EP0849608A2 - Vorrichtung zur Bestimmung der Lage des Randes eines laufenden Bandes - Google Patents
Vorrichtung zur Bestimmung der Lage des Randes eines laufenden Bandes Download PDFInfo
- Publication number
- EP0849608A2 EP0849608A2 EP97120897A EP97120897A EP0849608A2 EP 0849608 A2 EP0849608 A2 EP 0849608A2 EP 97120897 A EP97120897 A EP 97120897A EP 97120897 A EP97120897 A EP 97120897A EP 0849608 A2 EP0849608 A2 EP 0849608A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- mirror
- receiver
- edge
- retroreflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005855 radiation Effects 0.000 claims abstract description 26
- 238000011156 evaluation Methods 0.000 claims abstract description 5
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 230000011514 reflex Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/02—Registering, tensioning, smoothing or guiding webs transversely
- B65H23/0204—Sensing transverse register of web
- B65H23/0216—Sensing transverse register of web with an element utilising photoelectric effect
Definitions
- the present invention relates to tracking the position of a running belt through monitoring the location of one or both edges of this tape.
- the Invention is based on a device according to the preamble of claim 1, which is known from U.S. Patent 4,788,441.
- U.S. Patent 4,788,441 In this known training determined a position date from each band edge, namely the angle at which the scanning beam from the retroreflector to the tape material or from Tape material passes to the retroreflector. Out of this essentially results in the lateral offset of the current Band.
- US Pat. No. 5,354,992 relates to a device the signals from the band edge detectors, e.g. Cameras, in case of inclination of the Band be corrected, however, for identification This inclination requires another measuring device is.
- the band edge detectors e.g. Cameras
- the object of the present invention is to create a device that allows, in proportion simple construction and operation of both the side and the altitude, i.e. the spatial location of at least one Track band edge.
- the solution to the problem is in the claim 1 specified.
- the two obtained from a band edge Position data are angular coordinates of two of different ones Place outgoing beacons in their Intersection is the band edge and the light if necessary in Cartesian coordinates or in any other system suitable for controlling the belt can be implemented.
- a tape 1 is drawn off from a roll A in order to Processing station B, e.g. a printing unit, a processing or to be subjected to treatment before it is rewound on a reel C.
- Processing station B e.g. a printing unit, a processing or to be subjected to treatment before it is rewound on a reel C.
- Processing station B e.g. a printing unit, a processing or to be subjected to treatment before it is rewound on a reel C.
- Processing station B provided a rotating frame 2
- a scanning device 3 is detected.
- a retroreflector 4 is arranged behind the running belt.
- the scanning device 3 consists of a scanning device 3 Housing 3 'with a window 36 through which the scanning Boresight the observation field with the retroreflector 4 and coat the tape edge in front of this.
- the running direction of the belt not shown here runs at right angles to the drawing plane, i.e. in these in or out of it.
- a constant Speed rotating polygon mirror wheel 18 stored with eight flat mirror facets.
- a laser diode 5 generates a beam 6, e.g. one Beam of light in the visible range from a cylindrical lens 7 is expanded into a fan beam 8, where the plane intersects the drawing plane at right angles, that is, the running direction of the belt.
- This Fan beam 8 is emitted by a radiation splitter 9 (50% mirror) split into two partial beams 10 and 11.
- the partial beam 11 is split again by a radiation splitter 13, one part being unnecessary for the function as a residual beam 14 and swallowed by an absorber 35, and the other part falling onto the mirror wheel 18 via a mirror 16 as a first beam.
- the point where it strikes the mirror wheel and is thrown back is referred to as the throw-back point R 1 , which dances slightly back and forth along the incoming direction finding beam when the mirror is rotating.
- the reflected beam begins at the transition of the discard point R 1 from one mirror facet to the next, a new scanning swivel from right to left. In doing so, shortly before falling out of the window 36, it hits a scan start detector 17.
- the sighting beam 15 falls on the retroreflector 4 after reaching the window, it is reflected back by it as the first retroreflective beam 24 in the same direction and, in view of the high speed of light and the negligible scanning speed of the mirror wheel 18, falls on the discarding point R 1 and the mirror 16 the underside of the radiation divider 13, through which a part 25 passes and has no meaning and another part as a reflex part 26 acts on a first receiver 28 via a filter 27 which only allows the wavelength of the laser radiation used.
