EP1511666B1 - Electronically commutable motor - Google Patents
Electronically commutable motor Download PDFInfo
- Publication number
- EP1511666B1 EP1511666B1 EP03739365A EP03739365A EP1511666B1 EP 1511666 B1 EP1511666 B1 EP 1511666B1 EP 03739365 A EP03739365 A EP 03739365A EP 03739365 A EP03739365 A EP 03739365A EP 1511666 B1 EP1511666 B1 EP 1511666B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- field winding
- semiconductor switches
- motor
- winding
- motor according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 51
- 239000004065 semiconductor Substances 0.000 claims description 22
- 238000000926 separation method Methods 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
- B62D5/0484—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
- B62D5/0487—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
- G01R31/42—AC power supplies
Definitions
- the invention relates to an electronically commutatable motor, as in the older example DE patent application 100 644 86.4 is described. There, the electronic control of the engine is discussed in detail. These explanations also apply to the electronically commutatable motor proposed here, which is why details in the explanation of the engine control in the present application will not be discussed again in detail.
- the reason for the use of the electronically commutatable motor in the present invention is therefore not primarily the wear-free and low-maintenance design due to lack of abrasive brushes but in addition to the influenceable by the control low torque ripple especially the control of the occurrence of a fault in a component of the engine control or in the engine itself, especially with respect to a short circuit in the winding, with short circuit currents occur, which are in the order of the rated currents and dangerous Exercise moments on the drive.
- such errors can lead to, for example, in an electric power steering not only the steering assistance fails, but even a counter-torque is generated, which makes the steerability of a vehicle virtually impossible.
- an electric power steering drive for a vehicle which has a brushless electric motor, the three of which are connected together at a common star point strands of the field winding via a half-bridge circuit.
- a brushless electric motor the three of which are connected together at a common star point strands of the field winding via a half-bridge circuit.
- at least one of the strands can be separated via an additional switching means.
- a particularly suitable for the purposes of the invention control option for the motor results when using a full bridge circuit for the commutation, wherein the strands of the exciter winding are individually connected to the DC voltage source. Due to the individual controllability of the strings of the field winding an emergency operation can be ensured in a very advantageous manner, both when an error occurs in the commutation as well as an error in a strand of the field winding. An error in the commutation or in a strand of the winding leads to a braking torque here.
- the disturbance can be switched off by opening the defective string and the operation of the motor in the event of a fault in a semiconductor component 2/3 of its performance will continue.
- the disturbance can not be switched off, as in the star connection of the winding, but the compensation of the resulting braking torque is possible to a higher extent than in the star connection of the winding, because only one strand is affected.
- FIG. 1 is denoted by 10 equipped with permanent magnets rotor of an electronically commutated motor whose three-phase exciter winding is arranged in the stator.
- the winding strands are denoted by 12,14 and 16 and connected in star via MOSFET switches 18,20,22.
- the phase currents I 1 , I 2 , I 3 which are called via a six-pulse half-bridge circuit, also called B6 circuit, flow.
- the commutation arrangement is also formed by MOSFET switches, which carry the reference numerals 24, 26, 28 and 30, 32, 34, respectively.
- the supply voltages and the control commands receive the MOSFET switches 24-34 of the commutation as well as the MOSFET switches 18-22 of the star point circuit of a motor controller 36, which is connected between a DC voltage source 38 and the inputs of the commutation.
- the electronically commutatable motor with the excitation winding in the stator and a rotor 10 carrying permanent magnets is also referred to as a brushless DC motor (BLDC motor).
- BLDC motor brushless DC motor
- Such an engine including its control is already mentioned in the beginning DE-100 644 86.4 already very well discussed and generally known. On the complete repetition of the description of the structure and the control of the engine should therefore be omitted in the present application, are explained only those for its use as a drive motor safety-critical auxiliary drive in a motor vehicle, preferably as
- the MOSFET switches 18,20,22 closed and form the neutral point for the winding strands 12,14,16.
- the size and the course of the phase currents I 1 , I 2 , I 3 is controlled via the MOSFET switches 24, 26, 28 and 30, 32 and 34 by a pulse width modulation originating from the motor control 36.
- the respective phase current I 1 , I 2 , I 3 is conducted via the neutral point and via three measuring resistors 40, 42, 44 to the negative pole of the DC voltage source 38.
- phase currents I 1 , I 2 , I 3 are determined by the motor controller 36, wherein, for example, the phase current I 1 at clocked MOSFET switch 24 with the predetermined by the timing course through the MOSFET switch 32 and the resistor 42 back to negative pole of the DC voltage source passes.
- the freewheeling circuit in the pauses caused by the current flow pauses closes on the winding strands 12 and 14 and the two MOSFET switches 30 and 32.
