[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1154202B2 - Regeleinrichtung für einen Brenner - Google Patents

Regeleinrichtung für einen Brenner Download PDF

Info

Publication number
EP1154202B2
EP1154202B2 EP01110418A EP01110418A EP1154202B2 EP 1154202 B2 EP1154202 B2 EP 1154202B2 EP 01110418 A EP01110418 A EP 01110418A EP 01110418 A EP01110418 A EP 01110418A EP 1154202 B2 EP1154202 B2 EP 1154202B2
Authority
EP
European Patent Office
Prior art keywords
signal
setting member
regulating device
fuel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01110418A
Other languages
English (en)
French (fr)
Other versions
EP1154202A3 (de
EP1154202A2 (de
EP1154202B1 (de
Inventor
Rainer Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26005646&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1154202(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Publication of EP1154202A2 publication Critical patent/EP1154202A2/de
Publication of EP1154202A3 publication Critical patent/EP1154202A3/de
Application granted granted Critical
Publication of EP1154202B1 publication Critical patent/EP1154202B1/de
Publication of EP1154202B2 publication Critical patent/EP1154202B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/44Optimum control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • the invention relates to a control device for a burner, which burner comprises a arranged in the flame region of the burner ionization electrode, and an actuator, which affects the fuel supply amount or the air supply amount in response to a control signal.
  • Ionization electrodes have long been used for flame monitoring in burners. In general, however, the ratio of the amount of air to the amount of fuel, often called lambda, matched with each power demand either by a controller or by a scheme with sensors on each other. In general, lambda should be slightly above the stoichiometric value 1 for each power demand, for example, 1.3.
  • Air-controlled burners react, unlike controlled burners, to external influences which change the combustion. They therefore have a higher efficiency and thus a higher efficiency and lower pollutant emissions and thus a lower environmental impact.
  • the sensors required for this often gas sensors, in particular oxygen sensors, or temperature sensors, are expensive, unreliable, in need of care and / or have a short service life for this purpose.
  • Rapid changes in fuel supply or air supply typically result from sudden changes in power demand.
  • changes in the air number and thus changes in the gas or air volume flow may be caused by changes in the fuel composition, changes in air pressure, gas pressure changes, temperature changes, soiling and wear of mechanical torch parts, etc.
  • the stored characteristic in the control devices IT 95U000566 and EP-A1-909922 sets at each air pressure of the blower, and thus at each requested power, a control signal, which corresponds to a nearly desired level of the actuator for the gas valve.
  • a control signal which corresponds to a nearly desired level of the actuator for the gas valve.
  • an alternative control device is described, according to which the air volume flow is adapted to the gas volume flow, and the characteristic curve approximately determines the desired fan speed as a function of the manipulated variable of the gas valve.
  • a burner-specific characteristic curve is obtained in that the burner is operated under varying load with changing actuator levels, with additional sensors measuring emission values and efficiency and thus determining the desired manipulated variables.
  • Air-controlled burners have advantages over devices that are controlled by means of characteristic curves. At constant power, changes in temperature, fuel pressure, air pressure, fuel composition, wear and soiling of mechanical parts, etc. drift away from the set operating point.
  • control devices cause IT 95U000566 and EP-A1-909922
  • a control based on the stored characteristic curve compensates for their imperfection by first shifting the last state of the control signal to a new value at a constant distance along the characteristic curve.
  • DE-A-19831648 It shows a method for the functional adaptation of a control electronics of a gas heater on the type-specific properties, which should proceed largely independently.
  • the control electronics With the control electronics, the combustion air volume flow and the fuel gas volume flow can be controlled in dependence on a combustion-dependent ionization signal.
  • the control electronics controls before the actual burner operation firing operations with different air flow rates and stores the resulting characteristics for future burner operation.
  • control device can be constructed in such a way that, on detection of suitable conditions, it itself carries out a setting procedure for the acquisition of new characteristic data.
  • occasional or periodic recalibration occurs to compensate for any creeping changes in the control system, such as wear or fouling of the ionization electrode.
  • control characteristics are automatically determined, even for gases that are not detected by the preset characteristics.
  • the characteristic data can be designed, for example, as the constants in a polynomial winding up to the third order.
  • the function approximately represented by the polynomial winding determines a relationship between an input parameter and the actuating signal.
  • the input parameter for the cams is initially the requested power, either in the form of a manipulated variable or a measured variable that corresponds to the power, for example, the fan speed.
  • a manipulated variable or a measured variable that corresponds to the power
  • the control characteristics z.
  • Temperature signals of all kinds such as burner temperature, flow and return temperature, etc. Further examples include a pressure difference reading for determining the gas or air flow, a gas or air flow meter, or directly the drive signal for operating a gas valve or an oil pump.
  • the first and second behaviors of the actuator depend on input parameters that are the same size.
  • the measure of the requested power, or another physical quantity can be supplied to the control unit by means of a single input parameter, such as the manipulated variable of the fan speed, or by input parameters of different types, such as manipulated variable and measured variable of the fan beam.
  • control device has further measured values available during operation, from which it can determine, for example, the current energy content or the current pressure of the supplied fuel directly or indirectly, then the second input parameter can even represent another variable.
  • burners are equipped with a temperature sensor for the boiler temperature.
  • a change in the energy content of the fuel supplied has a change in boiler temperature.
  • the manipulated variable of the fan speed is the first input parameter, and the temporal change of the boiler temperature of the second.
  • characteristics have been stored, which determine a first desired behavior of the actuator with different benefits, but fixed energy content of the fuel and other fixed influences. Also, characteristics have been stored which determine a second behavior with different energy contents and this time fixed power.
  • the controller determines any changes in the actual energy content of the supplied fuel based on boiler temperature changes that do not correspond to the time history of the fan speed and generates a corrected power-dependent control curve using the characteristics for the second behavior and the ionization signal.
  • the control signal will follow the thus corrected control curve, for example at a constant distance.
  • Burners of various designs are possible, for example premixed gas burners or atmospheric burners with and without auxiliary blower.
  • the air flow z. B. via a damper o. ⁇ . are controlled.
  • the controller generates the control signal at least temporarily by processing the control signals and determines the processing at least temporarily as a function of the ionization signal.
  • control unit generates no control signals in a quasi-stable state.
  • the controller then makes a pure control of the ionization signal.
  • the controller switches to the fast-response and accurate control by processing the control signals.
  • the manner in which the control signals are processed has previously been fixed by the ionization signal and remains the same throughout the control period.
  • the control is only replaced by a control when the state has calmed down and the Ionisationssignal has lagged the current state.
  • the control signals are generated permanently, and both the control signals and the ionization signal continuously contribute to the control signal. Mixed variants are also possible.
  • the controller is at least temporarily weighted and added to the control signals and that the controller determines the weighting at least temporarily as a function of the ionization signal.
  • the controller attenuates rapid fluctuations of the ionization signal in comparison to slow fluctuations before the processing of the control signals.
  • the controller is provided with a low-pass filter for the ionization signal or for a processed signal generated by processing, or with an integration unit for the Ionisationss or for a generated by processing sequence signal.
  • the processing of the control signals is adjusted by these measures only with a certain delay and / or smoothing of the ionization, so that the anyway too slow ionization signal course after a sudden change in state does not interfere with the control signal. Only when the situation has calmed down will the ionization signal slowly act on the processing of the control signals to provide a fine tuning.
  • characteristic data for determining a behavior of the ionization signal are stored in the control unit, the control unit generates at least temporarily a setpoint signal and the controller generates the control signal at least temporarily in response to the setpoint signal.
  • the regulator device By means of these measures, the regulator device, or its regulator program, can be designed simply and achieve great reliability.
  • the controller itself occasionally or regularly calibrates these characteristics.
  • the controller is advantageously equipped with a comparison unit which at least at times subtracts the setpoint signal or a sequence signal generated by processing from the ionization signal.
  • the controller may generate the actuating signal in such a way that the ionization signal is regulated to the desired value signal.
  • the first behavior of the actuator during a burner operation has been determined with a first fuel
  • the second behavior of the actuator during a burner operation with a different in energy content second fuel, especially if the specific energy content of a fuel at least 5% higher than that of another Fuel is.
  • the characteristics for determining the two behavior of the actuator have resulted from measurements.
  • the characteristics for the first behavior of the actuator are determined based on measurement results.
  • the characteristics for the second behavior are then calculated from these. This is only possible if a person skilled in the art has suitable knowledge of the behavior of the actuator under the different circumstances.
  • the characteristic data for the second behavior are determined by means of burner-specific measurements based on expert knowledge of the fuel mixtures fed in practice.
  • the setting of a control device to a certain type of burner thus advantageously takes place in that two or more burner-specific characteristics during operation with different fuels, such as gas mixtures in different proportions, are determined.
  • the invention also relates to a method for adjusting an inventive control device.
  • a burner is first equipped with an inventive control device and with additional sensors for determining the quality of the combustion. Then one operates the burner with a first fuel with a certain energy content at different power levels, each with different actuator levels, wherein one determines a desired actuator state from the sensor results for each power value. From the desired actuator levels characteristics are determined to determine the first behavior of the actuator. Thereafter, the burner is operated with a second fuel having a different energy content at different power levels, each with different actuator levels, from the sensor results for each power value determining a desired actuator level, and now determining characteristics from the desired actuator levels to determine the second behavior of the actuator , Optionally, repeat these steps for a third or even more fuel. Finally, the identified characteristic data are stored in one or more control devices. As described above, it brings advantages that the specific energy content of one fuel is at least 5% higher than that of another fuel.
  • Fig. 1 schematically shows the principle of operation of an Ionisationsauswerters 14 in a control device according to the invention.
  • the flame 1 is represented by a diode 1a and a resistor 1b.
  • an AC voltage of, for example, 230V is applied.
  • a flame 1 is present, a larger current flows through the blocking capacitor 3 in the positive half wave than in the negative half wave because of the flame diode 1a.
  • a positive DC voltage U B is formed on the blocking capacitor 3 between L and a resistor 2 mounted for the purpose of contact protection.
  • a direct current flows from N to the blocking capacitor 3.
  • the amount of direct current depends on U B and thus directly from the flame resistance 1b.
  • the flame resistance 1b also influences the alternating current through the decoupling resistor 4, but to varying degrees compared to the direct current.
  • Through the resistor 4 thus flows a direct current and an alternating current as described above.
  • the resistor 4 is now followed by a high pass 5 and a low pass 6.
  • the high-pass 5 the alternating current is filtered out and the DC component blocked.
  • the low-pass filter is used to filter out the dc voltage component which is dependent on the flame resistance 1b and essentially blocks the alternating current.
  • the alternating current flowing from the high-pass filter 5 is amplified and a reference voltage U Ref is added.
  • the direct current flowing from the high-pass filter 6 is amplified with possibly small alternating current components and the reference voltage U Ref is added.
  • the alternating voltage emerging from the amplifier 7 and the DC voltage emerging from the amplifier 8 are compared with one another and a pulse width modulated (PWM) signal is generated. If the amplitude of the mains voltage changes, the AC voltage and the DC voltage change in the same ratio, the PWM signal does not change.
  • the monoflop 11 is triggered so that the pulse train output from the comparator 10 comes faster than the pulse duration of the monoflop. If a flame is present, the monoflop will not be triggered and the output will always show a 0.
  • the retriggerable monoflop 11 thus forms a "missing pulse detector" converts the dynamic on / off signal into a static on / off signal.
  • Both signals, the PWM signal and the flame signal can now be further processed separately or linked by means of an OR gate 12.
  • an OR gate 12 As an output of the OR gate 12, if the flame is present, a PWM signal is shown whose duty cycle is a measure of the flame resistance 1b.
  • This ionization signal 13 is the in FIG. 2 shown controller 26 supplied. If no flame is present, the output of the OR element is permanently at 1.
  • the ionization signal 13 can be transmitted via an optocoupler, not shown, in order to achieve a protective separation between the mains side and the protective low voltage side.
  • FIG. 2 shows a block diagram of a control device 15 according to the invention.
  • the ionization electrode 16 protrudes into the flame 1.
  • the gas valve 17 is controlled by the control signal 18 in a direct or indirect manner, for example via a motor. Eventually, a mechanical pressure regulator is interposed.
  • An air blower 19 is driven to a speed which is used here as an input parameter.
  • the speed corresponds to a power demand 22.
  • the speed signal 20 is fed via a filter 21 to the control unit 23, which has been designed as a program part for execution in a microprocessor.
  • characteristic data are stored, which define the characteristics of a first and a second control signal 24 and 25.
  • the controller 26 weights and adds the two control signals and thus determines the actuating signal 18. This processing of the control signals depends on the ionization signal 13.
  • the ionization signal 13 is first smoothed by the controller 26 by means of a low pass filter 27 to suppress glitches and flicker.
  • a setpoint signal 30 generated by the control unit 23 and routed via a correction unit 29 is subtracted.
  • an internal control value x is determined by a proportional controller 31 and a parallel integrating unit 32, which weights the two control signals 24 and 25 and thus fine-tunes the actuating signal 18.
  • the control value x may alternatively be generated by a PID controller or a state controller from the sequence signal.
  • FIG. 3 shows how the control signal 18 of a control device 15 according to the invention depending on the speed signal 20 runs.
  • the characteristics of the control signals 24 and 25 each relate to a fuel gas with a fairly deep, correspondingly high caloric value.
  • the control device 15 regulates the control signal via the weighting of the control signals 24 and 25 to an almost optimal for the air-gas ratio Value 33.
  • This fine control corresponds to a vertical movement of the control signal value in the FIG. 3 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

  • Die Erfindung betrifft eine Regeleinrichtung für einen Brenner, welcher Brenner eine im Flammenbereich des Brenners angeordnete Ionisationselektrode umfasst, sowie ein Stellglied, welches die Brennstoffzufuhrmenge oder die Luftzufuhrmenge in Abhängigkeit von einem Stellsignal beeinflusst.
  • Schon seit langem werden Ionisationselektroden zur Flammenüberwachung in Brennern verwendet. In der Regel wird aber das Verhältnis der Luftmenge zur Brennstoffmenge, oft Lambda genannt, bei jeder Leistungsanforderung entweder durch eine Steuerung oder durch eine Regelung mit Sensoren aufeinander abgestimmt. In der Regel soll Lambda bei jeder Leistungsanforderung leicht über dem stöchiometrischen Wert 1 sein, zum Beispiel 1,3.
  • Luftzahlgeregelte Brenner reagieren, anders als gesteuerte Brenner, auf äußere Einflüsse, welche die Verbrennung verändern. Sie haben daher einen höheren Wirkungsgrad und damit eine höhere Effizienz sowie niedrigere Schadstoffemissionen und damit eine geringere Umweltbelastung. Die dafür benötigten Sensoren, oft Gassensoren, insbesondere Sauerstoffsensoren, oder Temperatursensoren, sind aber für diesen Zweck teuer, unzuverlässig, pflegebedürftig und / oder haben eine geringe Lebensdauer.
  • Während vielen Jahren haben sich deswegen Brennerhersteller und Regeleinrichtungshersteller darum bemüht, die schon vorhandene Ionisationselektrode nicht nur für die Flammenüberwachung, sondern auch als Sensor zur Brennerregelung zu verwenden. DE-A1-3937290 beschreibt einen Versuchsaufbau zur Regelung des Gas-Luft-Verhältnisses, bei dem die Ionisationselektrode mit einer Gleichspannung gespeist wird. Dieses Prinzip eignet sich wenig zur Serienfertigung. Eine Überwachung der Flamme mit der gleichen Ionisationselektrode ist nicht möglich, da hierzu nur die Gleichrichtereigenschaft der Flamme verwendet werden darf.
  • Vor einigen Jahren erschienen IT-95U000566 und EP-A1-909922 , welche Regeleinrichtungen für Gasbrenner beschreiben. In vereinfachter Darstellung wird darin beschrieben, wie bei dynamisch schnellen Änderungen des Gas- oder Luftvolumenstroms das Stellglied anhand einer gespeicherten Kennlinie gesteuert wird. Dagegen findet bei langsamen Änderungen des Gas- oder Luftvolumenstroms eine Feineinstellung anhand der Regelung mit dem Ionisationssignal als Messgröße statt.
  • Schnelle Änderungen der Brennstoffzufuhr oder Luftzufuhr entstehen typisch durch sprungartige Änderungen der Leistungsanforderung. Darüber hinaus können Luftzahländerungen und damit Änderungen des Gas- oder Luftvolumenstromes durch Änderung in der Brennstoffzusammensetzung, durch Luftdruckänderung, Änderungen des Gasdrucks, Temperaturänderungen, Verschmutzung und Abnutzung von mechanischen Brennerteilen etc. verursacht werden.
  • Die gespeicherte Kennlinie in den Regeleinrichtungen aus IT-95U000566 und EP-A1-909922 legt bei jedem Luftdruck des Gebläses, und somit bei jeder angeforderten Leistung, ein Stellsignal fest, das einem annähernd erwünschten Stand des Stellgliedes für das Gasventil entspricht. Auch ist eine alternative Regeleinrichtung beschrieben, wonach der Luftvolumenstrom dem Gasvolumenstrom angepasst wird, und die Kennlinie näherungsweise die erwünschte Gebläsedrehzahl in Abhängigkeit der Stellgröße des Gasventils festlegt.
  • Man erhält eine brennerspezifische Kennlinie dadurch, dass der Brenner unter je einer anderen Belastung mit wechselnden Stellgliedständen betrieben wird, wobei mit zusätzlichen Sensoren Emissionswerte und Wirkungsgrad gemessen und so die gewünschten Stellgrößen ermittelt werden.
  • Luftzahlgeregelte Brenner haben Vorteile gegenüber Geräten, die mittels Kennlinien gesteuert sind. Bei konstanter Leistung lassen Änderungen von Temperatur, Brennstoffdruck, Luftdruck, Brennstoffzusammensetzung, Abnutzung und Verschmutzung von mechanischen Teilen etc. den eingestellten Arbeitspunkt wegdriften.
  • Deswegen bewirken die Regeleinrichtungen nach IT-95U000566 und EP-A1-909922 bei Auftritt schneller Leistungsänderungen zwar eine Steuerung anhand der gespeicherten Kennlinie, kompensieren aber deren Unvollkommenheit, in dem sie den letzten Stand des Stellsignals zuerst auf konstanter Distanz entlang der Kennlinie zu einem neuen Wert verschieben.
  • Ungefähr gleichzeitig hat der Inhaber von EP-A2-806610 Regeleinrichtungen entwickelt, welche ebenfalls eine Kennlinie für das Stellsignal gespeichert haben. Die Kennlinie dient ebenfalls im Grunde dazu, bei schnellen Leistungsänderungen das Stellsignal vorzusteuern, während der Ionisationsstrom noch den Tatsachen nacheilt.
  • In DE-A-19831648 zeigt er ein Verfahren zur funktionalen Adaption einer Regelelektronik eines Gasheizgeräts an dessen typenspezifische Eigenschaften, das weitgehend selbstständig ablaufen soll. Mit der Regelelektronik sind in Abhängigkeit von einem verbrennungsabhängigen Ionisationssignal der Verbrennungsluft-Volumenstrom und der Brenngas-Volumenstrom steuerbar. Zur Adaption steuert die Regelelektronik vor dem eigentlichen Brennerbetrieb Brennvorgänge mit unterschiedlichen Luftvolumenströmen an und speichert die sich dabei ergebenden Kenndaten für den künftigen Brennerbetrieb.
  • Einige der obengenannten Regeleinrichtungen aus dem Stand der Technik sind auf dem Markt, weisen aber erhebliche Nachteile auf. Sie brauchen nämlich trotzdem zusätzliche Sensoren und / oder halten bei dynamischen Veränderungen der Leistung das Luft-Gasverhältnis wenig stabil. Die Marktakzeptanz ist dementsprechend gering.
  • Es hat sich gezeigt, dass eine wesentliche Verbesserung zur Regelung eines Brenners über die Ionisationselektrode in den Erfindungsmaßnahmen des Anspruchs 1 liegt.
  • Überraschenderweise erbringen diese an sich leicht ausführbaren Maßnahmen den lang erwünschten Sprung in der Regelungsqualität. Der Aufbau einer erfindungsgemäßen Regeleinrichtung benötigt wenig Ressourcen, wie elektronische Bauteile und Rechnerkapazität eines Mikroprozessors. Für die einmalige Anfangseinstellung einer Regeleinrichtung auf einen gewissen Brennertyp müssen statt vorher eine, nun zwei oder mehr brennerspezifische Kennlinien festgestellt werden.
  • Die Praxis hat gezeigt, dass das zweite Steuersignal überdurchschnittlich dazu beiträgt, die Steuerung des Stellsignals zu präzisieren.
  • Die Regeleinrichtung kann übrigens so aufgebaut werden, dass sie selbst, bei Detektierung geeigneter Bedingungen, ein Einstellverfahren zur Erfassung von neuen Kenndaten durchführt. Somit findet eine gelegentliche oder regelmäßige Neukalibrierung statt, um etwaige schleichende Änderungen im Regelsystem, beispielsweise Abnutzung oder Verschmutzung der Ionisationselektrode, zu kompensieren. Eine andere Möglichkeit besteht darin, dass die Steuerkennlinien automatisch ermittelt werden, auch für Gase, die mittels den voreingestellten Kennlinien nicht erfasst werden.
  • Die Kenndaten können beispielsweise als die Konstanten in einer Polynomentwicklung bis zur dritten Ordnung gestaltet sein. Die von der Polynomentwicklung annäherungsweise dargestellte Funktion legt eine Beziehung zwischen einem Eingabeparameter und dem Stellsignal fest.
  • Als Eingabeparameter für die Steuerkurven dient zunächst die angeforderte Leistung, entweder in Form einer Stellgröße oder einer Messgröße, die der Leistung entspricht, also zum Beispiel der Gebläsedrehzahl. Natürlich können auch andere Größen als Eingangsgröße der Steuerkennlinien verwendet werden, z. B. Temperatursignale aller Art wie Brennertemperatur, Vorlauf- und Rücklauf- Temperatur, etc. Weitere Beispiele sind ein Druckdifferenzmesswert zur Bestimmung des Gas- oder Luftvolumenstroms, ein Gas- oder Luftvolumenstrom-Messgerät, oder direkt das Ansteuersignal zum Betrieb eines Gasventils oder einer Ölpumpe.
  • Vorteilhaft hängen das erste und das zweite Verhalten des Stellgliedes von Eingangsparametern ab, welche die gleiche Größe darstellen. Das Maß der angeforderten Leistung, oder eine andere physikalische Größe, kann der Steuereinheit mittels eines einzelnen Eingangsparameters, wie der Stellgröße der Gebläsedrehzahl, oder mittels Eingangsparameter unterschiedlicher Art, wie Stellgröße und Messgröße der Gebläsedrehrahl, zugeführt werden.
  • Notwendig ist dies aber nicht. Stehen insbesondere der Regeleinrichtung während des Betriebes weitere Messwerte zur Verfügung, aus denen sie zum Beispiel den aktuellen Energieinhalt oder den aktuellen Druck des zugeführten Brennstoffs direkt oder indirekt ermitteln kann, dann kann der zweite Eingabeparameter sogar eine andere Größe darstellen.
  • Oft sind Brenner mit einem Temperatursensor für die Kesseltemperatur ausgerüstet. Eine Änderung des Energieinhaltes des zugeführten Brennstoffs hat eine Änderung der Kesseltemperatur zufolge. Bei einem solchen Brenner ist beispielsweise die Stellgröße der Gebläsedrehzahl der erste Eingabeparameter, und die zeitliche Änderung der Kesseltemperatur der zweite. Es sind Kenndaten gespeichert worden, welche ein erstes erwünschtes Verhalten des Stellgliedes bei unterschiedenen Leistungen, aber festem Energieinhalt des Brennstoffes und festen sonstigen Einflüssen bestimmen. Auch sind Kenndaten gespeichert worden, welche ein zweites Verhalten bei unterschiedlichen Energieinhalten und diesmal fester Leistung bestimmen.
  • In diesem Szenario ermittelt die Regeleinrichtung anhand von Kesseltemperaturänderungen, welche dem zeitlichen Verlauf der Stellgröße der Gebläsedrehzahl nicht entsprechen, etwaige Änderungen des aktuellen Energieinhalts des zugeführten Brennstoffs und erzeugt mittels der Kenndaten für das zweite Verhalten und unter Betrachtung des Ionisationssignals eine korrigierte leistungsabhängige Steuerkurve. Das Stellsignal wird im Falle einer dynamischen Leistungsänderung die so korrigierte Steuerkurve zum Beispiel auf gleichbleibender Distanz folgen.
  • Als Brenner kommen Brenner unterschiedlichster Bauart in Frage, zum Beispiel Vormisch-Gasbrenner oder atmosphärische Brenner mit und ohne Hilfsgebläse. Bei atmosphärischen Brennern ohne Hilfsgebläse kann der Luftvolumenstrom z. B. über eine Luftklappe o. ä. gesteuert werden.
  • Der Regler erzeugt das Stellsignal zumindest zeitweise durch Verarbeitung der Steuersignale und bestimmt die Verarbeitung zumindest zeitweise in Abhängigkeit vom Ionisationssignal.
  • Dies beinhaltet einige Varianten. Beispielsweise erzeugt die Steuereinheit in einem quasi-stabilen Zustand keine Steuersignale. Die Regeleinrichtung macht dann eine reine Regelung über das Ionisationssignal. Sobald aber eine schnelle Zustandsänderung auftritt, schaltet die Regeleinrichtung auf die schnell reagierende und genaue Steuerung durch eine Verarbeitung der Steuersignale um. Die Weise, in der die Steuersignale verarbeitet werden, ist vorher vom Ionisationssignal festgelegt worden und bleibt während der ganzen Steuerungsperiode gleich. Die Steuerung wird erst wieder durch eine Regelung ersetzt, wenn der Zustand sich beruhigt hat und das Ionisationssignal dem aktuellen Zustand nachgeeilt ist. Gemäss einer Alternative aber werden die Steuersignale dauerhaft erzeugt, und es tragen sowohl die Steuersignale als auch das Ionisationssignal kontinuierlich zum Stellsignal bei. Mischvarianten sind auch möglich.
  • In jedem Fall ist es so, dass der Regler zumindest zeitweise die Steuersignale gewichtet und aufaddiert und dass der Regler die Gewichtung zumindest zeitweise in Abhängigkeit vom Ionisationssignal bestimmt.
  • In einer vorteilhaften Ausführung der Erfindung dämpft der Regler schnelle Schwankungen des Ionisationssignals im Vergleich zu langsame Schwankungen vor der Verarbeitung der Steuersignale ab. Insbesondere ist der Regler mit einem Tiefpassfilter für das Ionisationssignal oder für ein durch Verarbeitung erzeugtes Folgesignal ausgestattet, oder mit einer Integriereinheit für das Ionisationssignal oder für ein durch Verarbeitung erzeugtes Folgesignal.
  • Die Verarbeitung der Steuersignale wird durch diese Maßnahmen erst mit gewisser Verzögerung und / oder Glättung des Ionisationssignals angepasst, damit der sowieso zu träge Ionisationssignalverlauf nach einer plötzlichen Zustandsänderung das Stellsignal nicht stört. Erst wenn die Lage sich wieder beruhigt hat, wird das Ionisationssignal langsam auf die Verarbeitung der Steuersignale einwirken, um eine Feinabstimmung zu erbringen.
  • In einer weiteren Ausführung der Erfindung sind in der Steuereinheit zudem Kenndaten zur Bestimmung eines Verhaltens des Ionisationssignals gespeichert, erzeugt die Steuereinheit zumindest zeitweise ein Sollwertsignal und erzeugt der Regler das Stellsignal zumindest zeitweise in Abhängigkeit vom Sollwertsignal.
  • Durch diese Maßnahmen kann die Reglereinrichtung, beziehungsweise ihr Reglerprogramm, einfach gestaltet werden und eine große Zuverlässigkeit erreichen. Optional kalibriert die Regeleinrichtung selbst gelegentlich oder regelmäßig diese Kenndaten.
  • In der genannten Ausführungsform der Erfindung ist der Regler vorteilhaft mit einer Vergleichseinheit ausgestattet, welche zumindest zeitweise das Sollwertsignal oder ein durch Verarbeitung erzeugtes Folgesignal vom Ionisationssignal subtrahiert. In dieser Ausführungsform kann der Regler das Stellsignal so erzeugen, dass das Ionisationssignal auf das Sollwertsignal hin geregelt wird. Durch die obengenannte Integriereinheit kann diese Differenz zu Null geregelt werden.
  • Eine weitere Ausführung der Erfindung betrifft die gespeicherten Kenndaten. Vorteilhaft ist das erste Verhalten des Stellgliedes während eines Brennerbetriebes mit einem ersten Brennstoff bestimmt worden, und das zweite Verhalten des Stellgliedes während eines Brennerbetriebes mit einem bezüglich des Energieinhaltes unterschiedlichen zweiten Brennstoff, insbesondere wenn der spezifische Energieinhalt eines Brennstoffs mindestens 5 % höher als der eines anderen Brennstoffs ist.
  • Es hat sich gezeigt, dass die Kennlinien ab diesem Grenzwert dermaßen voneinander verschieden sind, dass sie der Regeleinrichtung wesentliche Zusatzinformationen gegenüber einer Regeleinrichtung mit nur einer gespeicherten Kennlinie geben. Dies lässt das Ausmaß einiger Vorteile, welche die Erfindung mit sich bringt, wesentlich ansteigen.
  • In diese Ausführung haben sich die Kenndaten zur Bestimmung der beiden Verhalten des Stellgliedes aus Messungen ergeben. Alternativerweise aber werden nur die Kenndaten für das erste Verhalten des Stellgliedes anhand von Messergebnisse bestimmt. Die Kenndaten für das zweite Verhalten werden dann aus diesen berechnet. Dies ist nur möglich, wenn ein Fachmann ein geeignetes Wissen über das Verhalten des Stellgliedes unter den unterschiedlichen Umständen hat.
  • In einer Variante der obengenannten Ausführung werden die Kenndaten für das zweite Verhalten statt mittels brennerspezifischer Messungen anhand von fachmännischen Kenntnissen über die in der Praxis zugeführten Brennstoffmischungen festgestellt.
  • Die Einstellung einer Regeleinrichtung auf einen gewissen Brennertyp findet also vorteilhaft dadurch statt, dass zwei oder mehr brennerspezifische Kennlinien während des Betriebes mit unterschiedlichen Brennstoffen, beispielsweise Gasmischungen in unterschiedlichen Verhältnissen, festgestellt werden.
  • Die Erfindung betrifft auch ein Verfahren zum Einstellen einer erfinderischen Regeleinrichtung. Gemäss diesem Verfahren wird zuerst ein Brenner mit einer erfinderischen Regeleinrichtung und mit zusätzlichen Sensoren zur Feststellung der Qualität der Verbrennung ausgestattet. Dann betreibt man den Brenner mit einem ersten Brennstoff mit gewissem Energieinhalt auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt. Aus den erwünschten Stellgliedständen werden Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes festgestellt. Danach betreibt man den Brenner mit einem zweiten Brennstoff mit einem unterschiedlichen Energieinhalt auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt, und stellt jetzt aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes fest. Optional wiederholt man diese Schritte für einen dritten oder sogar weitere Brennstoffe. Schließlich werden die festgestellten Kenndaten in einer oder mehreren Regeleinrichtungen gespeichert. Wie oben beschrieben wurde, bringt es Vorteile mit sich, dass der spezifische Energieinhalt eines Brennstoffs mindestens 5 % höher als der eines anderen Brennstoffs ist.
  • Alternativerweise betreibt man den Brenner mit einer Brennstoffzufuhr unter einem ersten Druck auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt. Aus den erwünschten Stellgliedständen werden Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes festgestellt. Danach betreibt man den Brenner mit einer Brennstoffzufuhr unter einem unterschiedlichen zweiten Druck auf unterschiedlichen Leistungswerten je mit unterschiedenen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt. Aus den erwünschten Stellgliedständen werden jetzt Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes festgestellt. Zum Abschluss speichert man die festgestellten Kenndaten in einer Regeleinrichtung. Die Erfindungswirkung ist besonders ausgeprägt, wenn die Unterschiede in den Brennstoffzufuhrdrücken 9 % überschreiten, das heißt, wenn ein Brennstoffzufuhrdruck mindestens 9 % höher als ein anderer ist.
    • Figur 1 zeigt ein Blockschaltbild eines Ionisationsauswerters in einer Regeleinrichtung gemäss der Erfindung,
    • Figur 2 zeigt ein Blockschaltbild einer Regeleinrichtung gemäss der Erfindung, und
    • Figur 3 zeigt das Stellsignal einer Regeleinrichtung gemäss der Erfindung.
  • Fig. 1 zeigt schematisch das Funktionsprinzip eines Ionisationsauswerters 14 in einer Regeleinrichtung gemäss der Erfindung. In einer Ersatzschaltung ist die Flamme 1 durch eine Diode 1a und einen Widerstand 1b dargestellt. Über L und N ist eine Wechselspannung von beispielsweise 230V angelegt. Wenn eine Flamme 1 vorhanden ist, fließt wegen der Flammendiode 1a durch den Blockkondensator 3 in der positiven Halbwelle ein größerer Strom als in der negativen Halbwelle. Dadurch bildet sich zwischen L und einem zum Zweck des Berührschutzes angebrachten Widerstandes 2 eine positive Gleichspannung UB am Blockkondensator 3 aus.
  • Durch einen Entkopplungswiderstand 4 fließt daher ein Gleichstrom von N zum Blockkondensator 3. Die Höhe des Gleichstromes hängt dabei von UB und damit direkt vom Flammenwiderstand 1b ab. Der Flammenwiderstand 1b beeinflusst ebenfalls den Wechselstrom durch den Entkoppelwiderstand 4, allerdings in unterschiedlichem Maß gegenüber dem Gleichstrom. Durch den Widerstand 4 fließt somit ein Gleichstrom und ein Wechselstrom wie oben beschrieben.
  • Dem Widerstand 4 ist nun ein Hochpass 5 und ein Tiefpass 6 nachgeschaltet. Durch den Hochpass 5 wird der Wechselstrom ausgefiltert und der Gleichspannungsanteil abgeblockt. Durch den Tiefpass wird der vom Flammenwiderstand 1b abhängige Gleichspannungsanteil ausgefiltert und der Wechselstrom im wesentlichen abgeblockt. In einem Verstärker 7 wird der aus dem Hochpass 5 fließende Wechselstrom verstärkt und eine Referenzspannung URef zuaddiert. In einem Verstärker 8 wird der aus dem Hochpass 6 fließende Gleichstrom mit eventuell geringen Wechselstromanteilen verstärkt und die Referenzspannung URef zuaddiert.
  • Die Referenzspannung URef kann beliebig, zum Beispiel URef = 0 gewählt werden, sie wird jedoch vorzugsweise so gewählt, dass die Verstärker und Komparatoren nur eine Versorgung benötigen.
  • An einem Komparator 9 werden die aus dem Verstärker 7 austretende Wechselspannung und die aus dem Verstärker 8 austretende Gleichspannung miteinander verglichen und ein pulsweitenmoduliertes (PWM) Signal erzeugt. Ändert sich die Amplitude der Netzspannung, so ändern sich Wechselspannung und Gleichspannung im gleichen Verhältnis, das PWM-Signal ändert sich nicht. Der Signalhub des PWM-Signals kann mittels der Verstärker 7 und 8 in einem weiten Bereich zwischen τ = 0 und τ = 50% Tastverhältnis eingestellt werden.
  • Der Gleichspannungsanteil U- wird in einem Komparator 10 mit der Referenzspannung URef verglichen. Ist eine Flamme vorhanden, ist der Gleichspannungsanteil größer als die Referenzspannung (U= > URef) und der Komparatorausgang des Komparators 10 schaltet auf 0. Ist keine Flamme vorhanden, so ist der Gleichspannungsanteil ungefähr gleich der Referenzspannung (U= ≈ URef). Wegen dem, dem Gleichspannungsanteil überlagerten, geringen Wechselspannungsanteil, den der Tiefpass 6 nicht ausfiltert, unterschreitet der Gleichspannungsanteil kurzzeitig die Referenzspannung und am Komparatorausgang des Komparators 10 erscheinen Impulse. Diese Impulse werden auf ein nachtriggerbares Monoflop 11 gegeben.
  • Das Monoflop 11 wird so getriggert, dass die aus dem Komparator 10 ausgegebene Impulsfolge schneller kommt als die Impulsdauer des Monoflops ist. Dadurch erscheint, wenn keine Flamme vorhanden ist, am Ausgang des Monoflops konstant eine 1. Ist eine Flamme vorhanden, so wird das Monoflop nicht getriggert und am Ausgang erscheint permanent eine 0. Das nachtriggerbare Monoflop 11 bildet somit einen "missing pulse detector", welcher das dynamische Ein-/Aus-Signal in ein statisches Ein-/Aus-Signal umwandelt.
  • Beide Signale, das PWM-Signal und das Flammensignal können nun separat weiterverarbeitet werden oder aber mittels eines Oder-Gliedes 12 verknüpft werden. Als Ausgang des Oder-Gliedes 12 zeigt sich bei vorhandener Flamme ein PWM-Signal, dessen Tastverhältnis ein Maß für den Flammenwiderstand 1b ist. Dieses Ionisationssignal 13 wird dem in Figur 2 gezeigten Regler 26 zugeführt. Ist keine Flamme vorhanden, ist der Ausgang des Oder-Gliedes permanent auf 1. Das Ionisationssignal 13 kann über einen nicht dargestellten Optokoppler übertragen werden, um eine Schutztrennung zwischen der Netzseite und der Schutzkleinspannungsseite zu erreichen.
  • Figur 2 zeigt ein Blockschaltbild einer Regeleinrichtung 15 gemäss der Erfindung. Die Ionisationselektrode 16 ragt in die Flamme 1. Das Gasventil 17 wird vom Stellsignal 18 auf direkte oder indirekte Weise, zum Beispiel über einen Motor, gesteuert. Etwaig ist noch ein mechanischen Druckregler zwischengeschaltet.
  • Ein Luftgebläse 19 wird auf eine Drehzahl angesteuert, die hier als Eingabeparameter verwendet wird. Die Drehzahl entspricht einer Leistungsanforderung 22. Das Drehzahlsignal 20 wird über ein Filter 21 zu der Steuereinheit 23 geführt, welche als Programmteil zum Ablauf in einem Mikroprozessor gestaltet worden ist. Dort sind Kenndaten gespeichert, welche die Kennlinien eines ersten und eines zweiten Steuersignals 24 und 25 festlegen. Der Regler 26 gewichtet und addiert die beide Steuersignale und ermittelt so das Stellsignal 18. Diese Verarbeitung der Steuersignale hängt vom Ionisationssignal 13 ab.
  • Das Ionisationssignal 13 wird vom Regler 26 zuerst mittels eines Tiefpassfilters 27 geglättet, um Störimpulse und Flackern zu unterdrücken. In einer Vergleichseinheit 28 wird ein von der Steuereinheit 23 erzeugtes und über einer Korrektureinheit 29 geführtes Sollwertsignal 30 subtrahiert. Aus dem Folgesignal dieser Verarbeitung des Ionisationssignals wird von einem Proportionalregler 31 und einer parallelen Integriereinheit 32 ein interner Regelwert x ermittelt, der die beiden Steuersignale 24 und 25 gewichtet und damit das Stellsignal 18 fein abregelt.
  • Der Regelwert x kann alternativerweise durch einen PID-Regler oder einen Zustandsregler aus dem Folgesignal erzeugt werden.
  • Figur 3 zeigt wie das Stellsignal 18 einer Regeleinrichtung 15 gemäss der Erfindung abhängig vom Drehzahlsignal 20 verläuft. Die Kennlinien der Steuersignale 24 und 25 betreffen je ein Brenngas mit ziemlich tiefem, respektiv hohem kalorischem Wert.
  • In einem quasi-stabilen Zustand, in dem das Brenngas einen mittleren Verbrennungswert hat und die Verbrennungswerte auch wegen sonstigen Umständen von den Kennlinien abweichen, regelt die Regeleinrichtung 15 über die Gewichtung der Steuersignale 24 und 25 das Stellsignal auf einen für das Luft-Gasverhältnis nahezu optimalen Wert 33. Diese Feinregelung entspricht einer vertikalen Bewegung des Stellsignalwertes in der Figur 3.
  • Findet jetzt ein schrittartiger Anstieg der Leistungsanforderung 22 statt, und eine entsprechende Änderung des Drehzahlsignals 20, dann bleibt die Gewichtung der beiden Steuersignale vorerst kaum berührt. Die Steuersignale 24 und 25 selbst aber steigen je rasch mit der Drehzahländerung auf ihre entsprechend höheren Werte entlang die Kennlinien an, und das Stellsignal 18 steigt ebenso rasch zu dem Wert 34 mit. Dieser gesteuerter Wert 34 des Stellsignals ist schon sehr genau, das heißt, ist nahe an einem für das Luft-Gasverhältnis optimalen Wert. Sobald das Ionisationssignal 13 sich wieder auf den neuen Zustand eingespielt hat, typisch nach einigen wenigen Sekunden, regelt es die Gewichtung der Steuersignale 24 und 25 wieder fein. Dabei bewegt sich in der Figur 3 das Stellsignal 18 vertical zu einem Wert 35.

Claims (13)

  1. Regeleinrichtung (15) für einen Brenner mit einer im Flammenbereich des Brenners angeordneten Ionisationselektrode (16) und mit einem Stellglied (17), welches die Brennstoffzuführmenge oder die Luftzufuhrmenge in Abhängigkeit von einem Stellsignal (18) beeinflusst, ausgestattet mit einem der Ionisationselektrode (16) nachgeschalteten Ionisationsauswerter (14), welcher ein Ionisatiönssignal (13) erzeugt, mit einer Steuereinheit (23), in der Kenndaten zur Bestimmung eines ersten Verhaltens des Stellgliedes (17) gespeichert sind, welche zumindest zeitweise ein erstes Steuersignal (24) erzeugt, und mit einem Regler (26), welcher das Stellsignal (18) zumindest zeitweise in Abhängigkeit vom Ionisationssignal (13) und zumindest zeitweise in Abhängigkeit vom ernsten Steuersignal (24) erzeugt, wobei in der Steuereinheit (23) Kenndaten zur Bestimmung eines zweiten Verhaltens des Stellgliedes (17) gespeichert sind, die Steuereinheit (23) zumindest zeitweise ein zweites Steuersignal (25) erzeugt und der Regler (26) das Stellsignal (18) zumindest zeitweise in Abhängigkeit vom zweiten Steuersignal (25) erzeugt,
    dadurch gekennzeichnet, dass der Regler (26) das Stellsignal (18) zumindest teilweise durch Verarbeitung der Steuersignale (24,. 25) erzeugt, wobei der Regler (26) zumindest zeitweise die Steuersignale (24, 25) gewichtet und aufaddiert und der Regler (26) die Gewichtung zumindest zeitweise in Abhängigkeit vom Ionisationssignal (13) bestimmt.
  2. Regeleinrichtung nach.Anspruch 1,
    dadurch gekennzeichnet, dass
    der Regler (26) vor der Verarbeitung der Steuersignale (24,25) schnelle Schwankungen des Ionisationssignals (13) im Vergleich zu langsamen Schwankungen abdämpft.
  3. Regeleinrichtung nach Anspruch 2,
    dadurch gekennzeichnet, dass
    der Regler (26) mit einem Tiefpassfilter (27) für das Idnisationssignal (13) oder für ein durch Verarbeitung erzeugtes Folgesignal ausgestattet, ist.
  4. Regeleinrichtung, nach Anspruch 3,
    dadurch gekennzeichnet, dass
    der Regler (26) mit einer Integriereinheit (32) für das Ionisationssignal (13) oder für ein durch Verarbeitung erzeugtes Folgesignal ausgestattet ist.
  5. Regeleinrichtung nach jedem der vorgehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in der Steuereinheit (23) zudem Kenndaten zur Bestimmung eines Verhaltens des Ionisationssignals (13) gespeichert sind,
    die Steuereinheit (23) zumindest zeitweise ein Sollwertsignäl (30) erzeugt und
    der Regler (26) das Stellsignal (18) zumindest zeitweise in Abhängigkeit vom Sollwertsignal (23) erzeugt.
  6. Regeleinrichtung nach Anspruch 5,
    dadurch gekennzeichnet, dass
    der Regler (26) mit einer Vergleichseinheit ausgestattet ist, welche zumindest zeitweise das Sollwertsignal (30) oder ein durch Verarbeitung erzeugtes Folgesignal vom Ionisationssignal (13) oder von einem durch Verarbeitung erzeugten Folgesignal subtrahiert.
  7. Regeleinrichtung nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, dass
    der Regler (26) das Stellsignal (18) so erzeugt, dass das Ionisationssignal (13) auf das Sollwertsignal (30) hin geregelt wird.
  8. Regeleinrichtung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das erste Verhalten des Stellgliedes (17) während eines Brennerbetriebes mit einem ersten Brennstoff bestimmt worden ist und
    das zweite Verhalten des Stellgliedes (17) während eines Brennerbetriebes mit einem bezüglich des Energieinhaltes unterschiedlichen zweiten Brennstoff bestimmt worden ist.
  9. Regeleinrichtung nach Anspruch 8,
    dadurch gekennzeichnet, dass
    der spezifische Energieinhalt eines Brennstoffs mindestens 5% höher als der eines anderen Brennstoffs ist.
  10. Verfahren zum Einstellen einer Regeleinrichtung für Brenner nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    man einen Brenner mit einer Regeleinrichtung (15) und mit zusätzliche Sensoren zur Feststellung der Qualität der Verbrennung ausstattet,
    man den Brenner mit einem ersten Brennstoff mit gewissem Energieinhalt auf unterschiedliche Leistungswerte je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt,
    man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes (17) feststellt; man den Brenner mit einem zweiten Brennstoff mit einem unterschiedlichen Energieinhalt auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt, man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes (17) feststellt und man die festgestellten Kenndaten in der Regeleinrichtung (15) speichert.
  11. Verfahren zum Einstellen einer Regeleinrichtung, für Brenner nach Anspruch 10,
    dadurch gekennzeichnet, dass
    der spezifische Energieinhalt eines Brennstoffs mindestens 5% höher als der eines anderen Brennstoffs ist.
  12. Verfahren zum Einstellen einer Regeleinrichtung für Brenner nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass
    man den Brenner mit einer Brennstoffzufuhr unter einem ersten Druck auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt, man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes (17) feststellt,
    man den Brenner mit einer Brennstoffzufuhr unter einem unterschiedlichen zweiten Druck auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt,
    man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes (17) feststellt und
    man die festgestellten Kenndaten in der Regeleinrichtung (15) speichert.
  13. Verfahren zum Einstellen einer Regeleinrichtung für Brenner nach Anspruch 12,
    dadurch gekennzeichnet, dass
    ein Brennstoffzufuhrdruck mindestens 9 % höher als der andere ist.
EP01110418A 2000-05-12 2001-04-27 Regeleinrichtung für einen Brenner Expired - Lifetime EP1154202B2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10023265 2000-05-12
DE10023265 2000-05-12
DE10025769A DE10025769A1 (de) 2000-05-12 2000-05-26 Regeleinrichtung für einen Brenner
DE10025769 2000-05-26

Publications (4)

Publication Number Publication Date
EP1154202A2 EP1154202A2 (de) 2001-11-14
EP1154202A3 EP1154202A3 (de) 2003-05-14
EP1154202B1 EP1154202B1 (de) 2004-06-16
EP1154202B2 true EP1154202B2 (de) 2009-12-09

Family

ID=26005646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01110418A Expired - Lifetime EP1154202B2 (de) 2000-05-12 2001-04-27 Regeleinrichtung für einen Brenner

Country Status (7)

Country Link
US (1) US6537059B2 (de)
EP (1) EP1154202B2 (de)
JP (1) JP4897150B2 (de)
KR (1) KR100887418B1 (de)
AT (1) ATE269515T1 (de)
DE (2) DE10025769A1 (de)
DK (1) DK1154202T4 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214839A1 (de) 2021-03-15 2022-09-15 Siemens Aktiengesellschaft Flammenüberwachung mit Temperatursensor
EP4060233A1 (de) 2021-03-16 2022-09-21 Siemens Aktiengesellschaft Leistungserfassung und luftzahlregelung mittels sensoren im feuerraum
EP4397908A1 (de) 2023-01-06 2024-07-10 Siemens Aktiengesellschaft Brennstoffmengenregelung und/oder luftmengenregelung
EP4435322A1 (de) 2023-03-24 2024-09-25 Siemens Aktiengesellschaft Regelung einer verbrennungsvorrichtung

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023273A1 (de) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Messeinrichtung für eine Flamme
EP1396681B1 (de) * 2002-09-04 2005-12-07 Siemens Schweiz AG Brennerkontroller und Einstellverfahren für einen Brennerkontroller
US20070006865A1 (en) * 2003-02-21 2007-01-11 Wiker John H Self-cleaning oven
DE10341543A1 (de) * 2003-09-09 2005-04-28 Honeywell Bv Regelungsverfahren für Gasbrenner
US20050208443A1 (en) * 2004-03-17 2005-09-22 Bachinski Thomas J Heating appliance control system
US8087407B2 (en) 2004-03-23 2012-01-03 Middleby Corporation Conveyor oven apparatus and method
US9585400B2 (en) 2004-03-23 2017-03-07 The Middleby Corporation Conveyor oven apparatus and method
DE102004055716C5 (de) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
US20080092754A1 (en) * 2006-10-19 2008-04-24 Wayne/Scott Fetzer Company Conveyor oven
US8075304B2 (en) * 2006-10-19 2011-12-13 Wayne/Scott Fetzer Company Modulated power burner system and method
DE102007018122B4 (de) 2007-04-16 2013-10-17 Viessmann Werke Gmbh & Co Kg Flammenüberwachungsvorrichtung mit einer Spannungserzeugungs- und Messanordnung und Verfahren zum Überwachen eines Brenners mittels der Flammenüberwachungsvorrichtung
EP2020572B1 (de) * 2007-07-31 2012-12-26 Sit la Precisa S.p.a. Automatische Vorrichtung zur Zündung und Steuerung eines Gasgeräts und entsprechendes Antriebsverfahren
PL383941A1 (pl) * 2007-12-03 2009-06-08 Witold Kowalewski Kocioł rusztowy, sposób modernizacji kotła rusztowego oraz sposób likwidowania szkodliwych przedmuchów powietrza, nie biorącego udziału w procesie spalania w kotle rusztowym
US8839714B2 (en) 2009-08-28 2014-09-23 The Middleby Corporation Apparatus and method for controlling a conveyor oven
AT510002B1 (de) * 2010-12-20 2012-01-15 Vaillant Group Austria Gmbh Verfahren zur regelung eines gas-/luftgemisches
DE102011111453A1 (de) * 2011-08-30 2013-02-28 Robert Bosch Gmbh Verfahren zur Luftzahleinstellung bei einem Heizgerät
DE102013222675A1 (de) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Ionisationssensor
PT108869B (pt) * 2015-10-07 2024-05-16 Bosch Termotecnologia Sa Dispositivo de aquecimento e processo de operação de um dispositivo de aquecimento
EP3290800B1 (de) * 2016-09-02 2021-03-24 Robert Bosch GmbH Verfahren zum aktualisieren einer kennlinie in einem heizsystem sowie eine steuereinheit und ein heizsystem
DE102019101329A1 (de) 2019-01-18 2020-07-23 Vaillant Gmbh Verfahren und Vorrichtung zur Regelung des Mischungsverhältnisses von Verbrennungsluft und Brenngas bei einem Verbrennungsprozess
ES2929188T3 (es) 2018-12-05 2022-11-25 Vaillant Gmbh Procedimiento para regular la relación de mezcla de aire de combustión y gas combustible en un proceso de combustión
DE102019114919A1 (de) * 2019-06-04 2020-12-10 Ebm-Papst Landshut Gmbh Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes
KR102504772B1 (ko) * 2019-12-12 2023-03-02 주식회사 경동나비엔 물 가열기 및 이를 제어하는 방법
DE102021113220A1 (de) 2021-05-21 2022-11-24 Vaillant Gmbh Verfahren zur Überwachung des Betriebes eines Heizgerätes, Heizgerät sowie Computerprogramm und computerlesbares Medium
DE102021121027A1 (de) 2021-08-12 2023-02-16 Vaillant Gmbh Verfahren und Anordnung zum sicheren Betreiben und Regeln eines Verbrennungsprozesses in einem Heizgerät für die Verbrennung von Wasserstoff
EP4283195B1 (de) 2022-05-23 2024-10-09 Siemens Aktiengesellschaft Steuerung eines mischverhältnisses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632983A1 (de) 1996-08-16 1998-02-19 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner
DE19831648A1 (de) 1998-07-15 2000-01-27 Stiebel Eltron Gmbh & Co Kg Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasgerät

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
FR2638819A1 (fr) 1988-11-10 1990-05-11 Vaillant Sarl Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion
GB9400289D0 (en) * 1994-01-08 1994-03-09 Carver & Co Eng Burner control apparatus
IT237093Y1 (it) 1995-07-27 2000-08-31 A Beretta S P A Ora Iaber S P Sistema di controllo aria-gas per bruciatori a basse emissioni sucaldaie murali a gas con camera di combustione stagna
ATE189301T1 (de) * 1995-10-25 2000-02-15 Stiebel Eltron Gmbh & Co Kg Verfahren und schaltung zur regelung eines gasbrenners
EP0806610B1 (de) * 1996-05-09 2001-07-04 STIEBEL ELTRON GmbH & Co. KG Verfahren zum Betrieb eines Gasbrenners
DE69709928T2 (de) * 1997-10-17 2002-08-29 Riello S.P.A., Legnago Kombiniertes Regelsystem für Gas und Luft zur Verbrennungsregelung eines Gasheizkessels
US6299433B1 (en) * 1999-11-05 2001-10-09 Gas Research Institute Burner control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632983A1 (de) 1996-08-16 1998-02-19 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner
DE19831648A1 (de) 1998-07-15 2000-01-27 Stiebel Eltron Gmbh & Co Kg Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasgerät

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214839A1 (de) 2021-03-15 2022-09-15 Siemens Aktiengesellschaft Flammenüberwachung mit Temperatursensor
EP4060233A1 (de) 2021-03-16 2022-09-21 Siemens Aktiengesellschaft Leistungserfassung und luftzahlregelung mittels sensoren im feuerraum
EP4060232A1 (de) 2021-03-16 2022-09-21 Siemens Aktiengesellschaft Leistungserfassung und luftzahlregelung mittels sensoren im feuerraum
EP4397908A1 (de) 2023-01-06 2024-07-10 Siemens Aktiengesellschaft Brennstoffmengenregelung und/oder luftmengenregelung
EP4435322A1 (de) 2023-03-24 2024-09-25 Siemens Aktiengesellschaft Regelung einer verbrennungsvorrichtung

Also Published As

Publication number Publication date
DE10025769A1 (de) 2001-11-15
EP1154202A3 (de) 2003-05-14
DK1154202T3 (da) 2004-10-25
ATE269515T1 (de) 2004-07-15
EP1154202A2 (de) 2001-11-14
EP1154202B1 (de) 2004-06-16
DE50102575D1 (de) 2004-07-22
KR20010104275A (ko) 2001-11-24
DK1154202T4 (da) 2010-04-26
KR100887418B1 (ko) 2009-03-06
US6537059B2 (en) 2003-03-25
JP4897150B2 (ja) 2012-03-14
JP2001355841A (ja) 2001-12-26
US20010051107A1 (en) 2001-12-13

Similar Documents

Publication Publication Date Title
EP1154202B2 (de) Regeleinrichtung für einen Brenner
EP1293727B1 (de) Regeleinrichtung für einen Brenner und Einstellverfahren
EP2594848B1 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
EP0770824A2 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP0806610B1 (de) Verfahren zum Betrieb eines Gasbrenners
EP1331444B1 (de) Verfahren zur Regelung eines Gasbrenners
EP0030736A2 (de) Regelvorrichtung für die Verbrennungsluftmenge einer Feuerstätte
EP1522790B1 (de) Verfahren zur Regelung eines Gasbrenners, insbesondere bei Heizungsanlagen mit Gebläse
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE69308820T2 (de) Verfahren und einrichtung zur brennstoff-luftregelung von brenner mit oberflächenverbrennung
EP1186831A1 (de) Regeleinrichtung für einen luftzahlgeregelten Brenner
EP1002997B1 (de) Verfahren zur Luftzahlregelung eines vollvormischenden Gasbrenners
EP3029375B1 (de) Heizgerätevorrichtung und verfahren zum betrieb einer heizgerätevorrichtung
EP1396681B1 (de) Brennerkontroller und Einstellverfahren für einen Brennerkontroller
EP2405198B1 (de) Verfahren zur Kalibrierung der Regelung des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners
EP0615095B1 (de) Brennerregler
EP3182007B1 (de) Heizgerätesystem und verfahren mit einem heizgerätesystem
DE10300602B4 (de) Verfahren zur Regelung eines Gasbrenners
DE102011111453A1 (de) Verfahren zur Luftzahleinstellung bei einem Heizgerät
EP0614051B1 (de) Feuerungsautomat
DE102004063992B4 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
DE10319835A1 (de) Verfahren zur Regelung eines brennstoffbetriebenen Brenners
WO2019091619A1 (de) Verfahren zur regelung eines brenngasbetriebenen heizgeräts
DE4331048A1 (de) Verfahren und Vorrichtung zum Betreiben eines überstöchiometrisch vormischenden Gasbrenners
EP4170235A1 (de) Verfahren zur auswertung einer von einem sensor erfassbaren instationären druckdifferenz an einer gastherme sowie zugehörige gastherme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010609

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50102575

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040927

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040906

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050427

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050427

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

26 Opposition filed

Opponent name: STIEBEL ELTRON GMBH & CO.KG

Effective date: 20050316

R26 Opposition filed (corrected)

Opponent name: STIEBEL ELTRON GMBH & CO.KG

Effective date: 20050316

NLR1 Nl: opposition has been filed with the epo

Opponent name: STIEBEL ELTRON GMBH & CO.KG

NLR1 Nl: opposition has been filed with the epo

Opponent name: STIEBEL ELTRON GMBH & CO.KG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20050430

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8008 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041116

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS SCHWEIZ AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS SCHWEIZ AG

Effective date: 20090722

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20091209

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050428

NLR2 Nl: decision of opposition

Effective date: 20091209

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50102575

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, ZUERICH, CH

Effective date: 20130506

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200619

Year of fee payment: 20

Ref country code: FR

Payment date: 20200410

Year of fee payment: 20

Ref country code: DK

Payment date: 20200422

Year of fee payment: 20

Ref country code: NL

Payment date: 20200402

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200402

Year of fee payment: 20

Ref country code: IT

Payment date: 20200427

Year of fee payment: 20

Ref country code: SE

Payment date: 20200407

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200702

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50102575

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210426

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20210427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210426

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210426