[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1577904B1 - High voltage bushing with element for electric-field control - Google Patents

High voltage bushing with element for electric-field control Download PDF

Info

Publication number
EP1577904B1
EP1577904B1 EP04405151A EP04405151A EP1577904B1 EP 1577904 B1 EP1577904 B1 EP 1577904B1 EP 04405151 A EP04405151 A EP 04405151A EP 04405151 A EP04405151 A EP 04405151A EP 1577904 B1 EP1577904 B1 EP 1577904B1
Authority
EP
European Patent Office
Prior art keywords
field control
bushing
control element
field
mounting flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04405151A
Other languages
German (de)
French (fr)
Other versions
EP1577904A1 (en
Inventor
Lise Donzel
Felix Greuter
Hansjoerg Gramespacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to AT04405151T priority Critical patent/ATE546818T1/en
Priority to EP04405151A priority patent/EP1577904B1/en
Priority to US11/079,858 priority patent/US7262367B2/en
Publication of EP1577904A1 publication Critical patent/EP1577904A1/en
Application granted granted Critical
Publication of EP1577904B1 publication Critical patent/EP1577904B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges

Definitions

  • the invention relates to the field of high or medium voltage technology, in particular electrical insulation and connection technology for grounded high voltage apparatus. It is based on a dielectric bushing and a high-voltage electrical apparatus according to the preamble of the independent claims.
  • a high voltage insulator z As porcelain or composite material with a coating of field control material (FGM) disclosed.
  • the field-controlling coating consists of varistor powder, z. Of doped zinc oxide (ZnO) embedded in a polymer matrix.
  • the FGM coating serves to compare the field distribution on the insulator surface and is distributed so that part of the material is in electrical contact with both the ground electrode and the high voltage electrode. In this case, the FGM coating can only partially cover the insulator length and be concentrated in the field-loaded electrode regions.
  • the FGM coating can be applied to the insulator surface, can be incorporated there in a shield or can be shielded by a weatherproof, electrically insulating protective layer to the outside.
  • An equalization of the capacitive field load can be realized by alternating horizontal strips or bands of FGM coating and insulator material.
  • the FGM coating may be applied in the form of a glaze or a paint, or mixed into a slurry or clay, applied to the porcelain insulator and fired there to a glaze or ceramic layer.
  • the matrix for the FGM coating may be a polymer, an adhesive, a casting or a mastic or a gel.
  • EP 1 042 756 discloses a glass fiber reinforced insulator tube which is impregnated on the inner surface and optionally also the outer surface with a resin which has a particulate filler with varistor properties, in particular zinc oxide.
  • the GRP tube can be made by winding a fiberglass mesh which is impregnated with the varistor-filled resin at least on the outer layers.
  • the insulator comprises an insulator body made of porcelain or composite material and a porcelain or silicone shield.
  • the shield has a variable insulator screen density.
  • Isolatorend Scheme For field relief in a Isolatorend Scheme turn the known shield electrode between the insulator body and conductor is present. It is now proposed to install an increased number of insulator screens in the heavily field-loaded area where the shielding electrode ends. Due to the increased insulator screen density, improved field relief is achieved in the end region of the shield electrode.
  • the invention relates to a prior art, as shown in the US Pat. 3,318,995 is known.
  • cast resin bushings are disclosed, which remain electrically reliable even with differential thermal expansion or shrinkage due to cavitation between metal and cast resin.
  • regions with increased cracking tendency are electrically shielded by partially conductive or semiconductive field shielding layers.
  • the layers are either arranged on the high-voltage inner conductor and electrically connected to this end; or they are arranged on shielding electrodes and electrically connected to these end, wherein the shielding electrodes in turn are electrically connected to the grounded housing of the connected apparatus.
  • the field shielding layers create a field-free space between themselves and the inner conductor or themselves and the shielding electrode and effectively shield cavities in the casting resin.
  • the object of the present invention is to provide an improved dielectric bushing and a high-voltage electrical apparatus and an electrical switchgear with such a procedure. This object is achieved according to the invention by the features of the independent claim.
  • the invention consists in a dielectric bushing, in particular a high voltage feedthrough for a high voltage electrical apparatus, comprising an insulator part with a first mounting flange and a second mounting flange for mounting the bushing, wherein within the bushing in a field loading zone in the region of the first mounting flange one for a desired voltage level required Shield electrode is omitted and instead for the purpose of field control in the field loading zone, a non-linear electrical and / or dielectric field control element on the insulator part in the region of the first mounting flange is present and the field control element is in electrical contact with the first mounting flange.
  • the bushings can therefore be built shorter.
  • the E-field is no longer concentrated in the region of the shielding electrode during the entire pulse duration, but can propagate as a wave along the field control element and thereby degrade.
  • the maximum field strengths are reduced.
  • the field control material with respect to its non-linear electrical and / or dielectric properties, its geometric shape and its arrangement on the insulator part for dielectric relief of field loading zone without shielding electrode for all operating conditions, especially for surge voltages designed.
  • the field control element can thus master even the most critical field loading conditions without shielding electrode or shielding electrodes.
  • design criteria for geometrical design of the field control element are specified by which an advantageous field control can be achieved with little material.
  • a minimum required length of the field control element can be determined along the longitudinal extent of the insulator part according to claim 5. It is thereby achieved that the field load propagates as a traveling wave along the field control element, in particular in the case of surge voltage, and thereby degrades to such an extent that no damaging field strengths can form on reaching the remote end of the field control material.
  • Claim 6 indicates how can be built with the field control element DC feedthroughs in a simple manner.
  • the embodiment according to claim 7 has the advantage that in particular the highest field loads in the region of the earth flange with the field control material can be controlled.
  • the embodiments according to claim 8 and 9 have the advantage that both flange regions are protected by the field control materials independently of each other from flashovers or partial discharges.
  • Claim 10 feature a) indicates various radial positions for the arrangement of the field control material on the insulator part.
  • Claim 10 feature b) has the advantage that a conventional GRP pipe (glass fiber reinforced plastic) or a conventional porcelain insulator by a self-supporting FGM pipe (field control material tube) is replaceable.
  • Claim 11 specifies advantageous material components for the field control element.
  • Claims 12 and 13 relate to a high-voltage electrical apparatus and an electrical switchgear comprising an inventive implementation with the above-mentioned advantages.
  • Fig. 1a shows a conventional gas-insulated dielectric bushing 1, in particular a high voltage bushing 1 for a high voltage electrical apparatus.
  • the bushing 1 comprises an insulator part 2; 2a, 2b with a first ground-side mounting flange 4 for mounting the bushing 1 on a grounded housing 5 of an electrical apparatus (not shown) and a second voltage-side mounting flange 8 for mounting the bushing 1 to a high voltage part (not shown).
  • the insulator part 2; 2a, 2b has a gas space 20 for an insulating gas 20 in the interior.
  • the gas space 20 contains a dielectrically insulating gas 20, e.g. As air, compressed air, nitrogen, SF 6 or similar gas.
  • the gas-insulated bushing 1 is thus hollow, typically hollow cylindrical, with an axis 3a, for receiving an electrical part 3 or at least one electrical conductor 3 in the gas space 20.
  • the bushing 1 is usually used to connect the encapsulated electrical apparatus to ground potential 5 at High or medium voltage network.
  • an internal shielding electrode 6, 6a is necessarily present in order to achieve field relief in the field-loaded zone 7, 7a at the lower ground flange 4 and to reduce or avoid partial discharges and flashovers.
  • the shielding electrode 6, 6a is typically in electrical contact 46 with the ground flange 4. It protrudes into the gas space 20 and tapers generally conically upwards.
  • Fig. 1b shows an example of a solid-state implementation 1 according to the prior art.
  • the insulator part 2, 2b is designed as a resin body 2 filled in its entirety with an optional shield 2b.
  • the insulator part 2, 2b thus has an insulation space for a solid insulating material 20 in the interior.
  • 3b and 3c denote the power connections.
  • the insulator part 2, 2b surrounds the current conductor 3.
  • a shielding electrode 6, 6a in the field loading zone 7, 7a on the earth flange 4 is present and is electrically conductively connected thereto via a contact 46.
  • Fig. 2a-2d and Fig. 3a-3b show exemplary embodiments of a gas-insulated or solid-insulated or otherwise insulated dielectric bushing 1 ', in accordance with the invention at least one shielding electrode 6; 6a, 6b has been omitted without sacrificing dielectric strength or reliability.
  • the shielding electrode 6; 6a, 6b is namely for the purpose of field control in the field loading zone 7; 7a, 7b a nonlinear electrical and / or dielectric field control element 9; 9a, 9b; 9i, 9o; 9s on the insulator part 2; 2a, 2b; 2c in the region of the first mounting flange 4 available.
  • the field control element 9; 9a, 9b; 9i, 9o; 9s is used instead of the earlier in the insulator part 2; 2a, 2b; 2c arranged shielding electrode 6; 6a, 6b for the dielectric discharge of the field loading zone 7; 7a, 7b.
  • the field control element 9; 9a, 9b; 9i, 9o; 9s is used instead of the earlier in the insulator part 2; 2a, 2b; 2c arranged shielding electrode 6; 6a, 6b for the dielectric discharge of the field loading zone 7; 7a, 7b.
  • the field control element 9 is designed for the purpose of relieving the field loading zone 7 in such a way that the flange region 7 is stress-relieved.
  • the field control element 9 in an intermediate layer 22 between the GRP pipe (glass fiber reinforced plastic and in particular epoxy tube) 2a and the silicone shield 2b in the form of a cylinder jacket-shaped coating 9 is arranged.
  • the field control element 9 may be replaced by any known manufacturing or processing process, e.g. B. casting, spraying, winding, extrusion o. ⁇ ., Be applied to the outside of the GRP pipe 2 a.
  • the field control element 9; 9a, 9b; 9i, 9o; 9s on: nonlinear electrical varistor characteristics and in particular a critical field strength, the varistor switching behavior of the field control element 9; 9a, 9b; 9i, 9o; 9s characterized; and / or a high dielectric constant ⁇ , in particular ⁇ > 30, preferably ⁇ > 40 and particularly preferably ⁇ > 50.
  • the field control element 9 is in electrical contact with the first mounting flange 4 and extends over a predeterminable length l along a longitudinal extension x of the insulator part 2; 2a, 2b. It has a predeterminable thickness d or thickness distribution d (l) as a function of the length l. Preferably, its length l is greater than or equal to a ratio of a maximum test voltage to be tested, in particular a lightning impulse, to the critical electric field strength. This design consideration applies with advantage for all embodiments where the shielding electrode 6a in the Erdflansch Scheme 7a by the field control element 9; 9a; 9i, 9o is replaced.
  • Fig. 2b is the field control material 9, 9i disposed on an inner side 21 of the GRP pipe 2a and can additionally help to reduce surface charges there.
  • the length l 1 is chosen here by way of example so that the field control layer 9, 9i is not in electrical contact with the counter flange 8.
  • Fig. 2c can in addition to the field control 9; 9a another field control element 9; 9b, which likewise has suitable nonlinear electrical and / or dielectric properties, in particular those as previously described for the field control element 9; 9a, and in addition in a field loading zone 7, 7b in the region of the second mounting flange 8 over a predetermined length l; l 2 and thickness d or d (l 2 ) on the insulator part 2; 2a, 2b is present.
  • the further field control element 9 is used; 9b as a replacement for a shielding electrode 6b in the region of the second, here the upper, mounting flange 8.
  • the field control element 9; 9a including the further field control element 9; 9b is selected in the intermediate layer 22.
  • the further field control element 9; 9b in electrical contact with the second mounting flange 8 and / or is the further field control element 9; 9b by a field control material-free zone extending along the longitudinal extent of the insulator part 2; 2a, 2b extends from the field control element 9; 9a separated in the region of the first mounting flange 4.
  • a first field control element 9; 9o in the intermediate layer 22 between the GRP pipe 2a and shield 2b and a second field control element 9, 9i on the inner side 21 of the GRP pipe 2a in the Erdflansch Scheme 7a be present.
  • the first integrated and the second internal field control element 9o, 9i can be made of the same or other field control material and in particular varistor material.
  • the associated thicknesses d o , d i and lengths l o , l i can be designed individually. By way of example, d i > d o and l i ⁇ l o are selected.
  • Fig. 3a and Fig. 3b show an insulator part 2, 2c of a porcelain hollow insulator 2c, which is equipped on the inner side 21 with the field control layer 9, 9i.
  • a field control material coating 9o, z. B. in disjoint horizontal Strip 9o preferably between insulator screens 2c and in particular in the lower Erdflansch Scheme 7a, be present.
  • the field control material 9; 9a, 9b; 9i, 9o be present in a coating or solid shape on an inner side 21 and / or integrated in an intermediate layer 22 between components 2a, 2b of the insulator part 2; 2a, 2b and / or on an outer side 23 of the insulator part 2; 2a, 2b; 2c is arranged.
  • Fig. 4 takes over the field control material 9; 9s a mechanically supporting function.
  • the field control material 9; 9s in the insulator part 2; 2b the exclusive mechanical self-supporting function, so that a conventional self-supporting plastic pipe 2a can be omitted.
  • Such a field control material insulator tube 2; 2b including 9s is particularly simple in construction and very thin in diameter.
  • Fig. 3a and Fig. 4 on the insulator part 2; 2a, 2b; 2c over the entire surface and along a longitudinal extension x of the insulator part 2; 2a, 2b; 2c continuously and both with the first mounting flange 4; 8 as well as with the second mounting flange 8; 4 are in electrical contact.
  • a preferred choice of material for the field control materials 9; 9a, 9b; 9i, 9o; 9s comprises a matrix filled with microvaristor particles and / or high dielectric constant particles.
  • Suitable microvaristor particles are, for example, doped ZnO particles, TiO 2 particles or SnO 2 particles. High dielectric constant have z.
  • the matrix is chosen application-specific and can, for. Example, an epoxy, silicone, EPDM, thermoplastic, thermoplastic elastomer or glass.
  • the filling of the matrix with microvaristor particles may be, for example, between 20% by volume and 60% by volume.
  • Fig. 5 12 shows calculations of the E field distribution E (x) normalized to a maximum E field E 0 as a function of the longitudinal coordinate x of the insulator part 2 and the time represented by successive snapshots a, b, c for a conventional feedthrough 1 with shielding electrode 6 according to Fig. 1 and D, E, F, G for an inventive implementation 1 '.
  • the calculations were made for a SF 6 170 kV bushing with GRP pipe 2a and silicone shield 2b according to conventional structure 1 or inventive construction 1 '.
  • Fig. 5 12 shows calculations of the E field distribution E (x) normalized to a maximum E field E 0 as a function of the longitudinal coordinate x of the insulator part 2 and the time represented by successive snapshots a, b, c for a conventional feedthrough 1 with shielding electrode 6 according to Fig. 1 and D, E, F, G for an inventive implementation 1 '.
  • the calculations were made for a SF 6 170 kV bushing with GRP
  • the electric field strength E (x) at the silicon - air interface is shown during or shortly after the application of a lightning impulse with time delays of 0.5 ⁇ s / 2.2 ⁇ s / 20 ⁇ s for the curves a, b, c and 0.5 ⁇ s / 1.0 ⁇ s / 5 ⁇ s / 20 ⁇ s for the curves D, E, F, G. It can be clearly seen that the new design of the bushing 1 'avoids the E-field peaks and at any time produces a more homogeneous electric field. Field distribution is achieved. In addition, the areas of increased field strength are no longer stationary, which has an advantageous effect on the dielectric behavior of the bushing 1 '. With the help of the field calculations and the nonlinear electrical and / or dielectric properties of the field control element 9; 9a, 9b; 9i, 9o; 9s, the field control design of the implementation 1 'can be optimized.
  • Fig. 6 shows an insufficient design, wherein the field control element 9; 9a, 9b; 9i, 9o; 9s has too high electrical conductivity or the length l; l 1 , l 2 is too short.
  • the E-field propagates along the field control layer 9; 9a, 9b; 9i, 9o; 9s, but is not degraded, so that at the end of the field control layer 9; 9a, 9b; 9i, 9o; 9s nevertheless again a field exaggeration occurs, the partial discharges, rollovers or punches.
  • too low electrical conductivity of the field control material 9; 9a, 9b; 9i, 9o; 9s the E-field can not be effectively controlled or controlled.
  • the simple but effective rule can be stated that the field control element length l; l 1 , l 2 is greater than or equal to choose a ratio of a surge voltage to the critical electric field strength, the varistor switching behavior of the field control element 9; 9a, 9b; 9i, 9o; 9s characterized.
  • a high-voltage electrical apparatus in particular a disconnector, outdoor circuit breaker, vacuum switch, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination or in an electrical switchgear for high - or medium voltage.
  • the invention also relates to a high-voltage electrical apparatus, in particular a disconnector, outdoor circuit breaker, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination, in which a dielectric feedthrough 1 'is present as described above.
  • an electrical switchgear in particular a high or medium voltage switchgear comprising such a high voltage electrical apparatus claimed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulators (AREA)
  • Thermistors And Varistors (AREA)

