EP1157825A1 - Computer-to-plate by ink jet - Google Patents
Computer-to-plate by ink jet Download PDFInfo
- Publication number
- EP1157825A1 EP1157825A1 EP00201858A EP00201858A EP1157825A1 EP 1157825 A1 EP1157825 A1 EP 1157825A1 EP 00201858 A EP00201858 A EP 00201858A EP 00201858 A EP00201858 A EP 00201858A EP 1157825 A1 EP1157825 A1 EP 1157825A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substituted
- unsubstituted
- ink
- printing
- saturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1066—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by spraying with powders, by using a nozzle, e.g. an ink jet system, by fusing a previously coated powder, e.g. with a laser
Definitions
- the present invention relates to a method for the preparation of a lithographic printing plate by means of ink jet printing.
- the image to be printed is present on a plate as a pattern of ink accepting (oleophilic) areas on an ink repellent (oleophobic or hydrophilic) background.
- the required ink repellency is provided by an initial application of a dampening (or "fountain) solution prior to inking.
- Conventional presensitized lithographic printing plates bear a UV sensitive coating based on photopolymer or diazonium chemistry.
- the plates have to be UV-exposed through a mask carrying the image.
- the mask is a graphic arts film prepared by photographic techniques based on silver halide chemistry and involving exposure by a camera or by an image-setter, and further involving wet processing.
- the SETPRTINT material trade mark of Agfa-Gevaert N.V. is based on silver halide DTR chemistry and consists of a polyethylene terephthalate base carrying a photographic coating which after photo-mode exposure and processing produces complementary oleophilic and hydrophilic areas.
- Another system based on photo-mode exposure but with a hydrophilic aluminum base is LITHOSTAR, trade mark of Agfa-Gevaert N.V..
- a system based on heat mode exposure by means of an intense infra-red laser is called THERMOSTAR, also a trade mark of Agfa-Gevaert N.V..
- ink jet printers have replaced laser printers as the most popular hard copy output printers for computers. Some of the competitive advantages of ink jet printers are low cost and reliability.
- the ink jet printing system is a relatively rapid image output system and has a simple construction because it does not require any complex optical system.
- an oleophilic liquid or fluid ink was printed by ink jet printing onto a hydrophilic aluminum surface of a lithographic printing plate. Titanate or silane coupling agents were present in the ink.
- ink jet printing wherein the ink is a solid or phase change type ink instead of a liquid or fluid type ink is described in U.S. Pat. No. 4,833,486 to deposit a hot wax on a surface of an offset plate. Upon cooling of the wax, it solidifies, thereby providing a printing plate.
- Solid ink jet printing has serious disadvantages for lithographic plates in that the wax or resin image has limited durability due to its thermoplastic, chemical, and adhesive properties and the amount and rounded shape of the solidified ink jet droplet on the media do not have the intrinsic image resolution properties found in liquid ink jet printing.
- Japanese Kokai Publication 113456/1981 proposes methods for preparing printing plates whereby ink-repelling materials (e.g. curable silicones) are printed on a printing plate by ink jet printing.
- the printing plate obtained by this method is an intaglio printing plate in which the ink-repelling material formed on the surface of the substrate serves as a non-image part.
- the resolution of the printed images at shadow area or reversed lines is not so good.
- a large amount of ink is needed in this method because the ink-repelling material must be deposited on the whole non-image part which occupies most of the surface of the printing plate, thereby delaying the printing process.
- US-P- 5 511 477 discloses a method for the production of photopolymeric relief-type printing plates comprising: forming a positive or a negative image on a substrate by ink jet printing with a photopolymeric ink composition, optionally preheated to a temperature of about 30°-260°C, and subjecting the resulting printed substrate to UV radiation, thereby curing said ink composition forming said image.
- This is an obnoxious method due to the sometimes high vapour pressure and toxicity of said inks.
- US-P- 5 312 654 discloses a method for making lithographic printing plates comprising: forming an image on a substrate having an ink absorbing layer and a hydrophilized layer between the substrate and the absorbing layer by ink jet printing using a photopolymerizable ink composition, and exposing it to an actinic light in the wavelength region with which said ink composition is sensitized to cure the image.
- the printing endurance of said printing plates is low.