- the switch 32 is conductive in this period, the MOSFET switch 30 results in either a passive freewheel on the integrated Inverse diode or an active freewheel by pulsed switching in the current-cut pauses of the MOSFET switch 24. Accordingly, the phase currents I 2 and I 3 are controlled.
- Errors during operation of the motor can occur in particular due to an error in one of the semiconductor switches of the commutation arrangement or due to a short circuit in one of the winding phases.
- a current through the inverse diode of the MOSFET switches 26 and 28 and generates a braking torque which leads to the use of the drive for an electric power steering in a motor vehicle practically unintelligibility of the vehicle.
- a remedy is provided by the separation of the star point of the winding strands 12,14,16 by means of the MOSFET switch 18.
- the disturbance is thereby turned off and the drive remains functional, albeit with reduced power.
- a braking torque is generated due to the induced voltage, although the disconnection of the disturbance variable by the separation of the winding star point is not possible.
- a remedy in this accident created by the fact that at least one braking torque can be compensated by the separation of the neutral point by means of the MOSFET switches 18-22, which would counteract in the case of use of the engine in a motor vehicle power steering the steering force of the driver. As a result, the unsupported steering effect is maintained.
- FIG. 2 also shows an electronically commutatable motor with a three-phase excitation winding in the stator and a permanent magnetically excited rotor.
- the same reference numerals are used.
- FIG. 1 a full bridge circuit of semiconductor switches 46-68, also called 3H circuit, provided for commutation of the winding strands 12,14 and 16.
- the winding phases are individually connected to the DC voltage source 38 and separable from it, resulting in even more possibilities of error compensation than in the circuit arrangement according to FIG.
- FIG. 3 corresponds largely to those in FIG. 2 and will not be described again. Same Parts in the Figures 2 and 3 are provided with the same reference numerals. Notwithstanding the arrangement in FIG. 2 However, the winding strands 12, 14 and 16 are not inserted directly into the shunt branches of the full-bridge commutation circuit here, but on both sides of the winding strands 12, 14 and 16 is an additional MOSFET switch 70,72; 74,76; 78,80, wherein the two semiconductor strand additionally assigned to each winding strand are each inserted in the transverse branch with opposite forward direction. In this way, especially with the use of MOSFET semiconductor switches with their integrated inverse diodes, the possibility of separating each bridge branch and thus the separation of the associated winding strand. This separation replaces the star point separation in an arrangement accordingly FIG. 1 ,
- the motor circuit according to the invention FIG. 3 thus offers the possibility of switching off a fault current which generates a moment counteracting the intended drive direction.
- the full bridge circuit has the particular advantage that each strand can be controlled separately, which can be canceled in the case of a fault in a final stage, the resulting braking torque on the other two bridge arms and emergency operation can be enabled. Furthermore, in the case of the full-bridge circuit, it is also possible to compensate for a turn-off in a winding strand. Further, in the full-bridge circuit, the current signals can be directly assigned to the corresponding string since each string is measured separately, and the waveform of the string current can be set separately for each string without overhead, thereby significantly increasing the possibility of compensation in the event of a fault.
- the commutation arrangement is described in each case using MOSFET switches as semiconductor components.
- MOSFET switches are due to their low power loss and high interference immunity, but also because of the uncritical supply voltage and the good circuit integrity in addition to the use in the commutation also very good for the separation of the neutral point.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Power Steering Mechanism (AREA)
Description
Die Erfindung betrifft einen elektronisch kommutierbaren Motor, wie er beispielsweise in der älteren
Das in der
Aus der
Weiterhin ist aus der
Statt der Verwendung eines zusätzlichen Unterbrechers erfolgt das Sicherheitskonzept des in der
Die Erfindung ist durch die Merkmale des Anspruchs 1 definiert Bevorzugte Ausgestaltungen sind in den abhängigen Ansprüchen definiert.The invention is defined by the features of