Abstract

A dielectric bushing (1'), particularly a high-voltage bushing comprises an insulator part (2, 2c) with two installation flanges (4, 8) for installing the bushing. Instead of a screening electrode, a non-linear electric and/or dielectric field control element (9, 9i, 9o) is provided in a field stress zone (7, 7a, 7b). The field control element comprises a matrix, particularly epoxy, silicone, ethylene propylene diene monomer, thermoplast, thermoplastic elastomer or glass. The matrix is filled with microscopic varistor particles, particularly doped zinc oxide particles, titanium oxide particles or stannous oxide particles and/or is filled with high permittivity, particularly with BaTiO 3particles or titanium oxide particles.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung bezieht sich auf das Gebiet der Hoch- oder Mittelspannungstechnik, insbesondere auf elektrische Isolations- und Anschlusstechnik für geerdete Hochspannungsapparate. Sie geht aus von einer dielektrischen Durchführung und einem elektrischen Hochspannungsapparate gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of high or medium voltage technology, in particular electrical insulation and connection technology for grounded high voltage apparatus. It is based on a dielectric bushing and a high-voltage electrical apparatus according to the preamble of the independent claims.

STAND DER TECHNIKSTATE OF THE ART

In der WO 02/065486 A1 wird ein Hochspannungsisolator z. B. aus Porzellan oder Verbundwerkstoff mit einer Beschichtung aus Feldsteuermaterial (FGM) offenbart. Die feldsteuernde Beschichtung besteht aus Varistorpulver, z. B. aus dotiertem Zinkoxid (ZnO), das in einer Polymermatrix eingebettet ist. Die FGM-Beschichtung dient zur Vergleichmassigung der Feldverteilung an der Isolatoroberfläche und ist so verteilt, dass ein Teil des Materials sowohl mit der Erdelektrode als auch mit der Hochspannungselektrode in elektrischem Kontakt steht. Dabei kann auch die FGM-Beschichtung die Isolatorlänge nur teilweise abdecken und in den feldbelasteten Elektrodenregionen konzentriert angeordnet sein. Die FGM-Beschichtung kann auf der Isolatoroberfläche aufgebracht sein, kann dort in eine Abschirmung eingearbeitet sein oder kann durch eine wetterfeste, elektrisch isolierende Schutzschicht nach aussen abgeschirmt sein. Eine Vergleichmässigung der kapazitiven Feldbelastung kann durch alternierende horizontale Streifen oder Bänder aus FGM-Beschichtung und Isolatormaterial realisiert werden.In the WO 02/065486 A1 is a high voltage insulator z. As porcelain or composite material with a coating of field control material (FGM) disclosed. The field-controlling coating consists of varistor powder, z. Of doped zinc oxide (ZnO) embedded in a polymer matrix. The FGM coating serves to compare the field distribution on the insulator surface and is distributed so that part of the material is in electrical contact with both the ground electrode and the high voltage electrode. In this case, the FGM coating can only partially cover the insulator length and be concentrated in the field-loaded electrode regions. The FGM coating can be applied to the insulator surface, can be incorporated there in a shield or can be shielded by a weatherproof, electrically insulating protective layer to the outside. An equalization of the capacitive field load can be realized by alternating horizontal strips or bands of FGM coating and insulator material.

Bei Porzellanisolatoren kann die FGM-Beschichtung in Form einer Glasur oder eines Farbanstrichs aufgebracht oder in einen Brei oder in Ton gemischt, auf den Porzellanisolator aufgebracht und dort zu einer Glasur oder einer Keramikschicht gebrannt werden. Alternativ kann die Matrix für die FGM-Beschichtung ein Polymer, ein Klebstoff, eine Gussmasse oder ein Mastix oder ein Gel sein.For porcelain insulators, the FGM coating may be applied in the form of a glaze or a paint, or mixed into a slurry or clay, applied to the porcelain insulator and fired there to a glaze or ceramic layer. Alternatively, the matrix for the FGM coating may be a polymer, an adhesive, a casting or a mastic or a gel.

In der EP 1 042 756 wird ein glasfaserverstärktes Isolatorrohr offenbart, das auf der Innenfläche und gegebenenfalls auch Aussenfläche mit einem Harz imprägniert ist, welches einen partikelförmigen Füllstoff mit Varistoreigenschaften, insbesondere Zinkoxid, aufweist. Das GFK-Rohr kann durch Wickeln eines Glasfasernetzes hergestellt werden, das zumindest an den äusseren Schichten mit dem varistorgefüllten Harz imprägniert wird.In the EP 1 042 756 discloses a glass fiber reinforced insulator tube which is impregnated on the inner surface and optionally also the outer surface with a resin which has a particulate filler with varistor properties, in particular zinc oxide. The GRP tube can be made by winding a fiberglass mesh which is impregnated with the varistor-filled resin at least on the outer layers.