- Japanese Kokai Publication 69244/1992 discloses a method for making printing plates comprising the steps of forming a printed image on a recording material subjected to a hydrophilic treatment by ink jet printing using a hydrophobic ink containing photocurable components, and exposing the whole surface to actinic light.
- the surface of the substrate to be used for the lithographic plate is usually subjected to various treatments such as a mechanical graining, an anodizing or a hydrophilic treatment to obtain good hydrophilic property and water retention property. Therefore, even the use of an ink composition having a very high surface tension results in a poor image on the surface of the substrate because of ink spreading and low printing endurance.
- EP-A- 533 168 discloses a method for avoiding said ink spreading by coating the lithographic base with an ink absorbing layer which is removed after ink printing. This is an uneconomical and cumbersome method.
- Research Disclosure 289118 of May 1988 discloses a method for making printing plates with the use of an ink jet wherein the ink is a hydrophobic polymer latex.
- said printing plates have a bad ink acceptance and a low printing endurance.
- EP-A- 003 789 discloses a process for the preparation of offset printing plates by means of an ink jet method with oleophilic inks. There is not indicated how said inks are made but from the examples it is clear that it concerns artificial latices, which are difficult to prepare.
- JN- 57/038142 discloses a method of preparing a printing plate by forming an ink image on a blank printing plate, and also by fixing this image thermally by making toner to adhere to this image-formed area.
- the composition of the ink is not mentioned, only the composition of the toners is disclosed.
- JN- 07/108667 discloses a plate-making method forming an ink image containing a hydrophilic substance on a conductive support whose surface layer is made hydrophilic according to an electrostatic attraction type ink set system to dry or cure the same, by applying bias voltage to the conductive support at the time of ink jet writing. This is a cumbersome process.
- US-P- 5,213,041 discloses a method for preparing a reusable printing plate for printing, projecting an imaging deposit on the plate surface by jet printing using an ejectable substance containing a heat fusible component.
- the image forms an imaging deposit which is fused to the surface of the printing plate using a variable frequency and variable power induction heater.
- a lithographic printing plate is manufactured by means of an ink jet fluid comprising reactive components selected from the group consisting of transition metal complexes and organic carbonyl compounds.
- the reactive compound comprises one or more chromium complexes of an organic acid.
- the present invention extends the teaching on the preparation of a lithographic printing plate whereby an oleophilizing fluid is directly applied onto a lithographic receiver by means of ink jet printing.
- the above mentioned objects are realized by providing a method for the preparation of a lithographic printing plate, said method comprising dispensing information-wise by means of ink jet printing droplets of a fluid onto a surface of a lithographic receiver, characterized in that said fluid contains an oleophilizing agent having in its chemical structure a phosphorous containing group capable of reacting with said surface of said lithographic receiver.
- the essence of the present invention is the presence in the ink jet fluid of an oleophilizing compound having in its molecule a phosphorous containing group capable of reacting with the surface of the lithographic receiver.
- the oleophilizing agents containing a phosphorous containing functional group, capable of interacting with a metal oxide are selected from mono- or di-esters of phosphoric acids or salts thereof or the thio-analogues, phosphonic acid derivatives salts thereof or the thio-analogues, and phosphorylhydrazides or the thio-analogues.
- Said mono- and di-esters of phosphoric acid are represented by general formula (I).
- R12 and R13 each independently represent hydrogen or a counterion to compensate the negative charge of X 2 or X 3 , a substituted or unsubstituted, saturated or unsaturated aliphatic chain, a substituted or unsubstituted aryl or heteroaryl group; R12 and R13 may form a ring;
- X 1 , X 2 , X 3 and X 4 are independently selected from oxygen or sulfur;
- M is a proton or a counterion to compensate the negative charge of X 4 .
- X 1 to X 4 are oxygen.
- the phosphate hydrophobizing agent is a phoshate surfactant represented by the general formula (II) : wherein n is an integer different from 0 ; M and N are independently selected from a proton or a counterion to compensate the negative charge of the phosphate ; R represents a substituted or unsubstituted, saturated or unsaturated aliphatic chain, a substituted or unsubstituted aryl or hetero-aryl group.
- the oleophilizing compounds are chosen from phosphonic acids and their thio-analogues.
- Phosphonic acids and their thio-analogues are represented by general formula (III).
