[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0263244B1 - Apparatus for the electronic testing of printed circuits with contact points in an extremely fine raster (1/20th to 1/10th inch) - Google Patents

Apparatus for the electronic testing of printed circuits with contact points in an extremely fine raster (1/20th to 1/10th inch) Download PDF

Info

Publication number
EP0263244B1
EP0263244B1 EP87109884A EP87109884A EP0263244B1 EP 0263244 B1 EP0263244 B1 EP 0263244B1 EP 87109884 A EP87109884 A EP 87109884A EP 87109884 A EP87109884 A EP 87109884A EP 0263244 B1 EP0263244 B1 EP 0263244B1
Authority
EP
European Patent Office
Prior art keywords
contact
spring
compression springs
contact panel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87109884A
Other languages
German (de)
French (fr)
Other versions
EP0263244A1 (en
Inventor
Hubert Dipl.-Phys. Driller
Paul Mang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mania Elektronik Automatisation Entwicklung und Geraetebau GmbH
Original Assignee
Mania Elektronik Automatisation Entwicklung und Geraetebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6309148&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0263244(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mania Elektronik Automatisation Entwicklung und Geraetebau GmbH filed Critical Mania Elektronik Automatisation Entwicklung und Geraetebau GmbH
Priority to EP90116283A priority Critical patent/EP0406919B1/en
Priority to AT87109884T priority patent/ATE63169T1/en
Publication of EP0263244A1 publication Critical patent/EP0263244A1/en
Application granted granted Critical
Publication of EP0263244B1 publication Critical patent/EP0263244B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06727Cantilever beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • G01R1/07328Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support for testing printed circuit boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/18End pieces terminating in a probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/714Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit with contacts abutting directly the printed circuit; Button contacts therefore provided on the printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/082Integration of non-optical monitoring devices, i.e. using non-optical inspection means, e.g. electrical means, mechanical means or X-rays