Eine im Sinne der Erfindung besonders zweckmäßige Ansteuerungsmöglichkeit für den Motor ergibt sich bei Verwendung einer Vollbrückenschaltung für die Kommutierungsanordnung, wobei die Stränge der Erregerwicklung einzeln an die Gleichspannungsquelle anschließbar sind. Durch die einzelne Ansteuerbarkeit der Stränge der Erregerwicklung kann in sehr vorteilhafter Weise ein Notlaufbetrieb sichergestellt werden, und zwar sowohl beim Auftreten eines Fehlers in der Kommutierungsanordnung als auch bei einem Fehler in einem Strang der Erregerwicklung. Ein Fehler in der Kommutierungseinrichtung oder in einem Strang der Wicklung führt auch hier zu einem Bremsmoment. Durch die Möglichkeit, einen einzelnen fehlerhaften Zweig der Kommutierungsanordnung unabhängig von den anderen Strängen mit Hilfe zusätzlicher Halbleiterschalter, vorzugsweise mittels MOSFET-Schalter, zu öffnen, kann bei einem Fehler in einem Halbleiterbauelement die Störgröße durch Öffnen des defekten Strangs abgeschaltet und der Betrieb des Motors mit 2/3 seiner Leistung fortgesetzt werden. Beim Auftreten eines Fehlers in einem Strang der Wicklung kann zwar ebenso wie bei der Sternschaltung der Wicklung die Störgröße nicht abgeschaltet werden, die Kompensation des entstehenden Bremsmomentes ist jedoch zu einem höheren Anteil als bei der Sternschaltung der Wicklung möglich, weil nur ein Strang betroffen ist.A particularly suitable for the purposes of the invention control option for the motor results when using a full bridge circuit for the commutation, wherein the strands of the exciter winding are individually connected to the DC voltage source. Due to the individual controllability of the strings of the field winding an emergency operation can be ensured in a very advantageous manner, both when an error occurs in the commutation as well as an error in a strand of the field winding. An error in the commutation or in a strand of the winding leads to a braking torque here. Due to the possibility of opening a single defective branch of the commutation arrangement independently of the other strings by means of additional semiconductor switches, preferably by means of MOSFET switches, the disturbance can be switched off by opening the defective string and the operation of the motor in the event of a fault in a semiconductor component 2/3 of its performance will continue. When an error occurs in one branch of the winding, the disturbance can not be switched off, as in the star connection of the winding, but the compensation of the resulting braking torque is possible to a higher extent than in the star connection of the winding, because only one strand is affected.
Weitere Einzelheiten und vorteilhafte Weiterbildungen des erfindungsgemäßen Motors ergeben sich aus der folgenden Beschreibung dreier Ausführungsbeispiele und den zugehörigen Figuren.Further details and advantageous developments of the motor according to the invention will become apparent from the following description of three embodiments and the accompanying figures.
Diese zeigen in
-
eine mit Halbleiterschaltern bestückte Halbbrücken-Kommutierungsanordnung für die zu einem auftrennbaren Sternpunkt zusammengeschalteten Wicklungsstränge nach dem Stand der Technik und inFigur 1Figur 2 eine ebenfalls aus dem Stand der Technik bekannte Schaltungsanordnung für einen elektronisch kommutierbaren Motor, dessen Wicklungsstränge einzeln über eine Vollbrücken-Kommutierungsanordnung mit einer Gleichspannungsquelle verbindbar sind. -
Figur 3 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Vollbrücken-Kommutierungsanordnung, bei der die Stränge der Erregerwicklung des Motors im Falle eines Windungsschlusses oder eines Fehlers in den Halbleiterschaltern der Kommutierungsanordnung über zusätzliche Halbleiterschalter abschaltbar sind.
-
FIG. 1 a half-bridge commutation arrangement equipped with semiconductor switches for the winding strands interconnected to form a separable star point according to the prior art and in US PatFIG. 2 a likewise known from the prior art circuit arrangement for an electronically commutated motor, the winding strands individually via a full-bridge commutation can be connected to a DC voltage source. -
FIG. 3 shows an embodiment of a full-bridge commutation according to the invention, in which the strands of the field winding of the motor in the case of a short circuit or a fault in the semiconductor switches of the commutation can be switched off via additional semiconductor switches.
In
Der elektronisch kommutierbare Motor mit der Erregerwicklung im Stator und einem Permanentmagnete tragenden Rotor 10 wird auch als bürstenloser Gleichstrommotor (BLDC-Motor) bezeichnet. Ein derartiger Motor einschließlich seiner Steuerung ist in der eingangs bereits genannten
Antriebsmotor einer elektrischen Fahrzeuglenkung, wesentlichen Bestandteile und Schaltungsmerkmale, also die Maßnahmen und Möglichkeiten zur Auftrennung bei Halbleiter- oder Wicklungsdefekten.Drive motor of an electric vehicle steering, essential components and circuit characteristics, so the measures and options for separation in semiconductor or winding defects.