- R14 represent a substituted or unsubstituted saturated or unsaturated aliphatic chain, or a substituted or unsubstituted aryl or hetero-aryl group
- R15 represents a hydrogen or counterion to compensate the negative charge of X 6 , a substituted or unsubstituted, saturated or unsaturated aliphatic chain, or a substituted or unsubstituted aryl or hetero-aryl group
- R14 and R15 may form a ring
- X 5 , X 6 and X 7 are independently selected from oxygen or sulfur
- M is a proton or a counterion to compensate the negative charge of X 7 .
- X 5 to X 7 are oxygen.
- Still a further preferred class of oleophilizing compounds according to the present invention are phosphorylhydrazides and hydroxamic acids.
- R16 and R17 each independently represent a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted aryl or hetero-aryl group, OR 20 , NR 21 R 22 , SR 23 or N(YR18) (M); R 20 to R 23 independently represent a hydrogen or counterion to compensate the negative charge, a substituted or unsubstituted, saturated or unsaturated aliphatic group or a substituted or unsubstituted aryl or hetero-aryl group; all R groups may form rings; X represents oxygen or sulfur; Y represents oxygen or NR19; R18 and R19 are independently selected from a hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic chain, a substituted or unsubstituted aryl or hetero-aryl group, or an acyl group; R18 and R19 may form a ring; M is
- the oleophilizing agent may be present in the ink in an amount from 0.01 to 6, preferably from 0.02 to 3 % by weight.
- the oleophilizing agent is in the form of a homogeneous solution or a stable colloidal dispersion, so that it can pass through the nozzles of the printer head.
- the liquid carrier is water or an organic solvent or combinations thereof. Choice of the specific liquid carrier depends on the specific ink jet printer and its compatibility with the ink jet printing head and cartridge being used for the ink jet printing. Both aqueous based and solvent based fluids can be used in the present invention depending on the ink jet technology that is being used : piezo, thermal, bubble jet or continuous ink jet.
- the aqueous composition may comprise one or more water miscible solvents e.g. a polyhydric alcohol such as ethylene glycol, diethylene glycol, triethylene glycol or trimethylol propane.
- the amount of aqueous carrier medium in the aqueous composition may be in the range from 30 to 99.995, preferably from 50 to 95 % by weight.
- organic solvents may be used as a carrier medium for the ink jet fluid, e.g. alcohols, ketones or acetates.
- Ink jet fluids suitable for use with ink jet printing systems may have a surface tension in the range from 20 to 60, preferably from 30 to 50 dyne/cm. Control of surface tensions in aqueous ink jet fluids may be accomplished by additions of small amounts of surfactants. The level of surfactants to be used can be determined through simple trial and error experiments. Several anionic and nonionic surfactants are known in the ink jet art.
- the viscosity of the fluid is preferably not greater than 20 mPa.s, e.g. from 1 to 10, preferably from 1 to 5 mPa.s at room temperature.
- the ink jet fluid may further comprise other ingredients.
- a cosolvent may be included to help prevent the ink from drying out in the orifices of the print head.
- a biocide may be added to prevent unwanted microbial growth which may occur in the ink over time. Additional additives that may be optionally present in the ink include thickeners, pH adjusters, buffers, conductivity enhancing agents, drying agents and defoamers.
- dyes may be added.
- Many dyes and pigments are known to be suited for the ink jet technology. Suitable dyes are further selected based on their compatibility in the carrier medium (i.e. aqueous based or solvent based) and on the compatibility with the oleophilizing agent, i.e. they should not lead to coagulation.
- aqueous inks are anionic dyes such as acid black
- the support may be any support suitable for printing plates.
- Typical supports include metallic and polymeric sheets or foils.
- a support having a metallic surface is used.
- the metallic surface is oxidised.
- a support having an anodised aluminium surface is employed.
- the support for the lithographic printing plate is typically formed of aluminium which has been grained, for example by electrochemical graining, and then anodised, for example, by means of anodising techniques employing sulphuric acid and/or phosphoric acid. Methods of both graining and anodising are very well known in the art and need not be further described herein.
- the printing plate After writing the image the printing plate can be inked with printing ink in the normal way, and the plate can be used on a printing press. Before inking the plate can be treated with an aqueous solution of natural gum, such as gum acacia, or of a synthetic gum such as carboxymethyl cellulose, as it is well known in the art of printing.