Definitions

  • the invention relates to a device for the electronic testing of printed circuit boards according to the preamble of claim 1 and independent claim 2.
  • DE-PS 33 40 180 describes a contact field arrangement for computer-controlled printed circuit board testers in a 1/10 inch contact point grid.
  • the contact field is divided into contact field sections, each of which is releasably supported against a base plate by means of longer support struts.
  • the space thus created is used to accommodate these contact field sections associated electronic components are used, which are connected via a plug connection to the two-dimensional control circuit on the base plate.
  • These "contact field modules” components are identical to each other and interchangeable with respect to the respective places on the base plate. This concept creates a printed circuit board tester that, despite a very large contact field in the basic concept (for example 256 contacts each in the X and Y directions) can be operated with little electronics and can be easily retrofitted.
  • the basic aim of the present invention is to implement this concept even with a contact point grid of 1/20 inch and below. It is possible to use a so-called “reduction adapter” (DE-PS 33 40 179) which up to 64,000 contact points of the 1/10 output grid of this contact field arrangement for all approximately 64,000 contact points in the X and Y direction of the contact field on a grid of Reduce 1/20 inch, but only at the price of a 50% reduction in the maximum allowable PCB dimensions in both directions.
  • RE-PS 33 40 179 which up to 64,000 contact points of the 1/10 output grid of this contact field arrangement for all approximately 64,000 contact points in the X and Y direction of the contact field on a grid of Reduce 1/20 inch, but only at the price of a 50% reduction in the maximum allowable PCB dimensions in both directions.
  • Such an active basic grid results from the fact that the resilient part of the contact pins is moved into the basic grid of the circuit board tester, which is done in the form that short small test pins are provided in the form of sleeves, one end of which is a contact tip and the other end is one Has inner cone, which is supported by a spring arranged in the sleeve and serves to receive one end of the rigid test pin.
  • the active basic grid according to DE-GM 85 34 841 there are therefore many short “test pins with inner cone” corresponding to the number of contact points provided in a suitable housing above the actual basic grid of the circuit board tester.
  • FR-A-959460 shows the construction of a contact plug, in which a contact pin is inserted into a conically wound contact spring which is arranged in a blind hole of a plug body and at its beginning and end with the aid of screws in the blind hole is fixed.
  • Such termination techniques are only economically viable with a few and also relatively large contact plugs.
  • the spring contact field body from ceramic or plastic is particularly advantageous insofar as manufacturing techniques can be used which allow a particular dimensional accuracy.
  • the manufacture of the spring contact field body is particularly facilitated by the fact that it is made up of smaller sections that can be arranged or joined together.
  • the compression springs can have adjacent turns of maximum diameter in their end regions.
  • all adjacent turns of the compression springs can be mechanically connected to one another, which is done, for example, by electrodeposition of a metal on the compression springs, which are usually made of spring steel. As a result, the adjacent turns of the compression spring will "grow together". Covering the end sections of the compression springs with a special contact material - possibly also by galvanic deposition - can contribute to a considerable reduction in the contact resistance.
  • the spring contact field body receiving or guiding the compression springs in bores is made up of smaller segments which can be joined together in a grid, it has proven to be particularly advantageous to apply them to a supporting part which is designed as a nail board-like plug and is used to derive the applied pressure and accordingly in PCB tester is supported.
  • this connector is relatively large in relation to the segments of the spring contact field body which can be joined in a grid, it can ensure good cohesion between the individual segments.
  • Figure 1 is an overview of the basic structure of a - but not fully shown - PCB testing device, which is constructed according to the present invention.
  • Figure 2 is a side or plan view of a so-called driver plate with the nail board connector arranged at the upper end, which is supported on mounting rails.
  • 3 shows a partial enlargement of the contact according to the invention between the driver plate (the test electronics) and the rigid test pins; and 4a, b, c different alternatives of the design of the compression springs in the spring contact field body.
  • Fig. 1 the arrangement and support of the individual components is shown in a basic representation, which together form the contact field 2 with the individual, for example up to about 265,000 contact field points 4, the test pins 6 with the to be tested Wiring carrier / circuit board 8 are connectable.
  • each nail board-like contact field connector 10 rests at its two front ends on supporting parts 14 which are formed by upright arranged plates which derive the very considerable contact pressure on the frame 16 of the circuit board tester: Because when testing circuit boards 8 To generate a reliable contact, a contact pressure of approx. 1.23N (125 p) must be generated per contact 4, with a maximum of 256,000 contacts mentioned, the total force is 0.31.106N, which corresponds to a weight of approx. 32 t, that must be derived via these support members 14.
  • These contact pins 18 of the contact field connector 10 continue inside the same in lines 20, each of which is connected to a connection point 22 on the printed circuit of the driver board 12 and thus the electrical connection to the electronic components 24 (only one is shown) on the driver board 12 manufactures that are part of the test circuit of the circuit board tester.
  • Each of the contact pins 18 projects into a bore 25 of a spring contact field body 26, which contains a contact spring 28 made of electrically conductive material and essentially fills this bore 25.
  • the spring contact body 26 consists of numerous strips, each with a row of holes therein (according to the arrangement of the contact pins), but it is obvious that they are not strip-shaped bodies with only one row Bores 25 must act, but it is equally possible to provide several or many rows of holes in a correspondingly larger spring contact field body 26, since the size of the subdivision of these spring contact field bodies is itself only dependent on the cheapest manufacture of such bodies: At the moment However, because of the more precise manufacturability, such bodies are preferred as strips with only one row of bores, these strips being able to be arranged in the longitudinal direction (FIG.
  • the strips are about 50 mm high and 1.27 mm wide.
  • the holes in it have a diameter of approx. 0.8 mm and the distance from hole to hole is 1.27 mm according to the pitch of the contact points.
  • the spring contact field body 26 is plugged onto the nail board-like contact field connector 10.
  • a specially designed compression spring 28 is used, which completely fills this bore, that is, the turns of the compression spring are in the resilient part of the same directly against the walls of the bore, so that despite the confined spaces compression springs with the largest possible diameter can be used.
  • the front ends 30, 31 of the compression springs 28, which are only shown in principle in FIG. 3, are in a special way for direct contact with the contact pin 18 of the nail board-like Contact field connector 10 and the rigid test pin 6 configured.
  • the compression spring 28 is wound at both end ends, ie outwards from the resilient part 32, which has turns which are spaced apart from one another, with turns which lie in the longitudinal direction and which taper in diameter to form an inner cone in the winding direction of the spring and then widen again .
  • an inner cone 34 for receiving the tips of the contact pin 18 or the test pin 6 is formed on both ends of this compression spring.
  • These compression springs 28, which are wound from a spring steel can preferably be coated with a suitable contact material by means of galvanic deposition, the windings lying against one another being able to “grow together” at the front ends.
  • FIG. 4b An alternative form of contacting can be seen from FIG. 4b.
  • the compression spring is designed identically in its upper area for engagement with the test pin 6, that is to say it has an inner cone 34 which has been wound as described above, while the opposite end is wound with a pin 36 which tapers like a pin, the individual windings 33 of which in turn abut one another.
  • This pin-like approach protrudes into, for example, a conical or cup-shaped depression in the contact field connector 10, this depression being a
  • An alternative to the contact pins 18 described above can be seen.
  • FIG. 4c shows a further alternative embodiment of the compression spring: that end of the compression spring 28 which faces the contact field plug or the driver plate is provided with a tongue part 42 which extends in the longitudinal direction of the compression spring and which extends directly to the associated contact point on the surface the driver plate 12 extends.
  • the contact field plug only has to be provided with appropriately positioned thin bores 44 through which these contact tongues 42 are inserted when the contact field is being set up.
  • the end of the compression spring 28 facing the test pin 6 is also wound in this case such that an inner cone 34 is formed from turns of the compression spring lying against one another in the longitudinal direction.
  • test pins 6 which are rigid in the longitudinal direction
  • contact points designed as compression springs (spiral springs) can also be used just as well in circuit board testers which are provided with a hard-wired contact point grid, that is to say have no contact field modules, which are identical to each other and in relation to the respective places on the Base plate are interchangeable.
  • the present invention is particularly valuable with this last-mentioned concept, since it, like the present invention, essentially aims to greatly reduce the costs incurred for contacting the circuit board / wiring carrier to be tested.
  • connection point 24 electr.
  • Components 26 spring contact field body 28 contact spring / compression spring 30 front ends of the compression spring 31 front ends of the compression spring 32 resilient part of the compression spring 33 turns of the compression spring 34 inner cone 36 pen-like approach 42 tongue part 44 holes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