- the partial beam 10 is reflected downward by a mirror 12 and similarly passes through a second radiation splitter 19 as a second directional beam 21, the residual beam 20 arising here being swallowed by an absorber 34.
- the second directional beam acts on the rotating mirror 18 at a second discard point R 2 , which is at a distance from the first discard point R 1 , via a mirror 22 and sweeps the observation field, the second retroreflecting beam 29 which is produced when the retroreflector 4 is acted upon, practically without delay via the Discarding point R 2 , the mirror 22 and the radiation splitter 19 acted on a second receiver 33 as a reflex part 31 by a filter 32.
- the passage part 30 has no meaning.
- a second embodiment of the scanning device 3 are two similar or different Radiation sources 5, 37 for generating the two bearing beams 15, 21 provided, the second directional beam 21 from its own cylindrical lens 39 to a fan beam 40 is expanded. Otherwise makes a difference this training only through the spatial arrangement of the components, while the function and mode of operation is the same and same components same Have reference numerals as in Fig. 2. In this second Form of training can have higher radiation intensities be realized and there will be different mirrors and radiation splitter saved. In addition, there is Possibility by choosing different wavelengths of the two laser sources is from the two directional beams clearly separate generated impulses.
- the third embodiment shown in Fig. 4 differs from that according to FIG. 2 in that it only has a receiver 28 with an upstream filter 27.
- the fourth embodiment shown in FIG. 5 differs from that of FIG. 4 in that also the light modulators and the rotating mirror are still missing 18 'with flat mirror facets, between which non-reflective distances remain.
- the facets in bold are supposed to be those that are mirrored while the others do not reflect. This also creates gaps in time between the scanning strokes of the observation field by a bearing beam and the scans of the two Beacons are intermittent at different times.
- Another possibility, not shown in the drawing is to have one with two laser radiation sources Device to alternately key them out, so that the signal pulses are clearly separated in this way and can be assigned.
- the Comparison of the pulse trains over a complete turn of the rotating mirror the currently active mirror facet i.e. the angular position of the rotating mirror can be identified.
- the training according to FIG. 6 can be used for this purpose a mirror wheel 18 with three mirror facets two equal sized larger non-reflective distances and has a smaller non-reflective distance. The short characteristic of this distance The beam is interrupted only once per revolution and indicates the rotational position of the rotating mirror, so that it is used as a synchronization signal for pulse train comparison can serve.
- Fig. 7 is a radiation-opaque tape 1 in two positions Pos.a and Pos.b shown.
- the first directional beam 15 produces signals S 17 which serve as reference pulses for the time interval measurements of the scanning process.
- the period between the scanning processes has the duration t o ⁇ t 1 , however, the remaining signal curves are only shown for one process in order not to overload the figure.
- the first sighting beam comes into the layer 43 shown in narrow dotted lines, it emerges from the housing window and falls onto the retroreflector. This happens at time t 3 and its retroreflective beam acts on the first receiver 28 and this generates the signal S 28 .
- the first directional beam reaches position 47, drawn as a two-dot line, in which it reaches the edge of band 1, both in its position a and in position b. As a result, the first sighting beam no longer reaches the retroreflector and the signal S 28 disappears at time t 4 .
- the first direction finding beam would be retroreflected until the left window edge was reached in the narrowly dotted position 44 at time t 8 and the signal S 28 would continue until this time, which is indicated in dashed lines in the diagrams.
- the second direction finding beam 21 falls out of the housing window for the first time in the wide-dotted position 45 at the time t 5 and reaches the edge of the band 1 in its position a at the time t 6 .
- His retroreflective beam 29 thus generates the signal S 33 Pos.a. If the band were not present, the signal would be generated up to time t 9 , at which the second sighting beam reaches the left window edge in the position 46 shown in a dotted line.
- the band 1 When the band 1 is in the position b, it only shadows the retroreflector 4 from the second directional beam in its position 49 shown in broken lines, which is reached at time t 7 . In this case, the signal S 33 continues until this time.
