbelags ist im unabhängigen Patentanspruch 9 definiert.The inventive method for producing an inlet lining is defined in the independent claim 9.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Unteransprüchen und der nachfolgenden Beschreibung.Preferred embodiments of the invention will become apparent from the dependent subclaims and the following description.
Nachfolgend werden Ausführungsbeispiele der Erfindung, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. In der Zeichnung zeigt:
- Fig. 1:
- eine stark schematisierte Darstellung einer Laufschaufel einer Gasturbine zusammen mit einem Gehäuse der Gasturbine und mit einem auf dem Gehäuse angeordneten Einlaufbelag.
- Fig. 1:
- a highly schematic representation of a blade of a gas turbine together with a housing of the gas turbine and arranged on the housing inlet lining.
Bei dem in
Es liegt nun im Sinne der hier vorliegenden Erfindung, auf ein Gehäuse 11, das aus einem intermetallischen Titan-Aluminium-Werkstoff hergestellt ist, einen Einlaufbelag 13 ebenfalls aus einem intermetallischen Titan-Aluminium-Werkstoff aufzubringen. Es sei darauf hingewiesen, dass ein derartiger Einlaufbelag aus einem intermetallischen Titan-Aluminium-Werkstoff auch auf einem Gehäuse aufgebracht sein kann, welches aus einer herkömmlichen Titanlegierung besteht.It is now within the meaning of the present invention, on a
Im Sinne der hier vorliegenden Erfindung verfügt der Einlaufbelag 13 aus dem intermetallischen Titan-Aluminium-Werkstoff über eine abgestufte, d.h. sich stufenweise ändernde, oder über eine gradierte, d.h. über eine sich nahezu stufenlos ändernde, Materialzusammensetzung und/oder Porosität. Durch die gezielte Einstellung der Materialzusammensetzung und/oder Porosität können die Eigenschaften des Einlaufbelags 13 an die konkreten Anforderungen desselben angepasst werden.For the purposes of the present invention, the inlet lining 13 of the intermetallic titanium-aluminum material has a stepped, i. gradually changing, or over a graded, i. over a nearly infinitely variable, material composition and / or porosity. By the targeted adjustment of the material composition and / or porosity, the properties of the
Nach einer bevorzugten Weiterbildung des erfindungsgemäßen Einlaufbelags 13 verfügt derselbe in einem inneren, unmittelbar zum Gehäuse 11 benachbarten Bereich 16 über eine geringe Porosität, ebenso wie in einem äußerem, unmittelbar zu den Laufschaufeln 10 benachbarten Bereich 17. Zwischen diesem inneren Bereich 16 und diesem äußerem Bereich 17 hingegen ist die Porosität des Einlaufbelags vergrö-βert. Der innere, unmittelbar am Gehäuse 11 anliegende Bereich 16 des Einlaufbelags 13 dient der Haftvermittlung zwischen Einlaufbelag 13 und Gehäuse 11. Der äußere, unmittelbar zu den Laufschaufeln 10 benachbarte Bereich 17 des Einlaufbelags 13 bildet einen Erosionsschutz. Je nach Anforderung an den Einlaufbelag 13 kann auf diesen Erosionsschutz jedoch auch verzichtet werden.According to a preferred embodiment of the
Das Verhältnis von Titan und Aluminium innerhalb des aus dem intermetallischen Titan-Aluminium-Werkstoff hergestellten Einlaufbelags 13 ist vorzugsweise annähernd konstant. Dies bedeutet, dass in diesem Fall ausschließlich die Porosität de Einlaufbelags 13 zur Beeinflussung der Härte und Festigkeit desselben abgestuft oder gradiert ist.The ratio of titanium and aluminum within the
Es ist jedoch auch vorstellbar, dass das Verhältnis von Titan und Aluminium innerhalb des Einlaufbelags 13 abgestuft oder gradiert ist. In diesem Fall ist vorzugsweise im inneren, unmittelbar benachbart zum Gehäuse 11 liegenden Bereich 16 im Einlaufbelag 13 mehr Titan enthalten als im äußeren Bereich 17 des Einlaufbelags 13. Dies bedeutet, dass im äußeren Bereich 17 des Einlaufbelags 13 mehr Aluminium enthalten ist als im inneren Bereich 16 desselben, der an das Gehäuse 11 angrenzt.However, it is also conceivable that the ratio of titanium and aluminum within the