A circuit board testing device with a plurality of contact points (4) arranged in the plane of the contact field (2) of the device, which are connected to an electronic drive and measuring device and can be connected via test pins (6), which are rigid in the longitudinal direction, to the contact points of the wiring carriers/circuit boards (8) to be tested, the contact points being elastically supported in the circuit board testing device and are pressed against the contact pressure to be applied, the contact points (4) being constructed as electrically conductive compression springs (28) which are arranged in holes (25) of a spring contact field body (26) of electrically insulating material and against which the rigid test pins (6) are directly pressed. The invention provides that the spring contact field body (26) is constructed of segments which can be joined together in a row and that areas of different density of connection of contact points (4) exist in the contact field plane (2), the areas being mutually interchangeable depending on the requirements of the circuit board (8) to be tested. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zum elektronischen Prüfen von Leiterplatten nach dem Oberbegriff des Anspruches 1 bzw, des unabhängigen Anspruches 2.The invention relates to a device for the electronic testing of printed circuit boards according to the preamble of claim 1 and independent claim 2.

Eine derartige Vorrichtung wird im Prinzip von A.W. Till in der Druckschrift IBM Techinal Disclosure Bulletin Vol. 16, No. 10, März 1974, S,3224125 unter dem Titel "Contact Probe" beschrieben, wobei jedoch eine elektronische Ansteuerungs-und Meßvorrichtung, wie sie bie der vorliegenden Erfindung verwendet ist, nicht erwähnt ist.In principle, such a device is described by AW Till in the publication IBM Techinal Disclosure Bulletin Vol. 16, No. 10, March 1974, S, 3224125 under the title "Contact Probe", but no electronic control and measuring device as used in the present invention is not mentioned.

