EP1155760A1 - Verfahren zur Herstellung eines thermisch belasteten Gussteils - Google Patents
Verfahren zur Herstellung eines thermisch belasteten Gussteils Download PDFInfo
- Publication number
- EP1155760A1 EP1155760A1 EP01109115A EP01109115A EP1155760A1 EP 1155760 A1 EP1155760 A1 EP 1155760A1 EP 01109115 A EP01109115 A EP 01109115A EP 01109115 A EP01109115 A EP 01109115A EP 1155760 A1 EP1155760 A1 EP 1155760A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- ceramic material
- polymer foam
- mold
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
- B22C7/023—Patterns made from expanded plastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
- B22C9/043—Removing the consumable pattern
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/182—Transpiration cooling
- F01D5/183—Blade walls being porous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
- F05D2230/211—Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/606—Directionally-solidified crystalline structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/612—Foam
Definitions
- the invention relates to a method for producing a thermal loaded casting of a thermal turbo machine according to the Preamble of claim 1.
- thermal Turbomachinery for example turbine blades of gas turbines Cooling air holes or with cooling structures to provide the one hand To be able to increase the temperature of the hot gas and on the other hand the Extend the life of the affected parts.
- the Inside or a double-walled cooling system for example one Turbine blade cooled with cooling air by dissipating the heat to the outside.
- the outside of the blade is covered by a film forms on the surface of the turbine blade, cooled. The goal is to make the film cooling as effective as possible while maintaining the Reduce the amount of cooling air.
- Gas turbine blades that work with film cooling are for example from the publications DE 43 28 401 or US 4,653,983 known.
- the invention is based on the object of a method for the production of a thermally loaded casting of a thermal turbo machine to create an integrated cooling structure, which increases the efficiency of the Turbo engine increased.
- the cooling structure should be made of the same material exist like the casting and if possible also in one step during the Casting process can be produced.
- the object is achieved by a method according to the Preamble of claim 1 solved in that a wax model of the cooling part is provided, at least one polymer foam is provided, which is attached to the wax model or in one Cavity of the wax model is introduced, the at least one Polymer foam and the wax model in a ceramic material be immersed, the ceramic model being the wax model accumulates around and also the polymer foam with the ceramic Fills material, the ceramic material is dried so that a Mold is created, the wax and the at least one polymer foam be removed by heat treatment, the casting with the Is produced by a known casting process and that ceramic material is removed.
- a ceramic insert is prefabricated from a polymer foam with an open-pore structure.
- This ceramic insert is attached to the wax model or inserted into a cavity of the wax model and the casting mold is manufactured as indicated above.
- the use of a prefabricated mold in which the polymer foam is foamed is advantageously conceivable.
- the slip can be applied to the polymer foam when it is still in the mold. In this way, complicated three-dimensional shapes of the cooling structure can also be created.
- the material of this form can also contain a binder for better drying of the still liquid slip.
- Such a prefabricated, ceramic insert can be used before Manufacturing the mold to be heated to make it a special one To achieve firmness. It is also conceivable to use the polymer foam Burn out insert before attaching to the wax model.
- the object according to the invention is achieved by separate production of the casting and the open-pore cooling structure solved.
- the two parts are soldered or Welding linked together.
- an open-pore cooling structure that is white on the outside can be used ceramic protective layer to be coated to the casting additional, external abrasion and in front of the surrounding hot gases protect. Due to the open-pore structure of the metal foam, the sticks ceramic protective layer very well and the possibility of one Flaking due to the extreme operating conditions is reduced. In addition, the cooling is still under the ceramic protective layer ensured if the cooling structure is not entirely of the ceramic Protective layer is penetrated.
- a polymer foam can advantageously be used with a variable pore size can be used to determine certain Areas of the cooling system reinforced or other areas diminished to cool. It will advantageously be a casting process for Act manufacturing of a single-crystalline or directionally solidified component. It can, for example, be a guide for the thermally stressed cast part. or a moving blade, around a heat accumulation segment, around a platform of the Guide or the rotor blade or around a combustion chamber wall Gas turbine or a rotor blade of a compressor.
- the invention relates to a method for producing a thermal cast part of a thermal turbo machine. It can be specifically, for example, around a guide or rotor blade of a gas turbine or a compressor to a heat accumulation segment of a gas turbine the wall of a combustion chamber or the like, thermally high acted cast part.
- the device consists of a vacuum chamber, which is a contains upper heating chamber and a lower cooling chamber. Both chambers are separated by a baffle.
- the vacuum chamber holds a mold, which is filled with a melt.
- thermal and mechanically resilient parts as in the case of guide and rotor blades from Gas turbines, for example, will be a superalloy based on Nickel used.
- the baffles In the middle of the baffles there is an opening through which slowly removes the mold from the heating chamber during the process is moved into the cooling chamber so that the casting is from the bottom up directed frozen. The downward movement is done by a drive rod, on which the mold is stored. The bottom of the mold is executed water-cooled. Below the baffles are means to produce and leading a gas flow. These funds provide through the Gas flow next to the lower cooling chamber for additional cooling and therefore for a larger temperature gradient on the solidification front.
- the method according to the invention for producing a turbine blade 1 as for example in Figures 1 to 3 in different Embodiments refer to a in the Turbine blade 1 integrated cooling system 7, which in whole or in part is filled with an open-pore metal foam 9.
- the turbine blade 1 1 has a cavity 6, from which during operation of the Turbo machine cooling air 18 through inner cooling holes 8,8b in the double wall designed cooling system 7 is directed.
- the arrows indicate that Flow direction of the cooling air 18.
- the cooling air 18 then flows both inside the turbine blade in height as well as to the rear edge 3 of the Turbine blade 1. It can the cooling system 7 on the rear edge 3, on outer cooling holes 8.8a or at larger cooling openings 8.8c, both on the front 2, on the pressure side 4 or on the suction side 5 may be present, leave again.
