EP0905273A2 - Method for producing films - Google Patents
Method for producing films Download PDFInfo
- Publication number
- EP0905273A2 EP0905273A2 EP98120857A EP98120857A EP0905273A2 EP 0905273 A2 EP0905273 A2 EP 0905273A2 EP 98120857 A EP98120857 A EP 98120857A EP 98120857 A EP98120857 A EP 98120857A EP 0905273 A2 EP0905273 A2 EP 0905273A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sputtering
- film
- silicon nitride
- target
- electric power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3444—Associated circuits
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
- C03C17/002—General methods for coating; Devices therefor for flat glass, e.g. float glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/225—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
- C03C17/2453—Coating containing SnO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3435—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
- C23C14/0652—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/211—SnO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/213—SiO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/214—Al2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/215—In2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/216—ZnO
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/23—Mixtures
- C03C2217/231—In2O3/SnO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/24—Doped oxides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/24—Doped oxides
- C03C2217/244—Doped oxides with Sb
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
- C03C2217/281—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/90—Other aspects of coatings
- C03C2217/94—Transparent conductive oxide layers [TCO] being part of a multilayer coating
- C03C2217/948—Layers comprising indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
- C03C2218/155—Deposition methods from the vapour phase by sputtering by reactive sputtering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
Definitions
- the present invention relates to a method for producing a transparent conductive film, whereby a transparent conductive film useful for e.g. a transparent electrode film for a liquid crystal display, a plasma display, an EL display, a touch panel or an anti-fogging glass for vehicles, or an optical thin film useful for a building window having various optical properties, is formed by sputtering.
- a transparent conductive film useful for e.g. a transparent electrode film for a liquid crystal display, a plasma display, an EL display, a touch panel or an anti-fogging glass for vehicles, or an optical thin film useful for a building window having various optical properties is formed by sputtering.
- the present invention also relates to a method for forming a silicon oxide film having an alkali barrier property or a silicon nitride film having various functions.
- a chemical film-forming method such as a sol-gel coating method, a spraying method or a chemical vapor deposition (CVD) method, or a physical film-forming method such as a vacuum deposition method or a sputtering method.
- the physical film-forming method such as a vacuum evaporation method or a sputtering method has been mainly employed for the reason that a transparent conductive film excellent in electrical properties and optical properties can thereby be readily obtained.
- the sputtering method has been widely used for the reason that a film can be formed uniformly on a substrate having a large area, and yet the film can be constantly formed even on a relatively low temperature substrate.
- the sputtering method is a film-forming method, wherein argon gas is ionized by direct current (DC) discharge or radio frequency (RF) discharge and bombarded to a negatively biased metal or oxide target, and the substance sputtered from the target is precipitated on a substrate.
- DC direct current
- RF radio frequency
- tin oxide containing from 0.1 to 10 wt% of antimony or a tin alloy containing from 0.1 to 10 wt% of antimony may be used as the target material.
- indium oxide containing from 5 to 10 wt% of tin oxide (ITO target) or an indium-tin alloy containing from 5 to 10 wt% of tin (IT target) may, for example, be used as the target material.
- zinc-oxide containing from 0.1 to 10 wt% of aluminum, zinc oxide containing from 0.1 to 15 wt% of gallium, a zinc alloy containing from 0.1 to 10 wt% of aluminum, or a zinc alloy containing from 0.1 to 15 wt% of gallium may, for example, be used as the target material.
- an inert gas such as argon, which may contain oxygen, as the case requires, may be employed.
- the deposition rate of tin oxide will decrease to a level of from 60 to 70% of the initial rate and at the same time, the frequency of arcing sharply increases, immediately prior to the completion of the use of the target.
- the target which is capable of forming a transparent conductive film
- the target is likely to undergo cracking due to inadequate cooling of the target. Further, the sputtering speed tends to be high, whereby the film properties of the transparent conductive film tend to be poor.
- alkali metal ions such as Na + or K + contained in the substrate glass diffuse through various thin layers formed on the surface of the glass substrate during the assembling process of the liquid display cell or during the use for a long period of time and reach the liquid crystal layer to deteriorate the performance of the device. Further, if such alkali metal ions reach the transparent conductive film such as ITO formed on the glass substrate, they deteriorate the electrical conductivity, which in turn deteriorates the response of the liquid display device or the quality of the display.
- soda lime glass produced by a float method when soda lime glass produced by a float method is to be used as the substrate for a liquid crystal display cell, it has been common to form a thin film of silica of a few tens nm as the first layer on the glass to let it have an alkali barrier property.
- the ability to prevent the diffusion of alkali metals depends largely on the nature of the material to be used, and not only that, when a certain material is selected, the alkali barrier property depends largely on the density of microscopic defects or the impurity concentration in the material.
- silica has been used frequently as a material for the alkali barrier film to prevent diffusion of alkali metals, and it has been common to conduct film deposition on the heated substrate, at a high temperature in order to obtain a high level of the alkali barrier property. Therefore, the substrate has been limited to a material having heat resistance.
- the film-forming method may, for example, be a dipping method, a CVD method, an EB evaporation method or a sputtering method. From the viewpoint of costs and performance, the CVD method or the sputtering method is selected in many cases.
- the CVD method a so-called pyrolytic CVD method is employed, whereby the substrate temperature tends to be naturally high, whereby the restriction relating to the heat resistance of the substrate is rather severe.
- the substrate temperature in order to improve the alkali barrier property as mentioned above, or to reduce the specific resistance of the transparent conductive film during the subsequent sputtering process of the transparent conductive film, it is common to raise the substrate temperature to a level of at least 300°C. From the viewpoint of the compatibility to such a process, it is usual to raise the substrate temperature to a level of about 300°C.
- silicon nitride may have an alkali barrier property equal or superior to that of silica.
- CVD method which comprises decomposing a molecular gas containing silicon and a molecular gas containing nitrogen by an exciting means such as heat or plasma and then reacting them to obtain silicon nitride, has a problem that the substrate temperature tends to be high during the film-forming operation. Further, it has a problem that during this film-forming operation, alkali metals from the substrate tend to diffuse into the silicon nitride film to deteriorate the alkali barrier property.
- a so-called radio frequency sputtering method wherein silicon nitride or silicon is used as the target, and a silicon nitride film is formed by applying a radio frequency voltage to the target, has a problem that the deposition rate is low, and if input power is increased to improve the deposition rate, the temperature of the substrate increases, and electrons or negative ions bombard the substrate to cause damage and to let many defects form also in the growing silicon nitride film, whereby the alkali barrier property tends to be poor.
- the thin film of an organic material has a problem in the weather resistance because of deterioration due to ultraviolet rays.
- a metal employed as the protective layer, the reflectance and the absorption coefficient of metal are generally large. Accordingly, such a metal can not be used in a case where a high level of optical transmittance is required.
- the silicon nitride film has high water permeation resistance, excellent mechanical and chemical stability, and high transparency, which are very suitable properties for a protective layer. Further, by using a reactive DC sputtering method, a protective layer having a uniform thickness and uniform film quality can be formed at a high speed even for a substrate with a large area (Japanese Patent Application No. 184519/1993).
- the resulting silicon nitride film is likely to change by a slight change in the deposition condition, and it has been difficult to form a silicon nitride film stably as designed.
- the silicon nitride film is useful also as an oxidation-resistant protective film (Japanese Unexamined Patent Publication No. 213632/1993).
- the conventional CVD method has a drawback that the temperatures of the substrate and the material to be protected from oxidation will rise, whereby the substance to be protected from oxidation is likely to react.
- the conventional radio frequency sputtering method has a drawback that the substance to be protected is likely to be damaged by the bombardment of electrons or negative ions, and it is difficult to apply large electric power by a RF power source in order to accomplish the protection of a large area. Under the circumstances, the reactive DC sputtering method is being recognized as the best film-forming method.
- the silicon nitride film is likely to be changed by a slight change of the condition, and it has been difficult to form a silicon nitride film stably as designed.
- the present invention provides a method for producing a transparent conductive film composed mainly of an oxide by sputtering using a sputtering target capable of forming a transparent conductive film, wherein intermittent electric power is supplied to the target.