- natural gum such as gum acacia
- synthetic gum such as carboxymethyl cellulose
- the lithographic base with a hydrophilic surface comprises a flexible support, such as e.g. paper or plastic film, provided with a cross-linked hydrophilic layer.
- a particularly suitable cross-linked hydrophilic layer may be obtained from a hydrophilic binder cross-linked with a cross-linking agent such as formaldehyde, glyoxal, polyisocyanate, melamine type cross-linkers, ammonium zirconyl carbonate, titanate crosslinkers, or a hydrolysed tetraalkylorthosilicate. The latter is particularly preferred.
- hydrophilic binder there may be used hydrophilic (co)polymers such as, for example, homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylate acid, methacrylate acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
- the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60 percent by weight, preferably 80 percent by weight.
- a cross-linked hydrophilic binder in the heat-sensitive layer used in accordance with the present embodiment also contains colloidal inorganic pigments that increase the mechanical strength and the porosity of the layer e.g. metal oxide particles which are particles of titanium dioxide or other metal oxides. It is believed that incorporation of these particles gives the surface of the cross-linked hydrophilic layer a uniform rough texture consisting of microscopic hills and valleys which serve as storage places for water in background areas.
- these particles are oxides or hydroxydes of beryllium, magnesium, aluminium, silicon, gadolinium, germanium, arsenic, indium, tin, antimony, tellurium, lead, bismuth, titanium or a transition metal.
- Particularly preferable inorganic particles are oxides or hydroxides of aluminum, silicon, zirconium or titanium, used in at most 75 % by weight of the hydrophilic layer.
- the inorganic pigments may have have a particla size ranging from 0.005 ⁇ m to 10 ⁇ m.
- the thickness of a cross-linked hydrophilic layer in a lithographic base in accordance with this embodiment may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m.
- plastic film e.g. subbed polyethylene terephthalate film, subbed polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film etc.
- the plastic film support may be opaque or transparent.
- ink jet printing tiny drops of ink fluid are projected directly onto an ink receptor surface without physical contact between the printing device and the receptor.
- the printing device stores the printing data electronically and controls a mechanism for ejecting the drops image-wise. Printing is accomplished by moving the print head across the paper or vice versa.
- Early patents on ink jet printers include US 3,739,393, US 3,805,273 and US 3,891,121.
- the jetting of the ink droplets can be performed in several different ways.
- a continuous droplet stream is created by applying a pressure wave pattern. This process is known as continuous ink jet printing.
- the droplet stream is divided into droplets that are electrostatically charged, deflected and recollected, and into droplets that remain uncharged, continue their way undeflected, and form the image.
- the charged deflected stream forms the image and the uncharged undeflected jet is recollected.
- several jets are deflected to a different degree and thus record the image (multideflection system).
- the ink droplets can be created “on demand” (“DOD” or “drop on demand” method) whereby the printing device ejects the droplets only when they are used in imaging on a receiver thereby avoiding the complexity of drop charging, deflection hardware, and ink recollection.
- DOD on demand
- the ink droplet can be formed by means of a pressure wave created by a mechanical motion of a piezoelectric transducer (so-called “piezo method”), or by means of discrete thermal pushes (so-called “bubble jet” method, or “thermal jet” method).
- test pattern containing a text image was written onto a grained and anodised aluminium printing plate material which had been loaded into the printer. The plate was removed and gummed with OZASOL RC515.
- the ink as described in example 1 was loaded into the ink cartridge of a Epson STYLUS COLOR 900 ink jet printer, the cartridge having previously been emptied and cleaned.
- test pattern containing a text image was written onto a grained and anodised aluminium printing plate material which had been loaded into the printer. The plate was removed and gummed with OZASOL RC515.
- Example 1 was repeated with the exception that before loading the ink was adjusted to pH 7 with 1 M NaOH. Again, after imaging, gumming and printing excellent copies were obtained.
- Example 1 was repeated with the exception that the plate was not gummed after the imaging. Excellent copies were also obtained.
- Example 1 was repeated with the exception that another oleophilizing agent comprising a phosphorous containing group, as described in following table 1 replaced EMPHOS PS810. All compounds are represented by general formula (II). The suppliers of which the compounds are trade marks are added to the table.
