EP0661413A1 - Axial-Schaufelgitter mit gepfeilten Schaufelvorderkanten - Google Patents
Axial-Schaufelgitter mit gepfeilten Schaufelvorderkanten Download PDFInfo
- Publication number
- EP0661413A1 EP0661413A1 EP94119705A EP94119705A EP0661413A1 EP 0661413 A1 EP0661413 A1 EP 0661413A1 EP 94119705 A EP94119705 A EP 94119705A EP 94119705 A EP94119705 A EP 94119705A EP 0661413 A1 EP0661413 A1 EP 0661413A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blade
- blades
- grille
- gravity
- grid according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005484 gravity Effects 0.000 claims description 19
- 230000007704 transition Effects 0.000 claims description 7
- SBPPWJIDARICBS-PGCXOGMSSA-N (5r,5ar,8ar,9r)-5-[[(4ar,6r,7r,8r,8as)-7,8-dihydroxy-2-phenyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydro-5h-[2]benzofuro[6,5-f][1,3]benzodioxol-8-one Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4OC(OC[C@H]4O3)C=3C=CC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 SBPPWJIDARICBS-PGCXOGMSSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000010408 sweeping Methods 0.000 abstract description 2
- 238000005452 bending Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
Definitions
- the invention relates to an axial vane grille according to the preamble of patent claim 1.
- the design according to the invention has the advantage that, in addition to the effect known from the prior art, the influence of the secondary flow in rotor blade grilles, the radial pressure gradient over the blades in the region close to the boundary can be influenced by the straight, arrow-shaped course, so that the undesirable formation of Horseshoe whirling on the side wall is at least reduced. Since the improvement in step efficiency that can be achieved in this way is not based solely on influencing the secondary flow in rotor blades, which is influenced by the centrifugal force, as is known from the prior art, the invention can be used in the case of rotor and guide vane grids of compressor and turbine blades.
- the side wall is understood to mean both the hub-side, that is to say the radially inner, and the housing-side, that is to say the radially outer, boundary of the ring channel, which can be designed as a blade platform formed in the circumferential and axial direction or as a shroud or machine housing.
- the inventive design of the blade grids on the blades is preferably carried out both on the hub side on the blade feet and on the housing side on the blade tip.
- the straight line within the areas of the blade tips or blade feet depending on the boundary layer thickness a distance from the respective side wall to the blade center of approximately 10% of the associated blade height.
- the blade height associated with a blade point results from the distance between the radially inner boundary and the radially outer side wall perpendicular to the longitudinal axis of the machine and through the blade point.
- Flow-favorable positive arrow angles ⁇ G and ⁇ N between the front edge of the blade and a solder on the radially inner or radially outer boundary of the ring channel are between 5 ° and 45 °.
- Negative sweep angles ⁇ G and ⁇ N between -10 ° and 0 ° allow the advantages associated with sweeping even under structurally difficult conditions.
- the radial pressure gradient can in turn be manipulated in a streamlined manner.
- the transition region can be designed with a constant curvature and with low stress.
- the curved section extends after the straight section up to a relative distance of 25% of the associated blade height, starting from the respective boundary into the interior of the blade.
- the rotor blades In the case of a design of the rotor blade as a hollow blade, in order to avoid a high bending moment load on the rotor blading of rotor blade grids under centrifugal force, the rotor blades have cavities which extend at least over part of the blade length, the expansion of the cavities being distributed over the blade profile depth such that the focal points of the profile cuts are on a common level. In turbine blades, the cavities can be used as cooling channels be trained.
- axial displacement of the individual profile cuts can have a favorable influence on the bending moment stress on the airfoil, the offset being able to be chosen such that the center of gravity of the blade comes to rest in the center of gravity of the disc.
- the center of gravity of the disc is also on the common plane. Strength-reducing tensions in the blade root area are thus avoided.
- rotor blade grilles with a shroud which concentrically surrounds the blade grille and is connected to the tip of the blade, or is attached there.
- the centers of gravity of the blades of such a vane grille and the center of gravity of the shroud are spaced axially from the center of gravity of the vane grille in such a way that the center of gravity of the disk receiving the rotor blades lies on the center of gravity of the vane grille. This in turn results in a design with low bending stress in the area of the blade feet.
- a profile of the blade trailing edges which is similar to the shape of the blade leading edges results with a constant or with a constant increase or decrease in the blade depth over the blade length.
- FIG. 1a An axial-circumferential-radial coordinate system z-. ⁇ .-r is used for directional and reference information.
- Figures 1a to 4b show representations in the z-r plane.
- the blades 6 of the guide and rotor blades 4, 5 extend radially in an annular channel 7 arranged concentrically to the machine longitudinal axis A of the axial turbine 1.
- the axially concentric hub and housing side walls form the radially inner and radially outer channel boundary 8 and 9 of the annular channel 7 and give it a divergent course with respect to the flow direction S.
- the rotor blade grids 3 are designed in a disk construction, i.e. the rotor blades 5 are each attached to a disk 10 in a grid manner.
- FIG. 1b shows an axial turbine 1 'designed according to the prior art, the guide and rotor blade grids 2' and 3 'of which are uncurved Guide and rotor blades 4 'or 5' is equipped.
- Fig. 2 shows the threading of individual profile cuts P1, P2, P3 and P4 of an airfoil 6 of the axial turbine 1.
- threading axis F a reference line perpendicular to the machine longitudinal axis A
- the profile cuts P n coincide with lines of the same relative blade height h in the zr plane.
- the associated blade height h in turn results from the distance to be measured perpendicular to the longitudinal axis A of the machine between the inner and outer channel boundaries 8 and 9.
- the blade leading edge 11 has a rectilinear section B G or B N in the rz plane.
- the arrow angle . ⁇ .G and . ⁇ .N to be measured relative to a perpendicular L to the respective channel boundary 8.9 is 25 ° within the sections B G and B N on the housing side and 45 ° on the hub side.
- the blade leading edge 11 each has a curved extending section Ü G or Ü N , which corresponds to a second or higher order polynomial.
- the blade edge 11 is again straight in the rz plane.
- the transitions from curved to rectilinear course in the blade leading edge 11 are formed continuously.
- the shape of the trailing edge 12 of the blade results from the specification of the blade depth t (h), which decreases linearly here with increasing duct height h.
- the rotor blade grille 3 shown in FIG. 3 in the r-z plane is of disk construction, the rotor blades 5 positively in a uniform manner in the circumferential direction via their molded-on blade feet 13. spaced apart disk grooves 14 of the disk 10 are attached.
- the centers of gravity SP G and SP S of the rotor blade grille 3 and the disk 10 lying on the machine longitudinal axis A coincide.
- the focal points SP L of the moving blades 5 lie on a common plane E by appropriate threading of the profile cuts P, which is perpendicular to the machine axis A and runs through the common focal point SPS and SPG of the disk 10 or of the moving blade grille 3.
- the rotor blade grille 3 is provided with a cover band 15 which is segmented in the circumferential direction and comprises the rotor blades at the radially outer end.
- Fig. 4 shows an alternative embodiment of a blade 5 to avoid bending stresses in the blade 5 due to unbalanced centers of gravity SP P of the profile cuts P n .