Wegen des zunehmenden Dranges zur Miniaturisierung aber auch wegen der damit einhergehenden kostengünstigeren Fertigung gehen die Hersteller in aller Welt zunehmend dazu über, elektronische Baugruppen mit Hilfe von Leiterplatten aufzubauen, die Kontaktpunkte oder Kontaktfelder im Rastermaß 1/20 Zoll und bis zu 1/100 Zoll haben. Hierbei bedient man sich weitgehend der sogenannten SMD-Technik (surface mounted devices), bei der die Anschlußdrähte oder -fahnen der einzelnen elektronischen Komponenten nicht mehr mit gegebenenfalls durchkontaktierten Bohrungen mehrlagiger Leiterplatten, sondern mit Anschlußzonen (pads) verbunden werden.Due to the increasing urge to miniaturize, but also because of the associated more cost-effective production, manufacturers around the world are increasingly turning to electronic assemblies with the Build circuit boards that have contact points or contact fields with a grid size of 1/20 inches and up to 1/100 inches. Here, so-called SMD technology (surface mounted devices) is largely used, in which the connecting wires or lugs of the individual electronic components are no longer connected to possibly plated through holes of multilayer printed circuit boards, but to connection zones (pads).

Da sich die Erkenntnis durchgesetzt hat, daß unbestuckte Leiterplatten (bare boards) vor der Bestückung mit elektronischen Bauteilen auf ihre Funktionstüchtigkeit geprüft werden müssen, um sicherzustellen, daß nicht mehr und nicht weniger als alle gewünschten Verbindungen vorhanden sind, ergibt sich für die Hersteller von Leiterplattenprüfgeräten die Notwendigkeit, Geräte anzubieten, mit denen Leiterplatten nahezu in beliebiger Größe und Konfiguration im 1/20 Zoll-Kontaktpunkt-Raster und deutlich darunter problemlos geprßüft werden können.Since the realization has prevailed that bare boards without bare boards have to be checked for functionality before being fitted with electronic components to ensure that no more and no less than all the desired connections are available, this results for the manufacturers of circuit board testers the need to offer devices with which printed circuit boards of almost any size and configuration can be easily tested in a 1/20 inch contact point grid and well below.

In der DE-PS 33 40 180 wird eine Kontaktfeldanordnung für rechnergesteuerte Leiterplatten-Prüfgeräte im 1/10 Zoll Kontaktpunkt-Raster beschrieben. Das Kontaktfeld ist hierbei in Kontaktfeldabschnitte unterteilt, die jeweils fur sich über längere Stützstreben gegen eine Grundplatte lösbar abgestützt sind. Der somit geschaffene Raum wird zur Unterbringung der diesen Kontaktfeldabschnitten zugehörigen Elektronikbauteile ausgenützt, die über eine Steckverbindung mit der zweidimensionalen Ansteuerschaltung auf der Grundplatte verbunden sind. Diese "Kontaktfeldmoduln" genannten Bauteile sind untereinander identisch und in Bezug auf die jeweiligen Plätze auf der Grundplatte austauschbar. Durch dieses Konzept wird ein Leiterplattenprüfgerät geschaffen, das trotz eines in der Grundkonzeption sehr groß angelegten Kontaktfeldes (beispielsweise 256 Kontakte jeweils in X- und Y-Richtung) bereits mit wenig Elektronik betreibbar und problemlos nachrüstbar ist.DE-PS 33 40 180 describes a contact field arrangement for computer-controlled printed circuit board testers in a 1/10 inch contact point grid. The contact field is divided into contact field sections, each of which is releasably supported against a base plate by means of longer support struts. The space thus created is used to accommodate these contact field sections associated electronic components are used, which are connected via a plug connection to the two-dimensional control circuit on the base plate. These "contact field modules" components are identical to each other and interchangeable with respect to the respective places on the base plate. This concept creates a printed circuit board tester that, despite a very large contact field in the basic concept (for example 256 contacts each in the X and Y directions) can be operated with little electronics and can be easily retrofitted.

Dieses Konzept auch bei einem Kontaktpunktraster 1/20 Zoll und darunter zu realisieren ist das grundlegende Bestreben der vorliegenden Erfindung. Es gelingt zwar, mit einem sogenannten "Reduktionsadapter" (DE-PS 33 40 179) die bis zu 64.000 Kontaktpunkte des 1/10-Ausgangsrasters dieser Kontaktfeldanordnung fur alle ca. 64.000 Kontaktpunkte in X- und Y-Richtung des Kontaktfeldes auf ein Raster von 1/20 Zoll zu reduzieren, doch nur um den Preis einer Verringerung der höchstzulässigen Leiterplattenabmessungen um 50 % in beiden Richtungen.The basic aim of the present invention is to implement this concept even with a contact point grid of 1/20 inch and below. It is possible to use a so-called "reduction adapter" (DE-PS 33 40 179) which up to 64,000 contact points of the 1/10 output grid of this contact field arrangement for all approximately 64,000 contact points in the X and Y direction of the contact field on a grid of Reduce 1/20 inch, but only at the price of a 50% reduction in the maximum allowable PCB dimensions in both directions.