- GAFAC RA600 Excellent copies Rhone-Poulenc (II-1) 6.
- GAFAC KE870 Excellent copies Rhone Poulenc (II-2) 7.
- DISPONIL K7000 Excellent copies Henkel (II-4) 9.
- DISPONIL FEB5600 Excellent copies Henkel (II-5) 10.
- EMPHOS 141 Excellent copies WITCO (II-7) 11.
- EMPHOS CS136 Excellent copies WITCO (II-9)
- Example 1 was repeated with the exception that no oleophilizing agent was used in the ink solution. After imaging, gumming and printing no good copies could be obtained. The image did not show any tendency to accept the ink.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Printing Plates And Materials Therefor (AREA)
- Ink Jet (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
tradename | Manufacturer | Compound |
GAFAC RA600 | Rhone-Poulenc | II-1 |
GAFAC KE870 | Rhone-Poulenc | II-2 |
Disponil FEP6300 | Henkel | II-3 |
Disponil K7000 | Henkel | II-4 |
Disponil FEB5600 | Henkel | II-5 |
Emphos PS810 | Witco | II-6 |
Emphos 141 | Witco | II-7 |
Emphos CS1361 | Witco | II-8 |
Emphos CS136 | Witco | II-9 |
Example | Oleophilizing agent | Lithograhic result |
5. | GAFAC RA600 | Excellent copies |
Rhone-Poulenc (II-1) | ||
6. | GAFAC KE870 | Excellent copies |
Rhone Poulenc (II-2) | ||
7. | DISPONIL FEP 6300 | Excellent copies |
Henkel (II-3) | ||
8. | DISPONIL K7000 | Excellent copies |
Henkel (II-4) | ||
9. | DISPONIL FEB5600 | Excellent copies |
Henkel (II-5) | ||
10. | EMPHOS 141 | Excellent copies |
WITCO (II-7) | ||
11. | EMPHOS CS1361 | Excellent copies |
WITCO (II-8) | ||
12. | EMPHOS CS136 | Excellent copies |
WITCO (II-9) |
Example No. | Compound | Conc. % w/w | Ink uptake |
14. | I-1 | 0.1 | Excellent |
15. | " | 0.5 | " |
16. | " | 1.0 | " |
17. | " | 2.0 | " |
18. | I-2 | 0.1 | " |
19. | " | 0.5 | " |
20. | " | 1.0 | " |
21. | " | 2.0 | " |
22. | III-2 | 0.1 | " |
23. | " | 0.5 | " |
24. | " | 1.0 | " |
25. | " | 2.0 | " |
26. | I-3 | 0.1 | " |
27. | " | 0.5 | " |
28. | IV-9 | 0.5 | " |
29. | " | 1.0 | " |
30. | None | - | No uptake |
Claims (12)
- A method for the preparation of a lithographic printing plate, said method comprising dispensing information-wise by means of ink jet printing droplets of a fluid onto a surface of a lithographic receiver, characterized in that said fluid contains an oleophilizing agent having in its chemical structure a phosphorous containing group capable of reacting with said surface of said lithographic receiver.
- A method according to claim 1 wherein said oleophilizing agent is represented by following general formula (I) : wherein R12 and R13 each independently represent a substituted or unsubstituted, saturated or unsaturated aliphatic chain, a substituted or unsubstituted aryl or hetero-aryl group; R12 and R13 may form a ring; X1, X2, X3 and X4 are independently selected from oxygen or sulfur; M is a proton or a counterion to compensate the negative charge of X4.
- A method according to claim 1 wherein said oleophilizing agent is represented by general formula (II) : wherein n is an integer different from 0; M and N are independently selected from a proton or a counterion to compensate the negative charge of the phosphate; R represents a substituted or unsubstituted, saturated or unsaturated aliphatic chain, or a substituted or unsubstituted aryl or hetero-aryl group.
- A method according to claim 1 wherein said oleophilizing agent is represented by general formula (III) : wherein R14 represents a substituted or unsubstituted, saturated or unsaturated aliphatic chain, or a substituted or unsubstituted aryl or heteroaryl group; R15 represents a hydrogen or counterion to compensate the negative charge of X6, a substituted or unsubstituted, saturated or unsaturated aliphatic chain, or a substituted or unsubstituted aryl or hetero-aryl group; R14 and R15 may form a ring; X5, X6 and X7 are independently selected from oxygen or sulfur; M is a proton or a counterion to compensate the negative charge of X7.