Die Verwendung eines Einlaufbelags aus einem intermetallischen Titan-Aluminium-Werkstoffs auf einem Gehäuse, welches ebenfalls aus einem intermetallischen Titan-Aluminium-Werkstoff oder einer Titanlegierung gebildet ist, verfügt über den Vorteil, dass die Anbindung des Einlaufbelags an das Gehäuse über chemische Bindungen erfolgt und damit die Anbindung sicherer und dauerhafter ist als bei Einlaufbelägen nach dem Stand der Technik. Weiterhin wird sich zwischen einem Einlaufbelag und einem Gehäuse, die über die gleiche Grundzusammensetzung verfügen, keine Hochtemperaturdiffusion zwischen Gehäuse und Einlaufbelag einstellen. Weiterhin gibt es keine thermischen Ausdehnungsprobleme, da sich Gehäuse und Einlaufbelag bei Temperaturerhöhung bzw. Temperaturerniedrigung gleichmäßig ausdehnen bzw. zusammenziehen. Dadurch kann eine gleichmäßigere Spalthaltung und eine höhere Lebensdauer des Einlaufbelags erzielt werden. Ein erfindungsgemäß ausgebildeter Einlaufbelag verfügt des weiteren über eine hohe Oxidationsbeständigkeit sowie hohe Thermowechselbeständigkeit. Die Schaufelspitzen der rotierenden Laufschaufeln unterliegen nur einem minimalen Schaufelspitzenabrieb.The use of an inlet lining of a titanium-aluminum intermetallic material on a housing, which is also formed of an intermetallic titanium-aluminum material or a titanium alloy, has the advantage that the connection of the inlet lining to the housing takes place via chemical bonds and so that the connection is safer and more durable than with inlet coverings according to the prior art. Furthermore, there will be no high-temperature diffusion between the housing and the inlet lining between an inlet lining and a housing, which have the same basic composition. Furthermore, there are no thermal expansion problems, since the housing and inlet lining evenly expand or contract with temperature increase or decrease in temperature. As a result, a more uniform gap position and a longer service life of the inlet lining can be achieved. An inventively formed inlet lining further has a high oxidation resistance and high thermal shock resistance. The blade tips of the rotating blades are subject to minimal blade tip abrasion.
Es liegt im Sinne der hier vorliegenden Erfindung, den erfindungsgemäßen Einlaufbelag 13 dadurch herzustellen, dass der Einlaufbelag 13 in Form eines Schlickerwerkstoffs bereitgestellt wird und mithilfe der Schlickertechnik auf das Gehäuse 11 aufgetragen wird. Ein derartiger Schlickerwerkstoff auf Basis eines intermetallischen Titan-Aluminium-Werkstoffs wird vorzugsweise durch Pinseln, Tauchen oder Spritzen auf das Gehäuse 11 aufgetragen. Dies erfolgt vorzugsweise in mehreren Schritten bzw. Schichten, so dass sich ein mehrschichtiger Einlaufbelag 13 ausbildet.It is within the meaning of the present invention to produce the inlet lining 13 according to the invention by providing the inlet lining 13 in the form of a slip material and applying it to the
Zur Einstellung der gewünschten Porosität in den jeweiligen Schichten werden in den Schlickerwerkstoff Zusatzmaterialien eingelagert. Nach dem Auftragen des Schlickerwerkstoffs erfolgt ein Aushärten bzw. Einbrennen des Schlickerwerkstoffs auf das Gehäuse 11. Bei dem Einbrennen verdampfen die dem Schlickerwerkstoff zugesetzten Zusatzstoffe, wodurch die Poren innerhalb des Einlaufbelags 13 zurückbleiben. Durch die Anzahl und Art der zugesetzten Zusatzstoffe lässt sich die Porosität, nämlich die Anzahl und Größe der Poren, einstellen.To adjust the desired porosity in the respective layers, additional materials are incorporated into the slip material. After application of the slip material, hardening or burning in of the slip material takes place on the
Alternativ kann der Einlaufbelag 13 auch dadurch hergestellt werden, dass derselbe mithilfe eines gerichteten Materiedampfstrahls aufgetragen wird. Ein derartiger gerichteter Materiedampfstrahl kann mithilfe eines PVD (Physical Vapor Deposition)-Verfahrens oder eines CVD (Chemical Vapor Deposition)-Verfahrens erzeugt werden. Kurz vor dem Auftreffen des gerichteten Materiedampfstrahls auf Basis eines sintermetallischen Titan-Aluminium-Werkstoffs wird in den Materiedampfstrahl mindestens ein Zusatzstoff eingeschleust bzw. eingelagert, wobei diese Zusatzstoffe beim nachträglichen Einbrennen wiederum verdampft werden und dabei die Poren innerhalb der oder jeder Schicht des Einlaufbelags 13 hinterlassen.Alternatively, the run-
Bei den Zusatzstoffen zur Einstellung der Porosität kann es sich um sogenannte Microballs, d.h. gefüllte oder hohle Kunststoffkügelchen, um Polystyrolkügelchen oder auch andere Materialien handeln, die beim Einbrennen des intermetallischen Titan-Aluminium-Materials verdampfen.The porosity adjunct additives may be so-called microballs, i. filled or hollow plastic beads, polystyrene beads, or other materials that vaporize upon firing of the titanium-aluminum intermetallic material.