- FIG 3 which the leading edge 2 from the blade root 9 to Blade tip 10 in the form of a longitudinal section through a shows turbine blade 1 according to the invention, discloses the Flow direction of the cooling air 18.
- the cooling air 18 enters the cooling system 7 through internal cooling openings 8,8b from the cavity 6.
- the cooling air 18 then flows through the pores of the metal foam 9, which is within the Cooling system 7 is located.
- the aim of the invention is now to provide such, with open-pore metal foam 9th filled cooling systems 7 already during the casting process with casting furnaces, as mentioned above, integral with the entire casting manufacture.
- a wax model of the part to be cooled is provided.
- An open-pore polymer foam which for example a Polyurethane foam can be cast on the wax model of the Partly stapled or in a possibly existing cavity of the Wax model introduced. It can also be different Wax / polymer model stitched together to form an entire model become.
- the polymer foam and the wax model are then integrated into one liquid, ceramic material, which is also called slip, immersed. It is not only the wax model that forms the later one Mold of the casting, but the ceramic material also penetrates into the Pores of the polymer foam.
- the slip penetrates the Whole polymer foam, since it is an open-cell foam.
- the ceramic material is then dried so that the The mold with which the casting is made is created. After this The process of drying the slip becomes both the wax and the wax Polymer foam removed by an appropriate heat treatment, i.e. burned out. In this step, the mold is fired, i.e. in this way it contains its firmness.
- the casting is made with the so created mold by a known, closer above Cast iron described described manufactured in a known manner. Because the liquid Alloy when filling not only in the mold itself, but also in the pores created by the polymer foam, which the later Form cooling system, penetrates without problems, the above mentioned arises Metal foam 9 as a cooling system 7 simultaneously during the solidification of the Alloy.
- the cast part and the metal foam are then advantageously made of a part and further process steps for the production of the cooling structure are not incurred.
- This type of production avoids the casting process and the subsequent solidification also a porosity of the super alloy inside the metal foam 9, since the liquid alloy is already during filling evenly within the open-pore mold (created distributed through the polymer foam).
- the ceramic mold can then be removed in a suitable manner , for example by using an acid or an alkali.
- a structure can also be created using the described method be, as shown in Figure 2, which schematically shows a section through a shows turbine blade 1 according to the invention is visible.
- the cooling structure 7 only on the front edge 2 of the turbine blade 1 available.
- This cooling structure 7 was created as already above described by simply attaching the polymer foam to the Wax model. All other manufacturing steps are the same.
- the cooling air 18 penetrates from the Cavity 6 through the cooling holes 8,8b into the cooling structure 7.
- the Cooling structure 7 itself is covered with a ceramic protective layer 11 (thermal Barrier Coating, TBC) coated. This is done, for example, by a known from the prior art plasma spray process or equivalent coating process.
- TBC thermal Barrier Coating
- the porous cooling structure 7 can be coated with TBC in various ways Way (by varying parameters such as spray angle, distance, -particle size, -speed, -temperature etc.) happen.
- the Cooling structure 7 can be completely penetrated with TBC, so that the Pores of the metal foam 9 are completely filled. Through pores becomes a very allows good adhesion of the TBC.
- the cooling structure 7 can also be used only in a layer near the surface to be covered with TBC so that below the protective layer of TBC there is another layer into which cooling air 18 can penetrate. It is also conceivable that cooling holes 8 within the Protective layer 11 are present through which the cooling air 18 to the outside exit. Due to the open-pore structure of the metal foam 9 adheres ceramic protective layer 11 very well.
- the adhesion of the ceramic protective layer 11 to the cooling structure can still be improved.
- the flaking of the TBC during the operation of the Casting due to poor adhesion to the base material becomes advantageous significantly reduced or prevented.
- Possible cooling holes 8 within the ceramic protective layer 11 can have arisen from the fact that a suitable masking before the Coating with TBC and unmasking with suitable agents afterwards takes place.
- the masking can be done, for example, with polymer foam happen, which is burned out for unmasking.
- a second It is possible to mask the surface within the Make mold to provide which occupy this place. In this case the ceramic mold at these points only after coating removed with TBC.
- the polymer foam before attaching to the wax model or before Insert into a cavity that is in the wax model with a slip treated so that a separate model of the cooling structure arises from a ceramic material.
- the polymer foam is in the Submerged slurry so that the pores fill. Then follows the obligatory drying of the slip.
- the size, i.e. the outer dimensions, of the polymer foam is not changed or only changed within small tolerance limits becomes. This can also be ensured by the fact that the Polymer foam is foamed in a mold so that the outer Dimensions and possibly also a complex 3-dimensional Forming are fixed.
- Adherence to the outer dimensions can be foamed improved drying of the slip contain a binder.
- Such an insert can also be used before attaching to the wax model be heated by heat treatment, which further increases the strength elevated. In the ceramic body, this is done by a sintering process. The mold becomes firmer and denser overall.
- FIGs 4 and 5 show a heat accumulation segment 14 of a gas turbine.
- This Heat accumulation 1 can have a double-walled cooling structure 7 (FIG 4) or an externally attached metal foam 9 (FIG. 5), which analogous to the turbine blade of FIG. 2 in whole or in part with a Protective layer 11 can be coated from TBC.
- cooling air 18 flows through the heat accumulation segment. This is made possible by the open-pore metal foam 9. The cooling air 18 penetrates through cooling holes 8 in the cooling system 7 and leaves it through this again again.
- FIGS. 6a, 6b show two variants of section VI of FIG. 5.
- the metal foam 9 can be given a different pore size by varying the pore size of the polymer foam during the production process.
- FIG. 6a shows the metal foam 9 1 , 9 2 with a variable pore size. This enables stronger or weaker cooling of individual areas of the cast part. As already mentioned above, this is also advantageous for a better hold of the protective layer 11 on the metal foam 9.
- the protective layer 11 can also be perforated with cooling holes 8 through which the cooling air 18 can flow outwards.