- the present invention provides a method for forming a silicon oxide film having an alkali barrier property on a substrate by sputtering using an oxygen-containing gas as the sputtering gas and a sputtering target composed mainly of silicon, wherein intermittent negative voltage is applied to the target.
- the present invention provides a method for forming a silicon nitride film on a substrate by sputtering using a nitrogen-containing gas as the sputtering gas and a sputtering target composed mainly of silicon, wherein intermittent negative voltage is applied to the target.
- the present invention provides a method for producing a transparent conductive film composed mainly of an oxide by sputtering using a sputtering target capable of forming a transparent conductive film, wherein intermittent electric power is supplied to the target.
- a sputtering target composed essentially of tin or tin oxide a sputtering target composed essentially of indium or indium oxide, or a sputtering target composed essentially of zinc or zinc oxide, may, for example, be mentioned.
- the sputtering target is composed essentially of tin or tin oxide, it preferably contains metal antimony or an antimony compound, since it is thereby possible to improve the electrical conductivity.
- the content thereof is preferably from 0.1 to 10 wt%.
- the sputtering target is composed mainly of indium or indium oxide, it preferably contains tin, since it is thereby possible to improve the electrical conductivity.
- the content thereof is preferably from 5 to 10 wt%.
- the sputtering target is composed mainly of zinc or zinc oxide, it preferably contains a simple substance or a compound of at least one metal selected from the group consisting of aluminum, gallium, indium, boron and silicon, since it is thereby possible to improve the electrical conductivity.
- the content thereof is preferably from 0.1 to 15 wt%. Particularly preferred is the one which contains from 0.1 to 10 wt% of aluminum or from 0.1 to 15 wt% of gallium.
- Figure 1 is a schematic cross-sectional view of a film-forming apparatus according to the present invention.
- Reference numeral 1 indicates a sputtering target, numeral 2 a substrate on which a thin film is to be formed, numeral 3 a sputtering power source, numeral 4 a magnet for magnetron sputtering, numeral 5 a heater for heating the substrate, numeral 6 an inlet for sputtering gas, and numeral 7 a control means for supplying intermittent electric power.
- the sputtering power source to be used in the present invention is not particularly limited, so long as it is capable of supplying intermittent electric power.
- Preferred is the one which is capable of supplying the voltage waveform as shown in Figure 2, wherein the application time a 1 of negative voltage is within a range of from 10 ⁇ s to 10 ms, and non-application time b 1 is within a range of from 10 ⁇ s to 100 ms, the one capable of supplying the voltage waveform as shown in Figure 3 wherein the application time a 2 of negative voltage is within a range of from 10 ⁇ s to 10 ms, and the application time b 2 of positive voltage is within a range of from 10 ⁇ s to 100 ms, or the one capable of supplying the voltage waveform as shown in Figure 4 wherein the application time a 3 of negative voltage is within a range of from 10 ⁇ s to 10 ms, and the sum of the application time b 3 of positive voltage and non-application time b 4 , is within a range of from 10
- setting of the value of negative applied voltage (-V N ) is important for suppressing formation of nodules, which is an object of the present invention.
- Preferred effects can be obtained by adjusting the negative applied voltage (-V N ) so that the average value W A of the intermittently supplied electric power will be from 2 to 10 times the average value W of the electric power per period (hereinafter referred to as the effective value W) .
- the effective value W of the electric power will be as represented by the formula 1, where T is the period. If this is applied to the case of the waveform as shown in Figure 2, W will be as shown by the formula 2.
- the average electric power W A during the time when sputtering actually takes place (a 1 in Figure 2) will be as shown by the formula 3. Further, in Figure 2, the applied voltage during the time a 1 is (-V N ), and if this is inserted, W A will be as shown by the formula 4.
- the average value W A of electric power will be from 2 to 10 times the effective value W of the electric power, as shown by the formula 5. If this is applied to the case of the waveform as shown in Figure 2, the formula 6 will be obtained. Therefore, (-V N ), a 1 (10 ⁇ s ⁇ a 1 ⁇ 10 ms), and b 1 (10 ⁇ s ⁇ b 1 ⁇ 100 ms) should be adjusted to satisfy the formula 6.
- the waveform may not be necessarily be a precise rectangular waveform as shown in Figure 2, and (-V N ), a 1 and b 1 may be optimized depending upon the size and condition of the target and the particular apparatus.
- the deposition rate of the transparent conductive film can easily be controlled by the effective value W of the intermittently supplied sputtering electric power.
- the desired deposition rate can be obtained by adjusting the effective value W of the intermittently supplied electric power to the same level as the DC electric power value.
- the power source to be used in the present invention is not particularly limited so long as it is capable of supplying intermittent electric power. Further, there is no particular restriction as to other constituting elements such as a sputtering cathode and a sputtering magnet, and a conventional sputtering apparatus can be used.
- the present invention has an excellent feature that by supplying intermittent sputtering electric power, formation of nodules on the surface of the target can be suppressed without stopping the sputtering process. Namely, it has an excellent effect that by intermittently stopping the supply of sputtering electric power or supplying positive voltage for 10 ⁇ s or more, the electric charge accumulated on the target surface which causes arcing, can be extinguished.
- the voltage waveform of the sputtering electric power is within such a range that the sum of non-application time and the application time of positive voltage is within a range of from 10 ⁇ s to 100 ms.
- the average value W A of the intermittently supplied electric power can be made to be several times the corresponding electric power of DC sputtering.
- W A will be about twice as large as the corresponding DC sputtering power, and if the ratio is 1:4, W A will be about 5 times as large as the corresponding DC sputtering power. This brings an important effect for suppressing formation of nodules.
- the application time of negative voltage is within a range of from 10 ⁇ s to 10 ms.
- the value of negative applied voltage is preferably set so that the average value W A of intermittently supplied electric power will be from 2 to 10 times the effective value W of the electric power. If the average value is less than twice, the sputtering electric power density W A is too small to extinguish nodules by sputtering. On the other hand, if it exceeds ten times, arcing tends to be frequented.
- the present invention provides a merit such that arcing can be prevented at a higher effective electric power value for sputtering as compared with conventional DC sputtering by stopping the supply of sputtering electric power or by application of positive voltage, whereby high speed sputtering can be realized.
- the present invention provides a merit that the sputtering rate of the present invention can readily be controlled by the effective value of the intermittently supplied electric power waveform.
- the effective value of the intermittently supplied electric power W in the present invention may be adjusted to the DC power value.
- the present invention provides a method for forming a silicon oxide film having an alkali barrier property on a substrate by sputtering using an oxygen-containing gas as the sputtering gas and a sputtering target composed mainly of silicon, wherein intermittent negative voltage is applied to the target.
- the substrate to be used in the present invention is not particularly limited, but a substrate for a transparent electrode made of glass containing an alkali component such as soda lime glass, particularly a substrate for a liquid crystal display, may be mentioned as a preferred example.
- the one having electrical conductivity to some extent is preferred so that DC sputtering may be employed.
- DC sputtering it is preferred to employ phosphorus (P) or boron (B) doped single crystal or polycrystal silicon (Si).
- Sintered Si containing iron (Fe) and others as impurities, or Si target formed by plasma spray coating, may also be employed.
- the present invention is not limited to such specific materials.
- the sputtering gas in the present invention it is necessary to employ gas containing oxygen (O 2 ) to obtain a silicon oxide film.
- gas containing oxygen O 2
- another oxidating gas such as nitrous oxide (N 2 O) or nitrogen monoxide (NO) may be incorporated as a component of the gas mixture.
- Another inert gas such as He or Ne may, for example, be incorporated as a component of the gas mixture.
- the present invention is not limited to the gas compositions hereby exemplified.
- the voltage applied to the cathode may be any voltage so long as it is intermittent negative voltage. However, it is preferably periodically repeated intermittent negative voltage of from 1 to 100 kHz.
- a method may be mentioned wherein negative voltage is applied for a certain period and then the voltage is turned to zero for an another certain period, and this is periodically repeated. It is particularly preferred to apply positive DC voltage during part of the time when the negative voltage is not applied, with a view to preventing arcing.