Sowohl mithilfe der Schlickertechnik als auch der PVD- bzw. CVD-Technik lässt sich der erfindungsgemäße Einlaufbelag besonders günstig herstellen.Both using the slip technology and the PVD or CVD technique, the inlet lining according to the invention can be produced particularly favorable.
Claims (15)
- A run-in coating for gas turbines, for sealing a radial gap between a housing (11) of the gas turbine and rotating rotor blades (10) of the same, wherein the run-in coating (13) is applied to the housing (11), wherein the run-in coating (13) is produced from an intermetallic titanium-aluminium material, characterised in that the run-in coating (13) consisting of the titanium-aluminium material has a material composition that is stepped or graded over the thickness of the run-in coating and/or a stepped porosity.
- A run-in coating according to claim 1, characterised in that the run-in coating (13) consisting of the titanium-aluminium material is formed so as to be less porous at a region facing the housing (11) than at a region facing the rotating rotor blades (10).
- A run-in coating according to one or more of claims 1 to 2, characterised in that the run-in coating (13) is formed so as to be less porous in an inner region lying directly adjacently to the housing (11) and at an outer region lying directly adjacently to the rotor blades (10) than between these two regions.
- A run-in coating according to one or more of claims 1 to 3, characterised in that the ratio of titanium and aluminium within the run-in coating (13) is approximately constant, wherein exclusively the porosity is stepped for the adjustment of a density and/or hardness and/or solidity of the same.
- A run-in coating according to one or more of claims 1 to 3, characterised in that also the ratio of titanium and aluminium within the run-in coating (13) is stepped or graded, wherein the run-in coating (13) contains more aluminium at a region facing the rotating rotor blades (10) than at a region facing the housing (11).
- A run-in coating according to one or more of claims 1 to 5, characterises in that the run-in coating (13) consisting of the titanium-aluminium material is applied to a housing (11) consisting of an intermetallic titanium-aluminium material.
- A run-in coating according to claim 6, characterised in that the run-in coating (13) consisting of the titanium-aluminium material is applied directly to the housing (11) of titanium-aluminium material.
- Method for producing a run-in coating for gas turbines, for sealing a radial gap between a housing (11) of the gas turbine and rotating rotor blades (10) of the same, wherein the run-in coating (13) is provided on the housing (11), having the following steps:a) provision of a housing (11),b) application of the run-in coating (13) consisting of an intermetallic titanium-aluminium material to the housing,characterised in that the run-in coating (13) consisting of the titanium-aluminium material is applied in such a way that the same has a material composition that is stepped or graded over the thickness of the run-in coating and/or stepped porosity.
- Method according to claim 8, characterised in that the run-in coating (13) consisting of the titanium-aluminium material is applied in such a way that the same is formed so as to be less porous at a region facing the housing (11) than at a region facing the rotating rotor blades (10).
- Method according to one or more of claims 8 to 9, characterised in that the run-in coating (13) consisting of the titanium-aluminium material is applied to a housing (11) consisting of an intermetallic titanium-aluminium material.
- Method according to one or more of claims 8 to 10, characterised in that in conjunction with step b) the run-in coating (13) is applied to the housing (11) in such a way that for this at least one layer of a titanium-aluminium slip material is applied to the housing (11), wherein subsequently the or each layer of the titanium-aluminium slip material is hardened by baking.
- Method according to claim 11, characterised in that additives are intercalated into the or each layer of the titanium-aluminium slip material, wherein these additives are vaporized during baking and thereby leave behind the pores within the or each layer of the run-in coating (13).
- Method according to claim 11 or 12, characterised in that the or each layer of the titanium-aluminium slip material is applied by painting, dipping or spraying.
- Method according to one or more of claims 8 to 10, characterised in that in conjunction with step b) the run-in coating (13) is applied to the housing (11) in such a way that for this at least one titanium-aluminium layer is applied to the housing (11) with the aid of a directed substance-vapour jet, in particular a PVD substance jet, wherein subsequently the or each layer of the substance-vapour jet is hardened by baking.