- the interior of the airfoil 6 has a cavity 16 which extends over the channel height h and whose extension over the airfoil depth t (h) is designed such that the centers of gravity SP P of the profile cuts P n are in a common r-. ⁇ .. Level.
- FIG. 5 shows a blade blade 6 which is additionally concave with respect to the blade suction side 18 and which is curved in the circumferential direction.
- This additional curvature advantageously has an influence on the radial pressure gradient in the outflow plane of a guide blade or rotor blade 4, 5 to take. Due to the circumferential bend, the profile cuts close to the limit are aerodynamically relieved. With a simultaneous higher load on the center area of the blade 4.5, as a result of which a more favorable efficiency can be achieved overall for the blade 4.5.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Chain Conveyers (AREA)
Abstract
Description
- Die Erfindung betrifft ein Axial-Schaufelgitter nach dem Oberbegriff des Patentanspruches 1.
- Zur Verbesserung der Strömungsverhältnisse in Schaufelgittern von Axial-Strömungsmaschinen ist es aus der EP 0425 889 A1 bekannt, die Schaufelvorderkante der Laufschaufeln im Bereich der Blattspitze gegen die Strömungsrichtung gegenüber einem Vorderkantenverlauf im mittleren Schaufelblattbereich zu neigen und dieser Neigung eine Neigung der Blattspitze in Rotationsrichtung des Laufschaufelgitters zu überlagern. Dieser Schaufel vorderkantenverlauf soll zu einer Verbesserung des Wirkungsgrades des Laufschaufelgitters führen, wobei folgender Effekt zu Nutze gemacht werden soll:
- Die Neigung der Schaufelvorderkanten gegen die Strömungsrichtung führt zu einem ebenfalls gegen die Strömungsrichtung geneigten Verlauf der Isobaren. Hieraus ergibt sich ein Anstieg des statischen Druckes nach radial außen, wodurch die unter dem Einfluß der Zentrifugalkraft stehende Grenzschicht der Rotorschaufel stromabwärts abgelenkt wird. Dadurch kann ein blattspitzennahes Ablösen der Grenzschicht vermieden werden.
- Hiervon ausgehend ist es Aufgabe der Erfindung, eine für Leit- und Laufschaufelgitter geeignete Schaufelgestaltung zur Verbesserung des Stufenwirkungsgrades anzugeben.
- Erfindungsgemäß wird die Aufgabe durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.
- Die erfindungsgemäße Gestaltung hat den Vorteil, daß durch den geradlinigen, gepfeilten Verlauf zusätzlich zu dem aus dem Stand der Technik bekannten Effekt, der Beeinflussung der Sekundärströmung bei Laufschaufelgittern, der radiale Druckgradient über den Schaufeln im begrenzungsnahen Bereich beeinflußbar ist, so daß die unerwünschte Ausbildung von Hufeisenwirbeln an der Seitenwand zumindest vermindert wird. Da die hierdurch erzielbare Verbesserung des Stufenwirkungsgrades nicht alleine auf der Beeinflussung der bei Rotorschaufeln von der Zentrifugalkraft geprägten Sekundärströmung beruht, wie dies aus dem Stand der Technik bekannt ist, kann die Erfindung bei Lauf- und Leitschaufelgittern von Verdichter- und Turbinenbeschaufelungen zu Nutze gemacht werden. Als Seitenwand wird sowohl die nabenseitige, also radial innere, als auch die gehäuseseitige, also radial äußere Begrenzung des Ringkanals verstanden, wobei diese als in Umfangs- und axiale Richtung ausgebildete Schaufelplattform bzw. als Deckband oder Maschinengehäuse ausgeführt sein kann. Vorzugsweise wird die erfindungsgemäße Gestaltung der Schaufelgitter an den Schaufeln sowohl nabenseitig an den Schaufelfüßen als auch gehäuseseitig an den Schaufelblattspitzen ausgeführt sein. Vorteilhafte Ausführungsformen der Erfindung ergeben sich durch die Merkmale der Patentansprüche 2 bis 13.
- Eine optimale Beeinflussung des begrenzungsnahen Druckfeldes und der dortigen Sekundärströmung ergibt sich bei geradlinigen Schaufelvorderkantenverlauf innerhalb der naben- bzw. gehäuseseitigen Grenzschicht, wobei je nach Grenzschichtdicke der geradlinige Verlauf innerhalb der Bereiche der Blattspitzen bzw. Schaufelfüße sich bis zu einem Abstand von der jeweiligen Seitenwand zur Schaufelmitte von ca. 10% der zugehörigen Schaufelhöhe erstreckt. Die zu einem Schaufelpunkt zugehörige Schaufelhöhe ergibt sich durch den zur Maschinenlängsachse senkrechten, durch den Schaufelpunkt gehenden Abstand zwischen der radial inneren Begrenzung und der radial äußeren Seitenwand.
- Strömungsgünstige positive Pfeilungswinkel δ G und δ N zwischen der Schaufelvorderkante und einem Lot auf die radial innere bzw. radial äußere Begrenzung des Ringkanals betragen zwischen 5° und 45°. Negative Pfeilungswinkel δ G und δ N zwischen -10° und 0° erlauben auch unter konstruktiv schwierigen Bedingungen die mit der Pfeilung verbundenen Vorteile.
- Im Anschluß an den geradlinigen Verlauf der Schaufelvorderkanten weisen diese in einem Übergangbereich zur Schaufelmitte hin einen gekrümmten Verlauf nach einem Polynom zweiter oder höherer Ordnung auf. Durch Variation der Krümmung kann wiederum der radiale Druckgradient strömungsgünstig manipuliert werden. Darüberhinaus kann bei Rotorschaufeln, die einer hohen Fliehkraftbeanspruchung unterliegen, der Übergangsbereich mit einer stetigen Krümmung spannungsarm gestaltet werden. In einer bevorzugten Ausführung erstreckt sich der gekrümmte Abschnitt im Anschluß an den geradlinigen Abschnitt bis zu einem relativen Abstand von 25% der zugehörigen Schaufelhöhe ausgehend von der jeweiligen Begrenzung ins Schaufelinnere.
- Im Falle einer Ausführung der Laufschaufel als Hohlschaufel kann zur Vermeidung einer hohen Biegemomentbeanspruchung der unter Fliehkrafteinfluß stehenden Rotorbeschaufelung von Laufschaufelgittern weisen die Rotorschaufeln Hohlräume auf, die sich zumindest über einen Teil der Schaufellänge erstrecken, wobei die Ausdehnung der Hohlräume derart über die Schaufelprofiltiefe verteilt sind, daß die Schwerpunkte der Profilschnitte auf einer gemeinsamen Ebene liegen. Bei Laufschaufelgittern von Turbinen können die Hohlräume als Kühlkanäle ausgebildet sein.
- Für massiv ausgeführte Laufschaufeln kann durch axialen Versatz der einzelnen Profilschnitte günstiger Einfluß auf die Biegemomentbeanspruchung des Schaufelblattes ausgeübt werden, wobei der Versatz derart gewählt werden kann, daß der Schaufelschwerpunkt in der Schwerelinie der Scheibe zum Liegen kommt.