Bei der somit erforderlichen Verwirklichung des Prinzips des Leiterplattenprüfgerätes der DE-PS 33 40 180 im Kontaktpunktraster 1/20 Zoll (gleich 1,27 mm) stößt man zumindest scheinbar auf Grenzen der Miniaturisierung, wie sie im folgenden dargestellt werden sollen. Hierbei ist zu beachten, daß sich diese Grenzen auch von der Kostenseite her auftun. Bei einem Leiterplattenprüfgerät mit einer Kontaktfeldanordnung gemäß der DE-PS 33 40 180 erfolgt die mechanische Kontaktierung der Kontaktpunkte der zu prüfenden Leiterplatte und der Kontaktpunkte des Kontaktfeldrasters des Leiterplattenprüfgerätes durch Prüfnadeln, die jeweils eine in Längsrichtung federnd ausgebildete Kontaktspitze haben. Diese federnden Prüfstifte sind bei dem herkömmlichen Kontaktpunktabstand von 2,54 mm noch relativ einfach und preiswert herstellbar, doch ergeben sich zunehmend Probleme, wenn ein Kontaktpunktabstand von 1,27 mm vorgeschrieben wird, d.h. wenn diesem Prüfstift allenfalls ein Durchmesser von etwa 0,8 mm zugestanden werden kann. Derartig dünne Prüfstifte knicken beispielsweise bei geringsten Querkräften aus und werden damit unbrauchbar. Außerdem lassen sich derartige Prüfstifte mit einer federnden Kontaktspitze wegen der notwendigen mechanischen Komplexität nur zu Gestehungskosten fertigen, die angesichts der maximal benötigten Zahl solcher Prüfstifte zu einem erheblichen Problem werden können. Wo bei gleichen äußeren Abmessungen der Kontaktfeldanordnung beim bisherigen Kontaktpunktraster 1/10 Zoll = 2,54 mm etwa 64.000 Kontaktpunkte maximal vorhanden und mithin entsprechend viele Prüfstifte notwendig waren, werden bei einem Kontaktpunktabstand von 1,27 mm bis zu 256.000 Kontaktpunkte innerhalb der gleichen äußeren Kontaktfeldabmessungen möglich. Es liegt auf der Hand, daß bei der eventuell benötigten sehr hohen Anzahl von Prüfstiften die Kosten für einen einzelnen Prüfstift sehr erheblich und vielleicht kaufentscheidend ins Gewicht fallen können. Es ist daher wesentlich, das Prinzip der Kontaktierung der einzelnen "Kontaktfeldmoduln" gemäß der DE-PS 33 40 180 bei einer Übertragung dieses Prinzips auf extrem feine Kontaktfeldraster so einfach und kostengünstig wie möglich auszugestalten.With the implementation of the principle of the circuit board tester of DE-PS 33 40 180 in the contact point grid 1/20 inch (equal to 1.27 mm) that is required, one at least apparently encounters limits of miniaturization, as they should be shown in the following. It should be noted here that these limits also arise from the cost side. In a circuit board tester with a contact field arrangement according to DE-PS 33 40 180, the mechanical contacting of the contact points of the circuit board to be tested and the contact points of the contact field grid of the circuit board tester is carried out using test needles, each of which has a contact tip that is resilient in the longitudinal direction. With the conventional contact point distance of 2.54 mm, these resilient test pins are still relatively simple and inexpensive to produce, but problems arise increasingly if a contact point distance of 1.27 mm is prescribed, ie if this test pin has a diameter of about 0.8 mm can be granted. Such thin test pins bend, for example, with the lowest transverse forces and are therefore unusable. In addition, because of the necessary mechanical complexity, such test pins with a resilient contact tip can only be produced at cost costs, which can become a considerable problem in view of the maximum number of such test pins required. Where, with the same external dimensions of the contact field arrangement in the previous contact point grid 1/10 inch = 2.54 mm, there were a maximum of around 64,000 contact points and therefore a corresponding number of test pins were required, with a contact point distance of 1.27 mm up to 256,000 Contact points possible within the same outer contact field dimensions. It is obvious that with the very large number of test pins that may be required, the costs for a single test pin can be very significant and perhaps decisive for the purchase. It is therefore essential to make the principle of contacting the individual “contact field modules” according to DE-PS 33 40 180 as simple and inexpensive as possible when this principle is transferred to extremely fine contact field grids.