Bei der Schaltungsanordnung gemäß
Im ungestörten Betrieb des Motors sind die drei MOSFET-Schalter 18,20 und 22 geschlossen und definieren den Sternpunkt der Erregerwicklung. Die Phasenströme I1, I2, I3 werden durch die Motorsteuerung 36 bestimmt, wobei zum Beispiel der Phasenstrom I1 bei getaktetem MOSFET-Schalter 24 mit dem durch die Taktung vorgegebenen Verlauf über den leitenden MOSFET-Schalter 32 und den Widerstand 42 zurück zum negativen Pol der Gleichspannungsquelle gelangt. Der Freilaufstromkreis in den durch die Taktung bedingten Stromflusspausen schließt sich über die Wicklungsstränge 12 und 14 sowie die beiden MOSFET-Schalter 30 und 32. Der Schalter 32 ist in diesem Zeitraum leitend, beim MOSFET-Schalter 30 ergibt sich entweder ein passiver Freilauf über die integrierte Inversdiode oder ein aktiver Freilauf durch gepulstes Einschalten in den Stromschlusspausen des MOSFET Schalters 24. Entsprechend werden die Phasenströme I2 und I3 gesteuert.In undisturbed operation of the motor, the three
Fehler beim Betrieb des Motors können insbesondere auftreten durch einen Fehler in einem der Halbleiterschalter der Kommutierungsanordnung oder durch einen Windungsschluss in einem der Wicklungsstränge. Beispielsweise bei einem Durchlegieren des MOSFET-Schalters 24 fließt aufgrund der durch die Drehung des Motors induzierten Spannungen in den Wicklungssträngen 12,14 und 16 ein Strom über die Inversdiode der MOSFET-Schalter 26 und 28 und erzeugt ein Bremsmoment, welches bei der Verwendung des Antriebes für eine elektrische Lenkhilfe in einem Kraftfahrzeug praktisch zur Unlenkbarkeit des Fahrzeuges führt. Hiergegen wird gemäß dem Stand der Technik Abhilfe geschaffen durch die Auftrennung des Sternpunktes der Wicklungsstränge 12,14,16 mittels des MOSFET-Schalters 18. Die Störgröße wird hierdurch abgeschaltet und der Antrieb bleibt funktionsfähig, wenn auch mit reduzierter Leistung. Beim Auftreten eines Windungsschlusses beispielsweise im Wicklungsstrang 16 entsteht ein Bremsmoment aufgrund der induzierten Spannung, wobei allerdings die Abschaltung der Störgröße durch die Auftrennung des Wicklungsternpunktes nicht möglich ist. Abhilfe wird in diesem Störfall jedoch dadurch geschaffen, dass durch die Auftrennung des Sternpunktes mit Hilfe der MOSFET-Schalter 18-22 zumindest ein Bremsmoment kompensiert werden kann, welches im Falle der Verwendung des Motors bei einer Kraftfahrzeug-Lenkhilfe der Lenkkraft des Fahrzeugführers entgegenwirken würde. Hierdurch bleibt die nicht unterstützte Lenkwirkung erhalten.Errors during operation of the motor can occur in particular due to an error in one of the semiconductor switches of the commutation arrangement or due to a short circuit in one of the winding phases. For example, when alloying the
Die Anordnung in
Tritt bei der Schaltungsanordnung gemäß
Besteht der aufgetretene Fehler in einem Windungsschluss, beispielsweise im Wicklungsstrang 12, so ist eine Abschaltung der Störgröße nicht möglich und es bildet sich ein Bremsmoment aus. Da jedoch nur ein Strang betroffen ist und die beiden anderen Stränge des Motors ungestört sind, kann das entstehende Bremsmoment durch die beiden intakten Wicklungsstränge kompensiert werden, derart, dass die nicht unterstützte Lenkwirkung erhalten bleibt.If the fault has occurred in a winding short circuit, for example in winding
Die erfindungsgemäße Anordnung in
Tritt bei der erfindungsgemäßen Schaltungsanordnung gemäß
Besteht der aufgetretene Fehler in einem Windungsschluss, beispielsweise im Wicklungsstrang 12, so ist zwar eine Abschaltung der Störgröße durch das Öffnen der Halbleiterschalter 70 und 72 nicht möglich und es bildet sich ein Bremsmoment aus. Da die beiden anderen Stränge des Motors ungestört sind bleibt jedoch die nicht unterstützte Lenkwirkung erhalten.If the fault has occurred in a winding short circuit, for example in the winding
Im erörterten Anwendungsfall als Antriebsmotor einer elektrischen Lenkhilfe in einem Kraftfahrzeug ist also sichergestellt, dass der Motor im Fehlerfall so beeinflusst werden kann, dass kein Bremmoment auf die Lenkung wirkt und zumindest der nicht durch eine Lenkhilfe unterstützte Lenkbetrieb gesichert ist. Andere Anwendungen von sicherheitskritischen Nebenantrieben in Kraftfahrzeugen sind beispielsweise die elektrische Bremse oder das elektrische Gaspedal, bei denen als Antriebsaggregat ebenfalls elektronisch kommutierbare Motoren mit Dauermagneten im Rotor vorteilhaft einsetzbar sind.In the application discussed as a drive motor of an electric power steering in a motor vehicle so it is ensured that the engine can be influenced in the event of a fault so that no Bremmoment acts on the steering and at least not backed by a steering assist steering operation is secured. Other applications of safety-critical auxiliary drives in motor vehicles are, for example, the electric brake or the electric accelerator pedal, in which electronically commutatable motors with permanent magnets in the rotor can also be advantageously used as the drive unit.