Im Buch " The Electric Power Engineering Handbook" von L. L. Grigsby, CRC Press und IEEE Press, Boca Raton (2001 ) werden im Kapitel 3.13, "Electrical Bushings" von L. B. Wagenaar, S. 3-171 bis 3-184 verschiedene Typen elektrischer Durchführungen offenbart. Insbesondere wird in Fig. 3.151 eine Durchführung mit einer erdseitigen, innerhalb des Isolatorrohrs angeordneten Abschirmelektrode angegeben. Durch die Abschirmelektrode wird im Bereich des erdseitigen Montageflansches eine Feldsteuerung derart erreicht, dass die stark feldbelastete Zone am Übergang von Flansch zu Isolator feldentlastet wird. Derartige innenliegende Abschirmelektroden sind in druckgasisolierten Durchführungen, z. B. in SF6-isolierten oder luftisolierten Durchführungen, insbesondere für Hochspannungsniveau zwingend vorhanden. Innenliegende Abschirmelektroden sind auch für feststoffisolierte Durchführungen bekannt. Die Abschirmelektroden führen jedoch zu grossen Durchmessern der Durchführungen. Zudem werden mit Abschirmelektroden nur relativ inhomogene Feldsteuerungen im Vergleich zu Kondensator-Durchführungen mit Öl― oder Harz-imprägniertem Papier erreicht. Dies muss durch grössere Bauhöhen für die Durchführungen kompensiert werden.In the book " The Electric Power Engineering Handbook "by LL Grigsby, CRC Press and IEEE Press, Boca Raton (2001 ), various types of electrical feedthroughs are disclosed in Chapter 3.13, "Electrical Bushings" by LB Wagenaar, pp. 3-171 to 3-184. In particular, in Fig. 3 .151 indicated a passage with a ground-side, arranged within the insulator tube shielding electrode. By the shielding electrode, a field control is achieved in the region of the ground-side mounting flange such that the heavily field-loaded zone is field-relieved at the transition from flange to insulator. Such internal shielding electrodes are in pressure gas-insulated bushings, z. B. in SF 6 -isolated or air-insulated bushings, especially for high voltage level mandatory. Internal shielding electrodes are also known for solid-insulated feedthroughs. However, the shielding electrodes lead to large diameters of the bushings. In addition, only relatively inhomogeneous field controls are achieved with shielding electrodes compared to capacitor bushings with oil or resin impregnated paper. This must be compensated by larger construction heights for the bushings.

In der Broschüre von ABB Power Technology Products AB, "SF6-air bushings, type GGA", Technical Guide, 1996-03-30 werden dielektrische Durchführungen offenbart, die mit internen Abschirmelektroden am Erdflansch und für höhere Spannungsniveaus zusätzlich auch am spannungsseitigen Flansch ausgerüstet sind.The ABB Power Technology Products AB brochure, "SF 6 -air bushings, type GGA", Technical Guide, 1996-03-30, discloses dielectric feedthroughs equipped with internal shielding electrodes on the ground flange and, for higher voltage levels, also on the voltage-side flange are.

In der DE 198 44 409 wird ein Isolator gezeigt, der insbesondere für dielektrische Durchführungen geeignet ist. Der Isolator umfasst wie üblich einen Isolatorkörper aus Porzellan oder Verbundwerkstoff und eine Beschirmung aus Porzellan oder Silikon. Die Beschirmung weist eine variable Isolatorschirmdichte auf. Zur Feldentlastung in einem Isolatorendbereich ist wiederum die bekannte Schirmelektrode zwischen Isolatorkörper und Stromleiter vorhanden. Es wird nun vorgeschlagen, in dem stark feldbelasteten Bereich, wo die Schirmelektrode endet, eine erhöhte Anzahl von Isolatorschirmen anzubringen. Durch die erhöhte Isolatorschirmdichte wird eine verbesserte Feldentlastung im Endbereich der Schirmelektrode erreicht.In the DE 198 44 409 an insulator is shown, which is particularly suitable for dielectric feedthroughs. As usual, the insulator comprises an insulator body made of porcelain or composite material and a porcelain or silicone shield. The shield has a variable insulator screen density. For field relief in a Isolatorendbereich turn the known shield electrode between the insulator body and conductor is present. It is now proposed to install an increased number of insulator screens in the heavily field-loaded area where the shielding electrode ends. Due to the increased insulator screen density, improved field relief is achieved in the end region of the shield electrode.

Die Erfindung nimmt auf einen Stand der Technik Bezug, wie er aus dem U. S. Pat. No. 3,318,995 bekannt ist. Dort werden aus Giessharz gefertigte Durchführungen offenbart, die auch bei differentieller thermischer Ausdehnung oder schwundbedingter Hohlraumbildung zwischen Metall und Giessharz elektrisch betriebssicher bleiben. Für diesen Zweck werden Gebiete mit erhöhter Rissbildungstendenz durch teilweise leitfähige oder halbleitende Feldabschirmungsschichten elektrisch abgeschirmt. Die Schichten sind entweder auf dem unter Hochspannung stehenden Innenleiter angeordnet und mit diesem endseitig elektrisch verbunden; oder sie sind auf Abschirmelektroden angeordnet und mit diesen endseitig elektrisch verbunden, wobei die Abschirmungselektroden ihrerseits mit dem auf Erdpotential liegenden Gehäuse des angeschlossenen Apparats elektrisch verbunden sind. Die Feldabschirmungsschichten schaffen einen feldfreien Raum zwischen sich selbst und Innenleiter oder sich selbst und Abschirmungselektrode und schirmen dort Hohlräume im Giessharz wirkungsvoll ab.The invention relates to a prior art, as shown in the US Pat. 3,318,995 is known. There, made of cast resin bushings are disclosed, which remain electrically reliable even with differential thermal expansion or shrinkage due to cavitation between metal and cast resin. For this purpose, regions with increased cracking tendency are electrically shielded by partially conductive or semiconductive field shielding layers. The layers are either arranged on the high-voltage inner conductor and electrically connected to this end; or they are arranged on shielding electrodes and electrically connected to these end, wherein the shielding electrodes in turn are electrically connected to the grounded housing of the connected apparatus. The field shielding layers create a field-free space between themselves and the inner conductor or themselves and the shielding electrode and effectively shield cavities in the casting resin.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es, eine verbesserte dielektrische Durchführung sowie einen elektrischen Hochspannungsapparat und eine elektrische Schaltanlage mit einer solchen Durchführung anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale des unabhängigen Anspruchs gelöst.The object of the present invention is to provide an improved dielectric bushing and a high-voltage electrical apparatus and an electrical switchgear with such a procedure. This object is achieved according to the invention by the features of the independent claim.

Die Erfindung besteht in einer dielektrischen Durchführung, insbesondere einer Hochspannungsdurchführung für einen elektrischen Hochspannungsapparat, umfassend einen Isolatorteil mit einem ersten Montageflansch und einem zweiten Montageflansch zur Montage der Durchführung, wobei innerhalb der Durchführung in einer Feldbelastungszone im Bereich des ersten Montageflansches eine für ein gewünschtes Spannungsniveau erforderliche Abschirmelektrode weggelassen ist und stattdessen zum Zwecke der Feldsteuerung in der Feldbelastungszone ein nichtlinear elektrisches und/oder dielektrisches Feldsteuerelement am Isolatorteil im Bereich des ersten Montageflansches vorhanden ist und das Feldsteuerelement in elektrischem Kontakt mit dem ersten Montageflansch steht.The invention consists in a dielectric bushing, in particular a high voltage feedthrough for a high voltage electrical apparatus, comprising an insulator part with a first mounting flange and a second mounting flange for mounting the bushing, wherein within the bushing in a field loading zone in the region of the first mounting flange one for a desired voltage level required Shield electrode is omitted and instead for the purpose of field control in the field loading zone, a non-linear electrical and / or dielectric field control element on the insulator part in the region of the first mounting flange is present and the field control element is in electrical contact with the first mounting flange.

Durch die Erfindung kann also eine nach herkömmlichem technischen Verständnis für ein vorgebbares Spannungsniveau notwendig vorhandene Abschirmelektrode weggelassen werden. Dadurch werden vielfältige Vorteil erreicht. Durch Weglassen der bisher notwendig vorhandenen inneren Abschirmelektrode können dielektrische Durchführungen dünner, d. h. mit reduziertem Durchmesser gebaut werden. Die Grenzspannung, ab welcher eine konische Verbreiterung zum Erdflansch hin wirtschaftlicher ist, kann zu höheren Spannungsniveaus verschoben werden. Zylindrische Durchführungen sind günstiger herzustellen als konische. Die Gefahr elektrischer Überschläge zwischen benachbarten Durchführungen ist reduziert und benachbarte Phasen können räumlicher näher zueinander oder zur Erde angeordnet werden. Schliesslich wird durch die erfindungsgemässe Feldentlastung durch Feldsteuermaterial im Flanschbereich eine bessere Feldsteuerung erreicht als durch die herkömmlich verwendete Abschirmelektrode. Die Durchführungen können deshalb auch kürzer gebaut werden. Insbesondere bei Pulsbelastung wird das E-Feld nämlich nicht mehr im Bereich der Abschirmelektrode während der ganzen Pulsdauer konzentriert, sondern kann sich als Welle entlang dem Feldsteuerelement ausbreiten und dabei abbauen. Zudem sind die maximalen Feldstärken reduziert.By means of the invention, therefore, it is possible to omit a shielding electrode which is necessary according to conventional technical understanding for a specifiable voltage level. Thereby many advantages are achieved. By omitting the previously necessary existing inner shield electrode dielectric bushings can be thinner, ie built with a reduced diameter. The limit stress, from which a conical widening towards the earth flange is more economical, can be shifted to higher voltage levels. Cylindrical feedthroughs are cheaper to produce than conical ones. The risk of electrical flashovers between adjacent feedthroughs is reduced and adjacent phases may be placed closer to each other or to ground. Finally, better field control is achieved by the inventive field relief by field control material in the flange area than by the conventionally used shielding electrode. The bushings can therefore be built shorter. In particular, in the case of pulse loading, the E-field is no longer concentrated in the region of the shielding electrode during the entire pulse duration, but can propagate as a wave along the field control element and thereby degrade. In addition, the maximum field strengths are reduced.

In einem ersten Ausführungsbeispiel ist das Feldsteuermaterial hinsichtlich seiner nichtlinear elektrischen und/oder dielektrischen Eigenschaften, seiner geometrischen Gestalt und seiner Anordnung am Isolatorteil zur dielektrischen Entlastung der Feldbelastungszone ohne Abschirmelektrode für alle Betriebszustände, insbesondere für Stossspannungen, ausgelegt. Das Feldsteuerelement kann somit auch die kritischsten Feldbelastungszustände ohne Abschirmelektrode oder Abschirmelektroden meistern.In a first embodiment, the field control material with respect to its non-linear electrical and / or dielectric properties, its geometric shape and its arrangement on the insulator part for dielectric relief of field loading zone without shielding electrode for all operating conditions, especially for surge voltages designed. The field control element can thus master even the most critical field loading conditions without shielding electrode or shielding electrodes.

In Anspruch 3 werden Designkriterien zur elektrischen Auslegung des Feldsteuermaterials angegeben, durch die eine vorteilhafte Feldsteuerung realisierbar ist.In claim 3 design criteria for the electrical design of the field control material are given, by which an advantageous field control can be realized.