Im DE-GM 85 34 841.4 vom 20.2.1986 wird vorgeschlagen, in Länsgrichtung starre konturlose Prüfstifte ohne federnde Kontaktspitzen insbesondere dann zu benutzen, wenn die Leiterplatten bereichsweise Anschlußdichten aufweisen, die größer sind als die mittlere Anschlußdichte im Grundraster des Kontaktfeldes des Leiterplattenprüfgerätes, welches ein Grundraster von 1/10 Zoll hat. Da solche starre konturlose Kontaktstifte sehr einfach und mit einem recht geringen Durchmesser hergestellt werden können, d.h. also daß Kontaktdichten geprüft werden können, die zumindest bereichsweise kleiner sind als das Grundraster des Leiterplattenprüfgerätes, ohne daß sich eine ernsthafte Gefahr von Kurzschlüssen zwischen den einzelnen Prüfstiften ergibt, und da solche konturlose starre Prüfstifte sehr preiswert hergestellt werden können, scheint es sich zunächst anzubieten, derartige starre Prüfstifte auch bei der Leiterplattenprüfung/Kontaktierung im 1/20 Zoll Raster einzusetzen. Allerdings muß hierbei beachtet werden, daß bei dieser bekannten Lösung gemäß DE-GM 85 34 841.4 (Flexadapter) ein sogenanntes "aktives Grundraster" für den Längenausgleich zwischen allen eingesetzten starren Prüfstiften und somit fur die zuverlässige Kontaktgabe aller dieser Prüfstifte mit den Prüflingen wie Leiterplatten, Keramik-Verdrahtungsträgern oder flexiblen Leiterplatten zu sorgen hat. Ein solcher Längenausgleich ist notwendig, um ein mögliches Ausbiegen der starren Feststifte und eine variable Dicke der gedruckten Leiterplatten zu kompensieren und um einen guten Kontaktdruck sicherzustellen. Ein derartiges aktives Grundraster entsteht dadurch, daß der federnde Teil der Kontaktstifte in das Grundraster des Leiterplattenprüfgerätes verlegt wird, was in der Form geschieht, daß kurze kleine Prüfstifte in Form von Hülsen vorgesehen werden, von denen das eine Ende eine Kontaktspitze und das andere Ende einen Innenkonus aufweist, der von einer in der Hülse angeordneten Feder abgestützt wird und zur Aufnahme des einen Endes des starren Prüfstiftes dient. In dem aktiven Grundraster gemäß DE-GM 85 34 841 sind also viele kurze "Prüfstifte mit Innenkonus" entsprechend der Anzahl der vorgesehenen Kontaktpunkte in einem geeigneten Gehäuse oberhalb des eigentlichen Grundrasters des Leiterplattenprüfgerätes vorgesehen. Das grundlegende Problem der relativ hohen Herstellungskosten derartiger "Prüfstifte mit Innenkonus" ist damit also nicht beseitigt - ebenso nicht, daß solche hülsenförmige Prüfstifte mit einer darin angeordneten Druckfeder sehr schwierig - wenn überhaupt - auf Durchmesser in der Größenordnung von 0,8 mm reduziert werden können, wenn bei derart dünnen und somit schwachen Federn ein noch hinreichender Kontaktdruck zugelassen werden soll, zumal die Wandstärke de r Hülse aus Gründen der Materialfestigkeit nicht unter 0,2 mm gesenkt werden kann. Es ergäben sich also letztlich auch erhebliche Probleme bei der Realisierung eines derart dicht gepackten "aktiven Grundrasters" für ein Kontaktpunktraster 1/20 Zoll.In DE-GM 85 34 841.4 dated February 20, 1986, it is proposed to use rigid contourless test pins in the longitudinal direction without resilient contact tips, in particular when the printed circuit boards have connection densities in some areas which are greater than the average connection density in the basic grid of the contact field of the printed circuit board testing device, which one Has a basic grid of 1/10 inch. Since such rigid, contourless contact pins can be produced very easily and with a very small diameter, that is to say that contact densities can be tested which are at least in some areas smaller than the basic grid of the circuit board tester, without there being a serious risk of short circuits between the individual test pins. and since such contourless rigid test pins can be manufactured very inexpensively, it seems at first offer to use such rigid test pins also for PCB testing / contacting in a 1/20 inch grid. However, it must be noted here that with this known solution according to DE-GM 85 34 841.4 (flex adapter) a so-called "active basic grid" for the length compensation between all the rigid test pins used and thus for the reliable contacting of all these test pins with the test objects such as printed circuit boards, Ceramic wiring carriers or flexible circuit boards has to provide. Such length compensation is necessary to compensate for a possible bending of the rigid pins and a variable thickness of the printed circuit boards and to ensure good contact pressure. Such an active basic grid results from the fact that the resilient part of the contact pins is moved into the basic grid of the circuit board tester, which is done in the form that short small test pins are provided in the form of sleeves, one end of which is a contact tip and the other end is one Has inner cone, which is supported by a spring arranged in the sleeve and serves to receive one end of the rigid test pin. In the active basic grid according to DE-GM 85 34 841 there are therefore many short “test pins with inner cone” corresponding to the number of contact points provided in a suitable housing above the actual basic grid of the circuit board tester. The the fundamental problem of the relatively high production costs of such "test pins with an inner cone" is thus not eliminated - nor is it not that such sleeve-shaped test pins with a compression spring arranged therein can be reduced very difficultly, if at all, to diameters of the order of 0.8 mm, if, with such thin and therefore weak springs, a still sufficient contact pressure should be permitted, especially since the wall thickness of the sleeve cannot be reduced to below 0.2 mm for reasons of material strength. Ultimately, there would also be considerable problems in realizing such a tightly packed "active basic grid" for a 1/20 inch contact point grid.