Die erfindungsgemäße Motorschaltung gemäß
Bei den Ausführungsbeispielen ist die Kommutierungsanordnung jeweils unter Verwendung von MOSFET-Schaltern als Halbleiterbauelementen beschrieben. Derartige MOSFET-Schalter eignen sich wegen ihrer niedrigen Verlustleistung und hohen Störungssicherheit, aber auch wegen der unkritischen Versorgungsspannung und der guten Schaltungs-Integrierbarkeit neben der Verwendung bei der Kommutierungssteuerung auch besonders gut für die Auftrennung des Sternpunktes.In the exemplary embodiments, the commutation arrangement is described in each case using MOSFET switches as semiconductor components. Such MOSFET switches are due to their low power loss and high interference immunity, but also because of the uncritical supply voltage and the good circuit integrity in addition to the use in the commutation also very good for the separation of the neutral point.
Claims (7)
- Electronically commutatable motor for a safety-critical auxiliary drive in a motor vehicle, having a three-phase field winding (12, 14, 16) in the stator, which field winding, in order to generate a torque for a permanent-magnet rotor (10), can be connected to a DC voltage source (38) via a commutation arrangement, which is fitted with semiconductor switches (46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68), and a motor control system (36), wherein the phases (12, 14, 16) of the field winding can be individually connected to the DC voltage source (38) via a full-bridge circuit comprising the semiconductor switches (46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68), characterized by additional semiconductor switches (70, 72, 74, 76, 78, 80) for disconnecting the phases (12, 14, 16) of the field winding in the case of a short between the turns and/or a fault in the semiconductor switches (46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68) of the commutation arrangement, in order to suppress a braking torque which is generated by the motor or to at least partially compensate said braking torque.
- Electronically commutatable motor according to Claim 1, characterized in that in each case two additional semiconductor switches (70, 72, 74, 76, 78, 80) with opposite conducting directions are arranged in each bridge arm on either side of each phase (12, 14, 16) of the field winding.
- Electronically commutatable motor according to one of Claims 1 and 2, characterized in that the semiconductor switches (46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68) of the commutation arrangement and/or the additional semiconductor switches (70, 72, 74, 76, 78, 80) are in the form of MOSFET switches.
- Electronically commutatable motor according to Claim 1, characterized in that the phases (12, 14, 16) of the field winding and/or the bridge arms of the commutation arrangement can be pyrotechnically disconnected.
- Electronically commutatable motor according to Claim 1, characterized in that the phase currents (I1, I2, I3) flowing through the phases (12, 14, 16) of the field winding are controlled by pulse-width modulation.
- Electronically commutatable motor according to Claim 5, characterized in that active freewheeling is generated in the current-flow pauses of the phase currents (I1, I2, I3) by switching on a further semiconductor switch (58, 60, 62, 64, 66, 68) of the commutation arrangement in a pulsed manner.