In Anspruch 4 und 5 werden Designkriterien zur geometrischen Auslegung des Feldsteuerelements angegeben, durch die mit wenig Materialaufwand eine vorteilhafte Feldsteuerung erreichbar ist. Insbesondere kann eine minimal erforderliche Länge des Feldsteuerelements entlang der Längsausdehnung des Isolatorteils gemäss Anspruch 5 festgelegt werden. Dadurch wird erreicht, dass sich die Feldbelastung insbesondere bei Stossspannung als Wanderwelle entlang dem Feldsteuerelement ausbreitet und dabei soweit abbaut, dass sich bei Erreichen des entfernten Endes des Feldsteuermaterials keine schädlichen Feldstärken mehr ausbilden können.In claim 4 and 5 design criteria for geometrical design of the field control element are specified by which an advantageous field control can be achieved with little material. In particular, a minimum required length of the field control element can be determined along the longitudinal extent of the insulator part according to claim 5. It is thereby achieved that the field load propagates as a traveling wave along the field control element, in particular in the case of surge voltage, and thereby degrades to such an extent that no damaging field strengths can form on reaching the remote end of the field control material.

Anspruch 6 gibt an, wie mit dem Feldsteuerelement auf einfache Weise Gleichstrom-Durchführungen gebaut werden können.Claim 6 indicates how can be built with the field control element DC feedthroughs in a simple manner.

Das Ausführungsbeispiel gemäss Anspruch 7 hat den Vorteil, dass insbesondere die höchsten Feldbelastungen im Bereich des Erdflansches mit dem Feldsteuermaterial beherrschbar sind.The embodiment according to claim 7 has the advantage that in particular the highest field loads in the region of the earth flange with the field control material can be controlled.

Die Ausführungsbeispiele gemäss Anspruch 8 und 9 haben den Vorteil, dass beide Flanschregionen durch die Feldsteuermaterialien unabhängig voneinander vor Überschlägen oder Teilentladungen geschützt sind.The embodiments according to claim 8 and 9 have the advantage that both flange regions are protected by the field control materials independently of each other from flashovers or partial discharges.

Anspruch 10 Merkmal a) gibt verschiedene radiale Positionen zur Anordnung des Feldsteuermaterials am Isolatorteil an. Anspruch 10 Merkmal b) hat den Vorteil, dass ein herkömmliches GFK-Rohr (glasfaserverstärkter Kunststoff) oder ein herkömmlicher Porzellanisolator durch ein selbsttragendes FGM-Rohr (Feldsteuermaterial-Rohr) ersetzbar ist.Claim 10 feature a) indicates various radial positions for the arrangement of the field control material on the insulator part. Claim 10 feature b) has the advantage that a conventional GRP pipe (glass fiber reinforced plastic) or a conventional porcelain insulator by a self-supporting FGM pipe (field control material tube) is replaceable.

Anspruch 11 gibt vorteilhafte Materialkomponenten für das Feldsteuerelement an.Claim 11 specifies advantageous material components for the field control element.

Ansprüche 12 und 13 betreffen einen elektrischen Hochspannungsapparat und eine elektrische Schaltanlage umfassend eine erfindungsgemässe Durchführung mit den oben genannten Vorteilen.Claims 12 and 13 relate to a high-voltage electrical apparatus and an electrical switchgear comprising an inventive implementation with the above-mentioned advantages.

Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen sowie aus der nun folgenden Beschreibung und den Figuren.Further embodiments, advantages and applications of the invention will become apparent from the dependent claims and from the following description and the figures.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1a, 1bFig. 1a, 1b
zeigen im Querschnitt konventionelle Hochspannungsdurchführungen gemäss Stand der Technik;show in cross-section conventional high-voltage bushings according to the prior art;
Fig. 2a-2dFig. 2a-2d
zeigen im Querschnitt Ausführungsformen einer FGM-Durchführung für ein GFK-Rohr mit Silikonbeschirmung undshow in cross-section embodiments of a FGM passage for a GRP tube with silicone shielding and
Fig. 2aFig. 2a
einer durchgehenden FGM-Beschichtunga continuous FGM coating
Fig. 2bFig. 2b
einer erdseitigen FGM-Beschichtungan earth-side FGM coating
Fig. 2cFig. 2c
je einer unabhängigen erdseitigen und hochspannungsseitigen FGM-Beschichtung undeach one independent earth-side and high-voltage side FGM coating and
Fig. 2dFig. 2d
einer innenseitigen und aussenseitigen FGMBeschichtung;an inside and outside FGM coating;
Fig. 3a-3bFig. 3a-3b
zeigen im Querschnitt und in Draufsicht Ausführungsformen einer FGM-Durchführung für einen Porzellanisolator mit innenseitiger und optional aussenseitiger FGM-Beschichtung;show, in cross section and in plan view, embodiments of an FGM feedthrough for a porcelain insulator with inside and optionally outside FGM coating;
Fig. 4Fig. 4
zeigt im Querschnitt eine Ausführungsform für ein selbsttragendes Feldsteuerelement mit einer Silikonbeschirmung;shows in cross section an embodiment of a self-supporting field control element with a silicone shielding;
Fig. 5Fig. 5
zeigt für Blitzstosstests berechnete elektrische Oberflächen-Feldverteilungen E(x) als Funktion der Ortskoordinate x entlang der Durchführung und als Funktion der Zeit für konventionelle Durchführungen (a, b, c) und für eine erfindungsgemässe FGM-Durchführung (D, E, F, G); undshows electrical surface field distributions E (x) calculated as a function of the location coordinate x along the feedthrough and as a function of time for conventional feedthroughs (a, b, c) and for an inventive FGM feedthrough (D, E, F, G ); and
Fig. 6Fig. 6
zeigt eine unvorteilhafte Feldverteilung E(x) bei zu kurzer Länge oder zu grosser Leitfähigkeit der FGM-Beschichtung.shows an unfavorable field distribution E (x) if the length or the conductivity of the FGM coating is too short.

In den Figuren sind gleiche Teile mit gleichen Bezugszeichen versehen.In the figures, like parts are given the same reference numerals.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Fig. 1a zeigt eine herkömmliche gasisolierte dielektrische Durchführung 1, insbesondere eine Hochspannungsdurchführung 1 für einen elektrischen Hochspannungsapparat. Die Durchführung 1 umfasst einen Isolatorteil 2; 2a, 2b mit einem ersten erdseitigen Montageflansch 4 zur Montage der Durchführung 1 an einem geerdeten Gehäuse 5 eines elektrischen Apparats (nicht dargestellt) und einen zweiten spannungsseitigen Montageflansch 8 zur Montage der Durchführung 1 an einem Hochspannungsteil (nicht dargestellt). Der Isolatorteil 2; 2a, 2b weist im Inneren einen Gasraum 20 für ein Isolationsgas 20 auf. Der Gasraum 20 enthält ein dielektrisch isolierendes Gas 20, z. B. Luft, Druckluft, Stickstoff, SF6 oder ähnliches Gas. Es kann auch ein Isolationsraum 20 zur Aufnahme einer Isolationsflüssigkeit 20 vorhanden sein. Die gasisolierte Durchführung 1 ist also hohl, typischerweise hohlzylindrisch, mit einer Achse 3a, zur Aufnahme eines elektrischen Teils 3 oder mindestens eines elektrischen Stromleiters 3 im Gasraum 20. Die Durchführung 1 dient in der Regel zum Anschluss des gekapselten elektrischen Apparats auf Erdpotential 5 an ein Hoch- oder Mittelspannungsnetz. Bekanntermassen ist eine innenliegende Abschirmelektrode 6, 6a notwendigerweise vorhanden, um in der feldbelasteten Zone 7, 7a am unteren Erdflansch 4 eine Feldentlastung zu erreichen und Teilentladungen und Überschläge zu vermindern oder zu vermeiden. Die Abschirmelektrode 6, 6a steht typischerweise in elektrischem Kontakt 46 mit dem Erdflansch 4. Sie ragt in den Gasraum 20 hinein und verjüngt sich im allgemeinen konisch nach oben. Sie bestimmt den Durchmesser der Durchführung 1 im Erdflanschbereich 4. Gestrichelt angedeutet ist eine weitere Abschirmelektrode 6, 6b, die in der feldbelasteten Zone 7, 7b am oberen spannungsseitigen Flansch 8 angeordnet sein kann. Auch diese ist oftmals konisch nach unten verjüngt und dient zur Feldsteuerung in der Feldbelastungszone 7, 7b. Fig. 1a shows a conventional gas-insulated dielectric bushing 1, in particular a high voltage bushing 1 for a high voltage electrical apparatus. The bushing 1 comprises an insulator part 2; 2a, 2b with a first ground-side mounting flange 4 for mounting the bushing 1 on a grounded housing 5 of an electrical apparatus (not shown) and a second voltage-side mounting flange 8 for mounting the bushing 1 to a high voltage part (not shown). The insulator part 2; 2a, 2b has a gas space 20 for an insulating gas 20 in the interior. The gas space 20 contains a dielectrically insulating gas 20, e.g. As air, compressed air, nitrogen, SF 6 or similar gas. It may also be an isolation space 20 for receiving an insulating liquid 20 may be present. The gas-insulated bushing 1 is thus hollow, typically hollow cylindrical, with an axis 3a, for receiving an electrical part 3 or at least one electrical conductor 3 in the gas space 20. The bushing 1 is usually used to connect the encapsulated electrical apparatus to ground potential 5 at High or medium voltage network. As is known, an internal shielding electrode 6, 6a is necessarily present in order to achieve field relief in the field-loaded zone 7, 7a at the lower ground flange 4 and to reduce or avoid partial discharges and flashovers. The shielding electrode 6, 6a is typically in electrical contact 46 with the ground flange 4. It protrudes into the gas space 20 and tapers generally conically upwards. It determines the diameter of the bushing 1 in the Erdflanschbereich 4. Dashed lines indicate a further shielding electrode 6, 6b, which may be arranged in the field-loaded zone 7, 7b at the upper voltage-side flange 8. This too often tapers conically downwards and serves for field control in the field loading zone 7, 7b.

Fig. 1b zeigt ein Beispiel einer feststoffisolierten Durchführung 1 gemäss Stand der Technik. Hier ist der Isolatorteil 2, 2b als im Inneren vollvolumig gefüllter Harz-Körper 2 mit einer optionalen Beschirmung 2b ausgeführt. Der Isolatorteil 2, 2b weist also im Inneren einen Isolationsraum für ein Feststoffisolationsmaterial 20 auf. 3b und 3c bezeichnen die Stromanschlüsse. Der Isolatorteil 2, 2b umgreift den Stromleiter 3. Zur Feldsteuerung ist wiederum eine Abschirmelektrode 6, 6a in der Feldbelastungszone 7, 7a am Erdflansch 4 vorhanden und ist mit dieser über eine Kontaktierung 46 elektrisch leitend verbunden. Fig. 1b shows an example of a solid-state implementation 1 according to the prior art. Here, the insulator part 2, 2b is designed as a resin body 2 filled in its entirety with an optional shield 2b. The insulator part 2, 2b thus has an insulation space for a solid insulating material 20 in the interior. 3b and 3c denote the power connections. The insulator part 2, 2b surrounds the current conductor 3. For field control again a shielding electrode 6, 6a in the field loading zone 7, 7a on the earth flange 4 is present and is electrically conductively connected thereto via a contact 46.