- Bei der Ausführung des Laufschaufelgitters mit einer die Rotorschaufeln aufnehmenden Scheibe liegt der Scheibenschwerpunkt ebenfalls auf der gemeinsamen Ebene. Festigkeitsmindernde Spannungen im Schaufelfußbereich werden somit vermieden. Das gleiche gilt für Laufschaufelgitter mit einem Deckband, welches das Schaufelgitter kanalkonzentrisch umgibt und mit den Schaufel spitzen verbunden ist, bzw. dort angebracht ist. Dabei sind die Schwerpunkte der Schaufeln eines solchen Schaufelgitters und der Schwerpunkt des Deckbandes derart axial vom Schwerpunkt des Schaufelgitters beabstandet, daß der Schwerpunkt der die Rotorschaufeln aufnehmenden Scheibe auf dem Schwerpunkt des Schaufelgitters liegt. Hierdurch ergibt sich wiederum eine biegespannungsarme Gestaltung im Bereich der Schaufelfüße.
- Einen dem Verlauf der Schaufelvorderkanten ähnlichen Verlauf der Schaufelhinterkanten ergibt sich bei konstanter oder bei gleichmäßiger Zu- bzw. Abnahme der Schaufelblattiefe über die Schaufelblattlänge.
- Bevorzugte Ausführungsformen der Erfindung werden nachfolgend unter Bezugnahme auf die beigefügte Zeichnung erläutert. Es zeigt:
- Fig. 1 a
- einen Längsschnitt durch die Niederdruckturbine eines Strahltriebwerkes mit gekrümmten Turbinenschaufeln,
- Fig. 1 b
- einen Längsschnitt durch die Niederdruckturbine eines Strahltriebwerkes mit geradlinig verlaufenden Turbinenschaufeln,
- Fig. 2
- einen vergrößerten Ausschnitt eines gekrümmten Schaufelblattes gemäß Fig. 1a,
- Fig. 3
- einen teilweisen Längsschnitt eines Laufschaufelgitters mit Scheibe und Deckband,
- Fig. 4
- einen Schnitt durch die Skelettfläche einer Laufschaufel mit hohlem Schaufelblatt und
- Fig. 5
- eine Ansicht eines Laufschaufelblattes mit Krümmung in Umfangsrichtung
- Für Richtungs- und Bezugsangaben wird ein in der Strömungsmechanik übliches Axial-Umfangs-Radial-Koordinatensystem z-.φ.-r verwendet. Die Figuren 1a bis 4b zeigen Darstellungen in der z-r-Ebene. Die in Figur 1a schematisch dargestellte obere Hälfte einer zweistufigen Axialturbine weist paarweise axial hintereinander angeordnete Leit- und Laufschaufelgitter 2 bzw. 3 auf, die mit konkav entgegen der Strömungsrichtung S gekrümmten Leit- bzw. Laufschaufeln 4,5 bestückt sind. Die Schaufelblätter 6 der Leit- und Laufschaufeln 4,5 erstrecken sich radial in einem zur Maschinenlängsachse A der Axialturbine 1 konzentrisch angeordneten Ringkanal 7. Die achskonzentrisch verlaufenden naben- und gehäuseseitigen Seitenwände bilden die radial innere und radial äußere Kanalbegrenzung 8 bzw. 9 des Ringkanals 7 und geben diesem einen bezüglich der Strömungsrichtung S divergenten Verlauf.
- Die Laufschaufelgitter 3 sind in Scheibenbauweise ausgeführt, d.h., die Laufschaufeln 5 sind jeweils gitterweise an einer Scheibe 10 angebracht.
- Fig. 1b zeigt eine nach dem Stand der Technik ausgebildete Axialturbine 1' deren Leit- und Laufschaufelgitter 2' bzw. 3' mit ungekrümmten Leit- und Laufschaufeln 4' bzw. 5' bestückt ist.
- Fig. 2 zeigt die Auffädelung einzelner Profilschnitte P₁,P₂, P₃ und P₄ eines Schaufelblattes 6 der Axialturbine 1. Unter Auffädelung ist die Positionierung einzelner Profilschnitte Pn eines Schaufelblattes 6 bezüglich einer senkrecht auf der Maschinenlängsachse A stehenden Referenzlinie, Fädelachse F genannt, die bei Laufschaufeln 5 im allgemeinen durch den Schaufelschwerpunkt SPL läuft, zur Profilgebung eines Schaufelblattes 6 zu verstehen. Die Profilschnitte Pn fallen in der z-r-Ebene definitionsgemäß mit Linien gleicher relativer Schaufelhöhe h zusammen. Die zugehörige Schaufelhöhe h wiederum ergibt sich aus dem senkrecht zur Maschinenlängsachse A zu messenden Abstand zwischen der inneren und äußeren Kanalbegrenzung 8 bzw. 9. Die in Fig. 2 erkenntlichen Profilschnitte P₁, P₂, P₃ und P₄ sind bei 5-,25-,75- bzw. 95%iger relativer Schaufelhöhe gezogen und trennen Bereiche des Schaufelblattes 6 mit unterschiedlicher Formgebung der Schaufelvorderkante 11 ab. In den Bereichen der Randschnitte PG und PN bis zum Profil schnitt P₁ bzw. P₄ weist die Schaufelvorderkante 11 einen geradlinig verlaufenden Abschnitt BG bzw. BN in der r-z-Ebene auf. Der gegenüber einer Lotsrechten L auf die jeweilige Kanalbegrenzung 8,9 zu messende Pfeilungswinkel .δ.G bzw. .δ.N beträgt innerhalb der Abschnitte BG und BN gehäuseseitig 25° und nabenseitig 45°. Im Anschluß an die gradlinig verlaufenden Abschnitte festgelegten Übergangsbereiche zwischen den Profilschnitten P₃ und P₄ sowie P₁ und P₂ weist die Schaufelvorderkante 11 jeweils einen gekrümmten verlaufenden Abschnitt ÜG bzw. ÜN auf, der einem Polynom zweiter oder höherer Ordnung entspricht. Im Mittenbereich zwischen den Profilschnitten P₃ und P₂ ist die Schaufelkante 11 in der r-z-Ebene wiederum geradlinig ausgeführt. Zur Vermeidung unerwünschter aerodynamischer Effekte und von Spannungskonzentrationen sind die Übergänge von gekrümmten zum geradlinigen Verlauf in der Schaufelvorderkante 11 stetig ausgebildet. Der Verlauf der Schaufelhinterkante 12 ergibt sich durch Vorgabe der Schaufelblattiefe t(h), die hier mit zunehmender Kanalhöhe h linear abnimmt.
- Das in der Fig. 3 in der r-z-Ebene dargestellte Laufschaufelgitter 3 ist in Scheibenbauweise ausgeführt, wobei die Laufschaufeln 5 über ihre angeformten Schaufelfüße 13 formschlüssig in gleichmäßig in Umfangsrichtung .φ. voneinander beabstandeten Scheibennuten 14 der Scheibe 10 angebracht sind.