- Electrical steering aid having an electronically commutatable motor according to one of Claims 1 to 6.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10223139A DE10223139A1 (en) | 2002-05-24 | 2002-05-24 | Electronically commutated motor |
DE10223139 | 2002-05-24 | ||
PCT/DE2003/000627 WO2003099632A1 (en) | 2002-05-24 | 2003-02-27 | Electronically commutable motor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1511666A1 EP1511666A1 (en) | 2005-03-09 |
EP1511666B1 true EP1511666B1 (en) | 2010-09-08 |
Family
ID=29432279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03739365A Expired - Lifetime EP1511666B1 (en) | 2002-05-24 | 2003-02-27 | Electronically commutable motor |
Country Status (6)
Country | Link |
---|---|
US (1) | US7019479B2 (en) |
EP (1) | EP1511666B1 (en) |
JP (1) | JP4373327B2 (en) |
CN (1) | CN100387475C (en) |
DE (2) | DE10223139A1 (en) |
WO (1) | WO2003099632A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020202397A1 (en) | 2020-02-25 | 2021-08-26 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
DE102020202395A1 (en) | 2020-02-25 | 2021-08-26 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
DE102019216549B4 (en) | 2019-10-28 | 2022-06-02 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
DE102019216550B4 (en) | 2019-10-28 | 2022-06-02 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT504808B1 (en) * | 2003-11-14 | 2009-08-15 | Bernecker & Rainer Ind Elektro | SYNCHRONOUS MACHINE |
DE102004020177B4 (en) * | 2004-04-24 | 2024-07-18 | Robert Bosch Gmbh | Hand tool with a rotating and/or percussive drive |
DE102004040074B4 (en) * | 2004-08-18 | 2011-06-22 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg, 97076 | Blocking protection for a permanent-magnet electric motor drive |
RU2278797C1 (en) * | 2005-08-19 | 2006-06-27 | Открытое акционерное общество "Калужский завод электронных изделий" | Electromechanical steering booster and steering booster electric motor |
US20070205731A1 (en) * | 2006-03-01 | 2007-09-06 | Regal-Beloit Corporation | Methods and systems for dynamically braking an electronically commutated motor |
DE102006011139A1 (en) * | 2006-03-10 | 2007-09-13 | Conti Temic Microelectronic Gmbh | Multi-phase e.g. three-phase, electrically commutating electric motor operating method for motor vehicle, involves conducting short-circuit current via error free electronic switches of commutating arrangement by closed switch |
JP4294039B2 (en) * | 2006-06-23 | 2009-07-08 | 三菱電機株式会社 | Power steering device |
US7538514B2 (en) * | 2007-04-25 | 2009-05-26 | Delphi Technologies, Inc. | Systems and methods for controlling torque of a motor |
DE102007021491A1 (en) * | 2007-05-08 | 2008-11-13 | Robert Bosch Gmbh | Motor arrangement with electronic isolating relay module |
DE102007024659A1 (en) * | 2007-05-26 | 2008-11-27 | Zf Lenksysteme Gmbh | Power steering, has electronic controller controlling electric motor, where phase windings of motor are controlled with controller, and switching unit i.e. metal oxide semiconductor field-effect transistor, attached to one winding |
DE102007027895A1 (en) | 2007-06-18 | 2008-12-24 | Robert Bosch Gmbh | Isolating relay and method for operating a cut-off relay |
JP2009035155A (en) * | 2007-08-02 | 2009-02-19 | Denso Corp | Electric power steering device |
DE102008042201B4 (en) | 2007-09-27 | 2023-12-21 | Baumüller Nürnberg GmbH | Electromotive tensioning mechanism and starting methodology for it |
DE102008000145A1 (en) * | 2008-01-25 | 2009-07-30 | Zf Friedrichshafen Ag | Three-phase drive i.e. synchronous motor, controlling arrangement for power steering of vehicle, has semiconductor bridge circuit provided as star point creator of three-phase drive |
JP5627842B2 (en) | 2008-04-23 | 2014-11-19 | 株式会社ジェイテクト | Steering control device |
DE102008021854A1 (en) * | 2008-05-02 | 2009-11-05 | Volkswagen Ag | Device and method for monitoring possible errors in a technical device, in particular servo steering system |
JP5263510B2 (en) * | 2008-09-26 | 2013-08-14 | 株式会社ジェイテクト | Motor circuit and electric power steering apparatus |
DE102008054744A1 (en) | 2008-12-16 | 2010-06-17 | Zf Lenksysteme Gmbh | Method for operation of electrical auxiliary or power steering, involves identifying load bridge section, which has real or theoretically high power load opposite to bridge section |
JP5152526B2 (en) * | 2009-04-24 | 2013-02-27 | 株式会社デンソー | In-vehicle power converter |
DE102009047574A1 (en) * | 2009-12-07 | 2011-06-09 | Robert Bosch Gmbh | Method for operating a brushless DC machine and DC machine |
JP5579495B2 (en) * | 2010-05-06 | 2014-08-27 | オムロンオートモーティブエレクトロニクス株式会社 | Motor drive device |
DE102011101728A1 (en) | 2010-08-09 | 2012-02-09 | Volkswagen Aktiengesellschaft | Method for providing fail-safe operation for electro-mechanical steering system of motor car, involves actuating power semiconductor to energize windings in residual phase curve, so that braking torque generates support moment |