- flaws affect the property of a transparent conductive film to be subsequently formed, or are likely to bring about a failure in subsequent patterning process of to the transparent conductive film.
- pin holes will be formed, which again are likely to bring about patterning failure or act as a diffusion path of alkali ions from the substrate to cause operational failure of a liquid crystal device.
- the intermittent negative voltage with a frequency of from 1 to 100 kHz to be used in the present invention serves to neutralize the charge up of the highly insulating silicon oxide film attached along the peripheral portion of the eroded area of the target by back scattering and thus serves to prevent arcing.
- the periodic non-application or by the periodic application of positive voltage electrons in the after-glow will flow into the insulating film portion and neutralize the positive charge accumulated in the insulating film portion.
- a thin film composed mainly of silicon oxide thus formed on a substrate, will be of high quality, since little arcing takes place during the sputtering process so that deposition of the spitted particles will be little.
- the present invention provides a method for forming a silicon nitride film on a substrate by sputtering using a nitrogen-containing gas as the sputtering gas and a sputtering target composed mainly of silicon, wherein intermittent negative voltage is applied to the target.
- Sputtering is carried out by applying negative voltage intermittently to the silicon target, whereby the temperature rise of the substrate can be suppressed, diffusion of alkali atoms into silicon nitride during the deposition can be reduced, and deterioration of the alkali barrier property due to impurities in silicon nitride can be prevented.
- the ratio in the number of atoms of nitrogen to silicon in the silicon nitride film is adjusted by adjusting the nitrogen concentration in the sputtering gas and/or by adjusting the supplied power to the silicon target, to form a silicon nitride film ideal from the stoichiometry, whereby most silicon atoms are bonded to nitrogen atoms by 4-coordination, while silicon-silicon bonds, nitrogen-nitrogen bonds or non-connected bonds of silicon and nitrogen atoms will not substantially be present, and accordingly, atomic level defects will decrease, and the alkali barrier property, the water permeation resistance and the oxidation resistance will be improved.
- the substrate to be used in the present invention is not particularly limited.
- a substrate for a transparent electrode made of glass containing an alkali component such as soda lime glass, particularly a substrate for a liquid crystal display may be mentioned as a suitable example, as mentioned above.
- a Low-E glass or a conductive glass having a silver layer, a magnetic disk having a magnetic layer, or a fluorophosphate glass filter for a charge coupled image pickup tube may be mentioned as a preferred example of the substrate.
- a heat reflection glass having a metal or a metal nitride layer, a conductive glass having a transparent conductive layer, or a Low-E glass having a silver layer to which post-heat-treatment is to be applied may be mentioned as a preferred example of the substrate.
- the sputtering chamber was evacuated to at most 1 ⁇ 10 -5 Torr .
- argon gas containing 1 vol% of oxygen gas was introduced to a gas pressure of 3 ⁇ 10 -3 Torr.
- the sputtering electric power was set so that the effective value would be 1.1 kW, and sputtering was continuously conducted for 23 hours, whereby formation of nodules, frequency of arcing and the properties of the tin oxide film were examined.
- the results are shown in Table 1.
- Sputtering was continuously conducted for 23 hours in the same manner as in Example 1 except that intermittent electric power having the voltage waveform as shown in Figure 4 wherein a 3 is 100 ⁇ s, the time b 3 for application of positive applied voltage V p at a level of about 10% of the negative applied voltage V N is 10 ⁇ s and b 4 is 390 ⁇ s, was supplied to a tin oxide target 1 containing 5 wt% of antimony, whereby formation of nodules, etc., were examined in the same manner as in Example 1. The results are shown in Table 1.
- Example 1 Example 3 and Example 5, wherein intermittent electric power having the voltage waveform as shown in Figure 2, was supplied, formation of nodules was very little, and no substantial decrease of the sputtering rate was observed even after the continuous sputtering for 23 hours (the target having a thickness of 6 mm was digged down completely). Further, the frequency of arcing decreased to a level of 1/5 as compared with the usual sputtering method represented by Comparative Example 1, 2 and 3, respectively.
- Example 1 Example 2 Comparative Example 1 Formation of nodules (after sputtering for 23 hours) Almost nil Almost nil Many nodules were observed over the entire erosion region except for the erosion center Frequency of arcing (after sputtering for 23 hours) About 3 times/min Once/min or less 15 times/min or more Specific resistance of the tin oxide film ( ⁇ cm) Immediately after initiation of sputtering 1.0 ⁇ 10 -3 1.0 ⁇ 10 -3 1.0 ⁇ 10 -3 After sputtering for 23 hours 1.0 ⁇ 10 -3 1.0 ⁇ 10 -3 2.0 ⁇ 10 -3 Change in the deposition rate (after sputtering for 23 hours) Almost nil Almost nil Decreased by 40% Example 3 Example 4 Comparative Example 2 Formation of nodules (after sputtering for 23 hours) Almost nil Almost nil Many nodules were observed over the entire erosion region except for the erosion center Frequency of arcing (after sputter
- N-type silicon phosphorus-doped single crystal having a specific resistance of 1.2 ⁇ cm was placed as a target on a cathode, and a soda lime glass sheet was placed as a substrate facing to the target.
- the vacuum chamber was evacuated to 1 ⁇ 10 -5 Torr .
- a gas mixture of argon and oxygen was introduced as sputtering gas, and conductance was adjusted so that the pressure would be 2 ⁇ 10 -3 Torr,
- the voltage as shown in Figure 7 was applied to the cathode.
- the negative voltage (V N ) was adjusted so that the supplied electric power during application of this voltage would be 500 W.
- the oxygen concentration in the sputtering gas was adjusted to 20%, 40%, 60%, 80% or 100%, and while adjusting the deposition time so that the thickness of each film would be 25 nm, a thin film composed mainly of silicon oxide was formed on a soda lime glass substrate.
- the substrate temperature was maintained to be at room temperature, and no heating was carried out.
- the coated side of the glass substrate thus obtained was contacted with pure water at 90°C for 24 hours, whereupon the amount of sodium (Na atoms) out diffused into this pure water was measured by atomic absorptiometry.
- the results are shown in Table 4. Concentration of oxygen gas 20% 40% 60% 80% 100% The amount of out diffused Na ( ⁇ g/cm 2 ) 0.09 0.08 0.02 0.02 0.03
- Example 7 In the same manner as in Example 7, a silicon target and a soda lime glass substrate were set in a vacuum chamber. Then, sputtering deposition was conducted by applying a radio frequency voltage of 13.56 MHz to the cathode. The substrate temperature was maintained at room temperature, and the oxygen concentration in the sputtering gas was 60%. The deposition time was adjusted so that the thickness of the film would be 25 nm. In the same manner as in Example 7, the amount of out diffused Na was measured and found to be 0.32 ⁇ g/cm 2 .
- soda lime silicate glass sheets were prepared as substrates. Then, on these substrates, silicon nitride films were formed under the conditions as specified in the following Examples 8 and 9 and Comparative Examples 5 to 7.
- negative voltage V N was set so that the applied electric power during the application would be 200 W
- positive voltage V p was set to be 100 V.
- sputtering gas a gas mixture of nitrogen gas and argon gas, was used. With respect to each case where the nitrogen concentration was 20%, 40%, 50%, 80% or 100%, a silicon nitride film was formed with a film thickness of 200 ⁇ .
- a silicon nitride film was formed in the same manner as in Example 8 except that voltage with the waveform as shown in Figure 6 was applied, and the nitrogen concentration was adjusted to be 40%.
- a silicon nitride film was formed with a film thickness of 200 ⁇ in the same manner as in Example 8 except that DC voltage set so that the electric power would be 200 W, was applied, with respect to each case where the nitrogen concentration in the sputtering gas was 20%, 40%, 50%, 80% or 100%.
- N-type silicon having a specific resistance of 1.5 ⁇ cm and having a diameter of 6 inch was used as the target, and a radio frequency of 13.56 MHz set so that the electric power would be 300 W, was applied thereto.
- the nitrogen concentration in the sputtering gas was adjusted to be 100%, and a silicon nitride film was formed with a film thickness of 200 ⁇ on a substrate at room temperature.
- a silicon nitride film was formed with a film thickness of 200 ⁇ on a substrate maintained at a temperature of about 600°C by a CVD method.