- the cooling air may need to be closed filter to prevent the fine-pored structure from passing through Contamination, which is in the cooling air, clogs and so the Cooling capacity reduced.
- the cooling system 7 consists of several layers of the Metal foam 9 and intermediate plates 15.
- the number of Layers of metal foam 9 / plate 15 is chosen only as an example and hangs depending on the specific application. Already during the manufacturing process, like them Multiple layers are described above Wax / polymer foam provided, from which the Mold for the cast part, as already described above, manufactured becomes. During production, this leads directly to that in FIG. 6b illustrated embodiment.
- the cooling air 18 penetrates the Metal foam 9, can flow within a "plane” and by convection or cool perspiration. The different levels are through Plates 15 separated, but there are cooling holes 8 through which the cooling air 18 can change levels. In general, the specific design depends this cooling system 7, of course, from the individual case.
- the cooling holes 8 inside the plates 15 are also generated during manufacture.
- FIG Guide vane 16 which has two cooled platforms 17, and which in the Figure 8, also cooled combustion chamber wall 19 shown.
- Others Embodiments, which are not shown with figures, are cooled castings (blades etc.) of a compressor.
- the cast parts produced using the method according to the invention an integrated, open-pore cooling system 7 are also advantageous, since the pressure difference of the cooling medium between the external pressure and the internal pressure (inside the cavity 6) the effectiveness of the cooling strongly influenced.
- This pressure difference can be determined by the appropriate choice of Pores (distribution, size, etc.) of the metal foam 9 very well adjusted and to be controlled.
- the casting and the porous cooling structure 7 by separate casting processes are produced and later joined by soldering or welding become.
- the porous cooling structure 7 is made by the above-mentioned Polymer foam and the slip possibly using a mold manufactured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Zur Einhaltung äusserer Masse der Kühlstruktur ist vorteilhaft der Einsatz einer vorgefertigten Form denkbar, in welcher der Polymerschaum aufgeschäumt wird. Der Schlicker kann an dem Polymerschaum appliziert werden, wenn dieser sich noch in der Form befindet. Auf diese Weise können auch komplizierte dreidimensionale Formen der Kühlstruktur entstehen. Zur besseren Trocknung des noch flüssigen Schlickers kann das Material dieser Form auch einen Binder enthalten.
- Fig. 1
- einen Ausschnitt einer gekühlten Turbinenschaufel, welche nach dem erfindungsgemässen Verfahren hergestellt worden ist,
- Fig. 2
- einen Querschnitt durch eine erfindungsgemässe Turbinenschaufel,
- Fig. 3
- einen Längsschnitt durch eine erfindungsgemässe Turbinenschaufel,
- Fig. 4
- einen Schnitt durch eine Ausführungsform eines erfindungsgemässen Wärmeschutzschildes,
- Fig. 5
- einen Schnitt durch eine zweite Ausführungsform eines erfindungsgemässen Wärmeschutzschildes,
- Fig. 6a
- eine Variation des Ausschnitts VI in der Figur 5,
- Fig. 6b
- eine zweite Variation des Ausschnitts VI in der Figur 5,
- Fig. 7
- eine erfindungsgemässe Leitschaufel mit gekühlten Plattformen und
- Fig. 8
- eine gekühlte Wand einer Brennkammer, welche nach dem erfindungsgemässen Verfahren hergestellt worden ist.
- 1
- Turbinenschaufel
- 2
- Vorderkante
- 3
- Hinterkante
- 4
- Druckseite
- 5
- Saugseite
- 6
- Hohlraum von Turbinenschaufel 1
- 7
- Kühlstruktur
- 8
- Kühllöcher
- 8a
- Kühllöcher, aussen
- 8b
- Kühllocher, innen
- 8c
- Kühlöffnung
- 9
- Metallschaum
- 91,92
- Metallschaum variabler Porosität
- 10
- Axiale Rippen
- 11 1
- Keramische Schutzschicht
- 12
- Schaufelfuss
- 13
- Schaufelspitze
- 14
- Wärmestausegment
- 15
- Platte
- 16
- Leitschaufel
- 17
- Plattform von Leitschaufel 16
- 18
- Kühlluft
- 19
- Brennkammerwand
Claims (16)
- Verfahren zur Herstellung eines thermisch belasteten Gussteils (1,14,16,17) einer thermischen Turbomaschine mit einem bekannten Gussverfahren, wobei das thermisch belastete Gussteil (1,14,16,17) eine integrierte Kühlstruktur (7) aufweist und mit einer Gussform hergestellt wird,
dadurch gekennzeichnet, dass(a) ein Wachsmodell des zu kühlenden Teils bereitgestellt wird,(b) mindestens ein Polymerschaum bereitgestellt wird, welcher an das Wachsmodell geheftet oder in einen Hohlraum des Wachsmodells eingeführt wird,(c) der mindestens eine Polymerschaum und das Wachsmodell in ein keramisches Material (Schlicker) eingetaucht werden, wobei sich das keramische Material um das Wachsmodell herum anlagert und sich auch der Polymerschaum mit dem keramischen Material füllt,(d) das keramische Material getrocknet wird, so dass eine Gussform entsteht,(e) das Wachs und der mindestens eine Polymerschaum durch eine Wärmebehandlung entfernt werden,(f) das Gussteil (1,14,16,17) mit der Gussform durch ein bekanntes Gussverfahren hergestellt wird und(g) das keramische Material entfernt wird. - Verfahren zur Herstellung eines thermischen belasteten Gussteils (1,14,16,17) einer thermischen Turbomaschine mit einem bekannten Gussverfahren, wobei das thermisch belastete Gussteil (1,14,16,17) eine integrierte Kühlstruktur (7) aufweist und mit einer Gussform hergestellt wird,
dadurch gekennzeichnet, dass(a) ein Wachsmodell des herzustellenden Teils bereitgestellt wird,(b) ein vorgefertigter, keramischer Einsatz mit einer offenporigen Struktur, an das Wachsmodell angefügt oder in einen Hohlraum des Wachsmodells eingeführt wird,(c) das Wachsmodell mit dem Einsatz in ein keramisches Material (Schlicker) eingetaucht wird,(d) das keramische Material getrocknet wird, so dass eine Gussform entsteht,(e) das Wachs durch eine geeignete Wärmebehandlung entfernt wird,(f) das Gussteil (1,14,16,17) mit der Gussform die mit einem bekannten Gussverfahrens hergestellt wird und(g) das keramische Material der Gussform entfernt wird. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass
der keramische Einsatz vor der Anwendung in Schritt (b) des Anspruchs 2 erhitzt wird. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass
die offenporige Struktur des vorgefertigten, keramischen Einsatzes durch einen Polymerschaum hergestellt wird, wobei der Polymerschaum in ein keramisches Material eingetaucht wird, so dass sich die Poren des Polymerschaums mit dem keramischen Material füllen und das keramische Material anschliessend getrocknet und gebrannt wird. - Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
der Polymerschaum vor Anwendung im Verfahrenschritt (b) des Anspruchs 2 durch eine Wärmebehandlung entfernt wird. - Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
die offenporige Struktur des vorgefertigten, keramischen Einsatzes durch einen Polymerschaum hergestellt wird, welcher in eine vorgefertigte Form eingeführt wird, und danach in der Form oder getrennt von der Form mit dem keramischen Material gefüllt wird. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
das Material der vorgefertigten Form einen Binder enthält. - Verfahren zur Herstellung eines thermischen belasteten Gussteils (1,14,16,17) einer thermischen Turbomaschine mit einem bekannten Gussverfahren, wobei das thermisch belastete Gussteil (1,14,16,17) eine integrierte Kühlstruktur (7) aufweist und mit einer Gussform hergestellt wird,
dadurch gekennzeichnet, dass(a) das Gussteil (1,14,16,17) mit einer Gussform mit einem bekannten Gussverfahrens hergestellt wird,(b) die poröse Kühlstruktur (7) durch eine Gussform, welche durch ein poröses Polymer und ein keramisches Material entsteht, getrennt von Gussteil hergestellt wird und(c) das Gussteil (1,14,16,17) und die Kühlstruktur (7) durch Löten oder Schweissen miteinander verbunden werden. - Verfahren nach einem der Ansprüche 1, 2, oder 8,
dadurch gekennzeichnet, dass
eine nach aussen weisende, sich am Gussteil (1,14,16,17) befindenden offenporige Kühlstruktur (7) mit einer keramischen Schutzschicht (11) beschichtet wird. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
die keramische Schutzschicht (11) die Kühlstruktur (7) ganz durchdringt oder die Kühlstruktur (7) nur oberflächennah mit der Schutzschicht (11) beschichtet ist. - Verfahren nach Anspruch 10,
dadurch gekennzeichnet, dass
an Stellen der Oberfläche des Gussteils (1,14,16,17), an denen Kühllöcher (8) entstehen sollen, vor der Beschichtung mit einer keramischen Schutzschicht (11) maskiert werden und diese Stellen nach der Beschichtung wieder demaskiert werden. - Verfahren nach einem der Ansprüche 1,4,5,6 oder 8,
dadurch gekennzeichnet, dass
mehrere Schichten von dem Polymerschaum und dem Wachs vorhanden sind, welche zur Herstellung von offenporigen Kühlstrukturen (7), welche durch Platten (15) voneinander getrennt sind, dienen. - Verfahren nach einem der Ansprüche 1,4,5,6 oder 8,
dadurch gekennzeichnet, dass
der Polymerschaum eine variable Porengrösse aufweist. - Verfahren nach einem der Ansprüche 1, 4,5,6 oder 8
dadurch gekennzeichnet, dass
es sich bei dem Polymerschaum um einen Polyurethanschaum handelt. - Verfahren nach Anspruch 1,2 oder 8
dadurch gekennzeichnet, dass
ein Gussverfahren zur Herstellung von einkristallinen oder gerichtet erstarrten Gussteilen verwendet wird. - Verfahren nach einem der Ansprüche 1, 2 oder 8
dadurch gekennzeichnet, dass
es sich um Verfahren zur Herstellung einer Leit- oder einer Laufschaufel (1), eines Wärmestausegments (14), einer Plattform (17) der Leit- oder der Laufschaufel (1,16), einer Brennkammerwand (18) einer Gasturbine oder einer Leit- oder Laufschaufel (1,16) eines Verdichters handelt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05111586A EP1645347B1 (de) | 2000-05-17 | 2001-04-12 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10024302A DE10024302A1 (de) | 2000-05-17 | 2000-05-17 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
DE10024302 | 2000-05-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05111586A Division EP1645347B1 (de) | 2000-05-17 | 2001-04-12 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1155760A1 true EP1155760A1 (de) | 2001-11-21 |
EP1155760B1 EP1155760B1 (de) | 2006-02-15 |
Family
ID=7642477
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01109115A Expired - Lifetime EP1155760B1 (de) | 2000-05-17 | 2001-04-12 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
EP05111586A Expired - Lifetime EP1645347B1 (de) | 2000-05-17 | 2001-04-12 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05111586A Expired - Lifetime EP1645347B1 (de) | 2000-05-17 | 2001-04-12 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
Country Status (3)
Country | Link |
---|---|
US (1) | US6412541B2 (de) |
EP (2) | EP1155760B1 (de) |
DE (3) | DE10024302A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1707745A2 (de) * | 2000-09-05 | 2006-10-04 | Siemens Aktiengesellschaft | Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine |
EP2418354A1 (de) | 2010-08-10 | 2012-02-15 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel |
EP1876336A3 (de) * | 2006-07-06 | 2013-07-10 | MTU Aero Engines GmbH | Gasturbinenbauteil für Flugtriebwerke sowie Verfahren zur Herstellung von Gasturbinenbauteilen für Flugtriebwerke |
EP2818644A1 (de) * | 2013-06-27 | 2014-12-31 | MTU Aero Engines GmbH | Dichtanordnung für eine Leitschaufelanordnung einer Strömungsmaschine |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6695582B2 (en) * | 2002-06-06 | 2004-02-24 | General Electric Company | Turbine blade wall cooling apparatus and method of fabrication |
EP1475567A1 (de) * | 2003-05-08 | 2004-11-10 | Siemens Aktiengesellschaft | Schichtstruktur und Verfahren zur Herstellung einer Schichtstruktur |
EP1481747A3 (de) * | 2003-05-27 | 2007-05-02 | Alstom Technology Ltd | Verfahren zur Herstellung eines wärmebelasteten Bauteils sowie wärmebelastetes Bauteil |
EP1496140A1 (de) * | 2003-07-09 | 2005-01-12 | Siemens Aktiengesellschaft | Schichtstruktur und Verfahren zur Herstellung einer Schichtstruktur |
EP1533113A1 (de) | 2003-11-14 | 2005-05-25 | Siemens Aktiengesellschaft | Hochtemperatur-Schichtsystem zur Wärmeableitung und Verfahren zu dessen Herstellung |
US20050111966A1 (en) * | 2003-11-26 | 2005-05-26 | Metheny Alfred P. | Construction of static structures for gas turbine engines |
DE10360164A1 (de) * | 2003-12-20 | 2005-07-21 | Mtu Aero Engines Gmbh | Gasturbinenbauteil |
KR20060134157A (ko) * | 2004-04-14 | 2006-12-27 | 가부시끼가이샤 구레하 | 불화비닐리덴계 수지 중공사 다공 여수막 및 그의 제조방법 |
US7144220B2 (en) * | 2004-07-30 | 2006-12-05 | United Technologies Corporation | Investment casting |
DE102005002671B3 (de) * | 2005-01-14 | 2006-06-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Turbinenschaufel für Strömungsmaschinen und Verfahren zu ihrer Herstellung |
US7500828B2 (en) * | 2005-05-05 | 2009-03-10 | Florida Turbine Technologies, Inc. | Airfoil having porous metal filled cavities |
US20080257517A1 (en) * | 2005-12-16 | 2008-10-23 | General Electric Company | Mold assembly for use in a liquid metal cooled directional solidification furnace |
GB0613715D0 (en) | 2006-07-11 | 2006-08-23 | Rolls Royce Plc | A seal between relatively moveable members |
US7968144B2 (en) * | 2007-04-10 | 2011-06-28 | Siemens Energy, Inc. | System for applying a continuous surface layer on porous substructures of turbine airfoils |
EP2184449A1 (de) * | 2008-11-05 | 2010-05-12 | Siemens Aktiengesellschaft | Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger |
GB0822416D0 (en) * | 2008-12-10 | 2009-01-14 | Rolls Royce Plc | A seal and a method of manufacturing a seal |
US9056795B2 (en) * | 2009-08-09 | 2015-06-16 | Rolls-Royce Corporation | Support for a fired article |
US8673397B2 (en) | 2010-11-10 | 2014-03-18 | General Electric Company | Methods of fabricating and coating a component |
US8387245B2 (en) | 2010-11-10 | 2013-03-05 | General Electric Company | Components with re-entrant shaped cooling channels and methods of manufacture |
US9249491B2 (en) | 2010-11-10 | 2016-02-02 | General Electric Company | Components with re-entrant shaped cooling channels and methods of manufacture |
US8727727B2 (en) | 2010-12-10 | 2014-05-20 | General Electric Company | Components with cooling channels and methods of manufacture |
US8753071B2 (en) | 2010-12-22 | 2014-06-17 | General Electric Company | Cooling channel systems for high-temperature components covered by coatings, and related processes |
US8807944B2 (en) * | 2011-01-03 | 2014-08-19 | General Electric Company | Turbomachine airfoil component and cooling method therefor |
US8533949B2 (en) | 2011-02-14 | 2013-09-17 | General Electric Company | Methods of manufacture for components with cooling channels |
US8793871B2 (en) | 2011-03-17 | 2014-08-05 | Siemens Energy, Inc. | Process for making a wall with a porous element for component cooling |
US8528208B2 (en) | 2011-04-11 | 2013-09-10 | General Electric Company | Methods of fabricating a coated component using multiple types of fillers |
US8601691B2 (en) | 2011-04-27 | 2013-12-10 | General Electric Company | Component and methods of fabricating a coated component using multiple types of fillers |
US9327384B2 (en) | 2011-06-24 | 2016-05-03 | General Electric Company | Components with cooling channels and methods of manufacture |
US9216491B2 (en) | 2011-06-24 | 2015-12-22 | General Electric Company | Components with cooling channels and methods of manufacture |
US9057523B2 (en) * | 2011-07-29 | 2015-06-16 | United Technologies Corporation | Microcircuit cooling for gas turbine engine combustor |
US9206696B2 (en) | 2011-08-16 | 2015-12-08 | General Electric Company | Components with cooling channels and methods of manufacture |
US9249672B2 (en) | 2011-09-23 | 2016-02-02 | General Electric Company | Components with cooling channels and methods of manufacture |
US20130086784A1 (en) | 2011-10-06 | 2013-04-11 | General Electric Company | Repair methods for cooled components |
US9249670B2 (en) | 2011-12-15 | 2016-02-02 | General Electric Company | Components with microchannel cooling |
WO2013144022A1 (en) | 2012-03-28 | 2013-10-03 | Alstom Technology Ltd | Method for removing a ceramic |
US9435208B2 (en) | 2012-04-17 | 2016-09-06 | General Electric Company | Components with microchannel cooling |
US9243503B2 (en) | 2012-05-23 | 2016-01-26 | General Electric Company | Components with microchannel cooled platforms and fillets and methods of manufacture |
DE102013109116A1 (de) | 2012-08-27 | 2014-03-27 | General Electric Company (N.D.Ges.D. Staates New York) | Bauteil mit Kühlkanälen und Verfahren zur Herstellung |
US8974859B2 (en) | 2012-09-26 | 2015-03-10 | General Electric Company | Micro-channel coating deposition system and method for using the same |
US9238265B2 (en) | 2012-09-27 | 2016-01-19 | General Electric Company | Backstrike protection during machining of cooling features |
US9242294B2 (en) | 2012-09-27 | 2016-01-26 | General Electric Company | Methods of forming cooling channels using backstrike protection |
US9562436B2 (en) | 2012-10-30 | 2017-02-07 | General Electric Company | Components with micro cooled patterned coating layer and methods of manufacture |
US9200521B2 (en) | 2012-10-30 | 2015-12-01 | General Electric Company | Components with micro cooled coating layer and methods of manufacture |
US9003657B2 (en) | 2012-12-18 | 2015-04-14 | General Electric Company | Components with porous metal cooling and methods of manufacture |
WO2014105109A1 (en) | 2012-12-28 | 2014-07-03 | United Technologies Corporation | Gas turbine engine component having vascular engineered lattice structure |
US10018052B2 (en) | 2012-12-28 | 2018-07-10 | United Technologies Corporation | Gas turbine engine component having engineered vascular structure |
WO2014143340A2 (en) * | 2013-03-03 | 2014-09-18 | Uskert Richard C | Gas turbine engine component having foam core and composite skin with cooling slot |
US20150064019A1 (en) * | 2013-08-30 | 2015-03-05 | General Electric Company | Gas Turbine Components with Porous Cooling Features |
US9278462B2 (en) | 2013-11-20 | 2016-03-08 | General Electric Company | Backstrike protection during machining of cooling features |
US9476306B2 (en) | 2013-11-26 | 2016-10-25 | General Electric Company | Components with multi-layered cooling features and methods of manufacture |
EP3096900B1 (de) | 2014-01-23 | 2020-04-15 | United Technologies Corporation | Verfahren zur additiven herstellung einer form |
US9789536B2 (en) | 2015-01-20 | 2017-10-17 | United Technologies Corporation | Dual investment technique for solid mold casting of reticulated metal foams |
US9789534B2 (en) | 2015-01-20 | 2017-10-17 | United Technologies Corporation | Investment technique for solid mold casting of reticulated metal foams |
US9737930B2 (en) | 2015-01-20 | 2017-08-22 | United Technologies Corporation | Dual investment shelled solid mold casting of reticulated metal foams |
US10094287B2 (en) | 2015-02-10 | 2018-10-09 | United Technologies Corporation | Gas turbine engine component with vascular cooling scheme |
US9884363B2 (en) | 2015-06-30 | 2018-02-06 | United Technologies Corporation | Variable diameter investment casting mold for casting of reticulated metal foams |
US9731342B2 (en) | 2015-07-07 | 2017-08-15 | United Technologies Corporation | Chill plate for equiax casting solidification control for solid mold casting of reticulated metal foams |
US10221694B2 (en) | 2016-02-17 | 2019-03-05 | United Technologies Corporation | Gas turbine engine component having vascular engineered lattice structure |
US10598026B2 (en) * | 2016-05-12 | 2020-03-24 | General Electric Company | Engine component wall with a cooling circuit |
US10458259B2 (en) | 2016-05-12 | 2019-10-29 | General Electric Company | Engine component wall with a cooling circuit |
US20180051566A1 (en) * | 2016-08-16 | 2018-02-22 | General Electric Company | Airfoil for a turbine engine with a porous tip |
US10583489B2 (en) * | 2017-04-26 | 2020-03-10 | General Electric Company | Method of providing cooling structure for a component |
US20180347442A1 (en) * | 2017-05-31 | 2018-12-06 | General Electric Company | Lattice structure in cooling pathway by additive manufacture |
US10974312B2 (en) * | 2017-06-28 | 2021-04-13 | General Electric Company | Additively manufactured casting core-shell mold with integrated filter and ceramic shell |
US11208902B2 (en) * | 2018-12-03 | 2021-12-28 | General Electric Company | Tip rail cooling insert for turbine blade tip cooling system and related method |
US10774653B2 (en) | 2018-12-11 | 2020-09-15 | Raytheon Technologies Corporation | Composite gas turbine engine component with lattice structure |
CN110566290A (zh) * | 2019-07-23 | 2019-12-13 | 华南理工大学 | 金属丝冶金结合多孔材料在制造耐高温机械零件的应用 |
US11834956B2 (en) * | 2021-12-20 | 2023-12-05 | Rolls-Royce Plc | Gas turbine engine components with metallic and ceramic foam for improved cooling |
US11746660B2 (en) | 2021-12-20 | 2023-09-05 | Rolls-Royce Plc | Gas turbine engine components with foam filler for impact resistance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2843316A1 (de) * | 1977-12-16 | 1979-06-28 | Hitachi Ltd | Verfahren zum erzeugen eines dreidimensional-netzwerkartigen, poroesen, metallischen gefueges mit zusammenhaengendem innenhohlraum |
US4422229A (en) * | 1979-02-24 | 1983-12-27 | Rolls-Royce Limited | Method of making an airfoil member for a gas turbine engine |
DE3928394A1 (de) * | 1989-08-28 | 1991-03-21 | Eska Medical Gmbh & Co | Verfahren zur herstellung eines implantates mit einer seine oberflaeche zumindest teilweise bedeckenden metallischen offenzelligen struktur |
DE4128425A1 (de) * | 1991-08-27 | 1992-03-19 | Eska Medical Gmbh & Co | Verfahren zur herstellung eines implantates mit einer seine oberflaeche zumindest teilweise bedeckenden metallischen offenmaschigen struktur |
US5253976A (en) * | 1991-11-19 | 1993-10-19 | General Electric Company | Integrated steam and air cooling for combined cycle gas turbines |
EP0755664A2 (de) * | 1995-07-28 | 1997-01-29 | Bristol-Myers Company | Gegossenes orthopädisches Implantat und Verfahren zu seiner Herstellung |
GB2310896A (en) * | 1996-03-05 | 1997-09-10 | Rolls Royce Plc | Air cooled wall |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1508663B1 (de) * | 1966-02-02 | 1970-06-25 | Howe Sound Company, New York, N y (V.St.A.) | Verfahren und Vorrichtung zum Herstellen von Ausschmelzmodellen für das Präzisionsgießverfahren |
US3616841A (en) * | 1967-10-30 | 1971-11-02 | Energy Research And Generation | Method of making an inorganic reticulated foam structure |
US3690367A (en) * | 1968-07-05 | 1972-09-12 | Anadite Inc | Apparatus for the restructuring of metals |
US3627015A (en) * | 1970-06-01 | 1971-12-14 | Hughes Aircraft Co | Cocoon casting of directionally solidified articles |
US3763926A (en) * | 1971-09-15 | 1973-10-09 | United Aircraft Corp | Apparatus for casting of directionally solidified articles |
BE790956A (fr) * | 1971-11-05 | 1973-03-01 | Penny Robert N | Tube de flamme pour chambre de combustion de moteur a turbine agaz |
US4195683A (en) * | 1977-12-14 | 1980-04-01 | Trw Inc. | Method of forming metal article having plurality of airfoils extending outwardly from a hub |
GB2068818B (en) * | 1980-02-12 | 1983-05-25 | Rolls Royce | Lost wax patterns |
GB2096523B (en) * | 1981-03-25 | 1986-04-09 | Rolls Royce | Method of making a blade aerofoil for a gas turbine |
DE3203869C2 (de) * | 1982-02-05 | 1984-05-10 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Turbinenlaufschaufel für Strömungsmaschinen, insbesondere Gasturbinentriebwerke |
DE3235230A1 (de) * | 1982-09-23 | 1984-03-29 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Gasturbinenschaufel mit metallkern und keramikblatt |
DE3327218A1 (de) * | 1983-07-28 | 1985-02-07 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel |
US4653983A (en) * | 1985-12-23 | 1987-03-31 | United Technologies Corporation | Cross-flow film cooling passages |
GB2205261B (en) * | 1987-06-03 | 1990-11-14 | Rolls Royce Plc | Method of manufacture and article manufactured thereby |
DE3806987A1 (de) * | 1988-03-03 | 1989-09-14 | Thyssen Industrie | Verfahren zur herstellung von gussstuecken nach dem wachsausschmelzverfahren |
FR2666528B1 (fr) * | 1990-09-12 | 1993-07-02 | Snecma | Procede de preparation d'un moule de fonderie a partir de mousse alveolaire et barbotines ceramiques utilisees. |
US5690473A (en) * | 1992-08-25 | 1997-11-25 | General Electric Company | Turbine blade having transpiration strip cooling and method of manufacture |
US5511603A (en) * | 1993-03-26 | 1996-04-30 | Chesapeake Composites Corporation | Machinable metal-matrix composite and liquid metal infiltration process for making same |
US5439750A (en) * | 1993-06-15 | 1995-08-08 | General Electric Company | Titanium metal matrix composite inserts for stiffening turbine engine components |
DE4328401A1 (de) * | 1993-08-24 | 1995-03-02 | Abb Management Ag | Turbinenschaufel für eine Gasturbine |
DE19539770A1 (de) * | 1995-06-20 | 1997-01-02 | Abb Research Ltd | Verfahren zur Herstellung eines gerichtet erstarrten Gießkörpers und Vorrichtung zur Durchführung dieses Verfahrens |
DE19612500A1 (de) * | 1996-03-29 | 1997-10-02 | Bleistahl Prod Gmbh & Co Kg | Verfahren zur Herstellung von Zylinderköpfen für Verbrennungsmotoren |
DE19718886A1 (de) * | 1997-05-03 | 1998-11-05 | Bosch Gmbh Robert | Verfahren zur Herstellung von porösen Formkörpern |
-
2000
- 2000-05-17 DE DE10024302A patent/DE10024302A1/de not_active Withdrawn
-
2001
- 2001-04-12 DE DE50114026T patent/DE50114026D1/de not_active Expired - Lifetime
- 2001-04-12 EP EP01109115A patent/EP1155760B1/de not_active Expired - Lifetime
- 2001-04-12 EP EP05111586A patent/EP1645347B1/de not_active Expired - Lifetime
- 2001-04-12 DE DE50108928T patent/DE50108928D1/de not_active Expired - Lifetime
- 2001-04-18 US US09/836,297 patent/US6412541B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2843316A1 (de) * | 1977-12-16 | 1979-06-28 | Hitachi Ltd | Verfahren zum erzeugen eines dreidimensional-netzwerkartigen, poroesen, metallischen gefueges mit zusammenhaengendem innenhohlraum |
US4422229A (en) * | 1979-02-24 | 1983-12-27 | Rolls-Royce Limited | Method of making an airfoil member for a gas turbine engine |
DE3928394A1 (de) * | 1989-08-28 | 1991-03-21 | Eska Medical Gmbh & Co | Verfahren zur herstellung eines implantates mit einer seine oberflaeche zumindest teilweise bedeckenden metallischen offenzelligen struktur |
DE4128425A1 (de) * | 1991-08-27 | 1992-03-19 | Eska Medical Gmbh & Co | Verfahren zur herstellung eines implantates mit einer seine oberflaeche zumindest teilweise bedeckenden metallischen offenmaschigen struktur |
US5253976A (en) * | 1991-11-19 | 1993-10-19 | General Electric Company | Integrated steam and air cooling for combined cycle gas turbines |
EP0755664A2 (de) * | 1995-07-28 | 1997-01-29 | Bristol-Myers Company | Gegossenes orthopädisches Implantat und Verfahren zu seiner Herstellung |
GB2310896A (en) * | 1996-03-05 | 1997-09-10 | Rolls Royce Plc | Air cooled wall |
Non-Patent Citations (1)
Title |
---|
POLEZHAEV J: "The transpiration cooling for blades of high temperatures gas turbine", ENERGY CONVERSION AND MANAGEMENT, ELSEVIER SCIENCE PUBLISHERS, OXFORD, GB, vol. 38, no. 10, 1 September 1997 (1997-09-01), pages 1123 - 1133, XP004061882, ISSN: 0196-8904 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1707745A2 (de) * | 2000-09-05 | 2006-10-04 | Siemens Aktiengesellschaft | Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine |
EP1707745A3 (de) * | 2000-09-05 | 2006-10-18 | Siemens Aktiengesellschaft | Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine |
EP1876336A3 (de) * | 2006-07-06 | 2013-07-10 | MTU Aero Engines GmbH | Gasturbinenbauteil für Flugtriebwerke sowie Verfahren zur Herstellung von Gasturbinenbauteilen für Flugtriebwerke |
EP2418354A1 (de) | 2010-08-10 | 2012-02-15 | Siemens Aktiengesellschaft | Verfahren zur Herstellung einer innengekühlten Turbinenschaufel und Gasturbine mit einer so hergestellten Turbinenschaufel |
EP2818644A1 (de) * | 2013-06-27 | 2014-12-31 | MTU Aero Engines GmbH | Dichtanordnung für eine Leitschaufelanordnung einer Strömungsmaschine |
US9784131B2 (en) | 2013-06-27 | 2017-10-10 | MTU Aero Engines AG | Sealing arrangement for a turbomachine, a guide vane arrangement, and a turbomachine with such a sealing arrangement |
Also Published As
Publication number | Publication date |
---|---|
DE10024302A1 (de) | 2001-11-22 |
EP1645347A1 (de) | 2006-04-12 |
EP1645347B1 (de) | 2008-06-11 |
DE50114026D1 (de) | 2008-07-24 |
EP1155760B1 (de) | 2006-02-15 |
US20010042607A1 (en) | 2001-11-22 |
US6412541B2 (en) | 2002-07-02 |
DE50108928D1 (de) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1155760A1 (de) | Verfahren zur Herstellung eines thermisch belasteten Gussteils | |
EP1322838B1 (de) | Laufschaufel für eine strömungsmaschine sowie strömungsmaschine | |
EP1173657B1 (de) | Turbinenschaufel und verfahren zur herstellung einer turbinenschaufel | |
EP1828544B1 (de) | Verfahren zur herstellung eines bauteils mit eingebettetem kanal sowie bauteil | |
DE60024517T2 (de) | Turbinenwand mit Rillen an der Innenseite | |
DE69322300T2 (de) | Verfahren und Form zur Herstellung gegossener, hochtemperaturbeständiger und dünnwandiger Strukturen und das hergestellte Produkt | |
DE69323817T2 (de) | Präzisionsgiessen unter Verwendung von Kern mit integrierter Wanddickenkontrollvorrichtung | |
DE69835646T2 (de) | Verstärkte keramische Maskenform und Verfahren zu deren Herstellung | |
EP3191244B1 (de) | Verfahren zur herstellung einer laufschaufel und so erhaltene schaufel | |
DE60201406T2 (de) | Integrierte Oberflächenmerkmale für Komponenten aus keramischem Matrix-Verbundstoff und entsprechendes Verfahren | |
EP1065026A1 (de) | Verfahren zur Herstellung oder zur Reparatur von Kühlkanälen in einstristallinen Komponenten von Gasturbinen | |
DE102014220787A1 (de) | Gasturbinenbauteil mit Innenmodul und Verfahren zu seiner Herstellung unter Verwendung von Selektivem Laserschmelzen | |
EP0575685A1 (de) | Feinguss mit Verschleissflächen | |
DE102011057071A1 (de) | Schaufelblattkomponente einer Turbomaschine und Kühlverfahren für diese | |
EP3153663A1 (de) | Schaufel für eine strömungsmaschine, turbofantriebwerk und ein verfahren zur herstellung einer schaufel | |
EP1193006B1 (de) | Verfahren zur Herstellung eines gekühlten Feingussteils | |
DE69608389T2 (de) | Turbinenschaufel und Giessverfahren mit optimaler Wandstärkenkontrolle | |
DE69927822T2 (de) | Verstärkte keramische schalenform und verfahren zu deren herstellung | |
DE602004002432T2 (de) | Gekühlte Gasturbinenschaufel | |
DE102016124154A1 (de) | Verfahren und Anordnung zum Formen von Komponenten, die einen darin gebildeten internen Durchgang aufweisen | |
DE102007049498A1 (de) | Feingussverfahren und -vorrichtung zur Erzielung einer besseren Kornstruktur in einer gerichtet erstarrten Turbinenlaufschaufel mit Deckband | |
DE102014213343A1 (de) | Turbinenrad eines Abgasturboladers und zugehöriges Herstellungsverfahren | |
DE10235492A1 (de) | Verfahren zum Brennen eines keramischen Kerns | |
EP1135226B1 (de) | Verbundgussteil und verfahren zu seiner herstellung | |
EP1481747A2 (de) | Verfahren zur Herstellung eines wärmebelasteten Bauteils sowie wärmebelastetes Bauteil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
17P | Request for examination filed |
Effective date: 20020410 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
17Q | First examination report despatched |
Effective date: 20050215 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060323 |
|
REF | Corresponds to: |
Ref document number: 50108928 Country of ref document: DE Date of ref document: 20060420 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50108928 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50108928 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50108928 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170419 Year of fee payment: 17 Ref country code: DE Payment date: 20170419 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50108928 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50108928 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108928 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180412 |