- Fig. 8 it is shown how two different band edge positions affect the pulse sequences if the band 1 with its edge at the same height (distance from the retroreflector 4) more (Pos.b) or less (Pos.a) in the field of observation Scanning device protrudes.
- the leading edges of the signals S 28 and S 33 occur again at the same times t 3 and t 5 .
- the same considerations can be made with regard to FIG. 9, where the two edge positions a and b are both at different heights and at different lateral immersion depths in the observation field.
- the spatial position of the edge in position b is defined by the beam positions 52 and 53, which in turn clearly result from the times t 12 and t 13 .
- Fig. 10 still shows the waveforms that result when the tape edges are in the positions shown in Fig. 7 and the tape material is not completely opaque is.
- the transition of the beam to the The belt surface then does not lead to complete elimination of the retroreflective beam and drop in the signal level to zero, but only to darken the retroreflective beam and a drop in the signal to one corresponding darkening value.
- setting the response threshold is recommended the evaluation circuit connected to the receivers 28, 33 to a midpoint between the full Signal lift and the darkening level, which means known Techniques can happen automatically.
- FIG. 11 shows the signal curves in the configuration of the scanning device according to FIG. 5, that is to say with spaced mirror facets of the mirror wheel 18 ′, which manages with only one receiver 28 because of the temporal separation of the first and second retroreflective beams.
- the one receiver 28 delivers the signals of the first retroreflective beam t 3 ⁇ t 4 (beam positions 43 ⁇ 47) and the signals of the second retroreflective beam t 5 ⁇ t 6 (corresponding to the second position data of the band edge position a) the beam positions 45 ⁇ 48, which are hidden in the rotating mirror position shown, but can be seen in FIG. 7), or the signals t 5 ⁇ t 7 (beam positions 45 ⁇ 49 in FIG. 7) providing the second position data of the band edge position b, so that the clear assignment during further processing is possible.
- the time spans between the scanning start pulse t o serving as reference impulse and the leading edges of the retroreflective beams at times t 3 and t 5 are a device constant and the position data are obtained from the time spans t o ⁇ t 4 and t o ⁇ t 6 (item a) or t o ⁇ t 7 (item b).
- the leading edge for example of the first retroreflective pulse
- the leading edge for example of the first retroreflective pulse
- the geometry of the scanning device is such that the scanning pivoting of the first directional beam 15 begins so far to the right that the mirror 16 is already hit, ie in a rotating position of the rotating mirror 18 that arrives at the discard point R 1
- Direction-finding beam 15 strikes a mirror facet located at right angles to it, so that it is thrown back into itself and generates a marking pulse from the first receiver 28. This too can then be used as a reference pulse for the start of the scan and makes a special detector 17 unnecessary.
- Fig. 12 shows an embodiment in which in addition to 1 according to the arrangement with the rotating frame 2 via a boom 54 rigidly connected in the scanning direction short rotating frame retroreflector 55 in front of band 1 is present, at a point where it is certain always tape 1 will run and none Time can be reached from a band edge that however still in the observation area of the scanning device 3 lies. Then from the rotating frame retroreflector 55 received a retroreflective pulse that the rotational position of the Rotating frame 2 defined.
- the rotating frame is the actuator of the control loop of the strip guiding system and such Rotation position pulse can be used to align the rotating frame be used in its centering position, in which rolls parallel to the other rolls of the station and the coils A and B are oriented.
- the beam is the front edge of the band as described, characterized by the rear Flanks the pulses while the other band edge is defined by the leading edges of second retroreflective pulses, that are generated when the beacon again towards the end of its scan Band hits the retroreflector behind.