- composition (N/Si ratio) of the silicon nitride film obtained in each of Examples 8 and 9 and Comparative Examples 5 to 7 was measured by X-ray photoelectron spectroscopy. Then, to evaluate the alkali barrier property, it was immersed in a pure water of 90°C for 24 hours, whereupon the amount of Na atoms out diffused from the soda lime silicate glass through the silicon nitride film, was obtained. The results thereby obtained are shown in Tables 5 and 6. Further, the relation between the composition (N/Si ratio) of the silicon nitride film obtained in Example 8 and the amount of out diffused Na atoms eluted, is shown in Figure 8. NH 3 /SiH 4 Compositin of the film (N/Si) Amount of out diffused Na ( ⁇ g/cm 2 ) Comparative 3 1.27 0.047 Example 7 5 1.36 0.038
- the method of the present invention is capable of providing excellent silicon nitride films having an alkali barrier property constantly with little change in the properties even when the deposition conditions for the composition of films are changed to some extents.
- a silicon nitride film (SiN x ) was formed in a thickness of 200 ⁇ . Then, ITO was formed in a film thickness of 2,600 ⁇ to obtain a glass substrate provided with a transparent electrode.
- N-type silicon having a specific resistance of 1.3 ⁇ cm and having an area of 432 mm ⁇ 127 mm, was used as the target, and voltage having the waveform as shown in Figure 5, was applied thereto.
- the negative voltage V N was set so that the applied electric power during the application would be 1 kW
- the positive voltage V p was set to be 50 V.
- sputtering gas a gas mixture of nitrogen and argon, was used, and in the same manner as in Example 8, the nitrogen concentration was changed from 20 to 100%.
- a silicon nitride film was formed, and a glass substrate provided with a transparent electrode, was obtained in the same manner as in Example 10 except that a gas mixture of nitrogen and argon having a nitrogen concentration of 40%, was used as the sputtering gas, and a DC voltage set so that the electric power would be 1 kW, was applied.
- Each of the obtained glass substrates provided with transparent electrodes was placed in an air atmosphere at 600°C for one hour, and then a SIMS (secondary ton mass spectroscopy) analysis was carried out to determine the depth profile of sodium diffused into ITO and to determine the penetration depth of sodium into ITO. For the determination of the penetration depth, the point where the count rate of sodium became constant, a background level, was taken.
- SIMS secondary ton mass spectroscopy
- Example 10 the penetration depths of sodium into ITO in the cases where the nitrogen concentration was 20, 40, 50, 80 and 100%, were 660, 590, 600, 600 and 630 ⁇ , respectively.
- the penetration depth was 630 ⁇ .
- the penetration depth of sodium into ITO is preferably at most 600 ⁇ for the practical purpose.
- the nitrogen concentration was 40, 50 and 80% i.e. in the case where the composition (N/Si) of the film is from 1.30 to 1.36, from Figure 8.
- a liquid crystal display cell was prepared as follows. On a soda lime silicate glass sheet, a silicon oxide film (SiO 2 ) was formed in a thickness of 200 ⁇ by a CVD method, and then a color filter (CF) and an acrylic protective layer (OP) were formed. Then, a silicon nitride film (SiN x ) was formed in a thickness of 200 ⁇ .
- SiO 2 silicon oxide film
- CF color filter
- OP acrylic protective layer
- SiN x silicon nitride film
- N-type silicon having a specific resistance of 1.3 ⁇ cm and having a area of 432 mm ⁇ 127 mm, was used as the target, and voltage having the waveform as shown in Figure 5, was applied thereto.
- the negative voltage V N was set so that the applied electric power during the application would be 1 kW
- the positive voltage V p was set to be 50 V.
- sputtering gas a gas mixture of nitrogen and argon having a nitrogen concentration of 30%, was used.
- ITO was formed in a film thickness of 2,600 ⁇ , and polyimide (OC) was over-coated thereon.
- SiN x was formed in the same manner as above in a film thickness of 200 ⁇ , and ITO was then formed in a film thickness of 2,600 ⁇ . Then, polyimide (OC) was over-coated thereon.
- a silicon nitride film was formed in the same manner as in Example 11 except that a DC voltage set so that the electric power would be 1 kW, was applied, and a liquid crystal display cell was obtained.
- Example 11 the specific resistance of liquid crystal immediately after being assembled in the cell, was 2.5 ⁇ 10 11 ⁇ cm, and 200 hours later, it became 0.8 ⁇ 10 -11 ⁇ cm.
- Comparative Example 9 the specific resistance of liquid crystal immediately after being assembled into the cell was 2.3 ⁇ 10 11 ⁇ cm, and 200 hours later, it became 0.5 ⁇ 10 11 ⁇ cm.
- the change in the specific resistance of liquid crystal in the cell can be minimized.
- silicon nitride films were formed under the conditions shown in the following Examples 12 and 13 and Comparative Examples 10 to 12, respectively.
- a silicon nitride film having an alkali barrier property was formed in a thickness of 500 ⁇ with respect to each of cases where the nitrogen concentration in the sputtering gas was 20%, 40%, 50%, 80% and 100%.
- a silicon nitride film was formed a thickness of 500 ⁇ in the same manner as in Example 9 for a silicon nitride film having an alkali barrier property.
- a silicon nitride film having an alkali barrier property was formed in a thickness of 500 ⁇ with respect to each of cases where the nitrogen concentration in the sputtering gas was 20%, 40%, 50%, 80% and 100%.
- a silicon nitride film was formed in a thickness of 500 ⁇ in the same manner as in Comparative Example 6 for a silicon nitride film having an alkali barrier property.
- a silicon nitride film was formed in a thickness of 500 ⁇ by a CVD method while maintaining the temperature at about 600°C in the same manner as in Comparative Example 7 for a silicon nitride film having an alkali barrier property.
- compositions (N/Si ratios) of the silicon nitride films obtained in Examples 12 and 13 and Comparative Examples 10 to 12 were measured by X-ray photoelectron spectroscopy. Then, to evaluate the water penetration resistance, each sample was placed in heavy water at 60°C for 6 days. Then, the mass spectrometry (secondary ion mass spectroscopy: SIMS) analysis was carried out to determine the depth profile of deuterium in the film, and from the obtained distribution of deuterium, the depth where the count rate of deuterium became 1/10 of the maximum count rate, was taken as the penetration depth of water.
- SIMS secondary ion mass spectroscopy
- the method of the present invention is capable of providing silicon nitride films excellent in the water permeation resistance constantly with little change in the properties even when the deposition conditions or the composition of the film changes to some extents.
- Low-E glass as shown by the formula 2 was prepared. Then, in the same manner as in Example 10 for a silicon nitride film having alkali barrier property except that the positive voltage V p was set to be 100 V, a silicon nitride film was formed in a thickness of 200 ⁇ with respect to each of cases where the nitrogen concentration in the sputtering gas was 20, 40, 50, 80 and 100%.
- a silicon nitride film of 200 ⁇ was formed on a Low-E glass in the same manner as in Example 14 except that a gas mixture of nitrogen and argon having a nitrogen concentration of 40%, was used as the sputtering gas, and the sputtering condition of Comparative Example 8 for a silicon nitride film having an alkali barrier property was used as the sputtering condition.
- Example 14 in the case where the nitrogen concentration was 20, 40, 50, 80 or 100%, the transmittance was 67.2% immediately after the deposition, but after the above treatment, it was 67.8, 67.2, 68.3, 69.4 or 69.9%, respectively. On the other hand, in Comparative Example 13, the transmittance was 67.2% immediately after the deposition, and after the above treatment, it was 67.3%.
- the Low-E glass according to the present invention is superior in the durability, since the change in the transmittance of visible light is less.
- the change in the transmittance of visible light after the treatment is preferably within 2%.
- the nitrogen concentration was 20, 40 and 50%, i.e. in the cases where the composition (N/Si) of the film is from 1.25 to 1.35 from Figure 9.
- silicon nitride films were formed under the conditions as shown in the following Examples 15 and 16 and Comparative Examples 14 to 16, respectively.
- a silicon nitride film having an alkali barrier property was formed in a thickness of 500 ⁇ with respect to each of cases where the nitrogen concentration in the sputtering gas was 20%, 40%, 50%, 80% and 100%.
- a silicon nitride film was formed in a thickness of 500 ⁇ in the same manner as in Example 9 for a silicon nitride film having an alkali barrier property.
- a silicon nitride film was formed in a film thickness of 500 ⁇ with respect to each of cases where the nitrogen concentration in the sputtering gas was 20%, 40%, 50%, 80% and 100%.
- a silicon nitride film was formed in a film thickness of 500 ⁇ in the same manner as in Comparative Example 6 for a silicon nitride film having an alkali barrier property.
- a silicon nitride film was formed in a film thickness of 500 ⁇ by a CVD method while maintaining the temperature at about 600°C in the same manner as in Comparative Example 7 for a silicon nitride film having an alkali barrier property.
- composition (N/Si ratio) of the silicon nitride film obtained in each of Examples 15 and 16 and Comparative Examples 14 to 16, was measured by X-ray photoelectron spectrometry. Then, to evaluate the oxidation resistance, each sample was placed in atmospheric air at 1,000°C for 3 hours, and then distribution in the X-ray photoelectron spectroscopy was carried out to determine the depth profile of oxygen in the film. From the obtained oxygen distribution, the depth at which the X-ray photoelectron intensity of oxygen atoms became one half of the X-ray photoelectron intensity of oxygen atoms at the surface, was taken as the thickness of the oxidized layer.
- Example 15 The obtained results are shown in Tables 9 and 10. Further, the relation between the composition (N/Si ratio) of the silicon nitride film obtained in Example 15 and the thickness of the oxidized layer, is shown in Figure 10. Nitrogen concentration (%) Composition of the film (N/Si) Thickness of the oxidized layer Example 15 20 1.28 62 40 1.33 57 50 1.34 74 80 1.36 87 100 1.37 98 Example 16 40 1.33 58 Comparative Example 14 20 1.26 66 40 1.33 59 50 1.34 77 80 1.35 89 100 1.36 100 Comparative Example 15 100 1.36 107 NH 3 /SiH 4 Composition of the film (N/Si) Thickness of the oxidized layer Comparative Example 16 3 1.27 146 5 1.36 99
- the method of the present invention is capable of providing a silicon nitride film excellent in the oxidation resistance constantly with little change in the properties even when the deposition conditions or the composition of the film changes to some extents.
- a tin oxide film was formed in a thickness of 200 ⁇ on a soda lime silicate glass sheet having a thickness of 2 mm at room temperature by applying negative voltage so that the supplied electric power would be 1.2 kW by DC sputtering.
- a silicon nitride film was formed in a thickness of 50 ⁇ by applying voltage of the waveform as shown in Figure 5 to a N-type silicon target having a specific resistance of 1.3 ⁇ cm and having the same size of the above tin target.
- V N negative voltage
- V p positive voltage
- a chromium nitride film was formed in a thickness of 200 ⁇ by DC sputtering with supplied power of 1 kW to a chromium target having the same size as the tin target.
- a heat reflecting glass as shown by the Formula 3 was prepared in the same manner as in Example 17 except that the application to the target in the deposition of the silicon nitride film was changed to the application of negative DC voltage so that the supplied electric power would be 1 kW.
- the heat reflecting glass obtained in each of Example 17 and Comparative Example 17 was heated in atmospheric air from room temperature to 630°C over a period of two hours, and after maintaining it at 630°C for 5 minutes, the temperature was lowered to about 150°C over a period of two hours.
- This heat treatment condition corresponds to the condition for bending sheet glass.
- the heat reflecting glass according to the present invention is superior in the durability, since the change in the visible light transmittance, the change in the visible light reflectance and the color difference are little.
- Example 17 the experiment was conducted in the same manner by changing the nitrogen concentration to 20, 50, 80 and 100%. From the results, the relation between the color difference in the transmission and the nitrogen concentration may be summarized such that when the nitrogen concentration was 20, 40, 50, 80 and 100%, the color difference was 2.6, 2.3, 2.8, 3.1 and 3.4, respectively.
- the color difference is preferably at most 3.
- the nitrogen concentration was 20, 40 and 50%, i.e. in the cases where the composition (Ni/Si) of the film was from 1.25 to 1.35 from Figure 10.
- a heat reflecting glass as shown by the Formula 4 was prepared by sequential deposition of the various films on a soda lime silicate glass having a thickness of 2 mm using the same target and sputtering condition as in Example 17.
- a heat reflecting glass as shown by the Formula 4 was prepared in the same manner as in Example 18 except that the application to the target in the deposition of the silicon nitride film was changed to the application of negative DC voltage so that the supplied electric power would be 1 kW.
- the heat reflecting glass obtained in each of Example 18 and Comparative Example 18, was subjected to heat treatment in atmospheric air at 650°C for 6 minutes and 40 seconds. This heat treatment corresponds to the condition for reinforcing sheet glass.
- the present invention is suitable for a heat reflecting glass which is subjected to post heating such as bending treatment or reinforcing treatment.
- a silicon nitride film, an ITO film and a silicon nitride film were sequentially deposited at room temperature to obtain a heat reflecting glass as identified by the Formula 5.
- the deposition condition for the silicon nitride film was the same as the deposition condition for a silicon nitride film in Example 17.
- the ITO film was formed by DC sputtering so that the supplied electric power would be 1.2 kW using an ITO target and a gas mixture of oxygen and argon having an oxygen concentration of 2% as the sputtering gas.
- a heat reflecting glass as represented by the Formula 5 was prepared in the same manner as in Example 19 except that the application to the target in the deposition of the silicon nitride film was changed to the application of negative DC voltage so that the supplied electric power would be 1 kW.
- the heat reflecting glass obtained in each of Example 19 and Comparative Example 19 was subjected to heat treatment in atmospheric air at 600°C for one hour.
- the present invention is suitable also for the window of an electric oven or microwave oven.
- a transparent conductive film can be formed without stopping the sputtering process which leads to a decrease of the productivity, and formation of nodules of sub oxides on the target surface, which leads to a decrease of the sputtering rate, can be suppressed. At the same time, arcing which leads to defects of the transparent conductive film, can be suppressed.
- arcing can be suppressed without adding a circuit for preventing arcing which is commonly used for a power source for DC sputtering.
- the sputtering condition can be controlled in the same manner as the conventional DC sputtering by a simple method of controlling the effective value of intermittently supplied electric power, whereby a transparent conductive film having equal properties to the conventional product, can be obtained.
- a silicon oxide film having a high alkali barrier property can be obtained stably without heating the substrate.
- deposition is conducted by intermittent DC sputtering, formation of a film with a large area or film formation at a high speed can be facilitated, whereby application to e.g. a transparent conductive substrate for liquid crystal can be made possible on an industrial production scale.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Liquid Crystal (AREA)
- Surface Treatment Of Glass (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
Example 1 | Example 2 | Comparative Example 1 | ||
Formation of nodules (after sputtering for 23 hours) | Almost nil | Almost nil | Many nodules were observed over the entire erosion region except for the erosion center | |
Frequency of arcing (after sputtering for 23 hours) | About 3 times/min | Once/min or less | 15 times/min or more | |
Specific resistance of the tin oxide film (Ωcm) | Immediately after initiation of sputtering | 1.0 × 10-3 | 1.0 × 10-3 | 1.0 × 10-3 |
After sputtering for 23 hours | 1.0 × 10-3 | 1.0 × 10-3 | 2.0 × 10-3 | |
Change in the deposition rate (after sputtering for 23 hours) | Almost nil | Almost nil | Decreased by 40% |
Example 3 | Example 4 | Comparative Example 2 | ||
Formation of nodules (after sputtering for 23 hours) | Almost nil | Almost nil | Many nodules were observed over the entire erosion region except for the erosion center | |
Frequency of arcing (after sputtering for 23 hours) | About 3 times/min | Once/min or less | 15 times/min or more | |
Specific resistance of the indium oxide film (Ωcm) | Immediately after initiation of sputtering | 1.9 × 10-4 | 1.9 × 10-4 | 1.9 × 10-4 |
After sputtering for 23 hours | 2.0 × 10-4 | 2.0 × 10-4 | 4.0 × 10-4 | |
Change in the deposition rate (after sputtering for 23 hours) | Almost nil | Almost nil | Decreased by 40% |
Example 5 | Example 6 | Comparative Example 3 | ||
Formation of nodules (after sputtering for 23 hours) | Almost nil | Almost nil | Many nodules were observed over the entire erosion region except for the erosion center | |
Frequency of abnormal discharge (after sputtering for 23 hours) | About 3 times/min | Once/min or less | 15 times/min or more | |
Specific resistance of the tin oxide film (Ωcm) | Immediately after initiation of sputtering | 3.0 × 10-4 | 3.0 × 10-4 | 3.0 × 10-4 |
After sputtering for 23 hours | 3.0 × 10-4 | 3.0 × 10-4 | 5.0 × 10-4 | |
Change in the deposition rate (after sputtering for 23 hours) | Almost nil | Almost nil | Decreased by 40% |
Concentration of oxygen gas | 20% | 40% | 60% | 80% | 100% |
The amount of out diffused Na (µg/cm2) | 0.09 | 0.08 | 0.02 | 0.02 | 0.03 |
NH3/SiH4 | Compositin of the film (N/Si) | Amount of out diffused Na (µg/cm2) | |
| 3 | 1.27 | 0.047 |
Example 7 | 5 | 1.36 | 0.038 |
Nitrogen concentration (%) | Composition of the film (N/Si) | Penetration depth of water (Å) | |
Example 12 | 20 | 1.28 | 59 |
40 | 1.33 | 50 | |
50 | 1.34 | 71 | |
80 | 1.36 | 85 | |
100 | 1.37 | 91 | |
Example 13 | 40 | 1.33 | 52 |
Comparative Example 10 | 20 | 1.26 | 61 |
40 | 1.33 | 54 | |
50 | 1.34 | 73 | |
80 | 1.35 | 86 | |
100 | 1.36 | 93 | |
Comparative Example 11 | 100 | 1.36 | 91 |
NH3/SiH4 | Composition of the film (N/Si) | Penetration depth of water (Å) | |
Comparative Example 12 | 3 | 1.27 | 138 |
5 | 1.36 | 89 |
Nitrogen concentration (%) | Composition of the film (N/Si) | Thickness of the oxidized layer | |
Example 15 | 20 | 1.28 | 62 |
40 | 1.33 | 57 | |
50 | 1.34 | 74 | |
80 | 1.36 | 87 | |
100 | 1.37 | 98 | |
Example 16 | 40 | 1.33 | 58 |
Comparative Example 14 | 20 | 1.26 | 66 |
40 | 1.33 | 59 | |
50 | 1.34 | 77 | |
80 | 1.35 | 89 | |
100 | 1.36 | 100 | |
Comparative Example 15 | 100 | 1.36 | 107 |
NH3/SiH4 | Composition of the film (N/Si) | Thickness of the oxidized layer | |
Comparative Example 16 | 3 | 1.27 | 146 |
5 | 1.36 | 99 |
Visible light transmittance | Visible light reflectance on the film side | Visible light reflectance on the glass side | ||
Example 17 | Before heating | 15.7% | 12.7% | 42.2% |
After heating | 15.8% | 12.2% | 43.2% | |
Color difference | 2.3 | 2.2 | 0.8 | |
Comparative Example 17 | Before heating | 15.7% | 12.8% | 42.2% |
After heating | 15.9% | 12.2% | 43.2% | |
Color difference | 2.5 | 2.4 | 1.0 |
Visible light transmittance | Visible light reflectance on the film side | Visible light reflectance on the glass side | ||
Example 18 | Before heating | 10.0% | 20.2% | 45.0% |
After heating | 10.8% | 18.4% | 44.2% | |
Color difference | 1.5 | 3.2 | 0.9 | |
Comparative Example 18 | Before heating | 10.1% | 20.2% | 44.9% |
After heating | 11.0% | 18.6% | 44.0% | |
Color difference | 1.8 | 3.4 | 1.0 |
Claims (10)
- A method for producing a transparent electrically conductive film composed mainly of an oxide by sputtering using a sputtering target capable of forming a transparent conductive film, and an intermittent electric power supplied to the target, whereby the voltage waveform of the intermittent electric power is non-positive and the application time of a negative voltage of the voltage waveform is within a range of from 10 µs to 10 ms, and the non-application time of the negative voltage is within a range of from 10 µs to 100 ms.
- The method according to Claim 1, wherein the sputtering target is composed mainly of tin or tin oxide.
- The method according to Claim 2, wherein the sputtering target contains metal antimony or an antimony compound.
- The method according to Claim 1, wherein the sputtering target is composed mainly of indium or indium oxide.
- The method according to Claim 4, wherein the sputtering target contains tin.
- The method according to Claim 1, wherein the sputtering target is composed mainly of zinc or zinc oxide.
- The method according to Claim 6, wherein the sputtering target contains a simple substance or a compound of at least one metal selected from the group consisting of aluminum, gallium, indium, boron and silicon.
- The method according to Claim 7, wherein the average value of the intermittent electric power density is from 2.5 W/cm2 to 30 W/cm2.
- The method according to any one of Claims 1 to 7, wherein the sputtering rate is controlled by the average value of the electric power per period.
- The method according to any one of Claims 1 to 9, wherein the average value of the intermittent electric power of the negative sputtering pulses is from 2 to 10 times the average value of the elctric power per period.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP205704/93 | 1993-07-28 | ||
JP20570493 | 1993-07-28 | ||
JP20570493 | 1993-07-28 | ||
JP78731/94 | 1994-04-18 | ||
JP7873194 | 1994-04-18 | ||
JP7873194 | 1994-04-18 | ||
EP94111670A EP0636702B1 (en) | 1993-07-28 | 1994-07-26 | Methods for producing functional films |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94111670A Division EP0636702B1 (en) | 1993-07-28 | 1994-07-26 | Methods for producing functional films |
EP94111670.9 Division | 1994-07-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0905273A2 true EP0905273A2 (en) | 1999-03-31 |
EP0905273A3 EP0905273A3 (en) | 1999-04-28 |
EP0905273B1 EP0905273B1 (en) | 2002-10-16 |
Family
ID=26419793
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98120857A Expired - Lifetime EP0905273B1 (en) | 1993-07-28 | 1994-07-26 | Method for producing films |
EP94111670A Expired - Lifetime EP0636702B1 (en) | 1993-07-28 | 1994-07-26 | Methods for producing functional films |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94111670A Expired - Lifetime EP0636702B1 (en) | 1993-07-28 | 1994-07-26 | Methods for producing functional films |
Country Status (3)
Country | Link |
---|---|
US (1) | US6468403B1 (en) |
EP (2) | EP0905273B1 (en) |
DE (2) | DE69431573T2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2141135A1 (en) * | 2008-06-30 | 2010-01-06 | Schott AG | Device for reflecting heat radiation, a method for production of and use of same |
EP2884499A1 (en) * | 2013-12-12 | 2015-06-17 | Samsung Electronics Co., Ltd | Electrically conductive thin films and electronic device |
CN104715806A (en) * | 2013-12-12 | 2015-06-17 | 三星电子株式会社 | Electrically conductive thin films and electronic device comprising same |
US10308541B2 (en) | 2014-11-13 | 2019-06-04 | Gerresheimer Glas Gmbh | Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5651865A (en) * | 1994-06-17 | 1997-07-29 | Eni | Preferential sputtering of insulators from conductive targets |
AU718733B2 (en) * | 1995-03-20 | 2000-04-20 | Toto Ltd. | Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof |
FR2738813B1 (en) | 1995-09-15 | 1997-10-17 | Saint Gobain Vitrage | SUBSTRATE WITH PHOTO-CATALYTIC COATING |
US5584974A (en) * | 1995-10-20 | 1996-12-17 | Eni | Arc control and switching element protection for pulsed dc cathode sputtering power supply |
US6090489A (en) * | 1995-12-22 | 2000-07-18 | Toto, Ltd. | Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface |
US6165256A (en) * | 1996-07-19 | 2000-12-26 | Toto Ltd. | Photocatalytically hydrophilifiable coating composition |
US6027766A (en) | 1997-03-14 | 2000-02-22 | Ppg Industries Ohio, Inc. | Photocatalytically-activated self-cleaning article and method of making same |
US7096692B2 (en) | 1997-03-14 | 2006-08-29 | Ppg Industries Ohio, Inc. | Visible-light-responsive photoactive coating, coated article, and method of making same |
US6337129B1 (en) | 1997-06-02 | 2002-01-08 | Toto Ltd. | Antifouling member and antifouling coating composition |
US6863019B2 (en) | 2000-06-13 | 2005-03-08 | Applied Materials, Inc. | Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas |
DE10307217B4 (en) * | 2003-02-20 | 2006-04-13 | Schott Ag | Door with viewing window for microwave ovens |
US7566481B2 (en) * | 2003-12-15 | 2009-07-28 | Guardian Industries Corp. | Method of making scratch resistant coated glass article including layer(s) resistant to fluoride-based etchant(s) |
US7879202B2 (en) | 2003-12-15 | 2011-02-01 | Guardian Industries Corp. | Scratch resistant coated glass article including carbide layer(s) resistant to fluoride-based etchant(s) |
US7445273B2 (en) | 2003-12-15 | 2008-11-04 | Guardian Industries Corp. | Scratch resistant coated glass article resistant fluoride-based etchant(s) |
US7550067B2 (en) | 2004-06-25 | 2009-06-23 | Guardian Industries Corp. | Coated article with ion treated underlayer and corresponding method |
CA2573428C (en) | 2004-07-12 | 2008-04-01 | Cardinal Cg Company | Low-maintenance coatings |
ATE544878T1 (en) * | 2004-08-06 | 2012-02-15 | Applied Materials Gmbh & Co Kg | DEVICE AND METHOD FOR PRODUCING GAS-PERMEABLE LAYERS |
US8092660B2 (en) | 2004-12-03 | 2012-01-10 | Cardinal Cg Company | Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films |
US7923114B2 (en) | 2004-12-03 | 2011-04-12 | Cardinal Cg Company | Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films |
US7758982B2 (en) * | 2005-09-02 | 2010-07-20 | Hitachi Global Storage Technologies Netherlands B.V. | SiN overcoat for perpendicular magnetic recording media |
JP5140935B2 (en) * | 2006-03-28 | 2013-02-13 | 富士通セミコンダクター株式会社 | Magnetron sputtering film forming apparatus and semiconductor device manufacturing method |
WO2007121215A1 (en) | 2006-04-11 | 2007-10-25 | Cardinal Cg Company | Photocatalytic coatings having improved low-maintenance properties |
JP2009534563A (en) | 2006-04-19 | 2009-09-24 | 日本板硝子株式会社 | Opposing functional coating with equivalent single surface reflectivity |
US20070289869A1 (en) * | 2006-06-15 | 2007-12-20 | Zhifei Ye | Large Area Sputtering Target |
US20080011599A1 (en) | 2006-07-12 | 2008-01-17 | Brabender Dennis M | Sputtering apparatus including novel target mounting and/or control |
DE102006046312B4 (en) * | 2006-09-29 | 2010-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Solar cells with stable, transparent and conductive layer system |
EP1975274B1 (en) | 2007-03-14 | 2012-05-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for manufacturing a heat insulated, highly transparent layer system and layer system produced according to this method |
JP5380784B2 (en) | 2007-04-12 | 2014-01-08 | ソニー株式会社 | Autofocus device, imaging device, and autofocus method |
DE102007019994A1 (en) * | 2007-04-27 | 2008-10-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transparent barrier film and method of making same |
KR20090009612A (en) * | 2007-07-20 | 2009-01-23 | 엘지디스플레이 주식회사 | Method of forming inorganic insulating layer by sputtering |
EP2069252B1 (en) | 2007-09-14 | 2016-11-23 | Cardinal CG Company | Low-maintenance coating technology |
JP2009155169A (en) * | 2007-12-27 | 2009-07-16 | Asahi Glass Co Ltd | Heat-ray reflecting glass and method for manufacturing heat-ray reflecting glass |
EP2157205B1 (en) * | 2008-07-29 | 2011-11-30 | Sulzer Metaplas GmbH | A high-power pulsed magnetron sputtering process as well as a high-power electrical energy source |
US20100055826A1 (en) * | 2008-08-26 | 2010-03-04 | General Electric Company | Methods of Fabrication of Solar Cells Using High Power Pulsed Magnetron Sputtering |
US20100101937A1 (en) * | 2008-10-29 | 2010-04-29 | Applied Vacuum Coating Technologies Co., Ltd. | Method of fabricating transparent conductive film |
TWI399449B (en) * | 2008-10-29 | 2013-06-21 | Applied Vacuum Coating Technologies Co Ltd | Method of fabricating transparent conductive film |
US10000411B2 (en) | 2010-01-16 | 2018-06-19 | Cardinal Cg Company | Insulating glass unit transparent conductivity and low emissivity coating technology |
US9862640B2 (en) | 2010-01-16 | 2018-01-09 | Cardinal Cg Company | Tin oxide overcoat indium tin oxide coatings, coated glazings, and production methods |
US10000965B2 (en) | 2010-01-16 | 2018-06-19 | Cardinal Cg Company | Insulating glass unit transparent conductive coating technology |
US11155493B2 (en) | 2010-01-16 | 2021-10-26 | Cardinal Cg Company | Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods |
RU2558063C2 (en) | 2010-01-16 | 2015-07-27 | КАРДИНАЛ СиДжи КОМПАНИ | High-quality low-emission coatings, low-emission insulated glazing and methods for production thereof |
US10060180B2 (en) | 2010-01-16 | 2018-08-28 | Cardinal Cg Company | Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology |
US9249498B2 (en) * | 2010-06-28 | 2016-02-02 | Micron Technology, Inc. | Forming memory using high power impulse magnetron sputtering |
FR3010074B1 (en) * | 2013-09-05 | 2019-08-02 | Saint-Gobain Glass France | METHOD FOR MANUFACTURING A MATERIAL COMPRISING A SUBSTRATE HAVING A FUNCTIONAL LAYER BASED ON TIN OXIDE AND INDIUM |
WO2016144312A1 (en) | 2015-03-09 | 2016-09-15 | Whirlpool Corporation | Microwave oven having door with transparent panel |
EP3541762B1 (en) | 2016-11-17 | 2022-03-02 | Cardinal CG Company | Static-dissipative coating technology |
US11028012B2 (en) | 2018-10-31 | 2021-06-08 | Cardinal Cg Company | Low solar heat gain coatings, laminated glass assemblies, and methods of producing same |
CN116034042A (en) | 2021-08-26 | 2023-04-28 | 法国圣戈班玻璃厂 | Method for producing a partially coated vehicle glazing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6415370A (en) * | 1987-07-08 | 1989-01-19 | Matsushita Electric Ind Co Ltd | Dc sputtering method |
US5015493A (en) * | 1987-01-11 | 1991-05-14 | Reinar Gruen | Process and apparatus for coating conducting pieces using a pulsed glow discharge |
EP0447850A2 (en) * | 1990-02-27 | 1991-09-25 | Nihon Shinku Gijutsu Kabushiki Kaisha | Method and apparatus for producing transparent conductive film |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4014772A (en) * | 1975-04-24 | 1977-03-29 | Rca Corporation | Method of radiation hardening semiconductor devices |
JPS53118417A (en) | 1977-03-25 | 1978-10-16 | Asahi Glass Co Ltd | Production of glass with transparent* electrically conductive coat of sno2 |
US4281208A (en) * | 1979-02-09 | 1981-07-28 | Sanyo Electric Co., Ltd. | Photovoltaic device and method of manufacturing thereof |
JPS56164850A (en) | 1980-05-26 | 1981-12-18 | Teijin Ltd | Manufacture of transparent conductive laminate |
JPS5929304A (en) | 1982-08-11 | 1984-02-16 | 富士通株式会社 | Method of forming transparent conductive film |
JPS6174293A (en) * | 1984-09-17 | 1986-04-16 | シャープ株式会社 | Manufacture of thin film el element |
US4683044A (en) * | 1985-06-26 | 1987-07-28 | 501 Hoya Corporation | Method of manufacturing an electroluminescent panel without any adverse influence on an underlying layer |
JPS6362867A (en) * | 1986-09-02 | 1988-03-19 | Seikosha Co Ltd | Colored article |
US4849081A (en) * | 1988-06-22 | 1989-07-18 | The Boc Group, Inc. | Formation of oxide films by reactive sputtering |
EP0357824B1 (en) * | 1988-09-08 | 1993-04-07 | Joshin Uramoto | A sheet plasma sputtering method and an apparatus for carrying out the method |
US5009922A (en) * | 1989-03-02 | 1991-04-23 | Ashahi Glass Company, Ltd. | Method of forming a transparent conductive film |
EP0421015B1 (en) * | 1989-10-06 | 1995-01-18 | Nihon Shinku Gijutsu Kabushiki Kaisha | Process for producing transparent conductive film |
EP0445535B1 (en) * | 1990-02-06 | 1995-02-01 | Sel Semiconductor Energy Laboratory Co., Ltd. | Method of forming an oxide film |
DE4106770C2 (en) * | 1991-03-04 | 1996-10-17 | Leybold Ag | Performing reactive coating of a substrate |
KR930009690B1 (en) * | 1991-03-05 | 1993-10-08 | 주식회사 에스.케이.씨 | Manufacturing method of recording materials |
DE4135701C2 (en) * | 1991-10-30 | 1995-09-28 | Leybold Ag | Disc with high transmission behavior in the visible spectral range and with high reflection behavior for heat radiation |
DE4202425C2 (en) * | 1992-01-29 | 1997-07-17 | Leybold Ag | Method and device for coating a substrate, in particular with electrically non-conductive layers |
-
1994
- 1994-07-26 EP EP98120857A patent/EP0905273B1/en not_active Expired - Lifetime
- 1994-07-26 EP EP94111670A patent/EP0636702B1/en not_active Expired - Lifetime
- 1994-07-26 DE DE69431573T patent/DE69431573T2/en not_active Expired - Lifetime
- 1994-07-26 DE DE69418542T patent/DE69418542T2/en not_active Expired - Lifetime
- 1994-07-28 US US08/281,573 patent/US6468403B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015493A (en) * | 1987-01-11 | 1991-05-14 | Reinar Gruen | Process and apparatus for coating conducting pieces using a pulsed glow discharge |
JPS6415370A (en) * | 1987-07-08 | 1989-01-19 | Matsushita Electric Ind Co Ltd | Dc sputtering method |
EP0447850A2 (en) * | 1990-02-27 | 1991-09-25 | Nihon Shinku Gijutsu Kabushiki Kaisha | Method and apparatus for producing transparent conductive film |
Non-Patent Citations (2)
Title |
---|
JIA Q X ET AL: "BATIO3 THIN FILM CAPACITORS DEPOSITED BY R.F. MAGNETRON SPUTTERING" THIN SOLID FILMS, vol. 209, no. 2, 30 March 1992, pages 230-239, XP000362009 * |
PATENT ABSTRACTS OF JAPAN vol. 013, no. 190 (C-593), 8 May 1989 & JP 01 015370 A (MATSUSHITA ELECTRIC IND CO LTD), 19 January 1989 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2141135A1 (en) * | 2008-06-30 | 2010-01-06 | Schott AG | Device for reflecting heat radiation, a method for production of and use of same |
CN101696091A (en) * | 2008-06-30 | 2010-04-21 | 肖特股份有限公司 | Device for reflecting heat radiation, a method for production of and use of same |
US8573194B2 (en) | 2008-06-30 | 2013-11-05 | Schott Ag | Arrangement for reflection of heat radiation, process of making same and uses of same |
CN101696091B (en) * | 2008-06-30 | 2014-08-20 | 肖特股份有限公司 | Device for reflecting heat radiation, a method for production of and use of same |
EP2884499A1 (en) * | 2013-12-12 | 2015-06-17 | Samsung Electronics Co., Ltd | Electrically conductive thin films and electronic device |
CN104715806A (en) * | 2013-12-12 | 2015-06-17 | 三星电子株式会社 | Electrically conductive thin films and electronic device comprising same |
US10099938B2 (en) | 2013-12-12 | 2018-10-16 | Samsung Electronics Co., Ltd. | Electrically conductive thin films |
CN104715806B (en) * | 2013-12-12 | 2019-03-12 | 三星电子株式会社 | Conductive film and electronic device including it |
US10308541B2 (en) | 2014-11-13 | 2019-06-04 | Gerresheimer Glas Gmbh | Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter |
Also Published As
Publication number | Publication date |
---|---|
DE69418542T2 (en) | 1999-09-16 |
EP0636702B1 (en) | 1999-05-19 |
EP0636702A1 (en) | 1995-02-01 |
DE69431573T2 (en) | 2003-06-12 |
DE69431573D1 (en) | 2002-11-21 |
US6468403B1 (en) | 2002-10-22 |
EP0905273B1 (en) | 2002-10-16 |
DE69418542D1 (en) | 1999-06-24 |
EP0905273A3 (en) | 1999-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0905273B1 (en) | Method for producing films | |
US6383345B1 (en) | Method of forming indium tin oxide thin film using magnetron negative ion sputter source | |
US7033649B2 (en) | Hydrophilic DLC on substrate with UV exposure | |
KR101172019B1 (en) | A substrate coated with dielectric thin-film layer, a process for deposition on the substrate, and an installation for deposition on the substrate | |
EP0071865B2 (en) | Glass body provided with an alkali diffusion-preventing silicon oxide layer | |
US6592992B2 (en) | Hydrophilic coating including DLC | |
US20090017314A1 (en) | Method for deposition of an anti-scratch coating | |
EP1912912B1 (en) | Method of thermally tempering coated article with transparent conductive oxide (tco) coating using flame(s) in tempering furnace adjacent tco to burn off oxygen and product made using same | |
US20090011194A1 (en) | Substrate processing method | |
EP0754777A2 (en) | Process for producing thin film, and optical instrument including the same | |
JP3453805B2 (en) | Transparent conductive film | |
EP0801145B1 (en) | Oxide film, laminate and methods for their production | |
US5443862A (en) | Process for the treatment of thin films having properties of electrical conduction and/or reflection in the infrared | |
US20120160663A1 (en) | Sputter Deposition and Annealing of High Conductivity Transparent Oxides | |
KR20010083477A (en) | Method of depositing an io or ito thin film on polymer substrate | |
Harding et al. | DC magnetron reactively sputtered indium tin oxide films produced using argon oxygen hydrogen mixtures | |
JPH0867980A (en) | Production of silicon nitride film | |
JPH058527B2 (en) | ||
JP2764899B2 (en) | Method for producing transparent conductive film | |
JPS6230148B2 (en) | ||
WO2023139347A1 (en) | Method of depositing a coating layer | |
KR20080006812A (en) | Bi-layer ito film deposition method and bi-layer ito film prepared by the same | |
JPH0133006B2 (en) | ||
JPH0160544B2 (en) | ||
JPS63163427A (en) | Electrode substrate for liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19981103 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 636702 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASAHI GLASS COMPANY LTD. |
|
17Q | First examination report despatched |
Effective date: 20010410 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 636702 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ANDO, EIICHI ASAHI GLASS COMPANY LTD. Inventor name: OYAMA, TAKUJI ASAHI GLASS COMPANY LTD. Inventor name: OSAKI, HISASHI ASAHI GLASS COMPANY LTD. Inventor name: TAKAI, SATORU AG TECHNOLOGY CO., LTD. Inventor name: WATANABE, SHUJIRO ASAHI GLASS COMPANY LTD. Inventor name: SHIMIZU, JUNICHI ASAHI GLASS COMPANY LTD. |
|
REF | Corresponds to: |
Ref document number: 69431573 Country of ref document: DE Date of ref document: 20021121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100721 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100714 Year of fee payment: 17 |
|
BERE | Be: lapsed |
Owner name: *ASAHI GLASS CY LTD Effective date: 20110731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69431573 Country of ref document: DE Effective date: 20120201 |