- A method according to claim 1 wherein said oleophilizing agent is represented by general formula (IV) wherein R16 and R17 each independently represent a substituted or unsubstituted, saturated or unsaturated aliphatic chain, a substituted or unsubstituted aryl or hetero-aryl group, OR20, NR21R22, SR23 or N(YR18)(M); R20 to R23 independently represent a hydrogen or counterion to compensate the negative charge, a substituted or unsubstituted, saturated or unsaturated aliphatic chain, or a substituted or unsubstituted aryl or hetero-aryl group; all R groups may form rings; X represents oxygen or sulfur; Y represents oxygenor NR19; R18 and R19 are independently selected from a hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic chain, a substituted or unsubstituted aryl or hetero-aryl group, or an acyl group; R18 and R19 may form a ring; M is a hydrogen or a counterion to compensate the negative charge.
- A method according to any of claims 1 to 5 wherein said oleophilizing agent is present in said fluid in an amount ranging from 0.01 to 6 % by weight.
- A method according to any of claims 1 to 6 wherein said fluid further contains a colorant.
- A method according to any of claims 1 to 7 wherein said surface of said lithographic receiver is metallic.
- A method according to claim 8 wherein said metallic surface is a grained and anodized aluminum.
- A method according to any of claims 1 to 7 wherein said lithographic receiver comprises a support and a cross-linked hydrophilic layer.
- A method according to claim 10 wherein said hydrophilic layer comprises an inorganic pigment.
- A method according to claim 11 wherein said inorganic pigment is chosen from an oxide or hydroxide of beryllium, magnesium, aluminum, silicon, gadolinium, germanium, arsenic, indium, tin, antimony, tellurium, lead, bismuth, titanium or a transition
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20000201858 EP1157825B1 (en) | 2000-05-25 | 2000-05-25 | Computer-to-plate by ink jet |
DE2000610437 DE60010437T2 (en) | 2000-05-25 | 2000-05-25 | "Computer-to-plate" by inkjet |
US09/864,462 US6523472B1 (en) | 2000-05-25 | 2001-05-23 | Computer-to-plate by ink jet |
JP2001155417A JP2002046248A (en) | 2000-05-25 | 2001-05-24 | Computer-to-plate method using ink jet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20000201858 EP1157825B1 (en) | 2000-05-25 | 2000-05-25 | Computer-to-plate by ink jet |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1157825A1 true EP1157825A1 (en) | 2001-11-28 |
EP1157825B1 EP1157825B1 (en) | 2004-05-06 |
Family
ID=8171552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20000201858 Expired - Lifetime EP1157825B1 (en) | 2000-05-25 | 2000-05-25 | Computer-to-plate by ink jet |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1157825B1 (en) |
JP (1) | JP2002046248A (en) |
DE (1) | DE60010437T2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1386728A1 (en) * | 2002-08-02 | 2004-02-04 | Eastman Kodak Company | Method and substrate for the preparation of a printing plate |
EP1386729A1 (en) * | 2002-08-02 | 2004-02-04 | Eastman Kodak Company | Method for the preparation of a printing plate |
EP1401190A2 (en) | 2002-09-17 | 2004-03-24 | Agfa-Gevaert | Sub dot phase modulation for computer to plate inkjet system |
US6742886B1 (en) | 2003-01-21 | 2004-06-01 | Kodak Polychrome Graphics Lle | Ink jet compositions for lithographic printing |
EP1477308A1 (en) * | 2003-05-14 | 2004-11-17 | Agfa-Gevaert | Computer-to-plate inkjet printing method |
US6921626B2 (en) | 2003-03-27 | 2005-07-26 | Kodak Polychrome Graphics Llc | Nanopastes as patterning compositions for electronic parts |
US6981446B2 (en) | 2003-07-08 | 2006-01-03 | Eastman Kodak Company | Ink-jet imaging method |
US7056643B2 (en) | 2003-10-09 | 2006-06-06 | Eastman Kodak Company | Preparation of a printing plate using ink-jet |
US7081322B2 (en) | 2003-03-27 | 2006-07-25 | Kodak Graphics Communications Canada Company | Nanopastes as ink-jet compositions for printing plates |