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
- Fig. 1
- die Gesamtansicht einer Bandlaufsteuervorrichtung mit einer Abtastvorrichtung zur Bestimmung der räumlichen Lage eines Bandrandes;
- Fig. 2
- eine schematische Darstellung der Abtastvorrichtung in einer ersten Ausbildungsform;
- Fig. 3
- eine schematische Darstellung der Abtastvorrichtung in einer zweiten Ausbildungsform;
- Fig. 4
- eine schematische Darstellung der Abtastvorrichtung in einer dritten Ausbildungsform;
- Fig. 5
- eine schematische Darstellung der Abtastvorrichtung in einer vierten Ausbildungsform;
- Fig. 6
- eine schematische Darstellung der Abtastvorrichtung in einer fünften Ausbildungsform;
- Fig. 7
- schematisch eine Abtastvorrichtung und die von ihr erhaltenen Signalimpulse bei einer bestimmten Auswanderung des überwachten Bandrandes;
- Fig. 8
- die Darstellung gemäß Fig. 7 bei einer anderen Auswanderung des Bandrandes;
- Fig. 9
- die Darstellung gemäß Fig. 7 bei noch einer anderen Auswanderung des Bandrandes;
- Fig. 10
- die Darstellung gemäß Fig. 7 bei einem nicht vollständig undurchsichtigem Bandmaterial;
- Fig. 11
- schematisch eine Abtastvorrichtung mit einem Spiegelrad, dessen Spiegelfacetten Abstände voneinander aufweisen, und die von dieser erhaltenen Signalimpulse;
- Fig. 12
- die Gesamtansicht einer Bandlaufsteuervorrichtung gemäß Fig. 1 mit einem Zusatzbauteil zur Bestimmung der Winkelstellung des steuernden Drehrahmens.
Claims (12)
- Vorrichtung zur Bestimmung der Lage des Randes eines Bandes (1), welches zwischen einem Retroreflektor (4) und einer Abtastvorrichtung (3) läuft,
wobei die Abtastvorrichtung einen Drehspiegel (18) aufweist, welcher den Strahl (15) einer Strahlungsquelle (5) quer zur Laufrichtung des Bandes ablenkt und das Beobachtungsfeld bestreicht, wobei der von der Beaufschlagungsstelle (R1) des Peilstrahls (15) auf dem Retroreflektor zurückgeworfene Retroreflexstrahl (24) von einem Empfänger (28) erfaßt wird, an den eine Auswerteschaltung zur Bestimmung eines Positionsdatums des Bandrandes angeschlossen ist,
dadurch gekennzeichnet, daß ein zweiter Peilstrahl (21) auf den Drehspiegel (18) an einer zweiten Rückwurfstelle (R2) auftrifft, die von der Rückwurfstelle (R1) des ersten Peilstrahls (15) beabstandet ist,
wobei der von der Beaufschlagungsstelle des zweiten Peilstrahls (21) auf dem Retroreflektor (4) zurückgeworfene zweite Retroreflexstrahl (29) von einem zweiten Empfänger (33) oder vom gleichen Empfänger (28, Fig. 4, 5, 6) zeitlich getrennt vom Empfang des ersten Retroreflexstrahls erfaßt wird, und die Signale des zweiten Retroreflexstrahls (29) in der Auswerteschaltung zur Bestimmung eines zweiten Positionsdatums des Bandrandes und zusammen mit dem ersten Positionsdatum zur Bestimmung der räumlichen Lage desselben dienen. - Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Peilstrahlen durch je einen Strahlungsteiler (13, 19) auf den Drehspiegel (18) geworfen werden und die retroreflektierten Strahlen (24, 29) vom jeweiligen Strahlungsteiler (13, 19) zum jeweiligen Empfänger (28, 33) reflektiert werden.
- Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Drehspiegel (18) ein Polygonspiegel mit ebenen Spiegelfacetten ist.
- Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Peilstrahlen (15, 21) von einer Laserstrahlungsquelle (5, 37), vorzugweise einer Laserdiode erzeugt werden und auf ihrem Weg zum Drehspiegel (18) durch eine Zylinderlinse (7, 39) zu einem Strahlungsfächer (8, 40) aufgeweitet werden, in dessen Ebene der Laufrichtungsvektor des Bandes liegt.
- Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch zwei Strahlungquellen (5, 37), deren jede einen der Peilstrahlen (15, 21) erzeugt (Fig. 3).
- Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 4, gekennzeichnet durch eine Strahlungsquelle (5), deren Strahl (6) nach Aufweitung durch eine Zylinderlinse (7) als Fächerstrahl (8) von einem Strahlungsteiler (9) in zwei Teilstrahlen (10, 11) aufgeteilt wird, welche nach Durchgang durch ihnen zugeordnete Strahlungsteiler (13, 19) als Peilstrahlen (15, 21) über den Drehspiegel (18) das Beobachtungsfeld bestreichen (Fig. 2).
- Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch ein die Vorrichtungselemente aufnehmendes Gehäuse mit einem zum Überwachungsfeld gerichteten Fenster (36), wobei nahe des einen Fensterrandes ein Abtastanfangdetektor (17) angeordnet ist.
- Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der beim Durchgang des Peilstrahls durch den zugehörigen Strahlungsteiler (13, 19) entstehende Teilstrahl (14, 20) auf einen Absorber (34, 35) fällt.
- Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der beim Durchgang des Peilstrahls durch den zugehörigen Strahlungsteiler (13, 19) entstehende Teilstrahl (14, 20) auf einen Kontrollempfänger fällt, dessen Signal zur Anpassung der Empfänger-Ansprechschwellen an Schwankungen der Strahlungsleistung und der Empfängerempfindlichkeit dient.
- Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Polygonspiegel (18') ebene Spiegelfacetten aufweist, zwischen denen nichtreflektierende Abschnitte liegen.
- Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 9, gekennzeichnet durch zwei wechselweise ansteuerbare Lichtmodulatoren (41, 42; Fig. 4) im Weg der beiden Peilstrahlen.
- Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch einen drehrahmenfesten Retroreflektor (55) vor dem laufenden Band 1 (Fig. 12).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1996153312 DE19653312C1 (de) | 1996-12-20 | 1996-12-20 | Vorrichtung zur Bestimmung der Lage des Randes eines laufenden Bandes |
DE19653312 | 1996-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0849608A2 true EP0849608A2 (de) | 1998-06-24 |
EP0849608A3 EP0849608A3 (de) | 1998-08-19 |
Family
ID=7815546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97120897A Withdrawn EP0849608A3 (de) | 1996-12-20 | 1997-11-28 | Vorrichtung zur Bestimmung der Lage des Randes eines laufenden Bandes |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0849608A3 (de) |
DE (1) | DE19653312C1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005002189A1 (de) * | 2005-01-17 | 2006-07-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zum Ermitteln einer Position eines Lichtstrahls und Verfahren zum Betreiben einer Vorrichtung zum Ermitteln einer Position eines Lichtstrahls |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007054596A1 (de) * | 2007-11-15 | 2009-05-20 | Pepperl + Fuchs Gmbh | Optischer Sensor und Verfahren zur Positionsbestimmung von Objekten |
EP2093173B1 (de) | 2008-02-19 | 2013-06-12 | Texmag GmbH Vertriebsgesellschaft | Vorrichtung und Verfahren zur Detektion von Orientierungsmerkmalen auf einer Materialbahn |
AT509180B1 (de) * | 2009-11-19 | 2016-01-15 | Riegl Laser Measurement Sys | Optoelektronisches messsystem |
DE102017127420A1 (de) * | 2017-11-21 | 2019-05-23 | Sick Ag | Polygonscanner und Verfahren zum Erfassen von Objekten in einem Überwachungsbereich |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1191591B (de) * | 1958-01-17 | 1965-04-22 | Licentia Gmbh | Verfahren zum fotoelektrischen Bestimmen der relativen Lage wenigstens einer Kante eines Objektes |
US4021031A (en) * | 1975-12-08 | 1977-05-03 | Butler Automatic, Inc. | Web alignment system |
US4523093A (en) * | 1981-09-03 | 1985-06-11 | Excellon Industries | Scanning beam reference and read system |
US4788441A (en) * | 1985-12-16 | 1988-11-29 | Acme-Cleveland Corporation | Range finder wherein distance between target and source is determined by measuring scan time across a retroreflective target |