DE102010035149B4 (en) * | 2010-08-23 | 2019-03-21 | Thyssenkrupp Presta Aktiengesellschaft | Safety circuit for an electric motor of an electromechanical steering |
DE102010043970A1 (en) | 2010-11-16 | 2012-05-16 | Robert Bosch Gmbh | Electric machine for a steering drive |
JP5781326B2 (en) * | 2011-02-25 | 2015-09-16 | Ntn株式会社 | Electric car |
EP2679434B1 (en) * | 2011-02-25 | 2020-01-01 | NTN Corporation | Electric automobile, in-wheel motor drive device, and motor control method |
US8950528B2 (en) | 2011-02-25 | 2015-02-10 | Ntn Corporation | Electric automobile |
US9312796B2 (en) | 2011-05-24 | 2016-04-12 | Continental Automotive Gmbh | Method and device for operating a brushless motor |
US10116248B2 (en) | 2011-05-26 | 2018-10-30 | Continental Automotive Gmbh | Method and device for operating a brushless motor |
DE102011078672A1 (en) * | 2011-07-05 | 2013-01-10 | Robert Bosch Gmbh | Electronically commutated electric motor with a defect shutdown |
DE102011052356A1 (en) * | 2011-08-02 | 2013-02-07 | Zf Lenksysteme Gmbh | Current measurement device for motor for power assist used in vehicle, determines current flowing through power switch for separating motor lead based on phase or neutral point |
DE102011053982A1 (en) * | 2011-09-27 | 2013-03-28 | Lti Drives Gmbh | Generator circuit arrangement for e.g. rotation speed-variable mains supply generator device in wind-power plant, has rectifier and generator-inverter including direct current potentials that are connected together in generator operation |
DE102011085657A1 (en) * | 2011-11-03 | 2013-05-08 | Robert Bosch Gmbh | Method and apparatus for operating an electronically commutated electric machine in case of failure |
CN102510200B (en) * | 2011-11-16 | 2015-03-18 | 珠海运控电机有限公司 | Direct-current rotating magnetic field device, direct-current synchronous motor and direct-current asynchronous motor |
DE102012203335A1 (en) * | 2012-03-02 | 2013-09-05 | Robert Bosch Gmbh | Parking brake in a vehicle |
KR101354100B1 (en) * | 2012-06-08 | 2014-01-29 | 현대모비스 주식회사 | Method for operating motor of motor driven power steering apparatus |
JP5606506B2 (en) * | 2012-09-20 | 2014-10-15 | 三菱電機株式会社 | Drive control device and drive control method |
US9667182B2 (en) * | 2013-04-05 | 2017-05-30 | Minėbea Co., Ltd. | Method for controlling a brushless electric motor |
US9065275B2 (en) | 2013-08-26 | 2015-06-23 | Infineon Technologies Austria Ag | Driving circuit for an electric motor |
GB201416011D0 (en) * | 2014-09-10 | 2014-10-22 | Trw Ltd | Motor drive circuitry |
US10056807B2 (en) | 2014-12-23 | 2018-08-21 | Orange Motor Company L.L.C. | Electronically commutated fan motors and systems |
DE102015203008A1 (en) * | 2015-02-19 | 2016-08-25 | Robert Bosch Gmbh | Circuit arrangement for operating an electrical machine |
HUE060440T2 (en) * | 2016-04-15 | 2023-03-28 | Rewalk Robotics Ltd | Apparatus and systems for controlled collapse of an exoskeleton |
DE102017128479A1 (en) | 2017-11-30 | 2019-06-06 | Feaam Gmbh | Electric machine, control unit and method for operating an electric machine |
DE102019204913A1 (en) * | 2019-04-05 | 2020-10-08 | Zf Friedrichshafen Ag | Method and device for operating a steering system of a motor vehicle, as well as a control device and steering system |
EP4010613A4 (en) * | 2019-08-08 | 2023-11-01 | Sigma Powertrain, Inc. | Rotational control assembly for a vehicle transmission |
US11063535B2 (en) * | 2019-09-13 | 2021-07-13 | Ford Global Technologies, Llc | Steering motor brake |
CN112491329A (en) * | 2020-11-06 | 2021-03-12 | 丽水方德智驱应用技术研究院有限公司 | Device for safely switching off double-winding motor, application circuit and control method |
US11476788B1 (en) * | 2021-08-24 | 2022-10-18 | Irp Nexus Group Ltd. | Optimal open windings inverter for controlling three-phase AC motors |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4817471A (en) * | 1987-07-16 | 1989-04-04 | Tury Edward L | Electrical control system for control of an automatic transmission apparatus |
JPH07115643B2 (en) * | 1988-04-28 | 1995-12-13 | 三菱電機株式会社 | Electric power steering device |
JP3425806B2 (en) * | 1994-08-31 | 2003-07-14 | 三菱電機株式会社 | Motor control device |
JP3518944B2 (en) | 1996-04-11 | 2004-04-12 | 三菱電機株式会社 | Motor drive |
GB9619175D0 (en) * | 1996-09-13 | 1996-10-23 | Lucas Ind Plc | Electrical power-assisted steering systems |
-
2002
- 2002-05-24 DE DE10223139A patent/DE10223139A1/en not_active Withdrawn
-
2003
- 2003-02-27 CN CNB038011328A patent/CN100387475C/en not_active Expired - Fee Related
- 2003-02-27 JP JP2004507128A patent/JP4373327B2/en not_active Expired - Fee Related
- 2003-02-27 EP EP03739365A patent/EP1511666B1/en not_active Expired - Lifetime