- Zur Vermeidung unnötiger Biegespannungen während des Betriebes in der Scheibe 10 und in den Laufschaufeln 5 des Laufschaufelgitters 3 fallen die auf der Maschinenlängsachse A liegenden Schwerpunkte SPG und SPS des Laufschaufelgitters 3 bzw. der Scheibe 10 zusammen. In diesem Sinne liegen die Schwerpunkte SPL der Laufschaufeln 5 durch entsprechende Auffädelung der Profilschnitte P auf einer gemeinsamen Ebene E, die senkrecht zur Maschinenachse A steht und durch den gemeinsamen Schwerpunkt SPS und SPG der Scheibe 10 bzw. des Laufschaufelgitters 3 verläuft. Das Laufschaufelgitter 3 ist zur Vermeidung von Druckverlusten und zur Verbesserung der Strömungsqualität mit einem in Umfangsrichtung .φ.. segmentierten Deckband 15 versehen, welches die Laufschaufeln am radial äußeren Ende umfaßt. Durch balancieren der Deckbandsegmente in z-Richtung liegen die Schwerpunkte SPD der Deckbandsegmente 15 ebenfalls auf der Ebene E, wodurch Biegespannungen in den Laufschaufeln 5 vermieden oder reduziert werden.
- Fig. 4 zeigt eine alternative Ausführung einer Laufschaufel 5 zur Vermeidung von Biegespannungen in der Laufschaufel 5 aufgrund unbalancierter Schwerpunktslagen SPP der Profilschnitte Pn. Hierzu weist das Innere des Schaufelblattes 6 einen sich über die Kanalhöhe h hinweg erstreckenden Hohlraum 16 auf, dessen Erstreckung über die Schaufelblattiefe t(h) derart gestaltet ist, daß die Schwerpunkte SPP der Profilschnitte Pn in einer gemeinsamen r-.φ..-Ebene liegen.
- Fig. 5 zeigt ein zusätzlich bezüglich der Schaufelsaugseite 18 konkav, in Umfangsrichtung gekrümmtes Schaufelblatt 6. Durch diese zusätzliche Krümmung läßt sich vorteilhaft Einfluß auf den radialen Druckgradienten in der Abströmebene einer Leit- oder Laufschaufel 4,5 nehmen. Aufgrund der Umfangsbiegung werden die begrenzugsnahen Profilschnitte aerodynamisch entlastet. Bei gleichzeitiger höheren Belastung des Mittenbereiches der Schaufel 4,5, wodurch insgesamt für die Schaufel 4,5 ein günstigerer Wirkungsgrad erzielt werden kann.
Claims (14)
- Schaufelgitter für Axial-Strömungsmaschinen mit Ringkanal, wobei die Schaufelvorderkanten der Schaufeln des im Ringkanal angeordneten Schaufelgitters im Bereich der Schaufelblattspitzen und/oder im Bereich des Nabenschnittes PN der Schaufelblätter in axialer Richtung gepfeilt sind, dadurch gekennzeichent, daß die Schaufelvorderkanten (11) in dem Bereich einen geradlinig verlaufenden Abschnitt (BG bzw. BN) und im Anschluß an diesen Abschnitt, in Übergangsbereichen einen gekrümmt verlaufenden Abschnitt (ÜG bzw. ÜN) aufweisen.
- Schaufelgitter nach Anspruch 1, dadurch gekennzeichnet, daß die geradlinig verlaufenden Abschnitte (BG bzw. BN) sich um einen Abstand von der Schaufelblattspitze (17) bzw. von dem Nabenschnitt PN des Schaufelblattes (6) von bis zu 30% der zugehörigen Schaufelhöhe (h) erstrecken.
- Schaufelgitter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß positive Pfeilungswinkel (δG bzw.δN) jeweils gemessen in einem Längsschnitt zwischen einem geradlinig verlaufenden Abschnitt (BG bzw. BN) einer Schaufelvorderkante (11) und einer Lotrechten (L) auf eine radial äußere bzw. radial innere Begrenzung (9,8) des Ringkanals (7) im Schnittpunkt mit der Schaufelvorderkante (11) zwischen 5° und 45° betragen.
- Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der gekrümmte Verlauf der Schaufelvorderkanten (11) in den Übergangsbereichen Polynomen zweiter oder höherer Ordnung entsprechen.
- Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaufelvorderkanten (11) im Anschluß an die Übergangsbereiche im Mittenbereich der Schaufelblätter (6) einen geradlinig verlaufenden Abschnitt (M) aufweisen.
- Schaufelgitter nach Anspruch 5, dadurch gekennzeichnet, daß die gekrümmt verlaufenden Abschnitte (ÜG bzw. ÜN) bis zu 50% der zugehörigen Schaufelhöhe einnehmen.
- Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaufelblätter (6) zusätzlich zur Pfeilung in Umfangsrichtung gekrümmt sind.
- Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Schaufelgitter ein Laufschaufelgitter (3) mit Laufschaufeln (5) ist.
- Schaufelgitter nach Anspruch 7, dadurch gekennzeichnet, daß die Laufschaufeln (5) Hohlräume (16) aufweisen, die sich zumindest über einen Teil der Schaufellänge erstrecken, wobei die Ausdehnung der Hohlräume (16) derart über die Schaufelprofiltiefe (t) verteilt sind, daß die Schwerpunkte der Profilschnitte (Pn) auf einer gemeinsamen Ebene (E) senkrecht zur Maschinenlängsachse (A) liegen.
- Schaufelgitter nach Anspruch 9, dadurch gekennzeichnet, daß die Hohlräume (16) Kühlkanäle sind.
- Schaufelgitter nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß das Laufschaufelgitter (3) eine die Laufschaufeln (5) aufnehmende Scheibe (10) aufweist, deren Schwerpunkt (SPs) auf der gemeinsamen Ebene (E) liegt.
- Schaufelgitter nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß das Laufschaufelgitter (3) ein Deckband (15) und eine, die Laufschaufeln (5) aufnehmende Scheibe (10) aufweist, wobei die Schwerpunkte (SPL) der Laufschaufeln (5) und der Schwerpunkte (SPD) des Deckbandes (15) derart axial vom Schwerpunkt (SPG) des Laufschaufelgitters (3) beabstandet sind, daß der Schwerpunkt (SPs) der Scheibe (10) auf dem Schwerpunkt (SPG) des Laufschaufelgitters (3) liegt.
- Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schaufelblattiefe t(h) zwischen Schaufelvorder- (11) und -hinterkante (12) der Laufschaufel (5) eines Schaufelgitters über die Schaufelhöhe (h) konstant ist oder linear verläuft.