- Method according to claim 14, characterised in that shortly before the directed titanium-aluminium-substance-vapour jet impinges, additives are introduced into the titanium-aluminium-substance-vapour jet, wherein these additives are vaporized during baking and thereby leave behind the pores within the or each layer of the run-in coating (13).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10337094A DE10337094A1 (en) | 2003-08-12 | 2003-08-12 | Inlet lining for gas turbines and method for producing the same |
PCT/DE2004/001683 WO2005014979A1 (en) | 2003-08-12 | 2004-07-28 | Run-in coating for gas turbines composed of a titanium-aluminium material |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1654441A1 EP1654441A1 (en) | 2006-05-10 |
EP1654441B1 true EP1654441B1 (en) | 2012-08-29 |
Family
ID=34112112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04762528A Expired - Lifetime EP1654441B1 (en) | 2003-08-12 | 2004-07-28 | Run-in coating of a gas turbine and method for fabricating such a coating |
Country Status (4)
Country | Link |
---|---|
US (1) | US7699581B2 (en) |
EP (1) | EP1654441B1 (en) |
DE (1) | DE10337094A1 (en) |
WO (1) | WO2005014979A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006050789A1 (en) * | 2006-10-27 | 2008-04-30 | Mtu Aero Engines Gmbh | Vaporized coating for a gas turbine of an aircraft engine comprises pore formers formed as an adhesion promoting layer and/or a heat insulating layer |
DE102007025949A1 (en) * | 2007-06-04 | 2008-12-11 | Federal-Mogul Burscheid Gmbh | Abrasion-resistant coating for carrier material such as piston ring useful in internal combustion engine, comprises wear-resistant layer on the carrier material, running-in layer on the wear-resistant layer, and adhesion-promoting layer |
EP2083148A3 (en) | 2008-01-23 | 2012-06-06 | Rolls-Royce Deutschland Ltd & Co KG | Gas turbine with a compressor with run-in coating and method of lapping the free extremities of compressor blades in a gas turbine |
DE102008005482A1 (en) * | 2008-01-23 | 2009-07-30 | Rolls-Royce Deutschland Ltd & Co Kg | Gas turbine has compressor, which has set of shovels and running-in layer, which is connected with fluid supply device and provided with liquid flow through opening, where upper layer of running-in layer is made of liquid-tight material |
EP2202264B1 (en) | 2008-12-24 | 2018-04-18 | Safran Aero Boosters SA | Method for manufacturing by moulding a structural element of a machine with an abradable surface |
JP5210984B2 (en) * | 2009-06-29 | 2013-06-12 | 株式会社日立製作所 | Highly reliable metal sealant for turbines |
GB0911500D0 (en) * | 2009-07-03 | 2009-08-12 | Rolls Royce Plc | Rotor blade over-tip leakage control |
DE102009036407A1 (en) | 2009-08-06 | 2011-02-10 | Mtu Aero Engines Gmbh | Abradable blade tip pad |
WO2014130211A1 (en) * | 2013-02-19 | 2014-08-28 | United Technologies Corporation | Abradable seal including an abradability characteristic that varies by locality |
US20150093237A1 (en) * | 2013-09-30 | 2015-04-02 | General Electric Company | Ceramic matrix composite component, turbine system and fabrication process |
EP3222812A1 (en) * | 2016-03-24 | 2017-09-27 | Siemens Aktiengesellschaft | Method for making or repairing a rotor blade, rotor blade, method for manufacturing or repairing a housing for a fluid flow machine and said housing |
DE102016224532A1 (en) | 2016-12-08 | 2018-06-14 | MTU Aero Engines AG | High temperature protective coating for titanium aluminide alloys |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340084A (en) * | 1959-02-19 | 1967-09-05 | Gen Electric | Method for producing controlled density heterogeneous material |
US4155755A (en) * | 1977-09-21 | 1979-05-22 | Union Carbide Corporation | Oxidation resistant porous abradable seal member for high temperature service |
DE3579684D1 (en) * | 1984-12-24 | 1990-10-18 | United Technologies Corp | GRINDABLE SEAL WITH SPECIAL EROSION RESISTANCE. |
US5667898A (en) * | 1989-01-30 | 1997-09-16 | Lanxide Technology Company, Lp | Self-supporting aluminum titanate composites and products relating thereto |
US5340783A (en) * | 1989-01-30 | 1994-08-23 | Lanxide Technology Company, Lp | Method of producing self-supporting aluminum titanate composites and products relating thereto |
US5484665A (en) | 1991-04-15 | 1996-01-16 | General Electric Company | Rotary seal member and method for making |
ATE129544T1 (en) | 1991-06-21 | 1995-11-15 | Praxair Technology Inc | DUPLEX COATINGS FOR VARIOUS SUBSTRATES. |