US7094503B2 (en) | 2003-03-27 | 2006-08-22 | Kodak Graphics Communications Canada Company | Nanopastes for use as patterning compositions |
US7217502B2 (en) | 2003-03-27 | 2007-05-15 | Eastman Kodak Company | Nanopastes for use as patterning compositions |
EP1800861A1 (en) * | 2005-12-20 | 2007-06-27 | Agfa Graphics N.V. | Method for making a lithographic printing plate |
EP1801170A1 (en) * | 2005-12-20 | 2007-06-27 | Agfa Graphics N.V. | Inkjet ink for preparing lithographic printing plates and method for their preparation |
WO2007071552A2 (en) * | 2005-12-20 | 2007-06-28 | Agfa Graphics Nv | Contrast dyes for inkjet lithographic printing plates |
WO2007071550A1 (en) * | 2005-12-20 | 2007-06-28 | Agfa Graphics Nv | Inkjet ink for preparing lithographic printing plates and method for their preparation |
US9163158B1 (en) | 2011-09-04 | 2015-10-20 | VIM Technologies, Inc. | Water based fluid for producing ready to press direct inkjet image-able lithographic printing plates |
US9333737B1 (en) | 2012-12-03 | 2016-05-10 | VIM Technologies, Inc. | Methods of preparing lithographic printing members by imagewise deposition and precursors suitable therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6814789B2 (en) * | 2002-09-24 | 2004-11-09 | Hewlett-Packard Development Company, L.P. | Use of additives to reduce puddling in inkjet inks |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6225081A (en) * | 1985-07-26 | 1987-02-03 | Fujitsu Ltd | Method and device for lithography |
EP0882584A1 (en) * | 1997-06-04 | 1998-12-09 | Eastman Kodak Company | Printing plate and method of preparation |
-
2000
- 2000-05-25 DE DE2000610437 patent/DE60010437T2/en not_active Expired - Lifetime
- 2000-05-25 EP EP20000201858 patent/EP1157825B1/en not_active Expired - Lifetime
-
2001
- 2001-05-24 JP JP2001155417A patent/JP2002046248A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6225081A (en) * | 1985-07-26 | 1987-02-03 | Fujitsu Ltd | Method and device for lithography |
EP0882584A1 (en) * | 1997-06-04 | 1998-12-09 | Eastman Kodak Company | Printing plate and method of preparation |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 011, no. 205 (M - 603) 3 July 1987 (1987-07-03) * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6983693B2 (en) | 2002-08-02 | 2006-01-10 | Eastman Kodak Company | Method and substrate for the preparation of a printing plate |
EP1386729A1 (en) * | 2002-08-02 | 2004-02-04 | Eastman Kodak Company | Method for the preparation of a printing plate |
US7078159B2 (en) | 2002-08-02 | 2006-07-18 | Eastman Kodak Company | Method for the preparation of a printing plate |
EP1386728A1 (en) * | 2002-08-02 | 2004-02-04 | Eastman Kodak Company | Method and substrate for the preparation of a printing plate |
EP1401190A2 (en) | 2002-09-17 | 2004-03-24 | Agfa-Gevaert | Sub dot phase modulation for computer to plate inkjet system |
EP1401190A3 (en) * | 2002-09-17 | 2005-10-12 | Agfa-Gevaert | Sub dot phase modulation for computer to plate inkjet system |
US6742886B1 (en) | 2003-01-21 | 2004-06-01 | Kodak Polychrome Graphics Lle | Ink jet compositions for lithographic printing |
US6921626B2 (en) | 2003-03-27 | 2005-07-26 | Kodak Polychrome Graphics Llc | Nanopastes as patterning compositions for electronic parts |
US7081322B2 (en) | 2003-03-27 | 2006-07-25 | Kodak Graphics Communications Canada Company | Nanopastes as ink-jet compositions for printing plates |
US7094503B2 (en) | 2003-03-27 | 2006-08-22 | Kodak Graphics Communications Canada Company | Nanopastes for use as patterning compositions |
US7217502B2 (en) | 2003-03-27 | 2007-05-15 | Eastman Kodak Company | Nanopastes for use as patterning compositions |
EP1477308A1 (en) * | 2003-05-14 | 2004-11-17 | Agfa-Gevaert | Computer-to-plate inkjet printing method |
US6981446B2 (en) | 2003-07-08 | 2006-01-03 | Eastman Kodak Company | Ink-jet imaging method |