Fig. 2a-2d und Fig. 3a-3b zeigen Ausführungsbeispiele für eine gasisolierte oder feststoffisolierte oder anderweitige isolierte dielektrische Durchführung 1', bei der erfindungsgemäss mindestens eine Abschirmelektrode 6; 6a, 6b ohne Einbusse an dielektrischer Festigkeit oder Zuverlässigkeit weggelassen wurde. Statt der Abschirmelektrode 6; 6a, 6b ist nämlich zum Zwecke der Feldsteuerung in der Feldbelastungszone 7; 7a, 7b ein nichtlinear elektrisches und/oder dielektrisches Feldsteuerelement 9; 9a, 9b; 9i, 9o; 9s am Isolatorteil 2; 2a, 2b; 2c im Bereich des ersten Montageflansches 4 vorhanden. Das Feldsteuerelement 9; 9a, 9b; 9i, 9o; 9s dient anstelle der früher im Isolatorteil 2; 2a, 2b; 2c angeordneten Abschirmelektrode 6; 6a, 6b zur dielektrischen Entlastung der Feldbelastungszone 7; 7a, 7b. Im folgenden werden bevorzugte Ausführungsbeispiele diskutiert. Fig. 2a-2d and Fig. 3a-3b show exemplary embodiments of a gas-insulated or solid-insulated or otherwise insulated dielectric bushing 1 ', in accordance with the invention at least one shielding electrode 6; 6a, 6b has been omitted without sacrificing dielectric strength or reliability. Instead of the shielding electrode 6; 6a, 6b is namely for the purpose of field control in the field loading zone 7; 7a, 7b a nonlinear electrical and / or dielectric field control element 9; 9a, 9b; 9i, 9o; 9s on the insulator part 2; 2a, 2b; 2c in the region of the first mounting flange 4 available. The field control element 9; 9a, 9b; 9i, 9o; 9s is used instead of the earlier in the insulator part 2; 2a, 2b; 2c arranged shielding electrode 6; 6a, 6b for the dielectric discharge of the field loading zone 7; 7a, 7b. In the following preferred embodiments will be discussed.

Gemäss Fig. 2a ist das Feldsteuerelement 9 zur dielektrischen Entlastung der Feldbelastungszone 7 so ausgelegt, dass die Flanschregion 7 stressentlastet ist. Hierfür ist das Feldsteuerelement 9 in einer Zwischenschicht 22 zwischen dem GFK-Rohr (glasfaserverstärktem Kunststoff- und insbesondere Epoxy-Rohr) 2a und der Silikonbeschirmung 2b in Form einer zylindermantelförmigen Beschichtung 9 angeordnet. Insbesondere kann das Feldsteuerelement 9 durch irgendeinen bekannten Herstellungs- oder Verarbeitungsprozess, z. B. Giessen, Spritzen, Wickeln, Extrusion o. ä., auf die Aussenseite des GFK-Rohrs 2a aufgebracht sein.According to Fig. 2a the field control element 9 is designed for the purpose of relieving the field loading zone 7 in such a way that the flange region 7 is stress-relieved. For this purpose, the field control element 9 in an intermediate layer 22 between the GRP pipe (glass fiber reinforced plastic and in particular epoxy tube) 2a and the silicone shield 2b in the form of a cylinder jacket-shaped coating 9 is arranged. In particular, the field control element 9 may be replaced by any known manufacturing or processing process, e.g. B. casting, spraying, winding, extrusion o. Ä., Be applied to the outside of the GRP pipe 2 a.

Bevorzugt weist das Feldsteuerelement 9; 9a, 9b; 9i, 9o; 9s auf: nichtlinear elektrische Varistoreigenschaften und insbesondere eine kritische Feldstärke, die ein Varistor-Schaltverhalten des Feldsteuerelements 9; 9a, 9b; 9i, 9o; 9s charakterisiert; und/oder eine hohe Dielektrizitätskonstante ε, insbesondere ε>30, bevorzugt ε>40 und besonders bevorzugt ε>50.Preferably, the field control element 9; 9a, 9b; 9i, 9o; 9s on: nonlinear electrical varistor characteristics and in particular a critical field strength, the varistor switching behavior of the field control element 9; 9a, 9b; 9i, 9o; 9s characterized; and / or a high dielectric constant ε, in particular ε> 30, preferably ε> 40 and particularly preferably ε> 50.

Mit Vorteil steht das Feldsteuerelement 9 in elektrischem Kontakt mit dem ersten Montageflansch 4 und erstreckt sich über eine vorgebbare Länge l entlang einer Längserstreckung x des Isolatorteils 2; 2a, 2b. Es weist eine vorgebbare Dicke d oder Dickenverteilung d(l) als Funktion der Länge l auf. Bevorzugt ist seine Länge l grösser oder gleich einem Verhältnis einer maximalen zu prüfenden Stossspannung, insbesondere einer Blitzstossspannung, zu der kritischen elektrischen Feldstärke. Diese Designüberlegung gilt mit Vorteil für alle Ausführungsbeispiele, wo die Abschirmelektrode 6a im Erdflanschbereich 7a durch das Feldsteuerelement 9; 9a; 9i, 9o ersetzt ist.Advantageously, the field control element 9 is in electrical contact with the first mounting flange 4 and extends over a predeterminable length l along a longitudinal extension x of the insulator part 2; 2a, 2b. It has a predeterminable thickness d or thickness distribution d (l) as a function of the length l. Preferably, its length l is greater than or equal to a ratio of a maximum test voltage to be tested, in particular a lightning impulse, to the critical electric field strength. This design consideration applies with advantage for all embodiments where the shielding electrode 6a in the Erdflanschbereich 7a by the field control element 9; 9a; 9i, 9o is replaced.

Gemäss Fig. 2b ist das Feldsteuermaterial 9, 9i auf einer Innenseite 21 des GFK-Rohrs 2a angeordnet und kann dort zusätzlich auch Oberflächenladungen abzubauen helfen. Die Länge l1 ist hier beispielhaft so gewählt, dass die Feldsteuerschicht 9, 9i nicht in elektrischem Kontakt mit dem Gegenflansch 8 steht.According to Fig. 2b is the field control material 9, 9i disposed on an inner side 21 of the GRP pipe 2a and can additionally help to reduce surface charges there. The length l 1 is chosen here by way of example so that the field control layer 9, 9i is not in electrical contact with the counter flange 8.

Gemäss Fig. 2c kann neben dem Feldsteuerelement 9; 9a ein weiteres Feldsteuerelement 9; 9b vorhanden sein, das ebenfalls geeignete nichtlinear elektrische und/oder dielektrische Eigenschaften, insbesondere solche wie zuvor für das Feldsteuerelement 9; 9a beschrieben, aufweist und das zusätzlich in einer Feldbelastungszone 7, 7b im Bereich des zweiten Montageflansches 8 über eine vorgebbare Länge l; l2 und Dicke d oder d(l2) am Isolatorteil 2; 2a, 2b vorhanden ist. Insbesondere dient das weitere Feldsteuerelement 9; 9b als Ersatz für eine Abschirmelektrode 6b im Bereich des zweiten, hier des oberen, Montageflansches 8. Hier ist beispielhaft wieder eine Anordnung des Feldsteuerelements 9; 9a inklusive des weiteren Feldsteuerelements 9; 9b in der Zwischenschicht 22 gewählt. Bevorzugt steht das weitere Feldsteuerelement 9; 9b in elektrischem Kontakt mit dem zweiten Montageflansch 8 und/oder ist das weitere Feldsteuerelement 9; 9b durch eine feldsteuermaterialfreie Zone, die sich entlang der Längserstreckung des Isolatorteils 2; 2a, 2b erstreckt, vom Feldsteuerelement 9; 9a im Bereich des ersten Montageflansches 4 getrennt.According to Fig. 2c can in addition to the field control 9; 9a another field control element 9; 9b, which likewise has suitable nonlinear electrical and / or dielectric properties, in particular those as previously described for the field control element 9; 9a, and in addition in a field loading zone 7, 7b in the region of the second mounting flange 8 over a predetermined length l; l 2 and thickness d or d (l 2 ) on the insulator part 2; 2a, 2b is present. In particular, the further field control element 9 is used; 9b as a replacement for a shielding electrode 6b in the region of the second, here the upper, mounting flange 8. Here is an example of an arrangement of the field control element 9; 9a including the further field control element 9; 9b is selected in the intermediate layer 22. Preferably, the further field control element 9; 9b in electrical contact with the second mounting flange 8 and / or is the further field control element 9; 9b by a field control material-free zone extending along the longitudinal extent of the insulator part 2; 2a, 2b extends from the field control element 9; 9a separated in the region of the first mounting flange 4.

Gemäss Fig. 2d kann zugleich ein erstes Feldsteuerelement 9; 9o in der Zwischenschicht 22 zwischen GFK-Rohr 2a und Beschirmung 2b und ein zweites Feldsteuerelement 9, 9i auf der Innenseite 21 des GFK-Rohrs 2a im Erdflanschbereich 7a vorhanden sein. Dadurch wird eine weiter verbesserte Feldsteuerung erreicht. Das erste integrierte und das zweite innenliegende Feldsteuerelement 9o, 9i können aus gleichem oder anderem Feldsteuermaterial und insbesondere Varistormaterial hergestellt sein. Die zugehörigen Dicken do, di und Längen lo, li können individuell ausgelegt sein. Beispielhaft ist di > do und li < lo gewählt.According to Fig. 2d can at the same time a first field control element 9; 9o in the intermediate layer 22 between the GRP pipe 2a and shield 2b and a second field control element 9, 9i on the inner side 21 of the GRP pipe 2a in the Erdflanschbereich 7a be present. This achieves a further improved field control. The first integrated and the second internal field control element 9o, 9i can be made of the same or other field control material and in particular varistor material. The associated thicknesses d o , d i and lengths l o , l i can be designed individually. By way of example, d i > d o and l i <l o are selected.

