EP1577904B1 - High voltage bushing with element for electric-field control - Google Patents
High voltage bushing with element for electric-field control Download PDFInfo
- Publication number
- EP1577904B1 EP1577904B1 EP04405151A EP04405151A EP1577904B1 EP 1577904 B1 EP1577904 B1 EP 1577904B1 EP 04405151 A EP04405151 A EP 04405151A EP 04405151 A EP04405151 A EP 04405151A EP 1577904 B1 EP1577904 B1 EP 1577904B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- field control
- bushing
- control element
- field
- mounting flange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005684 electric field Effects 0.000 title claims description 8
- 239000012212 insulator Substances 0.000 claims abstract description 66
- 239000002245 particle Substances 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 9
- 239000004593 Epoxy Substances 0.000 claims abstract description 6
- 229920002943 EPDM rubber Polymers 0.000 claims abstract description 3
- 239000011521 glass Substances 0.000 claims abstract description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 claims abstract description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract 6
- 238000012216 screening Methods 0.000 claims abstract 4
- 239000000463 material Substances 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 22
- 238000011068 loading method Methods 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 2
- 229910002113 barium titanate Inorganic materials 0.000 claims 1
- 239000012774 insulation material Substances 0.000 claims 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 9
- 239000011787 zinc oxide Substances 0.000 abstract description 4
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical compound [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 abstract 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract 2
- 238000009434 installation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 15
- 229910052573 porcelain Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000004020 conductor Substances 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- -1 gaseous) Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/26—Lead-in insulators; Lead-through insulators
- H01B17/28—Capacitor type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/42—Means for obtaining improved distribution of voltage; Protection against arc discharges
Definitions
- the invention relates to the field of high or medium voltage technology, in particular electrical insulation and connection technology for grounded high voltage apparatus. It is based on a dielectric bushing and a high-voltage electrical apparatus according to the preamble of the independent claims.
- a high voltage insulator z As porcelain or composite material with a coating of field control material (FGM) disclosed.
- the field-controlling coating consists of varistor powder, z. Of doped zinc oxide (ZnO) embedded in a polymer matrix.
- the FGM coating serves to compare the field distribution on the insulator surface and is distributed so that part of the material is in electrical contact with both the ground electrode and the high voltage electrode. In this case, the FGM coating can only partially cover the insulator length and be concentrated in the field-loaded electrode regions.
- the FGM coating can be applied to the insulator surface, can be incorporated there in a shield or can be shielded by a weatherproof, electrically insulating protective layer to the outside.
- An equalization of the capacitive field load can be realized by alternating horizontal strips or bands of FGM coating and insulator material.
- the FGM coating may be applied in the form of a glaze or a paint, or mixed into a slurry or clay, applied to the porcelain insulator and fired there to a glaze or ceramic layer.
- the matrix for the FGM coating may be a polymer, an adhesive, a casting or a mastic or a gel.
- EP 1 042 756 discloses a glass fiber reinforced insulator tube which is impregnated on the inner surface and optionally also the outer surface with a resin which has a particulate filler with varistor properties, in particular zinc oxide.
- the GRP tube can be made by winding a fiberglass mesh which is impregnated with the varistor-filled resin at least on the outer layers.
- the insulator comprises an insulator body made of porcelain or composite material and a porcelain or silicone shield.
- the shield has a variable insulator screen density.
- Isolatorend Scheme For field relief in a Isolatorend Scheme turn the known shield electrode between the insulator body and conductor is present. It is now proposed to install an increased number of insulator screens in the heavily field-loaded area where the shielding electrode ends. Due to the increased insulator screen density, improved field relief is achieved in the end region of the shield electrode.
- the invention relates to a prior art, as shown in the US Pat. 3,318,995 is known.
- cast resin bushings are disclosed, which remain electrically reliable even with differential thermal expansion or shrinkage due to cavitation between metal and cast resin.
- regions with increased cracking tendency are electrically shielded by partially conductive or semiconductive field shielding layers.
- the layers are either arranged on the high-voltage inner conductor and electrically connected to this end; or they are arranged on shielding electrodes and electrically connected to these end, wherein the shielding electrodes in turn are electrically connected to the grounded housing of the connected apparatus.
- the field shielding layers create a field-free space between themselves and the inner conductor or themselves and the shielding electrode and effectively shield cavities in the casting resin.
- the object of the present invention is to provide an improved dielectric bushing and a high-voltage electrical apparatus and an electrical switchgear with such a procedure. This object is achieved according to the invention by the features of the independent claim.
- the invention consists in a dielectric bushing, in particular a high voltage feedthrough for a high voltage electrical apparatus, comprising an insulator part with a first mounting flange and a second mounting flange for mounting the bushing, wherein within the bushing in a field loading zone in the region of the first mounting flange one for a desired voltage level required Shield electrode is omitted and instead for the purpose of field control in the field loading zone, a non-linear electrical and / or dielectric field control element on the insulator part in the region of the first mounting flange is present and the field control element is in electrical contact with the first mounting flange.
- the bushings can therefore be built shorter.
- the E-field is no longer concentrated in the region of the shielding electrode during the entire pulse duration, but can propagate as a wave along the field control element and thereby degrade.
- the maximum field strengths are reduced.
- the field control material with respect to its non-linear electrical and / or dielectric properties, its geometric shape and its arrangement on the insulator part for dielectric relief of field loading zone without shielding electrode for all operating conditions, especially for surge voltages designed.
- the field control element can thus master even the most critical field loading conditions without shielding electrode or shielding electrodes.
- design criteria for geometrical design of the field control element are specified by which an advantageous field control can be achieved with little material.
- a minimum required length of the field control element can be determined along the longitudinal extent of the insulator part according to claim 5. It is thereby achieved that the field load propagates as a traveling wave along the field control element, in particular in the case of surge voltage, and thereby degrades to such an extent that no damaging field strengths can form on reaching the remote end of the field control material.
- Claim 6 indicates how can be built with the field control element DC feedthroughs in a simple manner.
- the embodiment according to claim 7 has the advantage that in particular the highest field loads in the region of the earth flange with the field control material can be controlled.
- the embodiments according to claim 8 and 9 have the advantage that both flange regions are protected by the field control materials independently of each other from flashovers or partial discharges.
- Claim 10 feature a) indicates various radial positions for the arrangement of the field control material on the insulator part.
- Claim 10 feature b) has the advantage that a conventional GRP pipe (glass fiber reinforced plastic) or a conventional porcelain insulator by a self-supporting FGM pipe (field control material tube) is replaceable.
- Claim 11 specifies advantageous material components for the field control element.
- Claims 12 and 13 relate to a high-voltage electrical apparatus and an electrical switchgear comprising an inventive implementation with the above-mentioned advantages.
- Fig. 1a shows a conventional gas-insulated dielectric bushing 1, in particular a high voltage bushing 1 for a high voltage electrical apparatus.
- the bushing 1 comprises an insulator part 2; 2a, 2b with a first ground-side mounting flange 4 for mounting the bushing 1 on a grounded housing 5 of an electrical apparatus (not shown) and a second voltage-side mounting flange 8 for mounting the bushing 1 to a high voltage part (not shown).
- the insulator part 2; 2a, 2b has a gas space 20 for an insulating gas 20 in the interior.
- the gas space 20 contains a dielectrically insulating gas 20, e.g. As air, compressed air, nitrogen, SF 6 or similar gas.
- the gas-insulated bushing 1 is thus hollow, typically hollow cylindrical, with an axis 3a, for receiving an electrical part 3 or at least one electrical conductor 3 in the gas space 20.
- the bushing 1 is usually used to connect the encapsulated electrical apparatus to ground potential 5 at High or medium voltage network.
- an internal shielding electrode 6, 6a is necessarily present in order to achieve field relief in the field-loaded zone 7, 7a at the lower ground flange 4 and to reduce or avoid partial discharges and flashovers.
- the shielding electrode 6, 6a is typically in electrical contact 46 with the ground flange 4. It protrudes into the gas space 20 and tapers generally conically upwards.
- Fig. 1b shows an example of a solid-state implementation 1 according to the prior art.
- the insulator part 2, 2b is designed as a resin body 2 filled in its entirety with an optional shield 2b.
- the insulator part 2, 2b thus has an insulation space for a solid insulating material 20 in the interior.
- 3b and 3c denote the power connections.
- the insulator part 2, 2b surrounds the current conductor 3.
- a shielding electrode 6, 6a in the field loading zone 7, 7a on the earth flange 4 is present and is electrically conductively connected thereto via a contact 46.
- Fig. 2a-2d and Fig. 3a-3b show exemplary embodiments of a gas-insulated or solid-insulated or otherwise insulated dielectric bushing 1 ', in accordance with the invention at least one shielding electrode 6; 6a, 6b has been omitted without sacrificing dielectric strength or reliability.
- the shielding electrode 6; 6a, 6b is namely for the purpose of field control in the field loading zone 7; 7a, 7b a nonlinear electrical and / or dielectric field control element 9; 9a, 9b; 9i, 9o; 9s on the insulator part 2; 2a, 2b; 2c in the region of the first mounting flange 4 available.
- the field control element 9; 9a, 9b; 9i, 9o; 9s is used instead of the earlier in the insulator part 2; 2a, 2b; 2c arranged shielding electrode 6; 6a, 6b for the dielectric discharge of the field loading zone 7; 7a, 7b.
- the field control element 9; 9a, 9b; 9i, 9o; 9s is used instead of the earlier in the insulator part 2; 2a, 2b; 2c arranged shielding electrode 6; 6a, 6b for the dielectric discharge of the field loading zone 7; 7a, 7b.
- the field control element 9 is designed for the purpose of relieving the field loading zone 7 in such a way that the flange region 7 is stress-relieved.
- the field control element 9 in an intermediate layer 22 between the GRP pipe (glass fiber reinforced plastic and in particular epoxy tube) 2a and the silicone shield 2b in the form of a cylinder jacket-shaped coating 9 is arranged.
- the field control element 9 may be replaced by any known manufacturing or processing process, e.g. B. casting, spraying, winding, extrusion o. ⁇ ., Be applied to the outside of the GRP pipe 2 a.
- the field control element 9; 9a, 9b; 9i, 9o; 9s on: nonlinear electrical varistor characteristics and in particular a critical field strength, the varistor switching behavior of the field control element 9; 9a, 9b; 9i, 9o; 9s characterized; and / or a high dielectric constant ⁇ , in particular ⁇ > 30, preferably ⁇ > 40 and particularly preferably ⁇ > 50.
- the field control element 9 is in electrical contact with the first mounting flange 4 and extends over a predeterminable length l along a longitudinal extension x of the insulator part 2; 2a, 2b. It has a predeterminable thickness d or thickness distribution d (l) as a function of the length l. Preferably, its length l is greater than or equal to a ratio of a maximum test voltage to be tested, in particular a lightning impulse, to the critical electric field strength. This design consideration applies with advantage for all embodiments where the shielding electrode 6a in the Erdflansch Scheme 7a by the field control element 9; 9a; 9i, 9o is replaced.
- Fig. 2b is the field control material 9, 9i disposed on an inner side 21 of the GRP pipe 2a and can additionally help to reduce surface charges there.
- the length l 1 is chosen here by way of example so that the field control layer 9, 9i is not in electrical contact with the counter flange 8.
- Fig. 2c can in addition to the field control 9; 9a another field control element 9; 9b, which likewise has suitable nonlinear electrical and / or dielectric properties, in particular those as previously described for the field control element 9; 9a, and in addition in a field loading zone 7, 7b in the region of the second mounting flange 8 over a predetermined length l; l 2 and thickness d or d (l 2 ) on the insulator part 2; 2a, 2b is present.
- the further field control element 9 is used; 9b as a replacement for a shielding electrode 6b in the region of the second, here the upper, mounting flange 8.
- the field control element 9; 9a including the further field control element 9; 9b is selected in the intermediate layer 22.
- the further field control element 9; 9b in electrical contact with the second mounting flange 8 and / or is the further field control element 9; 9b by a field control material-free zone extending along the longitudinal extent of the insulator part 2; 2a, 2b extends from the field control element 9; 9a separated in the region of the first mounting flange 4.
- a first field control element 9; 9o in the intermediate layer 22 between the GRP pipe 2a and shield 2b and a second field control element 9, 9i on the inner side 21 of the GRP pipe 2a in the Erdflansch Scheme 7a be present.
- the first integrated and the second internal field control element 9o, 9i can be made of the same or other field control material and in particular varistor material.
- the associated thicknesses d o , d i and lengths l o , l i can be designed individually. By way of example, d i > d o and l i ⁇ l o are selected.
- Fig. 3a and Fig. 3b show an insulator part 2, 2c of a porcelain hollow insulator 2c, which is equipped on the inner side 21 with the field control layer 9, 9i.
- a field control material coating 9o, z. B. in disjoint horizontal Strip 9o preferably between insulator screens 2c and in particular in the lower Erdflansch Scheme 7a, be present.
- the field control material 9; 9a, 9b; 9i, 9o be present in a coating or solid shape on an inner side 21 and / or integrated in an intermediate layer 22 between components 2a, 2b of the insulator part 2; 2a, 2b and / or on an outer side 23 of the insulator part 2; 2a, 2b; 2c is arranged.
- Fig. 4 takes over the field control material 9; 9s a mechanically supporting function.
- the field control material 9; 9s in the insulator part 2; 2b the exclusive mechanical self-supporting function, so that a conventional self-supporting plastic pipe 2a can be omitted.
- Such a field control material insulator tube 2; 2b including 9s is particularly simple in construction and very thin in diameter.
- Fig. 3a and Fig. 4 on the insulator part 2; 2a, 2b; 2c over the entire surface and along a longitudinal extension x of the insulator part 2; 2a, 2b; 2c continuously and both with the first mounting flange 4; 8 as well as with the second mounting flange 8; 4 are in electrical contact.
- a preferred choice of material for the field control materials 9; 9a, 9b; 9i, 9o; 9s comprises a matrix filled with microvaristor particles and / or high dielectric constant particles.
- Suitable microvaristor particles are, for example, doped ZnO particles, TiO 2 particles or SnO 2 particles. High dielectric constant have z.
- the matrix is chosen application-specific and can, for. Example, an epoxy, silicone, EPDM, thermoplastic, thermoplastic elastomer or glass.
- the filling of the matrix with microvaristor particles may be, for example, between 20% by volume and 60% by volume.
- Fig. 5 12 shows calculations of the E field distribution E (x) normalized to a maximum E field E 0 as a function of the longitudinal coordinate x of the insulator part 2 and the time represented by successive snapshots a, b, c for a conventional feedthrough 1 with shielding electrode 6 according to Fig. 1 and D, E, F, G for an inventive implementation 1 '.
- the calculations were made for a SF 6 170 kV bushing with GRP pipe 2a and silicone shield 2b according to conventional structure 1 or inventive construction 1 '.
- Fig. 5 12 shows calculations of the E field distribution E (x) normalized to a maximum E field E 0 as a function of the longitudinal coordinate x of the insulator part 2 and the time represented by successive snapshots a, b, c for a conventional feedthrough 1 with shielding electrode 6 according to Fig. 1 and D, E, F, G for an inventive implementation 1 '.
- the calculations were made for a SF 6 170 kV bushing with GRP
- the electric field strength E (x) at the silicon - air interface is shown during or shortly after the application of a lightning impulse with time delays of 0.5 ⁇ s / 2.2 ⁇ s / 20 ⁇ s for the curves a, b, c and 0.5 ⁇ s / 1.0 ⁇ s / 5 ⁇ s / 20 ⁇ s for the curves D, E, F, G. It can be clearly seen that the new design of the bushing 1 'avoids the E-field peaks and at any time produces a more homogeneous electric field. Field distribution is achieved. In addition, the areas of increased field strength are no longer stationary, which has an advantageous effect on the dielectric behavior of the bushing 1 '. With the help of the field calculations and the nonlinear electrical and / or dielectric properties of the field control element 9; 9a, 9b; 9i, 9o; 9s, the field control design of the implementation 1 'can be optimized.
- Fig. 6 shows an insufficient design, wherein the field control element 9; 9a, 9b; 9i, 9o; 9s has too high electrical conductivity or the length l; l 1 , l 2 is too short.
- the E-field propagates along the field control layer 9; 9a, 9b; 9i, 9o; 9s, but is not degraded, so that at the end of the field control layer 9; 9a, 9b; 9i, 9o; 9s nevertheless again a field exaggeration occurs, the partial discharges, rollovers or punches.
- too low electrical conductivity of the field control material 9; 9a, 9b; 9i, 9o; 9s the E-field can not be effectively controlled or controlled.
- the simple but effective rule can be stated that the field control element length l; l 1 , l 2 is greater than or equal to choose a ratio of a surge voltage to the critical electric field strength, the varistor switching behavior of the field control element 9; 9a, 9b; 9i, 9o; 9s characterized.
- a high-voltage electrical apparatus in particular a disconnector, outdoor circuit breaker, vacuum switch, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination or in an electrical switchgear for high - or medium voltage.
- the invention also relates to a high-voltage electrical apparatus, in particular a disconnector, outdoor circuit breaker, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination, in which a dielectric feedthrough 1 'is present as described above.
- an electrical switchgear in particular a high or medium voltage switchgear comprising such a high voltage electrical apparatus claimed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Insulators (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
Die Erfindung bezieht sich auf das Gebiet der Hoch- oder Mittelspannungstechnik, insbesondere auf elektrische Isolations- und Anschlusstechnik für geerdete Hochspannungsapparate. Sie geht aus von einer dielektrischen Durchführung und einem elektrischen Hochspannungsapparate gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to the field of high or medium voltage technology, in particular electrical insulation and connection technology for grounded high voltage apparatus. It is based on a dielectric bushing and a high-voltage electrical apparatus according to the preamble of the independent claims.
In der
Bei Porzellanisolatoren kann die FGM-Beschichtung in Form einer Glasur oder eines Farbanstrichs aufgebracht oder in einen Brei oder in Ton gemischt, auf den Porzellanisolator aufgebracht und dort zu einer Glasur oder einer Keramikschicht gebrannt werden. Alternativ kann die Matrix für die FGM-Beschichtung ein Polymer, ein Klebstoff, eine Gussmasse oder ein Mastix oder ein Gel sein.For porcelain insulators, the FGM coating may be applied in the form of a glaze or a paint, or mixed into a slurry or clay, applied to the porcelain insulator and fired there to a glaze or ceramic layer. Alternatively, the matrix for the FGM coating may be a polymer, an adhesive, a casting or a mastic or a gel.
In der
Im Buch "
In der Broschüre von ABB Power Technology Products AB, "SF6-air bushings, type GGA", Technical Guide, 1996-03-30 werden dielektrische Durchführungen offenbart, die mit internen Abschirmelektroden am Erdflansch und für höhere Spannungsniveaus zusätzlich auch am spannungsseitigen Flansch ausgerüstet sind.The ABB Power Technology Products AB brochure, "SF 6 -air bushings, type GGA", Technical Guide, 1996-03-30, discloses dielectric feedthroughs equipped with internal shielding electrodes on the ground flange and, for higher voltage levels, also on the voltage-side flange are.
In der
Die Erfindung nimmt auf einen Stand der Technik Bezug, wie er aus dem
Aufgabe der vorliegenden Erfindung ist es, eine verbesserte dielektrische Durchführung sowie einen elektrischen Hochspannungsapparat und eine elektrische Schaltanlage mit einer solchen Durchführung anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale des unabhängigen Anspruchs gelöst.The object of the present invention is to provide an improved dielectric bushing and a high-voltage electrical apparatus and an electrical switchgear with such a procedure. This object is achieved according to the invention by the features of the independent claim.
Die Erfindung besteht in einer dielektrischen Durchführung, insbesondere einer Hochspannungsdurchführung für einen elektrischen Hochspannungsapparat, umfassend einen Isolatorteil mit einem ersten Montageflansch und einem zweiten Montageflansch zur Montage der Durchführung, wobei innerhalb der Durchführung in einer Feldbelastungszone im Bereich des ersten Montageflansches eine für ein gewünschtes Spannungsniveau erforderliche Abschirmelektrode weggelassen ist und stattdessen zum Zwecke der Feldsteuerung in der Feldbelastungszone ein nichtlinear elektrisches und/oder dielektrisches Feldsteuerelement am Isolatorteil im Bereich des ersten Montageflansches vorhanden ist und das Feldsteuerelement in elektrischem Kontakt mit dem ersten Montageflansch steht.The invention consists in a dielectric bushing, in particular a high voltage feedthrough for a high voltage electrical apparatus, comprising an insulator part with a first mounting flange and a second mounting flange for mounting the bushing, wherein within the bushing in a field loading zone in the region of the first mounting flange one for a desired voltage level required Shield electrode is omitted and instead for the purpose of field control in the field loading zone, a non-linear electrical and / or dielectric field control element on the insulator part in the region of the first mounting flange is present and the field control element is in electrical contact with the first mounting flange.
Durch die Erfindung kann also eine nach herkömmlichem technischen Verständnis für ein vorgebbares Spannungsniveau notwendig vorhandene Abschirmelektrode weggelassen werden. Dadurch werden vielfältige Vorteil erreicht. Durch Weglassen der bisher notwendig vorhandenen inneren Abschirmelektrode können dielektrische Durchführungen dünner, d. h. mit reduziertem Durchmesser gebaut werden. Die Grenzspannung, ab welcher eine konische Verbreiterung zum Erdflansch hin wirtschaftlicher ist, kann zu höheren Spannungsniveaus verschoben werden. Zylindrische Durchführungen sind günstiger herzustellen als konische. Die Gefahr elektrischer Überschläge zwischen benachbarten Durchführungen ist reduziert und benachbarte Phasen können räumlicher näher zueinander oder zur Erde angeordnet werden. Schliesslich wird durch die erfindungsgemässe Feldentlastung durch Feldsteuermaterial im Flanschbereich eine bessere Feldsteuerung erreicht als durch die herkömmlich verwendete Abschirmelektrode. Die Durchführungen können deshalb auch kürzer gebaut werden. Insbesondere bei Pulsbelastung wird das E-Feld nämlich nicht mehr im Bereich der Abschirmelektrode während der ganzen Pulsdauer konzentriert, sondern kann sich als Welle entlang dem Feldsteuerelement ausbreiten und dabei abbauen. Zudem sind die maximalen Feldstärken reduziert.By means of the invention, therefore, it is possible to omit a shielding electrode which is necessary according to conventional technical understanding for a specifiable voltage level. Thereby many advantages are achieved. By omitting the previously necessary existing inner shield electrode dielectric bushings can be thinner, ie built with a reduced diameter. The limit stress, from which a conical widening towards the earth flange is more economical, can be shifted to higher voltage levels. Cylindrical feedthroughs are cheaper to produce than conical ones. The risk of electrical flashovers between adjacent feedthroughs is reduced and adjacent phases may be placed closer to each other or to ground. Finally, better field control is achieved by the inventive field relief by field control material in the flange area than by the conventionally used shielding electrode. The bushings can therefore be built shorter. In particular, in the case of pulse loading, the E-field is no longer concentrated in the region of the shielding electrode during the entire pulse duration, but can propagate as a wave along the field control element and thereby degrade. In addition, the maximum field strengths are reduced.
In einem ersten Ausführungsbeispiel ist das Feldsteuermaterial hinsichtlich seiner nichtlinear elektrischen und/oder dielektrischen Eigenschaften, seiner geometrischen Gestalt und seiner Anordnung am Isolatorteil zur dielektrischen Entlastung der Feldbelastungszone ohne Abschirmelektrode für alle Betriebszustände, insbesondere für Stossspannungen, ausgelegt. Das Feldsteuerelement kann somit auch die kritischsten Feldbelastungszustände ohne Abschirmelektrode oder Abschirmelektroden meistern.In a first embodiment, the field control material with respect to its non-linear electrical and / or dielectric properties, its geometric shape and its arrangement on the insulator part for dielectric relief of field loading zone without shielding electrode for all operating conditions, especially for surge voltages designed. The field control element can thus master even the most critical field loading conditions without shielding electrode or shielding electrodes.
In Anspruch 3 werden Designkriterien zur elektrischen Auslegung des Feldsteuermaterials angegeben, durch die eine vorteilhafte Feldsteuerung realisierbar ist.In
In Anspruch 4 und 5 werden Designkriterien zur geometrischen Auslegung des Feldsteuerelements angegeben, durch die mit wenig Materialaufwand eine vorteilhafte Feldsteuerung erreichbar ist. Insbesondere kann eine minimal erforderliche Länge des Feldsteuerelements entlang der Längsausdehnung des Isolatorteils gemäss Anspruch 5 festgelegt werden. Dadurch wird erreicht, dass sich die Feldbelastung insbesondere bei Stossspannung als Wanderwelle entlang dem Feldsteuerelement ausbreitet und dabei soweit abbaut, dass sich bei Erreichen des entfernten Endes des Feldsteuermaterials keine schädlichen Feldstärken mehr ausbilden können.In
Anspruch 6 gibt an, wie mit dem Feldsteuerelement auf einfache Weise Gleichstrom-Durchführungen gebaut werden können.Claim 6 indicates how can be built with the field control element DC feedthroughs in a simple manner.
Das Ausführungsbeispiel gemäss Anspruch 7 hat den Vorteil, dass insbesondere die höchsten Feldbelastungen im Bereich des Erdflansches mit dem Feldsteuermaterial beherrschbar sind.The embodiment according to
Die Ausführungsbeispiele gemäss Anspruch 8 und 9 haben den Vorteil, dass beide Flanschregionen durch die Feldsteuermaterialien unabhängig voneinander vor Überschlägen oder Teilentladungen geschützt sind.The embodiments according to
Anspruch 10 Merkmal a) gibt verschiedene radiale Positionen zur Anordnung des Feldsteuermaterials am Isolatorteil an. Anspruch 10 Merkmal b) hat den Vorteil, dass ein herkömmliches GFK-Rohr (glasfaserverstärkter Kunststoff) oder ein herkömmlicher Porzellanisolator durch ein selbsttragendes FGM-Rohr (Feldsteuermaterial-Rohr) ersetzbar ist.Claim 10 feature a) indicates various radial positions for the arrangement of the field control material on the insulator part. Claim 10 feature b) has the advantage that a conventional GRP pipe (glass fiber reinforced plastic) or a conventional porcelain insulator by a self-supporting FGM pipe (field control material tube) is replaceable.
Anspruch 11 gibt vorteilhafte Materialkomponenten für das Feldsteuerelement an.
Ansprüche 12 und 13 betreffen einen elektrischen Hochspannungsapparat und eine elektrische Schaltanlage umfassend eine erfindungsgemässe Durchführung mit den oben genannten Vorteilen.
Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen sowie aus der nun folgenden Beschreibung und den Figuren.Further embodiments, advantages and applications of the invention will become apparent from the dependent claims and from the following description and the figures.
- Fig. 1a, 1bFig. 1a, 1b
- zeigen im Querschnitt konventionelle Hochspannungsdurchführungen gemäss Stand der Technik;show in cross-section conventional high-voltage bushings according to the prior art;
- Fig. 2a-2dFig. 2a-2d
- zeigen im Querschnitt Ausführungsformen einer FGM-Durchführung für ein GFK-Rohr mit Silikonbeschirmung undshow in cross-section embodiments of a FGM passage for a GRP tube with silicone shielding and
- Fig. 2aFig. 2a
- einer durchgehenden FGM-Beschichtunga continuous FGM coating
- Fig. 2bFig. 2b
- einer erdseitigen FGM-Beschichtungan earth-side FGM coating
- Fig. 2cFig. 2c
- je einer unabhängigen erdseitigen und hochspannungsseitigen FGM-Beschichtung undeach one independent earth-side and high-voltage side FGM coating and
- Fig. 2dFig. 2d
- einer innenseitigen und aussenseitigen FGMBeschichtung;an inside and outside FGM coating;
- Fig. 3a-3bFig. 3a-3b
- zeigen im Querschnitt und in Draufsicht Ausführungsformen einer FGM-Durchführung für einen Porzellanisolator mit innenseitiger und optional aussenseitiger FGM-Beschichtung;show, in cross section and in plan view, embodiments of an FGM feedthrough for a porcelain insulator with inside and optionally outside FGM coating;
- Fig. 4Fig. 4
- zeigt im Querschnitt eine Ausführungsform für ein selbsttragendes Feldsteuerelement mit einer Silikonbeschirmung;shows in cross section an embodiment of a self-supporting field control element with a silicone shielding;
- Fig. 5Fig. 5
- zeigt für Blitzstosstests berechnete elektrische Oberflächen-Feldverteilungen E(x) als Funktion der Ortskoordinate x entlang der Durchführung und als Funktion der Zeit für konventionelle Durchführungen (a, b, c) und für eine erfindungsgemässe FGM-Durchführung (D, E, F, G); undshows electrical surface field distributions E (x) calculated as a function of the location coordinate x along the feedthrough and as a function of time for conventional feedthroughs (a, b, c) and for an inventive FGM feedthrough (D, E, F, G ); and
- Fig. 6Fig. 6
- zeigt eine unvorteilhafte Feldverteilung E(x) bei zu kurzer Länge oder zu grosser Leitfähigkeit der FGM-Beschichtung.shows an unfavorable field distribution E (x) if the length or the conductivity of the FGM coating is too short.
In den Figuren sind gleiche Teile mit gleichen Bezugszeichen versehen.In the figures, like parts are given the same reference numerals.
Gemäss
Bevorzugt weist das Feldsteuerelement 9; 9a, 9b; 9i, 9o; 9s auf: nichtlinear elektrische Varistoreigenschaften und insbesondere eine kritische Feldstärke, die ein Varistor-Schaltverhalten des Feldsteuerelements 9; 9a, 9b; 9i, 9o; 9s charakterisiert; und/oder eine hohe Dielektrizitätskonstante ε, insbesondere ε>30, bevorzugt ε>40 und besonders bevorzugt ε>50.Preferably, the
Mit Vorteil steht das Feldsteuerelement 9 in elektrischem Kontakt mit dem ersten Montageflansch 4 und erstreckt sich über eine vorgebbare Länge l entlang einer Längserstreckung x des Isolatorteils 2; 2a, 2b. Es weist eine vorgebbare Dicke d oder Dickenverteilung d(l) als Funktion der Länge l auf. Bevorzugt ist seine Länge l grösser oder gleich einem Verhältnis einer maximalen zu prüfenden Stossspannung, insbesondere einer Blitzstossspannung, zu der kritischen elektrischen Feldstärke. Diese Designüberlegung gilt mit Vorteil für alle Ausführungsbeispiele, wo die Abschirmelektrode 6a im Erdflanschbereich 7a durch das Feldsteuerelement 9; 9a; 9i, 9o ersetzt ist.Advantageously, the
Gemäss
Gemäss
Gemäss
Gemäss
Für Gleichstromanwendungen soll das Feldsteuerelement 9; 9i, 9s gemäss
Eine bevorzugte Materialwahl für die Feldsteuermaterialien 9; 9a, 9b; 9i, 9o; 9s umfasst eine Matrix, die mit Mikrovaristorpartikeln und/oder Partikeln hoher Dielektrizitätskonstante gefüllt ist. Als Mikrovaristorpartikel kommen beispielsweise dotierte ZnO-Partikel, TiO2-Partikel oder SnO2-Partikel in Frage. Hohe Dielektrizitätskonstante weisen z. B. BaTiO3-Partikel oder TiO2-Partikel auf. Im Falle von ZnO-Mikrovaristorpartikeln werden diese typischerweise in einem Temperaturbereich von 800 °C bis 1200 °C gesintert. Nach einem Aufbrechen und gegebenenfalls Sieben des Sinterprodukts weisen die Mikrovaristorpartikel eine typische Teilchengrösse von kleiner als 125 µm auf. Die Matrix wird anwendungsspezifisch gewählt und kann z. B. ein Epoxy, Silikon, EPDM, Thermoplast, thermoplastisches Elastomer oder Glas umfassen. Die Befüllung der Matrix mit Mikrovaristorpartikeln kann beispielsweise zwischen 20 Volumen% und 60 Volumen% betragen.A preferred choice of material for the
Verwendungen der erfindungsgemässen dielektrischen Durchführung 1' betreffen u.a. den Einsatz als Durchführung 1' in einem elektrischen Hochspannungsapparat, insbesondere einem Trenner, Freiluft-Leistungsschalter, Vakuumschalter, Dead Tank Breaker, Stromwandler, Spannungswandler, Transformator, Leistungskondensator oder Kabelendverschluss oder in einer elektrischen Schaltanlage für Hoch- oder Mittelspannung. Gegenstand der Erfindung ist auch ein elektrischer Hochspannungsapparat, insbesondere ein Trenner, Freiluft-Leistungsschalter, Dead Tank Breaker, Stromwandler, Spannungswandler, Transformator, Leistungskondensator oder Kabelendverschluss, bei dem eine dielektrische Durchführung 1' wie zuvor beschrieben vorhanden ist. Ebenso wird eine elektrische Schaltanlage, insbesondere eine Hoch- oder Mittelspannungsschaltanlage, umfassend einen solchen elektrischen Hochspannungsapparat beansprucht.Uses of the inventive dielectric bushing 1 'relate inter alia to the use as a bushing 1' in a high-voltage electrical apparatus, in particular a disconnector, outdoor circuit breaker, vacuum switch, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination or in an electrical switchgear for high - or medium voltage. The invention also relates to a high-voltage electrical apparatus, in particular a disconnector, outdoor circuit breaker, dead tank breaker, current transformer, voltage transformer, transformer, power capacitor or cable termination, in which a dielectric feedthrough 1 'is present as described above. Likewise, an electrical switchgear, in particular a high or medium voltage switchgear comprising such a high voltage electrical apparatus claimed.
- 11
- Konventionelle HochspannungsdurchführungConventional high voltage feedthrough
- 1'1'
- FGM-HochspannungsdurchführungFGM-high-voltage bushing
- 22
- Selbsttragender IsolatorSelf-supporting insulator
- 2020
- Isolation (fest, flüssig, gelartig, gasförmig), Epoxy, Schaumstoff, Öl, Luft, SF6 Isolation (solid, liquid, gel, gaseous), epoxy, foam, oil, air, SF 6
- 2121
- Innenseite des IsolatorteilsInside of the insulator part
- 2222
- Zwischenschicht des IsolatorteilsInterlayer of the insulator part
- 2323
- Aussenseite des IsolatorteilsOutside of the insulator part
- 2a2a
- GFK-Rohr (glasfaserverstärkter Kunststoff), glasfaserverstärktes Epoxy-RohrGRP pipe (glass fiber reinforced plastic), glass fiber reinforced epoxy pipe
- 2b2 B
- Aussenisolator, Beschirmung, Silikon-BeschirmungExternal insulator, shielding, silicone shielding
- 2c2c
- Porzellanisolatorporcelain insulator
- 33
- Stromleiter (auf Hochspannungspotential)Conductor (at high voltage potential)
- 3a3a
- Mittelachsecentral axis
- 3b3b
- Stromanschlusspower connection
- 3c3c
- Stromanschlusspower connection
- 44
- Flansch (geerdet), ErdflanschFlange (grounded), ground flange
- 4646
- Kontaktierung zwischen Flansch und AbschirmelektrodeContact between flange and shielding electrode
- 55
- Gehäuse von HochspannungsapparatHousing of high voltage apparatus
- 66
- Abschirmelektrodeshield
- 6a6a
- Abschirmelektrode, ErdungselektrodeShielding electrode, earthing electrode
- 6b6b
- Abschirmelektrode, HochspannungselektrodeShielding electrode, high voltage electrode
- 77
- Stark feldbelastete ZoneHeavily field-polluted zone
- 7a7a
- Feldbelastungszone im ErdflanschbereichField load zone in Erdflanschbereich
- 7b7b
- Feldbelastungszone im HochspannungsflanschbereichField loading zone in high voltage flange area
- 88th
- HochspannungsflanschHochspannungsflansch
- 99
- Feldsteuerndes Material, FGM, Varistormaterial, feldsteuernde BeschichtungField controlling material, FGM, varistor material, field controlling coating
- 9a9a
- FGM im ErdflanschbereichFGM in the earth flange area
- 9b9b
- FGM im HochspannungsflanschbereichFGM in high voltage flange area
- 9i9i
- FGM auf Isolator-InnenflächeFGM on insulator inner surface
- 9o9o
- FGM auf Isolator-AussenflächeFGM on insulator outer surface
- 9s9s
- selbsttragendes feldsteuerndes Isolatorrohrself-supporting field-controlling insulator tube
- aa
- konventionelle Durchführung, nach 0,5 µsconventional implementation, after 0.5 μs
- bb
- konventionelle Durchführung, nach 2,2 µsconventional implementation, after 2.2 μs
- cc
- konventionelle Durchführung, nach 20 µsconventional implementation, after 20 μs
- DD
- FGM-Durchführung, nach 0,5 µsFGM implementation, after 0.5 μs
- Ee
- FGM-Durchführung, nach 1,0 µsFGM implementation, after 1.0 μs
- FF
- FGM-Durchführung, nach 5 µsFGM implementation, after 5 μs
- GG
- FGM-Durchführung, nach 20 µsFGM implementation, after 20 μs
- d, d(l)d, d (l)
- Dicke der feldsteuernden Beschichtung oder des feldsteuernden RohrsThickness of field controlling coating or field controlling tube
- di, do d i , d o
- Dicke der feldsteuernden Innenschicht oder AussenschichtThickness of field controlling inner layer or outer layer
- ll
- Länge der feldsteuernden Beschichtung oder des feldsteuernden RohrsLength of field-controlling coating or field-controlling tube
- l1, l2 l 1 , l 2
- Länge der feldsteuernden Beschichtung im Erdflanschbereich oder HochspannungsflanschbereichLength of the field-controlling coating in the Erdflanschbereich or Hochspannungsflanschbereich
- E(x)Ex)
- elektrische Feldverteilung entlang Hochspannungsdurchführungelectric field distribution along high voltage feedthrough
- Eo E o
- maximales elektrisches Feld, Normierungsfeldmaximum electric field, normalization field
- xx
- Ortskoordinate entlang Längserstreckung der FGMDurchführungLocation coordinate along the longitudinal extent of the FGM implementation
Claims (13)
- Dielectric bushing (1'), more particularly high-voltage bushing (1') for an electrical high-voltage apparatus, comprising an insulator part (2; 2a, 2b; 2c) having a first mounting flange (4) and a second mounting flange (8) for mounting the bushing (1'), characterized in thata) a screening electrode (6; 6a, 6b) required for a desired voltage level is omitted within the bushing (1') in a field loading zone (7; 7a, 7b) in the region of the first mounting flange (4; 8),b) instead, for the purpose of field control in the field loading zone (7; 7a, 7b), a non-linearly electrical and/or dielectric field control element (9; 9a, 9b; 9i, 9o; 9s) is present on the insulator part (2; 2a, 2b; 2c) in the region of the first mounting flange (4), andc) the field control element (9; 9a, 9b; 9i, 9o; 9s) is in electrical contact with the first mounting flange (4).
- Bushing (1') according to Claim 1, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) is designed with regard to its non-linearly electrical and/or dielectric properties, its geometrical shape and its arrangement on the insulator part (2; 2a, 2b; 2c) for the dielectric load-relieving of the field loading zone (7; 7a, 7b) without a screening electrode (6; 6a, 6b) for all operating states, more particularly for surge voltages.
- Bushing (1') according to either of the preceding claims, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) has:a) non-linearly electrical varistor properties and more particularly a critical field strength which characterizes a varistor switching behaviour of the field control element (9; 9a, 9b; 9i, 9o; 9s), and/orb) a high dielectric constant ε, more particularly ε > 30, preferably ε > 40 and particularly preferably ε > 50.
- Bushing (1') according to any of the preceding claims, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) extends over a predeterminable length (l; l1, l2) along a longitudinal extent (x) of the insulator part (2; 2a, 2b; 2c) and has a predeterminable thickness (d) or thickness distribution (d(l)) as a function of the length (l; l1, l2).
- Bushing (1') according to Claim 3, feature a), and Claim 4, characterized in that the length (l; l1, l2) is chosen to be greater than or equal to a ratio of a maximum surge voltage to be tested to the critical electric field strength.
- Bushing (1') according to Claim 3, feature a), or Claim 4, dependent on Claim 3, feature a) , characterized in that the field control element (9; 9i, 9s), for DC applications, is present over the whole area on the insulator part (2; 2a, 2b; 2c) and continuously along a longitudinal extent (x) of the insulator part (2; 2a, 2b; 2c) and is in electrical contact both with the first mounting flange (4) and with the second mounting flange (8).
- Bushing (1') according to any of the preceding claims, characterized in thata) the first mounting flange (4) is an earth-side mounting flange (4) for mounting the bushing (1') on an earthed housing (5) of an electrical apparatus, and/orb) the second mounting flange (8) is a voltage-side mounting flange (8) for mounting the bushing (1') on a high-voltage part, and/orc) the insulator part (2; 2a, 2b; 2c) has in the interior an insulation space for a solid insulation material (20) or for an insulation liquid (20) or a gas space for an insulation gas (20).
- Bushing (1') according to Claim 7, feature a), and Claim 7, feature b), characterized in thata) a further field control element (9; 9b) is present, which has suitable non-linearly electrical and/or dielectric properties, more particularly those according to Claim 3, and is arranged in a field loading zone (7; 7a, 7b) in the region of the second mounting flange (8) over a predeterminable length (l; l2) and thickness (d, d(l2)) on the insulator part (2; 2a, 2b; 2c), andb) more particularly in that the further field control element (9; 9b) serves as a replacement for a screening electrode (6b) in the region of the second mounting flange (8).
- Bushing (1') according to Claim 8, characterized in thata) the further field control element (9; 9b) is in electrical contact with the second mounting flange (8; 4), and/orb) the further field control element (9; 9b) is separated from the field control element (9; 9a; 9i, 9o) in the region of the first mounting flange (4) by a field-control-material-free zone extending along the longitudinal extent of the insulator part (2; 2a, 2b).
- Bushing (1') according to any of the preceding claims, characterized in thata) the field control element (9; 9a, 9b; 9i, 9o; 9s) is present in a coating or solid configuration which is present on an inner side (21) and/or in an intermediate layer (22) in an integrated fashion between components (2a, 2b) of the insulator part (2; 2a, 2b) and/or on an outer side (23), more particularly there in disjoint horizontal strips (9o), of the insulator part (2; 2a, 2b; 2c), and/orb) the field control element (9; 9a, 9b; 9i, 9o; 9s) performs a mechanically supporting function, and more particularly in that the field control material (9; 9a, 9b; 9i, 9o; 9s) performs the exclusive mechanically self-supporting function in the insulator part (2; 2a, 2b; 2c).
- Bushing (1') according to any of the preceding claims, characterized in that the field control element (9; 9a, 9b; 9i, 9o; 9s) comprises a matrix, more particularly an epoxy, silicone, EPDM, thermoplastic, thermoplastic elastomer or glass, and the matrix is filleda) with microvaristor particles, more particularly doped ZnO particles, TiO2 particles or SnO2 particles, and/orb) with particles having a high dielectric constant, more particularly with BaTiO3 particles or TiO2 particles.
- Electrical high-voltage apparatus, more particularly disconnector, outdoor circuit-breaker, vacuum interrupter, dead tank breaker, current converter, voltage converter, transformer, power capacitor or cable end seal, characterized in that a dielectric bushing (1') according to any of the preceding claims is present.
- Electrical switchgear assembly, more particularly high- or medium-voltage switchgear assembly, characterized by an electrical high-voltage apparatus according to Claim 12.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT04405151T ATE546818T1 (en) | 2004-03-15 | 2004-03-15 | HIGH VOLTAGE FEEDBACK WITH FIELD CONTROL MATERIAL |
EP04405151A EP1577904B1 (en) | 2004-03-15 | 2004-03-15 | High voltage bushing with element for electric-field control |
US11/079,858 US7262367B2 (en) | 2004-03-15 | 2005-03-15 | High voltage bushing with field control material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405151A EP1577904B1 (en) | 2004-03-15 | 2004-03-15 | High voltage bushing with element for electric-field control |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1577904A1 EP1577904A1 (en) | 2005-09-21 |
EP1577904B1 true EP1577904B1 (en) | 2012-02-22 |
Family
ID=34833824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04405151A Expired - Lifetime EP1577904B1 (en) | 2004-03-15 | 2004-03-15 | High voltage bushing with element for electric-field control |
Country Status (3)
Country | Link |
---|---|
US (1) | US7262367B2 (en) |
EP (1) | EP1577904B1 (en) |
AT (1) | ATE546818T1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106199117A (en) * | 2016-07-15 | 2016-12-07 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A kind of divider auxiliary full skirt method for designing |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE526713C2 (en) * | 2003-07-11 | 2005-10-25 | Abb Research Ltd | Implementation and procedure for manufacturing the implementation |
EP1736998A1 (en) * | 2005-06-21 | 2006-12-27 | Abb Research Ltd. | Varistor field control tape |
EP1811626B1 (en) * | 2006-01-24 | 2016-04-13 | Nexans | Electric feedthrough |
DE102006038221B4 (en) * | 2006-08-03 | 2009-03-26 | Siemens Ag | Device for electrical shielding of a high voltage feedthrough |
CN101506911B (en) * | 2006-08-31 | 2011-04-06 | Abb技术有限公司 | High voltage bushing |
CN101136270B (en) | 2006-08-31 | 2013-03-20 | Abb技术有限公司 | High voltage bushing and its production method and high voltage apparatus |
US20080157783A1 (en) * | 2007-01-01 | 2008-07-03 | Maxwell Technologies, Inc. | Apparatus and method for monitoring high voltage capacitors |
SE531321C2 (en) * | 2007-07-05 | 2009-02-24 | Abb Technology Ag | High Voltage Cable Connection |
DE102007033705B4 (en) * | 2007-07-17 | 2009-03-05 | Siemens Ag | Converter arrangement of a metal-enclosed, gas-insulated switchgear and metal-enclosed, gas-insulated switchgear |
EP2039496A1 (en) * | 2007-09-20 | 2009-03-25 | ABB Research Ltd. | A method of producing a rubber product |
EP2053616A1 (en) * | 2007-10-26 | 2009-04-29 | ABB Research Ltd. | High-voltage outdoor bushing |
US7807930B1 (en) * | 2007-11-30 | 2010-10-05 | The United States Of America As Represented By The Secretary Of The Navy | High-voltage feed-through bushing with internal and external electric field grading elements |
DE102008009333A1 (en) | 2008-02-14 | 2009-08-20 | Lapp Insulator Gmbh & Co. Kg | Field-controlled composite insulator |
EP2154700A1 (en) * | 2008-08-14 | 2010-02-17 | ABB Technology AG | High voltage isolator with field control element |
EP2276041B1 (en) * | 2009-07-15 | 2013-09-25 | ABB Research Ltd. | A device for electric connection and an electric installation |
CN101714446A (en) * | 2009-09-10 | 2010-05-26 | 北京天威瑞恒高压套管有限公司 | Glass fibre reinforced plastic capacitance multicore transformer bushing |
CN105207130B (en) | 2009-09-14 | 2018-11-23 | 阿雷沃国际公司 | underground modular high-voltage direct current electric power transmission system |
US8525526B2 (en) * | 2009-11-13 | 2013-09-03 | Hubbell Incorporated | High voltage test terminal having a shock-absorbing insulator |
EP2375423A1 (en) | 2010-04-07 | 2011-10-12 | ABB Research Ltd. | Electrical bushing |
EP2572422A2 (en) | 2010-05-21 | 2013-03-27 | ABB Research Ltd. | A high voltage direct current cable termination apparatus |
CA2799594C (en) | 2010-05-21 | 2016-07-19 | Abb Research Ltd | A high voltage direct current cable termination apparatus |
CA2799592C (en) | 2010-05-21 | 2016-07-05 | Abb Research Ltd | A high voltage direct current cable termination apparatus |
CN102906953B (en) | 2010-05-21 | 2016-04-13 | Abb研究有限公司 | High-voltage direct-current cable terminal equipment |
EP2431982B1 (en) * | 2010-09-21 | 2014-11-26 | ABB Technology AG | Plugable feedthrough and high voltage assembly with such a feedthrough |
DE102010043990A1 (en) * | 2010-11-16 | 2012-05-16 | Siemens Aktiengesellschaft | Insulator arrangement and method for producing an insulator arrangement |
DE102010043995A1 (en) * | 2010-11-16 | 2012-05-16 | Siemens Aktiengesellschaft | Insulator arrangement and method for producing an insulator arrangement |
EP2482290B1 (en) * | 2011-01-28 | 2017-07-19 | ABB Schweiz AG | Temperature compensated bushing design |
RU2457564C1 (en) * | 2011-02-21 | 2012-07-27 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | High-voltage junction |
US8704097B2 (en) * | 2012-01-23 | 2014-04-22 | General Electric Company | High voltage bushing assembly |
US8716601B2 (en) | 2012-02-08 | 2014-05-06 | General Electric Company | Corona resistant high voltage bushing assembly |
DE102012104137A1 (en) * | 2012-05-11 | 2013-11-14 | Maschinenfabrik Reinhausen Gmbh | Field controlled composite insulator e.g. rod, has core, shielding sheath and field control layer that is applied by plasma coating to core, where dielectric properties are controlled by geometric structure of field-control layer |
US9078346B2 (en) * | 2013-03-11 | 2015-07-07 | Varian Semiconductor Equipment Associates, Inc. | Insulator protection |
DE102013204706A1 (en) * | 2013-03-18 | 2014-09-18 | Siemens Aktiengesellschaft | Resistance lining for a DC insulation system |
DE102014004284B4 (en) * | 2014-03-26 | 2019-11-14 | Lapp Insulators Gmbh | High-voltage bushing |
CN103971861A (en) * | 2014-05-21 | 2014-08-06 | 北京铁道工程机电技术研究所有限公司 | Motor train roof composite insulator with interface breakdown prevention function |
CN107427935B (en) * | 2015-03-30 | 2019-04-19 | 三菱日立工具株式会社 | Drill bit |
EP3096334B1 (en) * | 2015-05-22 | 2020-12-30 | ABB Power Grids Switzerland AG | Electrical bushing |
DE102017212977A1 (en) * | 2017-07-27 | 2019-01-31 | Siemens Aktiengesellschaft | Plug-in high-voltage bushing and electrical device with the plug-in high-voltage bushing |
CN107800109A (en) * | 2017-10-31 | 2018-03-13 | 清华大学 | Using the cable socket of the prefabricated rubber voltage-controlled tube of nonlinear conductance |
EP3591672B1 (en) | 2018-07-02 | 2023-03-29 | Hitachi Energy Switzerland AG | Insulator with resistivity gradient |
EP3667684B1 (en) * | 2018-12-12 | 2024-08-21 | Hitachi Energy Ltd | Electrical bushing |
CN113450948A (en) * | 2021-07-19 | 2021-09-28 | 上海甲希科技有限公司 | Insulating tubular bus and insulating manufacturing method and device of insulating tubular bus |
DE102022206149A1 (en) * | 2022-06-21 | 2023-12-21 | Siemens Energy Global GmbH & Co. KG | Bushing insulator |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1484051A (en) * | 1919-04-10 | 1924-02-19 | Ohio Brass Co | Insulator |
GB842039A (en) * | 1957-04-06 | 1960-07-20 | Asea Ab | High voltage devices comprising a potential gradient equalizing coating |
FR1378902A (en) * | 1963-08-20 | 1964-11-20 | Comp Generale Electricite | A method of manufacturing an anchoring bar with high mechanical and electrical resistance and the bar thus obtained |
US3318995A (en) | 1966-04-25 | 1967-05-09 | Westinghouse Electric Corp | Cast electrical bushing construction having controlled and shielded shrinkage voids |
FR2198231B1 (en) * | 1972-09-04 | 1980-02-22 | Ceraver | |
SE429907B (en) * | 1978-09-13 | 1983-10-03 | Asea Ab | ELECTRIC HIGH-VOLTAGE THROUGH FOR A METAL COVER SHEET, PRESSURE GAS INSULATED SWITCH |
US4905118A (en) * | 1988-03-31 | 1990-02-27 | Hubbell Incorporated | Base mounted electrical assembly |
US5214249A (en) * | 1991-02-22 | 1993-05-25 | Hubbell Incorporated | Electrical assembly with end collars for coupling ends of a weathershed housing to the end fittings |
SE9704824D0 (en) * | 1997-12-22 | 1997-12-22 | Asea Brown Boveri | Fiber composite articles and method for making such composite articles |
DE19844409C2 (en) | 1998-09-28 | 2000-12-21 | Hochspannungsgeraete Porz Gmbh | High voltage implementation |
DE19856123C2 (en) * | 1998-12-04 | 2000-12-07 | Siemens Ag | Hollow insulator |
GB0103255D0 (en) * | 2001-02-09 | 2001-03-28 | Tyco Electronics Raychem Gmbh | Insulator arrangement |
US6441310B1 (en) * | 2001-03-30 | 2002-08-27 | Hubbell Incorporated | Moisture activated barrier for electrical assemblies |
-
2004
- 2004-03-15 EP EP04405151A patent/EP1577904B1/en not_active Expired - Lifetime
- 2004-03-15 AT AT04405151T patent/ATE546818T1/en active
-
2005
- 2005-03-15 US US11/079,858 patent/US7262367B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106199117A (en) * | 2016-07-15 | 2016-12-07 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A kind of divider auxiliary full skirt method for designing |
CN106199117B (en) * | 2016-07-15 | 2018-11-23 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A kind of divider auxiliary full skirt design method |
Also Published As
Publication number | Publication date |
---|---|
ATE546818T1 (en) | 2012-03-15 |
US7262367B2 (en) | 2007-08-28 |
EP1577904A1 (en) | 2005-09-21 |
US20050199418A1 (en) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1577904B1 (en) | High voltage bushing with element for electric-field control | |
EP1254497B1 (en) | Cable sealing end | |
EP3807920B1 (en) | Vacuum interrupter and high-voltage switching assembly | |
EP2702597B1 (en) | Surge arrestor | |
EP1569255B1 (en) | Compact earthing switch for gas insulated substation | |
DE2934805C2 (en) | Electrical high voltage bushing | |
EP2715743A1 (en) | Electric component for a high-voltage system | |
DE19500849A1 (en) | Electrical component | |
EP3472847A1 (en) | Insulator arrangement for a high or medium voltage switchgear assembly | |
EP1603141B1 (en) | Surge arrester with insulation by gas | |
DE68927533T2 (en) | Disconnector for gas-insulated switchgear | |
WO2022069197A1 (en) | Coated conductor in a high-voltage device and method for increasing the dielectric strength | |
WO2017012740A1 (en) | Energy-related component, in particular vacuum interrupter | |
DE4007335A1 (en) | Electrical insulator sepg. inner from grounded outer conductors - comprises plastic cpd. with inert filler and has embedded ring shaped regions with higher dielectric constant to modify field | |
DE2912844A1 (en) | LIGHTNING PROTECTION DEVICE | |
EP3266085B1 (en) | Field control element for end closures of cables for transmitting energy | |
EP1961026A1 (en) | Electric switchgear, particularly high-voltage circuit-breaker, comprising a housing | |
DE102021207962A1 (en) | Vacuum interrupter and arrangement with vacuum interrupters and method for shutting down vacuum interrupters | |
WO2023147967A1 (en) | Controllable vacuum interrupter, and arrangement and method for controlling vacuum interrupters | |
WO2022129073A1 (en) | Electric switching device for medium- and/or high-voltage uses | |
DE102021207963A1 (en) | Vacuum interrupter for switching voltages | |
DD241809A1 (en) | INSULATING HOUSING FOR A VACUUM CHAMBER | |
WO1994006135A1 (en) | Current transformer | |
WO2001041273A1 (en) | Bushing insulator and bushing-type current transformer for metal-encapsulated, air-insulated medium voltage switchgears | |
DE3906553A1 (en) | Screening electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060116 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 546818 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004013314 Country of ref document: DE Effective date: 20120419 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120523 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120622 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
BERE | Be: lapsed |
Owner name: ABB RESEARCH LTD. Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20121123 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004013314 Country of ref document: DE Effective date: 20121123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120522 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120602 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 546818 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120315 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040315 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: ABB SCHWEIZ AG, CH Free format text: FORMER OWNER: ABB RESEARCH LTD., CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004013314 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB RESEARCH LTD., 8050 ZUERICH, CH Ref country code: DE Ref legal event code: R082 Ref document number: 502004013314 Country of ref document: DE Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004013314 Country of ref document: DE Owner name: ABB SCHWEIZ AG, CH Free format text: FORMER OWNER: ABB RESEARCH LTD., 8050 ZUERICH, CH Ref country code: DE Ref legal event code: R081 Ref document number: 502004013314 Country of ref document: DE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB RESEARCH LTD., 8050 ZUERICH, CH Ref country code: DE Ref legal event code: R082 Ref document number: 502004013314 Country of ref document: DE Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004013314 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH Ref country code: DE Ref legal event code: R082 Ref document number: 502004013314 Country of ref document: DE Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004013314 Country of ref document: DE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20220321 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20220321 Year of fee payment: 19 Ref country code: IT Payment date: 20220322 Year of fee payment: 19 Ref country code: FR Payment date: 20220322 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004013314 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230321 Year of fee payment: 20 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230316 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004013314 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230315 |