- Schaufelgitter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Verlauf der Schaufelvorder- (11) und/oder -hinterkante (12) der Schaufel (5,6) im Bereich der randnahen Profilschnitte (PN bzw. PG) ein Ausrundungsradius (RN bzw. RG) überlagert ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19934344189 DE4344189C1 (de) | 1993-12-23 | 1993-12-23 | Axial-Schaufelgitter mit gepfeilten Schaufelvorderkanten |
DE4344189 | 1993-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0661413A1 true EP0661413A1 (de) | 1995-07-05 |
EP0661413B1 EP0661413B1 (de) | 1998-08-26 |
Family
ID=6506022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19940119705 Expired - Lifetime EP0661413B1 (de) | 1993-12-23 | 1994-12-14 | Axial-Schaufelgitter mit gepfeilten Schaufelvorderkanten |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0661413B1 (de) |
DE (1) | DE4344189C1 (de) |
ES (1) | ES2123700T3 (de) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0833060A2 (de) * | 1996-09-30 | 1998-04-01 | Kabushiki Kaisha Toshiba | Schaufel für axiale Strömungsmaschine |
WO1999013199A1 (de) * | 1997-09-08 | 1999-03-18 | Siemens Aktiengesellschaft | Schaufel für eine strömungsmaschine sowie dampfturbine |
EP0916812A1 (de) * | 1997-11-17 | 1999-05-19 | Asea Brown Boveri AG | Endstufe für axialdurchströmte Turbine |
EP0957236A1 (de) * | 1998-05-15 | 1999-11-17 | Asea Brown Boveri AG | Turbinenlaufschaufel |
WO1999064725A1 (en) * | 1998-06-12 | 1999-12-16 | Ebara Corporation | Turbine nozzle vane |
WO2000061918A2 (en) * | 1999-03-22 | 2000-10-19 | Siemens Westinghouse Power Corporation | Airfoil leading edge vortex elimination device |
EP1111188A3 (de) * | 1999-12-21 | 2003-01-08 | General Electric Company | Geneigtes Schaufelblatt mit tonnenförmiger Anströmkante |
FR2828709A1 (fr) * | 2001-08-17 | 2003-02-21 | Snecma Moteurs | Aube de redresseur |
WO2006059996A1 (en) * | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Balanced turbine rotor fan blade for a tip turbine engine |
EP1710397A2 (de) | 2005-03-31 | 2006-10-11 | Kabushiki Kaisha Toshiba | Gekrümmte Leitschaufel |
EP1760321A2 (de) | 2005-09-05 | 2007-03-07 | Rolls-Royce Deutschland Ltd & Co KG | Schaufel einer Strömungsarbeitsmaschine |
EP1798375A2 (de) | 2005-12-19 | 2007-06-20 | Rolls-Royce Deutschland Ltd & Co KG | Schaufelprofil für verstellbare Statorschaufeln |
EP1905952A2 (de) | 2006-09-12 | 2008-04-02 | United Technologies Corporation | Verdichterleitschaufel und Abstandshalter für ein Turbinentriebwerk |
EP1927724A2 (de) * | 2006-11-23 | 2008-06-04 | Rolls-Royce Deutschland Ltd & Co KG | Turbomaschinenschaufel |
EP1985802A2 (de) * | 2007-04-27 | 2008-10-29 | Rolls-Royce Deutschland Ltd & Co KG | Vorderkantenverlauf für Turbomaschinenkomponenten |
EP1995469A1 (de) * | 2006-03-14 | 2008-11-26 | Mitsubishi Heavy Industries, Ltd. | Schaufel für eine axiale strömungsmaschine |
EP1731716A3 (de) * | 2005-06-06 | 2009-10-21 | General Electric Company | Forwärts geneigte Statorschaufel |
EP1731733A3 (de) * | 2005-06-06 | 2009-10-28 | General Electric Company | Integriertes gegenläufiges Turbofantriebwerk |
US8382438B2 (en) | 2004-11-12 | 2013-02-26 | Rolls-Royce Deutschland Ltd & Co Kg | Blade of a turbomachine with enlarged peripheral profile depth |
RU2498082C2 (ru) * | 2007-12-14 | 2013-11-10 | Снекма | Монокристаллическая турбинная лопатка, модуль турбомашины и турбомашина |
WO2014090907A1 (en) * | 2012-12-13 | 2014-06-19 | Nuovo Pignone Srl | Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade |
EP2824277A1 (de) * | 2013-07-12 | 2015-01-14 | MTU Aero Engines GmbH | Gasturbinenstufe |
RU2558171C2 (ru) * | 2010-10-18 | 2015-07-27 | Сименс Акциенгезелльшафт | Кольцевой диффузор газовой турбины |
WO2015126941A1 (en) | 2014-02-19 | 2015-08-27 | United Technologies Corporation | Gas turbine engine airfoil |
WO2015175051A2 (en) | 2014-02-19 | 2015-11-19 | United Technologies Corporation | Gas turbine engine airfoil |
CN105089709A (zh) * | 2014-05-12 | 2015-11-25 | 阿尔斯通技术有限公司 | 具有改进的冷却的翼型件 |
EP3163019A1 (de) * | 2015-10-26 | 2017-05-03 | MTU Aero Engines GmbH | Laufschaufel |
US9752439B2 (en) | 2014-02-19 | 2017-09-05 | United Technologies Corporation | Gas turbine engine airfoil |
US9777580B2 (en) | 2014-02-19 | 2017-10-03 | United Technologies Corporation | Gas turbine engine airfoil |
US10036257B2 (en) | 2014-02-19 | 2018-07-31 | United Technologies Corporation | Gas turbine engine airfoil |
EP2218874B1 (de) * | 2009-02-13 | 2018-09-19 | United Technologies Corporation | Strömungsprofil einer Turbinenleitschaufel zur Strömungsumlenkung mit einer Flügelhinterkanten-Konfiguration in Axial- und Umfangsrichtung |
US10184483B2 (en) | 2014-02-19 | 2019-01-22 | United Technologies Corporation | Gas turbine engine airfoil |
US10309414B2 (en) | 2014-02-19 | 2019-06-04 | United Technologies Corporation | Gas turbine engine airfoil |
US10352331B2 (en) | 2014-02-19 | 2019-07-16 | United Technologies Corporation | Gas turbine engine airfoil |
US10370974B2 (en) | 2014-02-19 | 2019-08-06 | United Technologies Corporation | Gas turbine engine airfoil |
US10385866B2 (en) | 2014-02-19 | 2019-08-20 | United Technologies Corporation | Gas turbine engine airfoil |
US10393139B2 (en) | 2014-02-19 | 2019-08-27 | United Technologies Corporation | Gas turbine engine airfoil |
US10422226B2 (en) | 2014-02-19 | 2019-09-24 | United Technologies Corporation | Gas turbine engine airfoil |
US10465702B2 (en) | 2014-02-19 | 2019-11-05 | United Technologies Corporation | Gas turbine engine airfoil |
US10495106B2 (en) | 2014-02-19 | 2019-12-03 | United Technologies Corporation | Gas turbine engine airfoil |
US10502229B2 (en) | 2014-02-19 | 2019-12-10 | United Technologies Corporation | Gas turbine engine airfoil |
US10519971B2 (en) | 2014-02-19 | 2019-12-31 | United Technologies Corporation | Gas turbine engine airfoil |
US10550852B2 (en) | 2014-02-19 | 2020-02-04 | United Technologies Corporation | Gas turbine engine airfoil |
US10557477B2 (en) | 2014-02-19 | 2020-02-11 | United Technologies Corporation | Gas turbine engine airfoil |
US10570915B2 (en) | 2014-02-19 | 2020-02-25 | United Technologies Corporation | Gas turbine engine airfoil |
US10584715B2 (en) | 2014-02-19 | 2020-03-10 | United Technologies Corporation | Gas turbine engine airfoil |
US10590775B2 (en) | 2014-02-19 | 2020-03-17 | United Technologies Corporation | Gas turbine engine airfoil |
US10605259B2 (en) | 2014-02-19 | 2020-03-31 | United Technologies Corporation | Gas turbine engine airfoil |
EP3816397A1 (de) * | 2019-10-31 | 2021-05-05 | General Electric Company | Turbinenschaufel mit kontrollierter strömung |
US11220910B2 (en) * | 2019-07-26 | 2022-01-11 | Pratt & Whitney Canada Corp. | Compressor stator |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59907976D1 (de) | 1998-02-20 | 2004-01-22 | Rolls Royce Deutschland | Anordnung von Axialturbinenschaufeln |
US7934902B2 (en) | 2004-12-01 | 2011-05-03 | United Technologies Corporation | Compressor variable stage remote actuation for turbine engine |
EP1825117B1 (de) | 2004-12-01 | 2012-06-13 | United Technologies Corporation | Turbinentriebwerk mit von einem differentialgetriebe angetriebenem fan und verdichter |
WO2006060004A1 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Combustor for turbine engine |
WO2006059985A1 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Axial compressor for tip turbine engine |
DE602004031986D1 (de) | 2004-12-01 | 2011-05-05 | United Technologies Corp | Gebläse-turbinen-rotoranordnung für einen spitzenturbinenmotor |
EP1825177B1 (de) | 2004-12-01 | 2012-01-25 | United Technologies Corporation | Aufblasbares ablassventil für eine turbomaschine und verfahren zur steuerung von ablassluft |
WO2006060000A1 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Variable fan inlet guide vane assembly, turbine engine with such an assembly and corresponding controlling method |
WO2006059975A1 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Peripheral combustor for tip turbine engine |
WO2006110124A2 (en) | 2004-12-01 | 2006-10-19 | United Technologies Corporation | Ejector cooling of outer case for tip turbine engine |
WO2006059997A2 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Annular turbine ring rotor |
US7937927B2 (en) | 2004-12-01 | 2011-05-10 | United Technologies Corporation | Counter-rotating gearbox for tip turbine engine |
US7887296B2 (en) | 2004-12-01 | 2011-02-15 | United Technologies Corporation | Fan blade with integral diffuser section and tip turbine blade section for a tip turbine engine |
EP1834076B1 (de) | 2004-12-01 | 2011-04-06 | United Technologies Corporation | Turbinenschaufelgruppe eines Fanrotors sowie Verfahren zur Montage einer solchen Gruppe |
DE602004018045D1 (de) | 2004-12-01 | 2009-01-08 | United Technologies Corp | Gebläseschaufelanordnung für ein tip-turbinentriebwerk und montageverfahren |
EP1828567B1 (de) | 2004-12-01 | 2011-10-12 | United Technologies Corporation | Diffusor-ansaugung für einen spitzenturbinenmotor |
WO2006059986A1 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Tip turbine engine and operating method with reverse core airflow |
EP1825126B1 (de) | 2004-12-01 | 2011-02-16 | United Technologies Corporation | Übergangskanal mit mitteln zur strömungsvektorbeeinflussung bei einer gasturbine |
DE102015224151A1 (de) | 2015-12-03 | 2017-06-08 | MTU Aero Engines AG | Schwerpunktsfädelung von Laufschaufeln |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB719061A (en) * | 1950-06-21 | 1954-11-24 | United Aircraft Corp | Blade arrangement for improving the performance of a gas turbine plant |
DE2034890A1 (de) * | 1969-07-21 | 1971-02-04 | Rolls Royce Ltd Derby, Derbyshire (Großbritannien) | Schaufel fur Axialstromungsmaschinen |
US4012172A (en) * | 1975-09-10 | 1977-03-15 | Avco Corporation | Low noise blades for axial flow compressors |
GB2004599A (en) * | 1977-09-26 | 1979-04-04 | Hitachi Ltd | Blade lattice structure for axial fluid machine |
GB2151310A (en) * | 1983-12-12 | 1985-07-17 | Gen Electric | Gas turbine engine blade |
GB2164098A (en) * | 1984-09-07 | 1986-03-12 | Rolls Royce | Improvements in or relating to aerofoil section members for turbine engines |
WO1993005275A1 (en) * | 1991-08-30 | 1993-03-18 | Airflow Research And Manufacturing Corporation | Forward skew fan with rake and chordwise camber corrections |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2665005B2 (ja) * | 1989-10-24 | 1997-10-22 | 三菱重工業株式会社 | 軸流機械の動翼 |
-
1993
- 1993-12-23 DE DE19934344189 patent/DE4344189C1/de not_active Expired - Fee Related
-
1994
- 1994-12-14 ES ES94119705T patent/ES2123700T3/es not_active Expired - Lifetime
- 1994-12-14 EP EP19940119705 patent/EP0661413B1/de not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB719061A (en) * | 1950-06-21 | 1954-11-24 | United Aircraft Corp | Blade arrangement for improving the performance of a gas turbine plant |
DE2034890A1 (de) * | 1969-07-21 | 1971-02-04 | Rolls Royce Ltd Derby, Derbyshire (Großbritannien) | Schaufel fur Axialstromungsmaschinen |
US4012172A (en) * | 1975-09-10 | 1977-03-15 | Avco Corporation | Low noise blades for axial flow compressors |
GB2004599A (en) * | 1977-09-26 | 1979-04-04 | Hitachi Ltd | Blade lattice structure for axial fluid machine |
GB2151310A (en) * | 1983-12-12 | 1985-07-17 | Gen Electric | Gas turbine engine blade |
GB2164098A (en) * | 1984-09-07 | 1986-03-12 | Rolls Royce | Improvements in or relating to aerofoil section members for turbine engines |
WO1993005275A1 (en) * | 1991-08-30 | 1993-03-18 | Airflow Research And Manufacturing Corporation | Forward skew fan with rake and chordwise camber corrections |
Cited By (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0833060A3 (de) * | 1996-09-30 | 1998-12-02 | Kabushiki Kaisha Toshiba | Schaufel für axiale Strömungsmaschine |
AU701429B2 (en) * | 1996-09-30 | 1999-01-28 | Kabushiki Kaisha Toshiba | Blade for axial fluid machine |
US6079948A (en) * | 1996-09-30 | 2000-06-27 | Kabushiki Kaisha Toshiba | Blade for axial fluid machine having projecting portion at the tip and root of the blade |
EP0833060A2 (de) * | 1996-09-30 | 1998-04-01 | Kabushiki Kaisha Toshiba | Schaufel für axiale Strömungsmaschine |
CN1100194C (zh) * | 1996-09-30 | 2003-01-29 | 株式会社东芝 | 用于轴流式流体机械的叶片 |
WO1999013199A1 (de) * | 1997-09-08 | 1999-03-18 | Siemens Aktiengesellschaft | Schaufel für eine strömungsmaschine sowie dampfturbine |
US6354798B1 (en) | 1997-09-08 | 2002-03-12 | Siemens Aktiengesellschaft | Blade for a fluid-flow machine, and steam turbine |
EP0916812A1 (de) * | 1997-11-17 | 1999-05-19 | Asea Brown Boveri AG | Endstufe für axialdurchströmte Turbine |
US6099248A (en) * | 1997-11-17 | 2000-08-08 | Abb Alstom Power (Switzerland) Ltd | Output stage for an axial-flow turbine |
EP0957236A1 (de) * | 1998-05-15 | 1999-11-17 | Asea Brown Boveri AG | Turbinenlaufschaufel |
US6491493B1 (en) | 1998-06-12 | 2002-12-10 | Ebara Corporation | Turbine nozzle vane |
WO1999064725A1 (en) * | 1998-06-12 | 1999-12-16 | Ebara Corporation | Turbine nozzle vane |
WO2000061918A3 (en) * | 1999-03-22 | 2001-01-11 | Siemens Westinghouse Power | Airfoil leading edge vortex elimination device |
WO2000061918A2 (en) * | 1999-03-22 | 2000-10-19 | Siemens Westinghouse Power Corporation | Airfoil leading edge vortex elimination device |
EP1111188A3 (de) * | 1999-12-21 | 2003-01-08 | General Electric Company | Geneigtes Schaufelblatt mit tonnenförmiger Anströmkante |
FR2828709A1 (fr) * | 2001-08-17 | 2003-02-21 | Snecma Moteurs | Aube de redresseur |
US8382438B2 (en) | 2004-11-12 | 2013-02-26 | Rolls-Royce Deutschland Ltd & Co Kg | Blade of a turbomachine with enlarged peripheral profile depth |
WO2006059996A1 (en) * | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Balanced turbine rotor fan blade for a tip turbine engine |
EP1710397A3 (de) * | 2005-03-31 | 2008-03-12 | Kabushiki Kaisha Toshiba | Gekrümmte Leitschaufel |
EP1710397A2 (de) | 2005-03-31 | 2006-10-11 | Kabushiki Kaisha Toshiba | Gekrümmte Leitschaufel |
EP1731733A3 (de) * | 2005-06-06 | 2009-10-28 | General Electric Company | Integriertes gegenläufiges Turbofantriebwerk |
EP1731716A3 (de) * | 2005-06-06 | 2009-10-21 | General Electric Company | Forwärts geneigte Statorschaufel |
EP1760321A2 (de) | 2005-09-05 | 2007-03-07 | Rolls-Royce Deutschland Ltd & Co KG | Schaufel einer Strömungsarbeitsmaschine |
EP1798375A2 (de) | 2005-12-19 | 2007-06-20 | Rolls-Royce Deutschland Ltd & Co KG | Schaufelprofil für verstellbare Statorschaufeln |
EP1995469A4 (de) * | 2006-03-14 | 2013-08-14 | Mitsubishi Heavy Ind Ltd | Schaufel für eine axiale strömungsmaschine |
EP1995469A1 (de) * | 2006-03-14 | 2008-11-26 | Mitsubishi Heavy Industries, Ltd. | Schaufel für eine axiale strömungsmaschine |
EP1905952A3 (de) * | 2006-09-12 | 2011-07-06 | United Technologies Corporation | Verdichterleitschaufel und Abstandshalter für ein Turbinentriebwerk |
EP1905952A2 (de) | 2006-09-12 | 2008-04-02 | United Technologies Corporation | Verdichterleitschaufel und Abstandshalter für ein Turbinentriebwerk |
US7726937B2 (en) * | 2006-09-12 | 2010-06-01 | United Technologies Corporation | Turbine engine compressor vanes |
EP1927724A3 (de) * | 2006-11-23 | 2009-05-20 | Rolls-Royce Deutschland Ltd & Co KG | Turbomaschinenschaufel |
US8152473B2 (en) | 2006-11-23 | 2012-04-10 | Rolls-Royce Deutschland Ltd & Co Kg | Airfoil design for rotor and stator blades of a turbomachine |
EP1927724A2 (de) * | 2006-11-23 | 2008-06-04 | Rolls-Royce Deutschland Ltd & Co KG | Turbomaschinenschaufel |
EP1985802A3 (de) * | 2007-04-27 | 2010-11-17 | Rolls-Royce Deutschland Ltd & Co KG | Vorderkantenverlauf für Turbomaschinenkomponenten |
US8047802B2 (en) | 2007-04-27 | 2011-11-01 | Rolls-Royce Deutschland Ltd & Co Kg | Course of leading edges for turbomachine components |
EP1985802A2 (de) * | 2007-04-27 | 2008-10-29 | Rolls-Royce Deutschland Ltd & Co KG | Vorderkantenverlauf für Turbomaschinenkomponenten |
RU2498082C2 (ru) * | 2007-12-14 | 2013-11-10 | Снекма | Монокристаллическая турбинная лопатка, модуль турбомашины и турбомашина |
EP2218874B1 (de) * | 2009-02-13 | 2018-09-19 | United Technologies Corporation | Strömungsprofil einer Turbinenleitschaufel zur Strömungsumlenkung mit einer Flügelhinterkanten-Konfiguration in Axial- und Umfangsrichtung |
US9441502B2 (en) | 2010-10-18 | 2016-09-13 | Siemens Aktiengesellschaft | Gas turbine annular diffusor |
RU2558171C2 (ru) * | 2010-10-18 | 2015-07-27 | Сименс Акциенгезелльшафт | Кольцевой диффузор газовой турбины |
JP2016505754A (ja) * | 2012-12-13 | 2016-02-25 | ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. | ターボ機械ブレード、対応するターボ機械、およびタービンブレードを製造する方法 |
WO2014090907A1 (en) * | 2012-12-13 | 2014-06-19 | Nuovo Pignone Srl | Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade |
CN105121787A (zh) * | 2012-12-13 | 2015-12-02 | 诺沃皮尼奥内股份有限公司 | 涡轮机叶片、相对应的涡轮机和制造涡轮叶片的方法 |
CN105121787B (zh) * | 2012-12-13 | 2018-02-09 | 诺沃皮尼奥内股份有限公司 | 涡轮机叶片、相对应的涡轮机和制造涡轮叶片的方法 |
US9617863B2 (en) | 2013-07-12 | 2017-04-11 | MTU Aero Engines AG | Gas turbine stage |
EP2824277A1 (de) * | 2013-07-12 | 2015-01-14 | MTU Aero Engines GmbH | Gasturbinenstufe |
US10422226B2 (en) | 2014-02-19 | 2019-09-24 | United Technologies Corporation | Gas turbine engine airfoil |
US10584715B2 (en) | 2014-02-19 | 2020-03-10 | United Technologies Corporation | Gas turbine engine airfoil |
EP3108109A4 (de) * | 2014-02-19 | 2017-03-15 | United Technologies Corporation | Gasturbinenmotor-tragfläche |
US10502229B2 (en) | 2014-02-19 | 2019-12-10 | United Technologies Corporation | Gas turbine engine airfoil |
US9752439B2 (en) | 2014-02-19 | 2017-09-05 | United Technologies Corporation | Gas turbine engine airfoil |
US9777580B2 (en) | 2014-02-19 | 2017-10-03 | United Technologies Corporation | Gas turbine engine airfoil |
WO2015126941A1 (en) | 2014-02-19 | 2015-08-27 | United Technologies Corporation | Gas turbine engine airfoil |
US9988908B2 (en) | 2014-02-19 | 2018-06-05 | United Technologies Corporation | Gas turbine engine airfoil |
US11408436B2 (en) | 2014-02-19 | 2022-08-09 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US10036257B2 (en) | 2014-02-19 | 2018-07-31 | United Technologies Corporation | Gas turbine engine airfoil |
US11209013B2 (en) | 2014-02-19 | 2021-12-28 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US10184483B2 (en) | 2014-02-19 | 2019-01-22 | United Technologies Corporation | Gas turbine engine airfoil |
EP3108115A4 (de) * | 2014-02-19 | 2017-03-15 | United Technologies Corporation | Gasturbinenmotorschaufel |
US10309414B2 (en) | 2014-02-19 | 2019-06-04 | United Technologies Corporation | Gas turbine engine airfoil |
US10352331B2 (en) | 2014-02-19 | 2019-07-16 | United Technologies Corporation | Gas turbine engine airfoil |
US10358925B2 (en) | 2014-02-19 | 2019-07-23 | United Technologies Corporation | Gas turbine engine airfoil |
US10370974B2 (en) | 2014-02-19 | 2019-08-06 | United Technologies Corporation | Gas turbine engine airfoil |
US10550852B2 (en) | 2014-02-19 | 2020-02-04 | United Technologies Corporation | Gas turbine engine airfoil |
US10393139B2 (en) | 2014-02-19 | 2019-08-27 | United Technologies Corporation | Gas turbine engine airfoil |
WO2015175051A2 (en) | 2014-02-19 | 2015-11-19 | United Technologies Corporation | Gas turbine engine airfoil |
US10465702B2 (en) | 2014-02-19 | 2019-11-05 | United Technologies Corporation | Gas turbine engine airfoil |
US10495106B2 (en) | 2014-02-19 | 2019-12-03 | United Technologies Corporation | Gas turbine engine airfoil |
EP4279747A3 (de) * | 2014-02-19 | 2024-03-13 | RTX Corporation | Gasturbinenmotorschaufel |
US11867195B2 (en) | 2014-02-19 | 2024-01-09 | Rtx Corporation | Gas turbine engine airfoil |
US10385866B2 (en) | 2014-02-19 | 2019-08-20 | United Technologies Corporation | Gas turbine engine airfoil |
US10557477B2 (en) | 2014-02-19 | 2020-02-11 | United Technologies Corporation | Gas turbine engine airfoil |
US10570915B2 (en) | 2014-02-19 | 2020-02-25 | United Technologies Corporation | Gas turbine engine airfoil |
US10570916B2 (en) | 2014-02-19 | 2020-02-25 | United Technologies Corporation | Gas turbine engine airfoil |
US11391294B2 (en) | 2014-02-19 | 2022-07-19 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US10590775B2 (en) | 2014-02-19 | 2020-03-17 | United Technologies Corporation | Gas turbine engine airfoil |
US10605259B2 (en) | 2014-02-19 | 2020-03-31 | United Technologies Corporation | Gas turbine engine airfoil |
US10890195B2 (en) | 2014-02-19 | 2021-01-12 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US10914315B2 (en) | 2014-02-19 | 2021-02-09 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US10519971B2 (en) | 2014-02-19 | 2019-12-31 | United Technologies Corporation | Gas turbine engine airfoil |
US11767856B2 (en) | 2014-02-19 | 2023-09-26 | Rtx Corporation | Gas turbine engine airfoil |
US11041507B2 (en) | 2014-02-19 | 2021-06-22 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US11193497B2 (en) | 2014-02-19 | 2021-12-07 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US11193496B2 (en) | 2014-02-19 | 2021-12-07 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
CN105089709A (zh) * | 2014-05-12 | 2015-11-25 | 阿尔斯通技术有限公司 | 具有改进的冷却的翼型件 |
CN105089709B (zh) * | 2014-05-12 | 2018-06-22 | 安萨尔多能源瑞士股份公司 | 具有改进的冷却的翼型件 |
US10267157B2 (en) | 2015-10-26 | 2019-04-23 | MTU Aero Engines AG | Rotating blade |
EP3163019A1 (de) * | 2015-10-26 | 2017-05-03 | MTU Aero Engines GmbH | Laufschaufel |
US11220910B2 (en) * | 2019-07-26 | 2022-01-11 | Pratt & Whitney Canada Corp. | Compressor stator |
JP2021071114A (ja) * | 2019-10-31 | 2021-05-06 | ゼネラル・エレクトリック・カンパニイ | 制御されたフロータービンブレード |
EP3816397A1 (de) * | 2019-10-31 | 2021-05-05 | General Electric Company | Turbinenschaufel mit kontrollierter strömung |
Also Published As
Publication number | Publication date |
---|---|
DE4344189C1 (de) | 1995-08-03 |
ES2123700T3 (es) | 1999-01-16 |
EP0661413B1 (de) | 1998-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0661413B1 (de) | Axial-Schaufelgitter mit gepfeilten Schaufelvorderkanten | |
DE60031941T2 (de) | Geneigtes Schaufelblatt mit tonnenförmiger Anströmkante | |
DE602004006323T2 (de) | Verfahren zur Herstellung einer Turbine mit Turbinenschaufeln unterschiedlicher Resonanzfrequenzen samt einer solchen Turbine | |
DE102008055824B4 (de) | Dampfturbine | |
EP2473743B1 (de) | Verdichterlaufschaufel für einen axialverdichter | |
EP0990090B1 (de) | Rotor-schaufelblatt einer axialströmungsmaschine | |
DE60314024T2 (de) | Anordnung von Leit- und Rotorschaufeln im Abgasbereich einer Turbine | |
EP0972128B1 (de) | Oberflächenstruktur für die wand eines strömungskanals oder einer turbinenschaufel | |
DE112006001614B4 (de) | Turbomaschinenschaufel | |
EP1875045B1 (de) | Turbinenrad | |
DE69501261T2 (de) | Mit keilkufenversehene schwalbenschwanzfüsse für bläserschaufeln | |
EP0916812B1 (de) | Endstufe für axialdurchströmte Turbine | |
EP0799973B1 (de) | Wandkontur für eine axiale Strömungsmaschine | |
EP2226509B1 (de) | Strömungsarbeitsmaschine mit Fluidzufuhr zur Grenzschichtbeeinflussung | |
EP2096260A2 (de) | Strömungsarbeitsmaschine mit Rotorenanordnungen mit niedrigen Rotoraustrittswinkeln | |
DE102007037924A1 (de) | Strömungsarbeitsmaschine mit Ringkanalwandausnehmung | |
DE3223164C2 (de) | Turbomaschinenrotorbaugruppe und -laufschaufel | |
DE3112008C2 (de) | ||
DE10355240A1 (de) | Strömungsarbeitsmaschine mit Fluidentnahme | |
EP0798447B1 (de) | Schaufelblatt für Strömungsmaschinen | |
DE3835622A1 (de) | Radialverdichter | |
DE102016124806A1 (de) | Turbinen-Laufschaufelanordnung für eine Gasturbine und Verfahren zum Bereitstellen von Dichtluft in einer Turbinen-Laufschaufelanordnung | |
EP2607625B1 (de) | Turbomaschine und turbomaschinenstufe | |
WO2005116404A1 (de) | Schaufelblatt mit übergangszone | |
EP1081336B1 (de) | Gebauter Leitkranz für eine Gasturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19951118 |
|
17Q | First examination report despatched |
Effective date: 19970304 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH ES FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981127 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2123700 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101221 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20111227 Year of fee payment: 18 Ref country code: SE Payment date: 20111223 Year of fee payment: 18 Ref country code: ES Payment date: 20111227 Year of fee payment: 18 Ref country code: NL Payment date: 20111228 Year of fee payment: 18 Ref country code: FR Payment date: 20120105 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20111229 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20121214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130701 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130102 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121214 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121215 |