Fig. 3a und Fig. 3b zeigen ein Isolatorteil 2, 2c aus einem Porzellan-Hohlisolator 2c, der auf der Innenseite 21 mit der Feldsteuerschicht 9, 9i ausgestattet ist. Optional kann zusätzlich auch auf der Aussenseite 23 eine Feldsteuermaterialbeschichtung 9o, z. B. in disjunkten horizontalen Streifen 9o, bevorzugt zwischen Isolatorschirmen 2c und insbesondere im unteren Erdflanschbereich 7a, vorhanden sein. Insgesamt kann also das Feldsteuermaterial 9; 9a, 9b; 9i, 9o in einer Beschichtung oder auch massiven Gestalt vorhanden sein, die auf einer Innenseite 21 und/oder integriert in einer Zwischenschicht 22 zwischen Bestandteilen 2a, 2b des Isolatorteils 2; 2a, 2b und/oder auf einer Aussenseite 23 des Isolatorteils 2; 2a, 2b; 2c angeordnet ist. Fig. 3a and Fig. 3b show an insulator part 2, 2c of a porcelain hollow insulator 2c, which is equipped on the inner side 21 with the field control layer 9, 9i. Optionally, in addition on the outside 23, a field control material coating 9o, z. B. in disjoint horizontal Strip 9o, preferably between insulator screens 2c and in particular in the lower Erdflanschbereich 7a, be present. Overall, therefore, the field control material 9; 9a, 9b; 9i, 9o be present in a coating or solid shape on an inner side 21 and / or integrated in an intermediate layer 22 between components 2a, 2b of the insulator part 2; 2a, 2b and / or on an outer side 23 of the insulator part 2; 2a, 2b; 2c is arranged.

Gemäss Fig. 4 übernimmt das Feldsteuermaterial 9; 9s eine mechanisch tragende Funktion. Bevorzugt übernimmt das Feldsteuermaterial 9; 9s im Isolatorteil 2; 2b die ausschliessliche mechanisch selbsttragende Funktion, so dass ein herkömmliches selbsttragendes Kunststoffrohr 2a entfallen kann. Ein solches Feldsteuermaterial-Isolatorrohr 2; 2b inklusive 9s ist besonders einfach im Aufbau und besonders dünn im Durchmesser.According to Fig. 4 takes over the field control material 9; 9s a mechanically supporting function. Preferably, the field control material 9; 9s in the insulator part 2; 2b the exclusive mechanical self-supporting function, so that a conventional self-supporting plastic pipe 2a can be omitted. Such a field control material insulator tube 2; 2b including 9s is particularly simple in construction and very thin in diameter.

Für Gleichstromanwendungen soll das Feldsteuerelement 9; 9i, 9s gemäss Fig. 2a, Fig. 3a und Fig. 4 am Isolatorteil 2; 2a, 2b; 2c vollflächig und entlang einer Längserstreckung x des Isolatorteils 2; 2a, 2b; 2c durchgehend vorhanden sein und sowohl mit dem ersten Montageflansch 4; 8 als auch mit dem zweiten Montageflansch 8; 4 in elektrischem Kontakt stehen.For DC applications, the field control element 9; 9i, 9s according to Fig. 2a . Fig. 3a and Fig. 4 on the insulator part 2; 2a, 2b; 2c over the entire surface and along a longitudinal extension x of the insulator part 2; 2a, 2b; 2c continuously and both with the first mounting flange 4; 8 as well as with the second mounting flange 8; 4 are in electrical contact.

Eine bevorzugte Materialwahl für die Feldsteuermaterialien 9; 9a, 9b; 9i, 9o; 9s umfasst eine Matrix, die mit Mikrovaristorpartikeln und/oder Partikeln hoher Dielektrizitätskonstante gefüllt ist. Als Mikrovaristorpartikel kommen beispielsweise dotierte ZnO-Partikel, TiO2-Partikel oder SnO2-Partikel in Frage. Hohe Dielektrizitätskonstante weisen z. B. BaTiO3-Partikel oder TiO2-Partikel auf. Im Falle von ZnO-Mikrovaristorpartikeln werden diese typischerweise in einem Temperaturbereich von 800 °C bis 1200 °C gesintert. Nach einem Aufbrechen und gegebenenfalls Sieben des Sinterprodukts weisen die Mikrovaristorpartikel eine typische Teilchengrösse von kleiner als 125 µm auf. Die Matrix wird anwendungsspezifisch gewählt und kann z. B. ein Epoxy, Silikon, EPDM, Thermoplast, thermoplastisches Elastomer oder Glas umfassen. Die Befüllung der Matrix mit Mikrovaristorpartikeln kann beispielsweise zwischen 20 Volumen% und 60 Volumen% betragen.A preferred choice of material for the field control materials 9; 9a, 9b; 9i, 9o; 9s comprises a matrix filled with microvaristor particles and / or high dielectric constant particles. Suitable microvaristor particles are, for example, doped ZnO particles, TiO 2 particles or SnO 2 particles. High dielectric constant have z. B. BaTiO 3 particles or TiO 2 particles. In the case of ZnO Mikrovaristorpartikeln these are typically sintered in a temperature range of 800 ° C to 1200 ° C. After rupture and optionally sieving of the sintered product, the microvaristor particles have a typical particle size of less than 125 μm. The matrix is chosen application-specific and can, for. Example, an epoxy, silicone, EPDM, thermoplastic, thermoplastic elastomer or glass. The filling of the matrix with microvaristor particles may be, for example, between 20% by volume and 60% by volume.

Fig. 5 zeigt Berechnungen der E-Feldverteilung E(x), normiert auf ein maximales E-Feld E0, als Funktion der Längenortskoordinate x des Isolatorteils 2 und der Zeit, dargestellt durch sukzessive Momentaufnahmen a, b, c für eine herkömmliche Durchführung 1 mit Abschirmelektrode 6 gemäss Fig. 1 und D, E, F, G für eine erfindungsgemässe Durchführung 1'. Die Berechnungen wurden für eine SF6 170 kV Durchführung mit GFK-Rohr 2a und Silikonbeschirmung 2b gemäss herkömmlichem Aufbau 1 oder erfindungsgemässem Aufbau 1' gemacht. In Fig. 5 ist die elektrische Feldstärke E(x) an der Grenzfläche Silikon - Luft während oder kurz nach Anlegen einer Blitzstossspannung dargestellt, mit Zeitverzögerungen von 0,5 µs / 2,2 µs / 20 µs für die Kurven a, b, c und 0,5 µs / 1,0 µs / 5 µs / 20 µs für die Kurven D, E, F, G. Man erkennt deutlich, dass durch das neue Design der Durchführung 1' die E-Feldspitzen vermieden werden und zu jedem Zeitpunkt eine homogenere E-Feldverteilung erreicht wird. Zudem sind die Bereiche erhöhter Feldstärke nicht mehr ortsfest, was sich vorteilhaft auf das dielektrische Verhalten der Durchführung 1' auswirkt. Mit Hilfe der Feldberechnungen und der nichtlinear elektrischen und/oder dielektrischen Eigenschaften des Feldsteuerelements 9; 9a, 9b; 9i, 9o; 9s kann das Feldsteuerungs-Design der Durchführung 1' optimiert werden. Fig. 5 12 shows calculations of the E field distribution E (x) normalized to a maximum E field E 0 as a function of the longitudinal coordinate x of the insulator part 2 and the time represented by successive snapshots a, b, c for a conventional feedthrough 1 with shielding electrode 6 according to Fig. 1 and D, E, F, G for an inventive implementation 1 '. The calculations were made for a SF 6 170 kV bushing with GRP pipe 2a and silicone shield 2b according to conventional structure 1 or inventive construction 1 '. In Fig. 5 the electric field strength E (x) at the silicon - air interface is shown during or shortly after the application of a lightning impulse with time delays of 0.5 μs / 2.2 μs / 20 μs for the curves a, b, c and 0.5 μs / 1.0 μs / 5 μs / 20 μs for the curves D, E, F, G. It can be clearly seen that the new design of the bushing 1 'avoids the E-field peaks and at any time produces a more homogeneous electric field. Field distribution is achieved. In addition, the areas of increased field strength are no longer stationary, which has an advantageous effect on the dielectric behavior of the bushing 1 '. With the help of the field calculations and the nonlinear electrical and / or dielectric properties of the field control element 9; 9a, 9b; 9i, 9o; 9s, the field control design of the implementation 1 'can be optimized.

Fig. 6 zeigt eine ungenügende Auslegung, wobei das Feldsteuerelement 9; 9a, 9b; 9i, 9o; 9s eine zu hohe elektrische Leitfähigkeit aufweist oder die Länge l; l1, l2 zu kurz gewählt ist. Dadurch breitet sich das E-Feld entlang der Feldsteuerschicht 9; 9a, 9b; 9i, 9o; 9s aus, wird dabei aber nicht abgebaut, so dass am Ende der Feldsteuerschicht 9; 9a, 9b; 9i, 9o; 9s gleichwohl wieder eine Feldüberhöhung auftritt, die zu Teilentladungen, Überschlägen oder Durchschlägen führen kann. Wird andererseits eine zu niedrige elektrische Leitfähigkeit des Feldsteuermaterials 9; 9a, 9b; 9i, 9o; 9s gewählt, so kann das E-Feld nicht effektiv kontrolliert oder gesteuert werden. Für eine optimale Auslegung eines varistorartigen Feldsteuerelements 9; 9a; 9i, 9o; 9s im Erdflanschbereich 7, 7a kann die einfache, aber wirkungsvolle Regel angegeben werden, dass die Feldsteuerelementlänge l; l1, l2 grösser oder gleich einem Verhältnis einer Stossspannung zu der kritischen elektrischen Feldstärke zu wählen ist, die das Varistor-Schaltverhalten des Feldsteuerelements 9; 9a, 9b; 9i, 9o; 9s charakterisiert. Fig. 6 shows an insufficient design, wherein the field control element 9; 9a, 9b; 9i, 9o; 9s has too high electrical conductivity or the length l; l 1 , l 2 is too short. As a result, the E-field propagates along the field control layer 9; 9a, 9b; 9i, 9o; 9s, but is not degraded, so that at the end of the field control layer 9; 9a, 9b; 9i, 9o; 9s nevertheless again a field exaggeration occurs, the partial discharges, rollovers or punches. On the other hand, too low electrical conductivity of the field control material 9; 9a, 9b; 9i, 9o; 9s, the E-field can not be effectively controlled or controlled. For an optimal design of a varistor-like field control element 9; 9a; 9i, 9o; 9s in Erdflanschbereich 7, 7a, the simple but effective rule can be stated that the field control element length l; l 1 , l 2 is greater than or equal to choose a ratio of a surge voltage to the critical electric field strength, the varistor switching behavior of the field control element 9; 9a, 9b; 9i, 9o; 9s characterized.

Verwendungen der erfindungsgemässen dielektrischen Durchführung 1' betreffen u.a. den Einsatz als Durchführung 1' in einem elektrischen Hochspannungsapparat, insbesondere einem Trenner, Freiluft-Leistungsschalter, Vakuumschalter, Dead Tank Breaker, Stromwandler, Spannungswandler, Transformator, Leistungskondensator oder Kabelendverschluss oder in einer elektrischen Schaltanlage für Hoch- oder Mittelspannung. Gegenstand der Erfindung ist auch ein elektrischer Hochspannungsapparat, insbesondere ein Trenner, Freiluft-Leistungsschalter, Dead Tank Breaker, Stromwandler, Spannungswandler, Transformator, Leistungskondensator oder Kabelendverschluss, bei dem eine dielektrische Durchführung 1' wie zuvor beschrieben vorhanden ist. Ebenso wird eine elektrische Schaltanlage, insbesondere eine Hoch- oder Mittelspannungsschaltanlage, umfassend einen solchen elektrischen Hochspannungsapparat beansprucht.Uses of the inventive dielectric bushing 1 'relate inter alia to the use as a bushing 1' in a high-voltage electrical apparatus, in particular a disconnector, outdoor circuit breaker, vacuum switch, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination or in an electrical switchgear for high - or medium voltage. The invention also relates to a high-voltage electrical apparatus, in particular a disconnector, outdoor circuit breaker, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination, in which a dielectric feedthrough 1 'is present as described above. Likewise, an electrical switchgear, in particular a high or medium voltage switchgear comprising such a high voltage electrical apparatus claimed.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Konventionelle HochspannungsdurchführungConventional high voltage feedthrough
1'1'
FGM-HochspannungsdurchführungFGM-high-voltage bushing
22
Selbsttragender IsolatorSelf-supporting insulator
2020
Isolation (fest, flüssig, gelartig, gasförmig), Epoxy, Schaumstoff, Öl, Luft, SF6 Isolation (solid, liquid, gel, gaseous), epoxy, foam, oil, air, SF 6
2121
Innenseite des IsolatorteilsInside of the insulator part
2222
Zwischenschicht des IsolatorteilsInterlayer of the insulator part
2323
Aussenseite des IsolatorteilsOutside of the insulator part
2a2a
GFK-Rohr (glasfaserverstärkter Kunststoff), glasfaserverstärktes Epoxy-RohrGRP pipe (glass fiber reinforced plastic), glass fiber reinforced epoxy pipe
2b2 B
Aussenisolator, Beschirmung, Silikon-BeschirmungExternal insulator, shielding, silicone shielding
2c2c
Porzellanisolatorporcelain insulator
33
Stromleiter (auf Hochspannungspotential)Conductor (at high voltage potential)
3a3a
Mittelachsecentral axis
3b3b
Stromanschlusspower connection
3c3c
Stromanschlusspower connection
44
Flansch (geerdet), ErdflanschFlange (grounded), ground flange
4646
Kontaktierung zwischen Flansch und AbschirmelektrodeContact between flange and shielding electrode
55
Gehäuse von HochspannungsapparatHousing of high voltage apparatus
66
Abschirmelektrodeshield
6a6a
Abschirmelektrode, ErdungselektrodeShielding electrode, earthing electrode
6b6b
Abschirmelektrode, HochspannungselektrodeShielding electrode, high voltage electrode
77
Stark feldbelastete ZoneHeavily field-polluted zone
7a7a
Feldbelastungszone im ErdflanschbereichField load zone in Erdflanschbereich
7b7b
Feldbelastungszone im HochspannungsflanschbereichField loading zone in high voltage flange area
88th
HochspannungsflanschHochspannungsflansch
99
Feldsteuerndes Material, FGM, Varistormaterial, feldsteuernde BeschichtungField controlling material, FGM, varistor material, field controlling coating
9a9a
FGM im ErdflanschbereichFGM in the earth flange area
9b9b
FGM im HochspannungsflanschbereichFGM in high voltage flange area
9i9i
FGM auf Isolator-InnenflächeFGM on insulator inner surface
9o9o
FGM auf Isolator-AussenflächeFGM on insulator outer surface
9s9s
selbsttragendes feldsteuerndes Isolatorrohrself-supporting field-controlling insulator tube
aa
konventionelle Durchführung, nach 0,5 µsconventional implementation, after 0.5 μs
bb
konventionelle Durchführung, nach 2,2 µsconventional implementation, after 2.2 μs
cc
konventionelle Durchführung, nach 20 µsconventional implementation, after 20 μs
DD
FGM-Durchführung, nach 0,5 µsFGM implementation, after 0.5 μs
Ee
FGM-Durchführung, nach 1,0 µsFGM implementation, after 1.0 μs
FF
FGM-Durchführung, nach 5 µsFGM implementation, after 5 μs
GG
FGM-Durchführung, nach 20 µsFGM implementation, after 20 μs
d, d(l)d, d (l)
Dicke der feldsteuernden Beschichtung oder des feldsteuernden RohrsThickness of field controlling coating or field controlling tube
di, do d i , d o
Dicke der feldsteuernden Innenschicht oder AussenschichtThickness of field controlling inner layer or outer layer
ll
Länge der feldsteuernden Beschichtung oder des feldsteuernden RohrsLength of field-controlling coating or field-controlling tube
l1, l2 l 1 , l 2
Länge der feldsteuernden Beschichtung im Erdflanschbereich oder HochspannungsflanschbereichLength of the field-controlling coating in the Erdflanschbereich or Hochspannungsflanschbereich
E(x)Ex)
elektrische Feldverteilung entlang Hochspannungsdurchführungelectric field distribution along high voltage feedthrough
Eo E o
maximales elektrisches Feld, Normierungsfeldmaximum electric field, normalization field
xx
Ortskoordinate entlang Längserstreckung der FGMDurchführungLocation coordinate along the longitudinal extent of the FGM implementation

Claims (13)

  1. Dielectric bushing (1'), more particularly high-voltage bushing (1') for an electrical high-voltage apparatus, comprising an insulator part (2; 2a, 2b; 2c) having a first mounting flange (4) and a second mounting flange (8) for mounting the bushing (1'), characterized in that
    a) a screening electrode (6; 6a, 6b) required for a desired voltage level is omitted within the bushing (1') in a field loading zone (7; 7a, 7b) in the region of the first mounting flange (4; 8),
    b) instead, for the purpose of field control in the field loading zone (7; 7a, 7b), a non-linearly electrical and/or dielectric field control element (9; 9a, 9b; 9i, 9o; 9s) is present on the insulator part (2; 2a, 2b; 2c) in the region of the first mounting flange (4), and
    c) the field control element (9; 9a, 9b; 9i, 9o; 9s) is in electrical contact with the first mounting flange (4).
  2. Bushing (1') according to Claim 1, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) is designed with regard to its non-linearly electrical and/or dielectric properties, its geometrical shape and its arrangement on the insulator part (2; 2a, 2b; 2c) for the dielectric load-relieving of the field loading zone (7; 7a, 7b) without a screening electrode (6; 6a, 6b) for all operating states, more particularly for surge voltages.
  3. Bushing (1') according to either of the preceding claims, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) has:
    a) non-linearly electrical varistor properties and more particularly a critical field strength which characterizes a varistor switching behaviour of the field control element (9; 9a, 9b; 9i, 9o; 9s), and/or
    b) a high dielectric constant ε, more particularly ε > 30, preferably ε > 40 and particularly preferably ε > 50.
  4. Bushing (1') according to any of the preceding claims, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) extends over a predeterminable length (l; l1, l2) along a longitudinal extent (x) of the insulator part (2; 2a, 2b; 2c) and has a predeterminable thickness (d) or thickness distribution (d(l)) as a function of the length (l; l1, l2).
  5. Bushing (1') according to Claim 3, feature a), and Claim 4, characterized in that the length (l; l1, l2) is chosen to be greater than or equal to a ratio of a maximum surge voltage to be tested to the critical electric field strength.
  6. Bushing (1') according to Claim 3, feature a), or Claim 4, dependent on Claim 3, feature a) , characterized in that the field control element (9; 9i, 9s), for DC applications, is present over the whole area on the insulator part (2; 2a, 2b; 2c) and continuously along a longitudinal extent (x) of the insulator part (2; 2a, 2b; 2c) and is in electrical contact both with the first mounting flange (4) and with the second mounting flange (8).
  7. Bushing (1') according to any of the preceding claims, characterized in that
    a) the first mounting flange (4) is an earth-side mounting flange (4) for mounting the bushing (1') on an earthed housing (5) of an electrical apparatus, and/or
    b) the second mounting flange (8) is a voltage-side mounting flange (8) for mounting the bushing (1') on a high-voltage part, and/or
    c) the insulator part (2; 2a, 2b; 2c) has in the interior an insulation space for a solid insulation material (20) or for an insulation liquid (20) or a gas space for an insulation gas (20).
  8. Bushing (1') according to Claim 7, feature a), and Claim 7, feature b), characterized in that
    a) a further field control element (9; 9b) is present, which has suitable non-linearly electrical and/or dielectric properties, more particularly those according to Claim 3, and is arranged in a field loading zone (7; 7a, 7b) in the region of the second mounting flange (8) over a predeterminable length (l; l2) and thickness (d, d(l2)) on the insulator part (2; 2a, 2b; 2c), and
    b) more particularly in that the further field control element (9; 9b) serves as a replacement for a screening electrode (6b) in the region of the second mounting flange (8).
  9. Bushing (1') according to Claim 8, characterized in that
    a) the further field control element (9; 9b) is in electrical contact with the second mounting flange (8; 4), and/or
    b) the further field control element (9; 9b) is separated from the field control element (9; 9a; 9i, 9o) in the region of the first mounting flange (4) by a field-control-material-free zone extending along the longitudinal extent of the insulator part (2; 2a, 2b).
  10. Bushing (1') according to any of the preceding claims, characterized in that
    a) the field control element (9; 9a, 9b; 9i, 9o; 9s) is present in a coating or solid configuration which is present on an inner side (21) and/or in an intermediate layer (22) in an integrated fashion between components (2a, 2b) of the insulator part (2; 2a, 2b) and/or on an outer side (23), more particularly there in disjoint horizontal strips (9o), of the insulator part (2; 2a, 2b; 2c), and/or
    b) the field control element (9; 9a, 9b; 9i, 9o; 9s) performs a mechanically supporting function, and more particularly in that the field control material (9; 9a, 9b; 9i, 9o; 9s) performs the exclusive mechanically self-supporting function in the insulator part (2; 2a, 2b; 2c).
  11. Bushing (1') according to any of the preceding claims, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) comprises a matrix, more particularly an epoxy, silicone, EPDM, thermoplastic, thermoplastic elastomer or glass, and the matrix is filled
    a) with microvaristor particles, more particularly doped ZnO particles, TiO2 particles or SnO2 particles, and/or
    b) with particles having a high dielectric constant, more particularly with BaTiO3 particles or TiO2 particles.
  12. Electrical high-voltage apparatus, more particularly disconnector, outdoor circuit-breaker, vacuum interrupter, dead tank breaker, current converter, voltage converter, transformer, power capacitor or cable end seal, characterized in that a dielectric bushing (1') according to any of the preceding claims is present.
  13. Electrical switchgear assembly, more particularly high- or medium-voltage switchgear assembly, characterized by an electrical high-voltage apparatus according to Claim 12.
EP04405151A 2004-03-15 2004-03-15 High voltage bushing with element for electric-field control Expired - Lifetime EP1577904B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT04405151T ATE546818T1 (en) 2004-03-15 2004-03-15 HIGH VOLTAGE FEEDBACK WITH FIELD CONTROL MATERIAL
EP04405151A EP1577904B1 (en) 2004-03-15 2004-03-15 High voltage bushing with element for electric-field control
US11/079,858 US7262367B2 (en) 2004-03-15 2005-03-15 High voltage bushing with field control material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04405151A EP1577904B1 (en) 2004-03-15 2004-03-15 High voltage bushing with element for electric-field control

Publications (2)

Publication Number Publication Date
EP1577904A1 EP1577904A1 (en) 2005-09-21
EP1577904B1 true EP1577904B1 (en) 2012-02-22

Family

ID=34833824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04405151A Expired - Lifetime EP1577904B1 (en) 2004-03-15 2004-03-15 High voltage bushing with element for electric-field control

Country Status (3)

Country Link
US (1) US7262367B2 (en)
EP (1) EP1577904B1 (en)
AT (1) ATE546818T1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199117A (en) * 2016-07-15 2016-12-07 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of divider auxiliary full skirt method for designing

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526713C2 (en) * 2003-07-11 2005-10-25 Abb Research Ltd Implementation and procedure for manufacturing the implementation
EP1736998A1 (en) * 2005-06-21 2006-12-27 Abb Research Ltd. Varistor field control tape
EP1811626B1 (en) * 2006-01-24 2016-04-13 Nexans Electric feedthrough
DE102006038221B4 (en) * 2006-08-03 2009-03-26 Siemens Ag Device for electrical shielding of a high voltage feedthrough
CN101506911B (en) * 2006-08-31 2011-04-06 Abb技术有限公司 High voltage bushing
CN101136270B (en) 2006-08-31 2013-03-20 Abb技术有限公司 High voltage bushing and its production method and high voltage apparatus
US20080157783A1 (en) * 2007-01-01 2008-07-03 Maxwell Technologies, Inc. Apparatus and method for monitoring high voltage capacitors
SE531321C2 (en) * 2007-07-05 2009-02-24 Abb Technology Ag High Voltage Cable Connection
DE102007033705B4 (en) * 2007-07-17 2009-03-05 Siemens Ag Converter arrangement of a metal-enclosed, gas-insulated switchgear and metal-enclosed, gas-insulated switchgear
EP2039496A1 (en) * 2007-09-20 2009-03-25 ABB Research Ltd. A method of producing a rubber product
EP2053616A1 (en) * 2007-10-26 2009-04-29 ABB Research Ltd. High-voltage outdoor bushing
US7807930B1 (en) * 2007-11-30 2010-10-05 The United States Of America As Represented By The Secretary Of The Navy High-voltage feed-through bushing with internal and external electric field grading elements
DE102008009333A1 (en) 2008-02-14 2009-08-20 Lapp Insulator Gmbh & Co. Kg Field-controlled composite insulator
EP2154700A1 (en) * 2008-08-14 2010-02-17 ABB Technology AG High voltage isolator with field control element
EP2276041B1 (en) * 2009-07-15 2013-09-25 ABB Research Ltd. A device for electric connection and an electric installation
CN101714446A (en) * 2009-09-10 2010-05-26 北京天威瑞恒高压套管有限公司 Glass fibre reinforced plastic capacitance multicore transformer bushing
CN105207130B (en) 2009-09-14 2018-11-23 阿雷沃国际公司 underground modular high-voltage direct current electric power transmission system
US8525526B2 (en) * 2009-11-13 2013-09-03 Hubbell Incorporated High voltage test terminal having a shock-absorbing insulator
EP2375423A1 (en) 2010-04-07 2011-10-12 ABB Research Ltd. Electrical bushing
EP2572422A2 (en) 2010-05-21 2013-03-27 ABB Research Ltd. A high voltage direct current cable termination apparatus
CA2799594C (en) 2010-05-21 2016-07-19 Abb Research Ltd A high voltage direct current cable termination apparatus
CA2799592C (en) 2010-05-21 2016-07-05 Abb Research Ltd A high voltage direct current cable termination apparatus
CN102906953B (en) 2010-05-21 2016-04-13 Abb研究有限公司 High-voltage direct-current cable terminal equipment
EP2431982B1 (en) * 2010-09-21 2014-11-26 ABB Technology AG Plugable feedthrough and high voltage assembly with such a feedthrough
DE102010043990A1 (en) * 2010-11-16 2012-05-16 Siemens Aktiengesellschaft Insulator arrangement and method for producing an insulator arrangement
DE102010043995A1 (en) * 2010-11-16 2012-05-16 Siemens Aktiengesellschaft Insulator arrangement and method for producing an insulator arrangement
EP2482290B1 (en) * 2011-01-28 2017-07-19 ABB Schweiz AG Temperature compensated bushing design
RU2457564C1 (en) * 2011-02-21 2012-07-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") High-voltage junction
US8704097B2 (en) * 2012-01-23 2014-04-22 General Electric Company High voltage bushing assembly
US8716601B2 (en) 2012-02-08 2014-05-06 General Electric Company Corona resistant high voltage bushing assembly
DE102012104137A1 (en) * 2012-05-11 2013-11-14 Maschinenfabrik Reinhausen Gmbh Field controlled composite insulator e.g. rod, has core, shielding sheath and field control layer that is applied by plasma coating to core, where dielectric properties are controlled by geometric structure of field-control layer
US9078346B2 (en) * 2013-03-11 2015-07-07 Varian Semiconductor Equipment Associates, Inc. Insulator protection
DE102013204706A1 (en) * 2013-03-18 2014-09-18 Siemens Aktiengesellschaft Resistance lining for a DC insulation system
DE102014004284B4 (en) * 2014-03-26 2019-11-14 Lapp Insulators Gmbh High-voltage bushing
CN103971861A (en) * 2014-05-21 2014-08-06 北京铁道工程机电技术研究所有限公司 Motor train roof composite insulator with interface breakdown prevention function
CN107427935B (en) * 2015-03-30 2019-04-19 三菱日立工具株式会社 Drill bit
EP3096334B1 (en) * 2015-05-22 2020-12-30 ABB Power Grids Switzerland AG Electrical bushing
DE102017212977A1 (en) * 2017-07-27 2019-01-31 Siemens Aktiengesellschaft Plug-in high-voltage bushing and electrical device with the plug-in high-voltage bushing
CN107800109A (en) * 2017-10-31 2018-03-13 清华大学 Using the cable socket of the prefabricated rubber voltage-controlled tube of nonlinear conductance
EP3591672B1 (en) 2018-07-02 2023-03-29 Hitachi Energy Switzerland AG Insulator with resistivity gradient
EP3667684B1 (en) * 2018-12-12 2024-08-21 Hitachi Energy Ltd Electrical bushing
CN113450948A (en) * 2021-07-19 2021-09-28 上海甲希科技有限公司 Insulating tubular bus and insulating manufacturing method and device of insulating tubular bus
DE102022206149A1 (en) * 2022-06-21 2023-12-21 Siemens Energy Global GmbH & Co. KG Bushing insulator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484051A (en) * 1919-04-10 1924-02-19 Ohio Brass Co Insulator
GB842039A (en) * 1957-04-06 1960-07-20 Asea Ab High voltage devices comprising a potential gradient equalizing coating
FR1378902A (en) * 1963-08-20 1964-11-20 Comp Generale Electricite A method of manufacturing an anchoring bar with high mechanical and electrical resistance and the bar thus obtained
US3318995A (en) 1966-04-25 1967-05-09 Westinghouse Electric Corp Cast electrical bushing construction having controlled and shielded shrinkage voids
FR2198231B1 (en) * 1972-09-04 1980-02-22 Ceraver
SE429907B (en) * 1978-09-13 1983-10-03 Asea Ab ELECTRIC HIGH-VOLTAGE THROUGH FOR A METAL COVER SHEET, PRESSURE GAS INSULATED SWITCH
US4905118A (en) * 1988-03-31 1990-02-27 Hubbell Incorporated Base mounted electrical assembly
US5214249A (en) * 1991-02-22 1993-05-25 Hubbell Incorporated Electrical assembly with end collars for coupling ends of a weathershed housing to the end fittings
SE9704824D0 (en) * 1997-12-22 1997-12-22 Asea Brown Boveri Fiber composite articles and method for making such composite articles
DE19844409C2 (en) 1998-09-28 2000-12-21 Hochspannungsgeraete Porz Gmbh High voltage implementation
DE19856123C2 (en) * 1998-12-04 2000-12-07 Siemens Ag Hollow insulator
GB0103255D0 (en) * 2001-02-09 2001-03-28 Tyco Electronics Raychem Gmbh Insulator arrangement
US6441310B1 (en) * 2001-03-30 2002-08-27 Hubbell Incorporated Moisture activated barrier for electrical assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199117A (en) * 2016-07-15 2016-12-07 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of divider auxiliary full skirt method for designing
CN106199117B (en) * 2016-07-15 2018-11-23 中国南方电网有限责任公司超高压输电公司检修试验中心 A kind of divider auxiliary full skirt design method

Also Published As

Publication number Publication date
ATE546818T1 (en) 2012-03-15
US7262367B2 (en) 2007-08-28
EP1577904A1 (en) 2005-09-21
US20050199418A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
EP1577904B1 (en) High voltage bushing with element for electric-field control
EP1254497B1 (en) Cable sealing end
EP3807920B1 (en) Vacuum interrupter and high-voltage switching assembly
EP2702597B1 (en) Surge arrestor
EP1569255B1 (en) Compact earthing switch for gas insulated substation
DE2934805C2 (en) Electrical high voltage bushing
EP2715743A1 (en) Electric component for a high-voltage system
DE19500849A1 (en) Electrical component
EP3472847A1 (en) Insulator arrangement for a high or medium voltage switchgear assembly
EP1603141B1 (en) Surge arrester with insulation by gas
DE68927533T2 (en) Disconnector for gas-insulated switchgear
WO2022069197A1 (en) Coated conductor in a high-voltage device and method for increasing the dielectric strength
WO2017012740A1 (en) Energy-related component, in particular vacuum interrupter
DE4007335A1 (en) Electrical insulator sepg. inner from grounded outer conductors - comprises plastic cpd. with inert filler and has embedded ring shaped regions with higher dielectric constant to modify field
DE2912844A1 (en) LIGHTNING PROTECTION DEVICE
EP3266085B1 (en) Field control element for end closures of cables for transmitting energy
EP1961026A1 (en) Electric switchgear, particularly high-voltage circuit-breaker, comprising a housing
DE102021207962A1 (en) Vacuum interrupter and arrangement with vacuum interrupters and method for shutting down vacuum interrupters
WO2023147967A1 (en) Controllable vacuum interrupter, and arrangement and method for controlling vacuum interrupters
WO2022129073A1 (en) Electric switching device for medium- and/or high-voltage uses
DE102021207963A1 (en) Vacuum interrupter for switching voltages
DD241809A1 (en) INSULATING HOUSING FOR A VACUUM CHAMBER
WO1994006135A1 (en) Current transformer
WO2001041273A1 (en) Bushing insulator and bushing-type current transformer for metal-encapsulated, air-insulated medium voltage switchgears
DE3906553A1 (en) Screening electrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060116

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 546818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013314

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013314

Country of ref document: DE

Effective date: 20121123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120522

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 546818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120315

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013314

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., 8050 ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004013314

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013314

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., 8050 ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013314

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., 8050 ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004013314

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013314

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004013314

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013314

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220321

Year of fee payment: 19

Ref country code: IT

Payment date: 20220322

Year of fee payment: 19

Ref country code: FR

Payment date: 20220322

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013314

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230316

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004013314

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230315