DE19937577A1 (en) | 1999-08-09 | 2001-02-15 | Abb Alstom Power Ch Ag | Frictional gas turbine component |
US6660405B2 (en) * | 2001-05-24 | 2003-12-09 | General Electric Co. | High temperature abradable coating for turbine shrouds without bucket tipping |
DE10150948C1 (en) | 2001-10-11 | 2003-05-28 | Fraunhofer Ges Forschung | Process for the production of sintered porous bodies |
US6982126B2 (en) * | 2003-11-26 | 2006-01-03 | General Electric Company | Thermal barrier coating |
-
2003
- 2003-08-12 DE DE10337094A patent/DE10337094A1/en not_active Withdrawn
-
2004
- 2004-07-28 EP EP04762528A patent/EP1654441B1/en not_active Expired - Lifetime
- 2004-07-28 US US10/568,394 patent/US7699581B2/en not_active Expired - Fee Related
- 2004-07-28 WO PCT/DE2004/001683 patent/WO2005014979A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20090110560A1 (en) | 2009-04-30 |
DE10337094A1 (en) | 2005-03-03 |
US7699581B2 (en) | 2010-04-20 |
EP1654441A1 (en) | 2006-05-10 |
WO2005014979A1 (en) | 2005-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1654441B1 (en) | Run-in coating of a gas turbine and method for fabricating such a coating | |
DE102010049398A1 (en) | Wear and oxidation resistant turbine blade | |
WO2007003160A1 (en) | Method for the production of an armor plating for a blade tip | |
EP1741876A1 (en) | Turbomachine blade comprising an armoured tip | |
DE102009049707A1 (en) | Method for producing a rotor or stator blade and such a blade | |
EP3093372B1 (en) | Coating method for producing a combination of armor plating for a blade tip and erosion resistant coating | |
EP2072177A1 (en) | Method for manufacturing an erosion protection layer and component with such an erosion protection layer | |
EP2780552B1 (en) | Armoring sealing fins of tial vanes by induction brazing hard-material particles | |
WO2011015187A1 (en) | Blade tip coating that can be rubbed off | |
EP2696033A1 (en) | Blade element of a turbomachine with a ductile compensation layer, corresponding turbomachine, methods of manufacturing of the blade element and of the turbomachine | |
WO2005031038A1 (en) | Wear-resistant layer, component comprising such a wear-resistant layer, and production method | |
DE102007056452A1 (en) | Sealing system of a turbomachine | |
EP2783078B1 (en) | Method for manufacturing a turbomachine component with a parting joint, and a steam turbine comprising said turbomachine component | |
EP2695964A1 (en) | Protective coating tailored to a component | |
DE102005019823A1 (en) | Abrasion coating for a low / medium temperature turbine | |
WO2013053581A1 (en) | Method for applying a wear protection layer to a continuous flow machine component | |
DE19827620C2 (en) | Process for the production of armor for a metallic component and its use | |
DE102005055391A1 (en) | Thermal barrier coating for the side surfaces of turbine blade platforms and application methods | |
EP1876336A2 (en) | Gas turbine component for jet engines and method for manufacturing gas turbine components for jet engines | |
EP1805344B1 (en) | Method for producing a component covered with a wear-resistant coating | |
EP1625283B2 (en) | Running-in coating for gas turbines | |
EP0906964B1 (en) | Thermal barrier coating and process for its manufacture | |
DE10329049A1 (en) | Method for producing a protective layer, protective layer, use thereof and component with a protective layer | |
EP2842662B1 (en) | Armour plating for a blade tip for titanium blades | |
DE19946650C2 (en) | Process for the production of armor for a metallic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20060620 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
RTI1 | Title (correction) |
Free format text: RUN-IN COATING OF A GAS TURBINE AND METHOD FOR FABRICATING SUCH A COATING |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: RUN-IN COATING OF A GAS TURBINE AND METHOD FOR FABRICATING SUCH A COATING |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004013720 Country of ref document: DE Effective date: 20121025 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004013720 Country of ref document: DE Effective date: 20130530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190723 Year of fee payment: 16 Ref country code: FR Payment date: 20190724 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190725 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004013720 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200728 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |