EP1299630B1 - Method of ignition - Google Patents
Method of ignition Download PDFInfo
- Publication number
- EP1299630B1 EP1299630B1 EP01931405A EP01931405A EP1299630B1 EP 1299630 B1 EP1299630 B1 EP 1299630B1 EP 01931405 A EP01931405 A EP 01931405A EP 01931405 A EP01931405 A EP 01931405A EP 1299630 B1 EP1299630 B1 EP 1299630B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- operating mode
- ignition
- homogeneous
- spark
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 230000005415 magnetization Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P3/00—Other installations
- F02P3/02—Other installations having inductive energy storage, e.g. arrangements of induction coils
- F02P3/04—Layout of circuits
- F02P3/05—Layout of circuits for control of the magnitude of the current in the ignition coil
- F02P3/051—Opening or closing the primary coil circuit with semiconductor devices
- F02P3/053—Opening or closing the primary coil circuit with semiconductor devices using digital techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
- F02D37/02—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P15/00—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
- F02P15/08—Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
Definitions
- the present invention relates to an ignition method for an internal combustion engine, wherein an injection is performed alternatively at least in a first operating mode or in a second operating mode and wherein the charging of the ignition coil is performed depending on the current operating mode, and a corresponding ignition device.
- the homogeneous operation can also be realized lean and / or exhaust gas recirculation (EGR) as a homogeneous operation H2.
- EGR exhaust gas recirculation
- a high flow level is required. This deflects the spark plasma until it breaks off and reignites occur.
- shift operation S In internal combustion engines with gasoline direct injection, a so-called charge stratification is realized in the combustion chamber for full utilization of the consumption advantage in certain operating ranges, which is referred to below as shift operation S.
- shift operation S by contrast, only a small stoichiometric cloud is introduced into the combustion chamber, which is locally ignitable, whereas the remaining contents of the combustion chamber can not be ignited.
- the advantage of this shift operation S lies in an extended lean operation of the internal combustion engine and thus ultimately in a fuel economy. It is therefore desirable to make the operating range of the stratified operation S as large as possible, that is, in particular to expand to the highest possible loads and high speeds.
- this layered mode of operation is a single spark lasting as long as possible at an initial current of typically about 50-80 mA and a secondary energy of typically about 80-100 mJ or a pulse train of adjustable length with an initial current of about 100 mA from a coil with about 30 mJ secondary energy just.
- An ignition coil can be designed either for long spark duration (high secondary inductance, ie high secondary winding number) with moderate starting current or for short spark duration (low secondary inductance, ie low secondary winding number). A decision for a discrete interpretation as a compromise is therefore absolutely necessary.
- US-A-5 170 760 discloses an internal combustion engine with direct injection of fuel into the combustion chambers, wherein in a first mode a stratified charge is ignited with two or more ignition pulses in the ignition primary circuit; a second mode of operation is also provided with homogeneous charge in the combustion chamber, with fewer firing pulses than in stratified operation This triggers a different number of firing pulses / sparks or a longer burning spark, or higher energy firing pulses are used in the first stratified charge mode
- the ignition method according to the invention with the features of claim 1 has the advantage over the known approaches that an adapted to the problem of gasoline direct injection engines function optimal flame both stratified operation in homogeneous lean operation and / or with EGR and cold start or other critical engine conditions allows.
- Control of the operation can be done as needed. Only as much energy as is required to ignite is introduced. As a result, unnecessary Kerzenabbrand is avoided.
- a smaller coil space due to lower number of turns on the secondary side or larger iron cross-section is possible with the same installation space.
- a cost advantage by saving of magnets for biasing the iron circuit can be achieved.
- the appropriate type of ignition is provided via a control pulse coding.
- the first operating mode is a homogeneous normal operation, which is subdivided into the submodes stoichiometric normal operation and substoichiometric normal operation, and the second operating mode is an inhomogeneous stratified operation.
- control pulse courses have different pulse times and / or pulse counts. In this way, virtually any number of operating states can be coded with simple means.
- the iron circuit of the ignition coil is driven to an onset of saturation in an operating mode which requires a high spark initial current.
- This design has the advantage that More energy can be stored and the voltage slew rate increased due to the initially lower secondary inductance.
- FIG. 1 is a plot of the spark current waveform i F versus time t according to a first embodiment of the present invention.
- the curve a) represents the spark current profile as a discharge of the ignition coil (secondary energy approx. 30 mJ, primary deactivation current approx. 10 A) without the pulse train characteristic.
- the secondary spark spark current amounts to approx. 110 mA with a burning time of approx , 35 ms at a spark ignition voltage of 1500 V.
- the curve b) shows this ignition coil in the realization of a pulse train with four pulses, in which the primary-side reconnection of the ignition coil takes place in each case when the spark current has dropped to about 50 mA. To realize the short recharging time, a battery voltage of 42 V is assumed.
- the short recharging time can be achieved by increasing the primary current from 10 A to 30 A at a previously common battery voltage of 14 V.
- the curve c) shows the spark current characteristic for the homogeneous operation H1 or H2, namely, when the coil was charged by increasing the primary side shutdown current (from about 10 A to 15 A) to about twice the energy of 60 mJ.
- This first embodiment assumes that the coil is in the linear range of magnetizability.
- FIG. 2 is a plot of the spark current waveform i F versus time t according to a second embodiment of the present invention.
- the curve a) represents the spark current characteristic as a discharge of the ignition coil (bar coil, secondary energy approx. 30 mJ, primary switch-off current approx. 10 A) without the pulsing characteristic.
- the secondary-side spark starting current as in the above first example, is approx. 110 mA with a burning time of approx 0.35 ms.
- the curve b) shows this ignition coil when implementing a pulse train with four pulses as in the above first example, in which the primary side reconnection of the ignition coil takes place in each case when the spark current has dropped to about 50 mA. To realize the short recharge time Here, too, a battery voltage of 42 V is assumed.
- Curve c) shows the spark current profile for homogeneous operation, namely when the coil is charged to approximately twice the energy of 60 mJ by increasing the primary-side switch-off current (from approx. 10 A to 20 A). This results in an increased spark starting current of 200 mA, which is non-linear, i. initially steeper, falls off, since initially there is a lower inductance due to the saturation property. Again, a sufficiently short spark duration of about 0.5 ms.
- FIG. 3 shows a schematic representation of a drive device for realizing the first or second embodiment.
- MS designates an engine control unit, L a control logic and ES an output stage, which as essential components a power transistor LT, a spark plug ZK and an ignition coil ZS includes. It is assumed that the pulse train generating electronics, so the control logic L and the output stage ES, is located on / in the ignition coil ZS.
- a control pulse SI is supplied depending on the current injection mode, which has a coding from which the control logic L can detect locally, whether a pulse train at low energy or ein.Pulszug at high energy, a single pulse at low energy or a single pulse is desired at high energy.
- the invention is not limited to the illustrated pulse shapes, energies and burning times or the like. limited. Also, further injection modes may be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Die vorliegende Erfindung betrifft ein Zündverfahren für eine Brennkraftmaschine, wobei eine Einspritzung alternativ mindestens in einem ersten Betriebsmodus oder in einem zweiten Betriebsmodus durchgeführt wird und wobei das Laden der Zündspule in Abhängigkeit vom aktuellen Betriebsmodus durchgeführt wird, sowie eine entsprechende Zündvorrichtung.The present invention relates to an ignition method for an internal combustion engine, wherein an injection is performed alternatively at least in a first operating mode or in a second operating mode and wherein the charging of the ignition coil is performed depending on the current operating mode, and a corresponding ignition device.
Obwohl auf beliebige Kraftstoffe und Motoren beliebiger Fahrzeuge anwendbar, werden die vorliegende Erfindung sowie die ihr zugrundeliegende Problematik in bezug auf eine Benzindirekteinspritzung einer Brennkraftmaschine eines Personenwagens erläutert.Although applicable to any fuels and engines of any vehicle, the present invention and its underlying problem with respect to a direct gasoline injection of an internal combustion engine of a passenger car will be explained.
Fig. 4 illustriert für verschiedene Betriebsarten einer Brennkraftmaschine die Abhängigkeit des Drehmoments M von der Drehzahl N.4 illustrates the dependence of the torque M on the rotational speed N for different operating modes of an internal combustion engine.
Beim sogenannten homogenen Normalbetrieb H1 der Benzindirekteinspritzung wird der gesamte Brennraum mit einem stöchiometrischen Luft-/Krafstoffgemisch homogen (Lambdawert λ = 1) gefüllt, das zum Zündzeitpunkt durch den Zündfunken gezündet wird. Hier existieren bei hoher Energiedichte des Gemischs keinerlei Entflammungsprobleme.In the so-called homogeneous normal operation H1 of the gasoline direct injection, the entire combustion chamber with a stoichiometric air / fuel mixture is homogeneous (lambda value λ = 1), which is ignited at the ignition by the ignition spark. Here exist at high energy density of the mixture no ignition problems.
Der Homogenbetrieb kann aber auch mager und/oder mit Abgasrückführung (AGR) als Homogenbetrieb H2 realisiert werden. Hierbei ist allgemein, um bei den geringen Energiedichten des Gemischs im Brennraum ausreichend schnelles Durchbrennen zu erreichen, ein hohes Strömungsniveau erforderlich. Dieses lenkt das Funkenplasma aus, bis es abreißt und Wiederzündungen erfolgen.The homogeneous operation can also be realized lean and / or exhaust gas recirculation (EGR) as a homogeneous operation H2. Here, in general, in order to achieve sufficiently fast burn-through at the low energy densities of the mixture in the combustion chamber, a high flow level is required. This deflects the spark plasma until it breaks off and reignites occur.
Hierdurch verteilt sich die Funkenenergie bei einer Spulenzündung mit typischen Funkendauern unter diesen Umständen von typischerweise ca. 1 ms auf zahlreiche Folgefunken, die jeweils neue Gemischbereiche erreichen.As a result, the spark energy distributed in a coil ignition with typical spark duration under these circumstances of typically about 1 ms to numerous secondary sparks, each reaching new mixture ranges.
Da aber magerster Betrieb oder sogenannter Hoch-AGR-Betrieb nur dann erreicht wird, wenn die gesamte Energie der Zündspule in einen einzigen Flammkern eingebracht wird, muß also die gesamte in der Zündspule gespeicherte Energie in so kurzer Zeit zugeführt werden, daß innerhalb dieser Zeitspanne (typischerweise ca. 0,3 - 0,6 ms) noch kein Abreißen des Funkens erfolgt.However, since lean operation or so-called high-EGR operation is only achieved when the entire energy of the ignition coil is introduced into a single flame core, the entire energy stored in the ignition coil must be supplied in such a short time that within this time period ( typically approx. 0.3 - 0.6 ms), the spark has not yet been torn off.
Hieraus ergibt sich für diesen Betrieb H2 eine Anforderung nach möglichst hoher Energie und sehr kurzer Funkendauer (ca. 0,3 - 0,6 ms), was einen hohen erforderlichen Anfangsstrom von 150 - 200 mA zur Folge hat.This results in a requirement for the highest possible energy and very short spark duration (about 0.3-0.6 ms) for this operation H2, which results in a high initial current requirement of 150-200 mA.
Bei Brennkraftmaschinen mit Benzindirekteinspritzung wird zur vollständigen Nutzung des Verbrauchsvorteils in bestimmten Betriebsbereichen eine sogenannte Ladungsschichtung im Brennraum realisiert, was im folgenden als Schichtbetrieb S bezeichnet wird.In internal combustion engines with gasoline direct injection, a so-called charge stratification is realized in the combustion chamber for full utilization of the consumption advantage in certain operating ranges, which is referred to below as shift operation S.
Beim Schichtbetrieb S hingegen wird lediglich eine kleine stöchiometrische Wolke in den Brennraum eingebracht, welche lokal zündbar ist, wohingegen der restliche Inhalt des Brennraums nicht gezündet werden kann. Der Vorteil dieses Schichtbetriebs S liegt in einem erweiterten Magerbetrieb der Brennkraftmaschine und damit letztendlich in einer Kraftstoffersparnis. Es ist daher wünschenswert, den Betriebsbereich des Schichtbetriebs S möglichst groß zu gestalten, also insbesondere auf möglichst hohe Lasten und hohe Drehzahlen auszudehnen.In shift operation S, by contrast, only a small stoichiometric cloud is introduced into the combustion chamber, which is locally ignitable, whereas the remaining contents of the combustion chamber can not be ignited. The advantage of this shift operation S lies in an extended lean operation of the internal combustion engine and thus ultimately in a fuel economy. It is therefore desirable to make the operating range of the stratified operation S as large as possible, that is, in particular to expand to the highest possible loads and high speeds.
Im Schichtbetrieb S können am Ort des Zündfunkens bei hoher mittlerer Energiedichte in der Gemischwolke deutliche örtliche und/oder zeitliche Lambda-Schwankungen existieren. Um dabei sichere Entflammung zu erreichen, sollte der Funke lang brennen (typischerweise ca. 5 - 10° KW (KW = Kurbelwinkel)), so daß innerhalb dieser Zeit die Flammkernbildung, immer dann gestartet werden kann, wenn ein brennbarer Gemischbereich durch das Funkenplasma erfaßt wird.In shift operation S, significant local and / or temporal lambda fluctuations may exist at the location of the spark at high average energy density in the mixture cloud. In order to achieve safe ignition, the spark should burn for a long time (typically approx. 5 - 10 ° CA (KW = crank angle)), so that flame nucleation can be started within this time whenever a combustible mixture area is detected by the spark plasma becomes.
Dabei steht dann unter Umständen, je nach Strömung des Gemischs an der Zündkerze, mit zunehmender Funkendauer nur noch ein sich stetig verringernder kleiner Teil der elektrisch aus der Zündspule eingebrachten Energie der Flammkernbildung zur Verfügung, weshalb bekanntermaßen vorgeschlagen wurde, innerhalb des obigen KW-Intervalls einen Pulszug zu erzeugen, also die Zündspule mehrfach zu laden und entladen.In this case, depending on the flow of the mixture on the spark plug, it may only be possible with increasing spark duration Still a steadily decreasing small portion of the introduced from the ignition coil energy of flame nucleation available, which is why it was known to suggest within the above KW interval to generate a pulse train, so the ignition coil several times to charge and discharge.
Also werden dieser geschichteten Betriebsweise ein möglichst lang brennender Einzel-Zündfunke bei einem Anfangsstrom von typischerweise ca. 50 - 80 mA und einer Sekundärenergie von typischerweise ca. 80 - 100 mJ oder ein Pulszug einstellbarer Länge bei einem Anfangsstrom von ca. 100 mA aus einer Spule mit ca. 30 mJ Sekundärenergie gerecht.Thus, this layered mode of operation is a single spark lasting as long as possible at an initial current of typically about 50-80 mA and a secondary energy of typically about 80-100 mJ or a pulse train of adjustable length with an initial current of about 100 mA from a coil with about 30 mJ secondary energy just.
Da sich die Anforderungen für die Betriebsbereiche geschichtet S und homogen H1 bzw. H2 also deutlich unterscheiden, ist in einer konventionellen Systemauslegung mit Einzelfunken ein Zielkonflikt gegeben, der bisher nur als Kompromiß angegangen werden kann. Eine Zündspule kann entweder für lange Funkendauer (hohe Sekundärinduktivität, d.h. hohe Sekundär-Windungszahl) mit mäßigem Anfangsstrom oder für kurze Funkendauer (niedrige Sekundärinduktivität, d.h. niedrige Sekundärwindungszahl) ausgelegt werden. Eine Entscheidung für eine diskrete Auslegung als Kompromiß ist also unbedingt erforderlich.Since the requirements for the operating areas stratified S and homogeneous H1 or H2 thus differ significantly, in a conventional system design with single spark a conflict of objectives exists, which so far can only be approached as a compromise. An ignition coil can be designed either for long spark duration (high secondary inductance, ie high secondary winding number) with moderate starting current or for short spark duration (low secondary inductance, ie low secondary winding number). A decision for a discrete interpretation as a compromise is therefore absolutely necessary.
Die US-A-5 170 760 offenbart eine Brennkraftmaschine mit Direkteinspritzung von Kraftstoff in die Brennräume, wobei in einem ersten Modus eine geschichteter Ladung mit zwei oder noch mehr Zündstromimpulsen im Primärkreis der Zündung gezündet wird;
ein zweiter Betriebsmodus ist auch vorgesehen mit homogener Ladung im Brennraum, wobei weniger Zündstromimpulse als im geschichteten Betrieb vorzusehen sind
dadurch kommt es zur Auslösung von einer unterschiedlichen Zahl von Zündimpulsen/Zündfunken bzw. zu einem länger brennenden Zündfunken oder es werden Ansteuerimpulse höherer Energie im ersten Modus mit geschichteter Ladung benutztUS-A-5 170 760 discloses an internal combustion engine with direct injection of fuel into the combustion chambers, wherein in a first mode a stratified charge is ignited with two or more ignition pulses in the ignition primary circuit;
a second mode of operation is also provided with homogeneous charge in the combustion chamber, with fewer firing pulses than in stratified operation
This triggers a different number of firing pulses / sparks or a longer burning spark, or higher energy firing pulses are used in the first stratified charge mode
Das erfindungsgemäße Zündverfahren mit den Merkmalen des Anspruchs 1 weist gegenüber den bekannten Lösungsansätzen den Vorteil auf, daß eine an die Problematik der Benzindirekteinspritzungsmotoren angepaßte Funktion eine optimale Entflammung sowohl im geschichteten Betrieb, im homogenen Magerbetrieb und/oder mit AGR sowie im Kaltstart oder sonstigen kritischen Motorbedingungen ermöglicht.The ignition method according to the invention with the features of claim 1 has the advantage over the known approaches that an adapted to the problem of gasoline direct injection engines function optimal flame both stratified operation in homogeneous lean operation and / or with EGR and cold start or other critical engine conditions allows.
Eine Steuerung der Betriebsweise kann nach Bedarf erfolgen. Nur so viel Energie, wie zu Entflammung erforderlich ist, wird eingebracht. Hierdurch wird unnötiger Kerzenabbrand vermieden.Control of the operation can be done as needed. Only as much energy as is required to ignite is introduced. As a result, unnecessary Kerzenabbrand is avoided.
Ein kleinerer Spulenbauraum durch geringere Windungszahl auf der Sekundärseite oder größerer Eisenquerschnitt ist möglich bei gleichem Bauraum. Damit ist ein Kostenvorteil durch Einsparung von Magneten zur Vormagnetisierung des Eisenkreises erzielbar.A smaller coil space due to lower number of turns on the secondary side or larger iron cross-section is possible with the same installation space. Thus, a cost advantage by saving of magnets for biasing the iron circuit can be achieved.
Für den jeweiligen Betriebsmodus wird die geeignete Zündungsart über eine Steuerimpulskodierung vorgesehen wird. Es wird eine für den geschichteten Betrieb geeignete Pulszugzündung kombiniert mit dem Schritt, im Homogenbetrieb die Zündspule über eine Erhöhung des Primärstroms mit deutlich höher Energie zu laden, so daß sie sich aber trotzdem als Einzelfunke noch innerhalb der gewünschten Brenndauer von z.B. ca. 0, 3 = 0, 6 ms entlädt.For the respective operating mode, the appropriate type of ignition is provided via a control pulse coding. A pulse train ignition suitable for stratified operation is combined with the step of charging the ignition coil with significantly higher energy in homogeneous operation by increasing the primary current so that it can but nevertheless still discharges within the desired burning time of eg approx. 0, 3 = 0, 6 ms.
In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Verbesserungen des jeweiligen Gegenstandes der Erfindung.In the dependent claims are advantageous developments and improvements of the respective subject of the invention.
Gemäß einer bevorzugten Weiterbildung ist der erste Betriebsmodus ein homogener Normalbetrieb, der in die Untermodi stöchiometrischer Normalbetrieb und unterstöchiometrischer Normalbetrieb aufgeteilt ist, und ist der zweite Betriebsmodus ein inhomogener Schichtbetrieb.According to a preferred development, the first operating mode is a homogeneous normal operation, which is subdivided into the submodes stoichiometric normal operation and substoichiometric normal operation, and the second operating mode is an inhomogeneous stratified operation.
Gemäß einer weiteren bevorzugten Weiterbildung weisen die Steuerimpulsverläufe unterschiedliche Impulszeiten und/oder Impulsanzahlen auf. So lassen sich mit einfachen Mitteln quasi beliebig viele Betriebszustände codieren.According to a further preferred development, the control pulse courses have different pulse times and / or pulse counts. In this way, virtually any number of operating states can be coded with simple means.
Gemäß einer weiteren bevorzugten Weiterbildung wird der Eisenkreis der Zündspule bei einem Betriebsmodus, der einen hohen Funkenanfangsstrom benötigt, bis in die beginnende Sättigung angesteuert. Diese Auslegung hat den Vorteil, daß sich sich mehr Energie speichern läßt und die Spannungsanstiegsgeschwindigkeit erhöht wegen der anfänglich niedrigeren Sekundärinduktivität erhöht ist.According to a further preferred development, the iron circuit of the ignition coil is driven to an onset of saturation in an operating mode which requires a high spark initial current. This design has the advantage that More energy can be stored and the voltage slew rate increased due to the initially lower secondary inductance.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
- Fig. 1
- eine Darstellung des Funkenstromverlaufs iF über der Zeit t gemäß einer ersten Ausführungsform der vorliegenden Erfindung;
- Fig. 2
- eine Darstellung des Funkenstromverlaufs iF über der. Zeit t gemäß einer zweiten Ausführungsform der vorliegenden Erfindung;
- Fig. 3
- eine schematische Darstellung einer Ansteuereinrichtung zur Realisierung der ersten bzw. zweiten Ausführungsform; und
- Fig. 4
- für verschiedene Betriebsarten einer Brennkraftmaschine die Abhängigkeit des Drehmoments M von der Drehzahl N.
- Fig. 1
- a representation of the spark current waveform i F over time t according to a first embodiment of the present invention;
- Fig. 2
- a representation of the spark current waveform i F on the. Time t according to a second embodiment of the present invention;
- Fig. 3
- a schematic representation of a drive device for implementing the first or second embodiment; and
- Fig. 4
- for different operating modes of an internal combustion engine, the dependence of the torque M on the rotational speed N.
Fig. 1 ist eine Darstellung des Funkenstromverlaufs iF über der Zeit t gemäß einer ersten Ausführungsform der vorliegenden Erfindung.FIG. 1 is a plot of the spark current waveform i F versus time t according to a first embodiment of the present invention.
In Fig. 1 stellt die Kurve a) den Funkenstromverlauf als Entladung der Zündspule (Sekundärenergie ca. 30 mJ,' primärer Abschaltstrom ca. 10 A) ohne die Pulszugeigenschaft dar. Der sekundärseitige Funkenanfangsstrom beträgt ca. 110 mA bei einer Brenndauer von ca. 0,35 ms bei einer Funkenbrennspannung von 1500 V.In FIG. 1, the curve a) represents the spark current profile as a discharge of the ignition coil (secondary energy approx. 30 mJ, primary deactivation current approx. 10 A) without the pulse train characteristic. The secondary spark spark current amounts to approx. 110 mA with a burning time of approx , 35 ms at a spark ignition voltage of 1500 V.
Die Kurve b) zeigt diese Zündspule bei Realisierung eines Pulszugs mit vier Pulsen, bei denen das primärseitige Wiedereinschalten der Zündspule jeweils dann erfolgt, wenn der Funkenstrom auf ca. 50 mA abgesunken ist. Zur Realisierung der kurzen Wiederaufladezeit wird eine Batteriespannung von 42 V angenommen.The curve b) shows this ignition coil in the realization of a pulse train with four pulses, in which the primary-side reconnection of the ignition coil takes place in each case when the spark current has dropped to about 50 mA. To realize the short recharging time, a battery voltage of 42 V is assumed.
Allgemein sei dazu bemerkt, daß bei einer bisher üblichen Batteriespannung von 14 V die kurze Wiederaufladezeit durch Erhöhen des Primärstroms von 10 A auf 30 A erreichbar ist.It should be noted in general that the short recharging time can be achieved by increasing the primary current from 10 A to 30 A at a previously common battery voltage of 14 V.
Die Kurve c) zeigt den Funkenstromverlauf für den Homogenbetrieb H1 bzw. H2, nämlich wenn die Spule durch Erhöhung des primärseitgen Abschaltstroms (von ca. 10 A auf 15 A) auf ca. die doppelte Energie von 60 mJ aufgeladen wurde.The curve c) shows the spark current characteristic for the homogeneous operation H1 or H2, namely, when the coil was charged by increasing the primary side shutdown current (from about 10 A to 15 A) to about twice the energy of 60 mJ.
Hierbei ergibt sich bei einem nunmehr auf ca. 160 mA erhöhten Anfangsstrom eine Funkenbrenndauer von ca. 0, 5 ms.This results in a now increased to about 160 mA initial current spark duration of about 0, 5 ms.
Dieses erste Ausführungsbeispiel setzt voraus, daß sich die Spule im linearen Bereich der Magnetisierbarkeit befindet.This first embodiment assumes that the coil is in the linear range of magnetizability.
Fig. 2 ist eine Darstellung des Funkenstromverlaufs iF über der Zeit t gemäß einer zweiten Ausführungsform der vorliegenden Erfindung.FIG. 2 is a plot of the spark current waveform i F versus time t according to a second embodiment of the present invention. FIG.
In diesem zweiten Ausführungsbeispiel nach Fig. 2 wird angenommen, daß sich infolge beschränkten Bauraums (Stabspule) eine lineare Erhöhung der Magnetisierbarkeit nicht mehr erreichen läßt, sondern bewußt die Nichtlinearität der Magnetisierung einbezogen wird.In this second exemplary embodiment according to FIG. 2, it is assumed that a linear increase in the magnetizability can no longer be achieved due to limited installation space (bar coil), but the nonlinearity of the magnetization is deliberately included.
Die Kurve a) stellt den Funkenstromverlauf als Entladung der Zündspule (Stabspule, Sekundärenergie ca. 30 mJ, primärer Abschaltstrom ca. 10 A) ohne die Pulszugeigenschaft dar. Der sekundärseitige Funkenanfangsstrom beträgt wie im obigen ersten Beispiel ca. 110 mA bei einer Brenndauer von ca. 0,35 ms.The curve a) represents the spark current characteristic as a discharge of the ignition coil (bar coil, secondary energy approx. 30 mJ, primary switch-off current approx. 10 A) without the pulsing characteristic. The secondary-side spark starting current, as in the above first example, is approx. 110 mA with a burning time of approx 0.35 ms.
Die Kurve b) zeigt diese Zündspule bei Realisierung eines Pulszugs mit vier Pulsen wie im obigen ersten Beispiel, bei denen das primärseitige Wiedereinschalten der Zündspule jeweils dann erfolgt, wenn der Funkenstrom auf ca. 50 mA abgesunken ist. Zur Realisierung der kurzen Wiederaufladezeit wird hier ebenfalls eine Batteriespannung von 42 V angenommen.The curve b) shows this ignition coil when implementing a pulse train with four pulses as in the above first example, in which the primary side reconnection of the ignition coil takes place in each case when the spark current has dropped to about 50 mA. To realize the short recharge time Here, too, a battery voltage of 42 V is assumed.
Die Kurve c) zeigt den Funkenstromverlauf für den Homogenbetrieb, nämlich wenn die Spule durch Erhöhung des primärseitigen Abschaltstroms (von ca. 10 A auf 20 A) auf ca. die doppelte Energie von 60 mJ aufgeladen wird. Hierbei ergibt sich nunmehr ein erhöhter Funkenanfangsstrom von 200 mA, der nichtlinear, d.h. anfänglich steiler, abfällt, da zunächst eine niedrigere Induktivität infolge der Sättigungseigenschaft gegeben ist. Auch hier entsteht eine ausreichend kurze Funkendauer von ca. 0,5 ms.Curve c) shows the spark current profile for homogeneous operation, namely when the coil is charged to approximately twice the energy of 60 mJ by increasing the primary-side switch-off current (from approx. 10 A to 20 A). This results in an increased spark starting current of 200 mA, which is non-linear, i. initially steeper, falls off, since initially there is a lower inductance due to the saturation property. Again, a sufficiently short spark duration of about 0.5 ms.
Diese Auslegung hat zwei Vorteile. Bei begrenztem Bauraum (Stabspule) läßt sich mehr Energie speichern, wenn der Eisenkreis bis in die beginnende Sättigung ausgesteuert wird. Die Spannungsanstiegsgeschwindigkeit erhöht sich wegen der anfänglich niedrigeren Sekundärinduktivität. Die erhöhte Spannungsanstiegsgeschwindigkeit wirkt sich positiv bei Kerzennebenschlüssen, d.h. bei verrußten Kerzen (Kaltstart) aus.This design has two advantages. With limited space (rod coil) can save more energy when the iron circuit is controlled to the beginning of saturation. The voltage slew rate increases because of the initially lower secondary inductance. The increased rate of voltage rise has a positive effect on candle shunts, i. at sooty candles (cold start) off.
Fig. 3 zeigt eine schematische Darstellung einer Ansteuereinrichtung zur Realisierung der ersten bzw. zweiten Ausführungsform.FIG. 3 shows a schematic representation of a drive device for realizing the first or second embodiment.
Im einzelnen bezeichnen MS ein Motorsteuergerät, L eine Steuerlogik und ES eine Endstufe, die als wesentliche Komponenten einen Leistungstransistor LT, eine Zündkerze ZK sowie eine Zündspule ZS umfaßt. Es wird angenommen, daß die einen Pulszug erzeugende Elektronik, also die Steuerlogik L und die Endstufe ES, sich an/in der Zündspule ZS befindet.Specifically, MS designates an engine control unit, L a control logic and ES an output stage, which as essential components a power transistor LT, a spark plug ZK and an ignition coil ZS includes. It is assumed that the pulse train generating electronics, so the control logic L and the output stage ES, is located on / in the ignition coil ZS.
Vom Motorsteuergerät MS wird abhängig vom aktuellen Einspritzmodus ein Steuerimpuls SI geliefert, der eine Codierung aufweist, aus dem die Steuerlogik L vor Ort erkennen kann, ob ein Pulszug bei niedriger Energie oder ein.Pulszug bei hoher Energie, ein Einzelimpuls bei niedriger Energie oder ein Einzelpuls bei hoher Energie gewünscht wird.From the engine control unit MS, a control pulse SI is supplied depending on the current injection mode, which has a coding from which the control logic L can detect locally, whether a pulse train at low energy or ein.Pulszug at high energy, a single pulse at low energy or a single pulse is desired at high energy.
Fig. 3 zeigt beispielhaft geeignete Codierungen:
- a) ein einziger kurzer Steuerimpuls SI (ca. 10 - 100 µs): Einzelfunke 30 mJ bei homogenem Betrieb mit λ = 1;
- b) zwei kurze Steuerimpulse SI (je ca. 10 - 100 µs).: Einzelfunke 60 mJ bei homogenem Magerbetrieb ggfs. mit AGR;
- c) ein langer Steuerimpuls SI (ca. 1 - 5 ms): Pulszug Basis 30 mJ bei Schichtbetrieb;
- d) ein langer Steuerimpuls SI (ca. 1 - 5 ms) nach einem kurzem Steuerimpuls SI (ca. 10 - 100 µs): Pulszug Basis 60 mJ bei Kalt- und/oder Rangierstarts oder bei sonstigen besonders kritischen Motorbedingungen.
- a) a single short control pulse SI (about 10 - 100 μs): single field 30 mJ in homogeneous operation with λ = 1;
- b) two short control pulses SI (each approx. 10 - 100 μs) .: single field 60 mJ in homogeneous lean operation, if necessary with EGR;
- c) a long control pulse SI (about 1 - 5 ms): pulse train basis 30 mJ during shift operation;
- d) a long control pulse SI (about 1 - 5 ms) after a short control pulse SI (about 10 - 100 μs): pulse train basis 60 mJ during cold and / or shunting starts or other particularly critical engine conditions.
Obwohl die vorliegende Erfindung vorstehend anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt.Although the present invention has been described above with reference to preferred embodiments, it is not limited thereto.
Insbesondere ist die Erfindung nicht auf die illustrierten Impulsformen, Energien und Brenndauern o.ä. beschränkt. Auch können weitere Einspritzmodi vorgesehen sein.In particular, the invention is not limited to the illustrated pulse shapes, energies and burning times or the like. limited. Also, further injection modes may be provided.
Claims (4)
- Method of ignition for an internal combustion engine, injection alternatively being carried out at least in a homogeneous normal operating mode (H1, H2) or in a non-homogeneous stratified operating mode (S), an ignition coil being charged with ignition energy by a primary current, a control pulse profile (SI) which is characteristic of the current operating mode being provided, the charging of the ignition coil (ZS) being carried out by control logic (L) in the non-homogeneous stratified operating mode (S) in the form of a pulse train ignition with a predetermined primary current and in the homogeneous normal operating mode (H1, H2) by increasing the primary current in comparison with the non-homogeneous stratified operating mode in the form of individual pulse ignition.
- Method according to Claim 1, characterized in that the homogeneous normal operating mode is divided into the submodes of stoichiometric normal operating mode (H1) and sub-stoichiometric normal operating mode (H2).
- Method according to Claim 1 or 2, characterized in that the control pulse profiles (SI) have different pulse times and/or numbers of pulses.
- Method according to one of the preceding claims, characterized in that the spark plug has an iron circuit with a linear range of magnetizability, and in that in an operating mode in which ignition sparks with a high initial spark current are required, the ignition coil is actuated in such a way that the iron circuit is actuated as far as the point where saturation of the magnetization begins.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10031875 | 2000-06-30 | ||
DE10031875A DE10031875A1 (en) | 2000-06-30 | 2000-06-30 | Ignition method and corresponding ignition device |
PCT/DE2001/001317 WO2002002923A1 (en) | 2000-06-30 | 2001-04-05 | Method of ignition and corresponding ignition unit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1299630A1 EP1299630A1 (en) | 2003-04-09 |
EP1299630B1 true EP1299630B1 (en) | 2006-03-22 |
Family
ID=7647339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01931405A Expired - Lifetime EP1299630B1 (en) | 2000-06-30 | 2001-04-05 | Method of ignition |
Country Status (5)
Country | Link |
---|---|
US (1) | US6814047B2 (en) |
EP (1) | EP1299630B1 (en) |
JP (1) | JP2004502084A (en) |
DE (2) | DE10031875A1 (en) |
WO (1) | WO2002002923A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011113431A1 (en) | 2010-03-17 | 2011-09-22 | Motortech Gmbh | Ignition method and ignition system therefor |
DE102022207300A1 (en) | 2022-07-18 | 2024-01-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method and device for controlling a prechamber spark plug |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002363908A1 (en) * | 2002-07-22 | 2004-02-09 | Zaza Museridze | Method for ignition and combustion of fuel mixture in an internal combustion engine |
DE10248216B4 (en) * | 2002-10-16 | 2004-09-16 | Siemens Ag | Operating method for an ignition system |
WO2006113850A1 (en) | 2005-04-19 | 2006-10-26 | Knite, Inc. | Method and apparatus for operating traveling spark igniter at high pressure |
US7401603B1 (en) * | 2007-02-02 | 2008-07-22 | Altronic, Inc. | High tension capacitive discharge ignition with reinforcing triggering pulses |
DE102007051249A1 (en) | 2007-10-26 | 2009-04-30 | Robert Bosch Gmbh | Device for controlling a multiple spark operation of an internal combustion engine and associated method |
FR2943739B1 (en) * | 2009-03-24 | 2015-09-04 | Renault Sas | METHOD FOR IGNITING A FUEL MIXTURE FOR A HEAT ENGINE |
EP2290223A1 (en) * | 2009-08-31 | 2011-03-02 | Robert Bosch GmbH | An ignition control unit to control multiple ignitions |
US8078384B2 (en) * | 2010-06-25 | 2011-12-13 | Ford Global Technologies, Llc | Engine control using spark restrike/multi-strike |
WO2013016592A1 (en) | 2011-07-26 | 2013-01-31 | Knite, Inc. | Traveling spark igniter |
JP5765493B2 (en) * | 2013-01-18 | 2015-08-19 | 日産自動車株式会社 | Ignition device and ignition method for internal combustion engine |
JP5843047B2 (en) * | 2013-03-21 | 2016-01-13 | 日産自動車株式会社 | Ignition control device and ignition control method for internal combustion engine |
CN110651118B (en) * | 2017-05-24 | 2021-09-07 | 日产自动车株式会社 | Control method and control device of internal combustion engine |
CN110621871B (en) | 2017-05-24 | 2021-09-14 | 日产自动车株式会社 | Method and device for controlling internal combustion engine |
DE102017212630A1 (en) * | 2017-07-24 | 2019-01-24 | Bayerische Motoren Werke Aktiengesellschaft | In at least two alternative modes operable signal communication system for a motor vehicle |
KR20220153196A (en) * | 2021-05-11 | 2022-11-18 | 현대자동차주식회사 | System of controlling ignition coil |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2700676C2 (en) * | 1977-01-08 | 1985-06-27 | Robert Bosch Gmbh, 7000 Stuttgart | Ignition system for internal combustion engines |
IT1208855B (en) | 1987-03-02 | 1989-07-10 | Marelli Autronica | VARIABLE SPARK ENERGY IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES PARTICULARLY FOR MOTOR VEHICLES |
US5170760A (en) * | 1990-11-13 | 1992-12-15 | Yamaha Hatsudoki Babushiki Kaisha | Ignition system for two cycle engine |
US5333593A (en) * | 1993-01-15 | 1994-08-02 | Ford Motor Company | Energy-on-demand ignition coil |
DE4328524A1 (en) * | 1993-08-25 | 1995-03-02 | Volkswagen Ag | Controllable ignition system |
US5754011A (en) * | 1995-07-14 | 1998-05-19 | Unison Industries Limited Partnership | Method and apparatus for controllably generating sparks in an ignition system or the like |
AU3485397A (en) * | 1996-06-21 | 1998-01-07 | Outboard Marine Corporation | Multiple spark capacitive discharge ignition system for an internal combustion engine |
CA2256561A1 (en) * | 1996-06-21 | 1997-12-24 | Ficht Gmbh & Co. Kg | Method of operating a fuel injected engine |
JP3683681B2 (en) * | 1997-06-30 | 2005-08-17 | 株式会社日立製作所 | Control device for direct-injection spark-ignition internal combustion engine |
JPH1137030A (en) * | 1997-07-14 | 1999-02-09 | Yamaha Motor Co Ltd | Ignition device for internal combustion engine |
DE19730908C2 (en) * | 1997-07-18 | 2002-11-28 | Daimler Chrysler Ag | Method for operating a direct-injection Otto engine |
JP3945040B2 (en) * | 1997-11-26 | 2007-07-18 | マツダ株式会社 | Engine control device |
-
2000
- 2000-06-30 DE DE10031875A patent/DE10031875A1/en not_active Withdrawn
-
2001
- 2001-04-05 DE DE50109291T patent/DE50109291D1/en not_active Expired - Lifetime
- 2001-04-05 US US10/312,937 patent/US6814047B2/en not_active Expired - Fee Related
- 2001-04-05 WO PCT/DE2001/001317 patent/WO2002002923A1/en active IP Right Grant
- 2001-04-05 EP EP01931405A patent/EP1299630B1/en not_active Expired - Lifetime
- 2001-04-05 JP JP2002507157A patent/JP2004502084A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011113431A1 (en) | 2010-03-17 | 2011-09-22 | Motortech Gmbh | Ignition method and ignition system therefor |
DE102010015998A1 (en) | 2010-03-17 | 2011-09-22 | Motortech Gmbh | Ignition and ignition system for it |
DE102022207300A1 (en) | 2022-07-18 | 2024-01-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method and device for controlling a prechamber spark plug |
WO2024017570A1 (en) | 2022-07-18 | 2024-01-25 | Robert Bosch Gmbh | Method and device for controlling a prechamber spark plug |
Also Published As
Publication number | Publication date |
---|---|
WO2002002923A1 (en) | 2002-01-10 |
EP1299630A1 (en) | 2003-04-09 |
JP2004502084A (en) | 2004-01-22 |
US6814047B2 (en) | 2004-11-09 |
DE50109291D1 (en) | 2006-05-11 |
DE10031875A1 (en) | 2002-01-10 |
US20030154954A1 (en) | 2003-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1299630B1 (en) | Method of ignition | |
DE102007034390B4 (en) | Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system | |
EP0640761B2 (en) | Controllable ignition system | |
DE69319253T2 (en) | MULTIPLE SPARK IGNITION SYSTEM WITH VARIABLE NUMBER OF IGNITION SPARKS FOR AN INTERNAL INTERNAL COMBUSTION ENGINE | |
DE2843119A1 (en) | COMBUSTION ENGINE | |
DE102008036477A1 (en) | Engine combustion condition detection apparatus and combustion condition detection method | |
DE102016221656B4 (en) | IGNITION CONTROL DEVICE AND IGNITION CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE | |
DE102021117050A1 (en) | METHODS AND SYSTEMS FOR A PRODUCTION SPARK GAP IGNITION DEVICE WITH A PASSIVE PRE-CHAMBER | |
DE102007034399B4 (en) | Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system | |
DE2258514C3 (en) | Ignition system for an internal combustion engine | |
EP0912828B1 (en) | Method for identifying knocking combustion in an internal combustion engine with an alternating current ignition system | |
DE69218900T2 (en) | Condition detection and control device for combustion for an internal combustion engine | |
EP2721275A1 (en) | Hybrid drive train, hybrid vehicle, and operating method | |
DE102014015486A1 (en) | Operating mode and map-dependent switchable spark-band ignition | |
DE4338740C1 (en) | Method for reducing the exhaust emissions when switching off internal combustion engines | |
WO1994003724A1 (en) | Sequence spark ignition system for internal combustion engines wirh special control for the last sequence ignition spark | |
EP1280993A2 (en) | Ignition system for an internal combustion engine | |
DE10031874A1 (en) | Ignition device has controller that sets up closing time of switch based on current operation mode of internal combustion engine and on second operating parameter | |
DE19838051A1 (en) | Electronic circuit for generating current or voltage pulses, such as ignition sparks for internal combustion engines, with storage capacitors | |
EP1191212A2 (en) | Method of operation for direct injection internal combustion engine | |
EP1056936B1 (en) | Method of burning off spark plugs in stratified charge mode | |
DE19720534C2 (en) | Method for influencing the ignition behavior of spark plugs | |
DE2509559A1 (en) | PROCEDURE FOR TEMPERATURE CONTROL IN A THERMAL REACTOR OF A COMBUSTION ENGINE AND CORRESPONDING IGNITION SYSTEM | |
WO1987003999A1 (en) | Ignition system for internal combustion engines | |
DE102006020452A1 (en) | Method for producing ignition spark and igniter, involves electrical high voltage at an ignition coil and control voltage is pulsed in such way that pulses arrive in resonance area of ignition coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030130 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT |
|
17Q | First examination report despatched |
Effective date: 20050418 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD OF IGNITION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REF | Corresponds to: |
Ref document number: 50109291 Country of ref document: DE Date of ref document: 20060511 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061227 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150624 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150423 Year of fee payment: 15 Ref country code: FR Payment date: 20150422 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50109291 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160405 |