-
1996
- 1996-12-20 DE DE1996153312 patent/DE19653312C1/de not_active Expired - Fee Related
-
1997
- 1997-11-28 EP EP97120897A patent/EP0849608A3/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1191591B (de) * | 1958-01-17 | 1965-04-22 | Licentia Gmbh | Verfahren zum fotoelektrischen Bestimmen der relativen Lage wenigstens einer Kante eines Objektes |
US4021031A (en) * | 1975-12-08 | 1977-05-03 | Butler Automatic, Inc. | Web alignment system |
US4523093A (en) * | 1981-09-03 | 1985-06-11 | Excellon Industries | Scanning beam reference and read system |
US4788441A (en) * | 1985-12-16 | 1988-11-29 | Acme-Cleveland Corporation | Range finder wherein distance between target and source is determined by measuring scan time across a retroreflective target |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005002189A1 (de) * | 2005-01-17 | 2006-07-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zum Ermitteln einer Position eines Lichtstrahls und Verfahren zum Betreiben einer Vorrichtung zum Ermitteln einer Position eines Lichtstrahls |
DE102005002189B4 (de) * | 2005-01-17 | 2007-02-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zum Ermitteln der Winkelposition eines Lichtstrahls und Verfahren zum Betreiben einer Vorrichtung zum Ermitteln der Winkelposition eines Lichtstrahls |
CN100406845C (zh) * | 2005-01-17 | 2008-07-30 | 弗兰霍菲尔运输应用研究公司 | 确定光束位置的装置和操作确定光束位置的装置的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE19653312C1 (de) | 1998-04-02 |
EP0849608A3 (de) | 1998-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68914553T2 (de) | Lasermesssystem. | |
EP0578129B1 (de) | Bilderfassende Sensoreinheit | |
DE3116253C2 (de) | ||
DE3613209C2 (de) | ||
DE2643990A1 (de) | Vorrichtung zum optischen lesen einer aufzeichnung | |
EP3318895A1 (de) | Vorrichtung und verfahren zum empfangen eines reflektierten lichtpulses in einem lidar-system | |
DE2256736A1 (de) | Verfahren zur automatischen oberflaechenprofilmessung und vorrichtung zur durchfuehrung des verfahrens | |
DE2428123A1 (de) | Anordnung zum nachweisen von fehlstellen mittels abtastung durch einen laserstrahl | |
EP1321777A2 (de) | Verfahren zur Aufnahme eines Objektraumes | |
EP0204295A2 (de) | Messeinrichtung zur Bestimmung der Windrichtung und Windgeschwindigkeit in der Atmosphäre | |
DE3001841A1 (de) | Schaltungsanordnung fuer eine anordnung zur ermittlung von fehlstellen eines mit hilfe eines lichtabtast-systems abgetasteten materialstreifens | |
DE2838555C2 (de) | Vorrichtung zur Ermittlung des Winkels zwischen zwei Körpern | |
DE3503086C1 (de) | Verfahren bzw.Vorrichtung zur Messung der Wanddicke von transparenten Gegenstaenden | |
DE2333281B2 (de) | Verfahren zur Ermittlung der Fokussierung eines auf ein Objekt ausgesandten kohärenten Lichtstrahls | |
DE3786939T2 (de) | Laseraufzeichnungsvorrichtung. | |
WO2018033446A1 (de) | Optische vorrichtung | |
EP1119437B1 (de) | Vorrichtung zur behandlung eines substrates mittels laserstrahlung | |
DE2951435C2 (de) | ||
DE68902632T2 (de) | Mehrrichtungslaseranemometer. | |
EP0849608A2 (de) | Vorrichtung zur Bestimmung der Lage des Randes eines laufenden Bandes | |
EP0636900A2 (de) | Verfahren zur Geschwindigkeitsmessung und Klassifizierung von Fahrzeugen mittels eines Verkehrsradargerätes | |
EP1632785A1 (de) | Positionsmessgerät auf Laserbasis | |
DE1917138A1 (de) | Photoelektronische Treffbildscheibe | |
DE3733681C1 (de) | Vorrichtung mit Infrarot-Suchkopf zur Entdeckung und Bekämpfung feindlicher Hubschrauber | |
DE1623391B1 (de) | System zur optischen leitstrahllenkung von fahrzeugen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19980709 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010112 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20010523 |