US7056643B2 (en) | 2003-10-09 | 2006-06-06 | Eastman Kodak Company | Preparation of a printing plate using ink-jet |
EP1800861A1 (en) * | 2005-12-20 | 2007-06-27 | Agfa Graphics N.V. | Method for making a lithographic printing plate |
EP1801170A1 (en) * | 2005-12-20 | 2007-06-27 | Agfa Graphics N.V. | Inkjet ink for preparing lithographic printing plates and method for their preparation |
WO2007071551A1 (en) * | 2005-12-20 | 2007-06-28 | Agfa Graphics Nv | Method for making a lithographic printing plate |
WO2007071552A2 (en) * | 2005-12-20 | 2007-06-28 | Agfa Graphics Nv | Contrast dyes for inkjet lithographic printing plates |
WO2007071550A1 (en) * | 2005-12-20 | 2007-06-28 | Agfa Graphics Nv | Inkjet ink for preparing lithographic printing plates and method for their preparation |
EP1803780A1 (en) * | 2005-12-20 | 2007-07-04 | Agfa Graphics N.V. | Contrast dyes for inkjet lithographic printing plates |
WO2007071552A3 (en) * | 2005-12-20 | 2007-11-01 | Agfa Graphics Nv | Contrast dyes for inkjet lithographic printing plates |
US9163158B1 (en) | 2011-09-04 | 2015-10-20 | VIM Technologies, Inc. | Water based fluid for producing ready to press direct inkjet image-able lithographic printing plates |
US9333737B1 (en) | 2012-12-03 | 2016-05-10 | VIM Technologies, Inc. | Methods of preparing lithographic printing members by imagewise deposition and precursors suitable therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2002046248A (en) | 2002-02-12 |
EP1157825B1 (en) | 2004-05-06 |
DE60010437D1 (en) | 2004-06-09 |
DE60010437T2 (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1157825B1 (en) | Computer-to-plate by ink jet | |
EP0900142B1 (en) | Materials useful in lithographic printing plates | |
US6906019B2 (en) | Pre-treatment liquid for use in preparation of an offset printing plate using direct inkjet CTP | |
US6526886B2 (en) | Computer-to-plate by ink jet | |
US6457413B1 (en) | Computer-to-plate by ink jet | |
US6739260B2 (en) | Method for the preparation of a negative working printing plate | |
EP1157828B1 (en) | Computer-to-plate by ink jet | |
US20120060710A1 (en) | Inkjet-imageable lithographic printing members and methods of preparing and imaging them | |
US6662723B2 (en) | Computer-to-plate by ink jet | |
US6523472B1 (en) | Computer-to-plate by ink jet | |
EP1157826B1 (en) | Computer-to-plate by ink jet | |
EP1211063B1 (en) | Process for making lithographic printing plates by ink jet printing | |
EP1157827B1 (en) | Computer-to-plate by ink jet | |
EP1266750B1 (en) | Method for preparation of a lithographic printing plate | |
US6523473B2 (en) | Computer-to-plate by ink jet | |
US6852363B2 (en) | Preparation of lithographic printing plate by computer-to-plate by ink jet method utilizing amidine-containing oleophilizing compound | |
EP1219415B1 (en) | Ink-jet method for preparing lithographic printing plates | |
WO2006039313A1 (en) | Non-aqueous ink jet ink for imaging a lithographic printing plate | |
EP1442895B1 (en) | A method for preparation of a lithographic printing plate and a lithographic printing plate produced by said method | |
EP1477308B1 (en) | Computer-to-plate inkjet printing method | |
JP2003048299A (en) | Method for manufacturing negatively working printing plate | |
IL138499A (en) | Materials and method useful in lithographic printing plates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA-GEVAERT |
|
17P | Request for examination filed |
Effective date: 20020528 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60010437 Country of ref document: DE Date of ref document: 20040609 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050208 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150408 Year of fee payment: 16 Ref country code: GB Payment date: 20150403 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150401 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60010437 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161201 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160525 |