- 2003-02-27 DE DE50313068T patent/DE50313068D1/en not_active Expired - Lifetime
- 2003-02-27 US US10/483,592 patent/US7019479B2/en not_active Expired - Fee Related
- 2003-02-27 WO PCT/DE2003/000627 patent/WO2003099632A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019216549B4 (en) | 2019-10-28 | 2022-06-02 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
DE102019216550B4 (en) | 2019-10-28 | 2022-06-02 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
DE102020202397A1 (en) | 2020-02-25 | 2021-08-26 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
DE102020202395A1 (en) | 2020-02-25 | 2021-08-26 | Uwe Bernhard | Dynamically self-balancing two-wheeled vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP1511666A1 (en) | 2005-03-09 |
US20040257018A1 (en) | 2004-12-23 |
JP4373327B2 (en) | 2009-11-25 |
DE50313068D1 (en) | 2010-10-21 |
DE10223139A1 (en) | 2003-12-11 |
WO2003099632A1 (en) | 2003-12-04 |
US7019479B2 (en) | 2006-03-28 |
JP2005527174A (en) | 2005-09-08 |
CN100387475C (en) | 2008-05-14 |
CN1564765A (en) | 2005-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1511666B1 (en) | Electronically commutable motor | |
WO2017186436A1 (en) | System for actively short-circuiting phases of an inverter and motor vehicle drive | |
DE19835576A1 (en) | Control system for permanently excited electric motor e.g. for vehicles | |
EP1836764B1 (en) | Power supply device for an electric motor method for operation of an electric motor | |
DE102020205292A1 (en) | An electric motor device | |
EP1655829B1 (en) | Circuit arrangement and method for control of an electric motor, in particular of a washing machine | |
DE102014114122B4 (en) | Rotating electrical machine attached to a vehicle | |
DE102008034326A1 (en) | Electrical power steering system for vehicle, has control unit controlling power conversion device for continuous supply of alternating current power to brushless motor when one of power switching devices is short circuit | |
EP0935336B2 (en) | Method and device for controlling a synchronous motor | |
WO2011042237A1 (en) | Method for operating a drive unit, and a drive unit | |
DE2139571A1 (en) | VEHICLE DRIVE WITH TWO ELECTRIC MOTORS | |
DE112017004791T5 (en) | POWER CONVERSION DEVICE, ENGINE DRIVE UNIT AND ELECTRIC POWER STEERING DEVICE | |
DE102010035149A1 (en) | Safety circuit for an electric motor of an electromechanical steering | |
WO2018054672A1 (en) | Motor device for a switch drive of an electric switch | |
DE112018006822T5 (en) | POWER CONVERTER, MOTOR MODULE AND ELECTRIC POWER STEERING DEVICE | |
EP2072374A2 (en) | Method and device for damping a rear-axle steering system | |
DE102011075789A1 (en) | Method for operating induction machine e.g. permanent magnet synchronous machine of pulse inverter for motor car, involves adjusting voltage vector and setting pulse width modulation command value constant for defective power switch | |
WO2011057900A2 (en) | Inverter | |
DE102005023395B4 (en) | Control device for a power steering device | |
DE102013109877A1 (en) | Method for controlling an electric motor | |
EP2774266B1 (en) | Method and apparatus for operating an electronically commutated electrical machine in the event of a fault | |
DE19811992A1 (en) | Circuit arrangement for controlling electric motor | |
EP2499729A2 (en) | Inverter with voltage clamping device | |
DE102004030459B3 (en) | Electric motor power steering for motor vehicle uses signals from torque sensor on steering column evaluated by controller to detect failure of controller and/or motor and isolate motor from current source in event of failure | |
DE102022108181B3 (en) | Control electronics, electromechanical actuator, aircraft and method for damping movement of an electromechanical actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): BG EE FR GB HU IT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20070227 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02H 7/08 20060101ALI20100412BHEP Ipc: H02P 29/02 20060101AFI20100412BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50313068 Country of ref document: DE Date of ref document: 20101021 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110609 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50313068 Country of ref document: DE Effective date: 20110609 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160222 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170227 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170227 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180221 Year of fee payment: 16 Ref country code: FR Payment date: 20180222 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190423 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190227 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50313068 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200901 |