In der FR-A- 959460 (Appert) ist der Aufbau eines Kontaktsteckers gezeigt, bei dem ein Kontaktstift in eine konisch gewickelte Kontaktfeder eingesteckt wird, die in einem Sackloch eines Steckerkörpers angeordnet und jeweils an ihrem Anfang und Ende mit Hilfe von Schrauben in dem Sackloch fixiert ist. Derartige Amschlußtechniken sind nur bei wenigen und zudem verhältnismäßig großen Kontaktsteckern wirtschaftlich tragbar.FR-A-959460 (Appert) shows the construction of a contact plug, in which a contact pin is inserted into a conically wound contact spring which is arranged in a blind hole of a plug body and at its beginning and end with the aid of screws in the blind hole is fixed. Such termination techniques are only economically viable with a few and also relatively large contact plugs.

Es ist daher die der vorliegenden Erfindung zugrundeliegende Aufgabe, die Art der Kontaktierung der Kontakte einer zu prilfenden Leiterplatte mit dem Kontaktpunktraster des LP-Prüfgerätes dahingehend zu verbessern, daß sich auch bei einem extrem feinen Kontaktpunktraster von 1/20 Zoll (1,27 mm) oder deutlich darunter weder von der Kostenseite noch von der Festigkeitsseite her Probleme wie oben dargestellt ergeben.It is therefore the object on which the present invention is based to improve the type of contacting of the contacts of a circuit board to be tested with the contact point grid of the LP test device in such a way that even with an extremely fine contact point grid of 1/20 inch (1.27 mm) or significantly below, neither from the cost side nor from the strength side arise problems as shown above.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst. Indem die Druckfedern selbst zur Aufnahme der starren Prüfstifte vorgesehen und entsprechend ausgestaltet werden, gelingt es trotz der erforderlichen Miniaturisierung, ein funktionierendes und zu erträglichen Kosten herstellbares Kontaktfeldraster vorzusehen.This object is achieved by the features of claim 1. By providing the compression springs themselves for receiving the rigid test pins and designing them accordingly, it is possible despite the required miniaturization to provide a functioning contact field grid that can be produced at tolerable costs.

Eine Herstellung des Federkontaktfeldkörpers aus Keramik oder Kunststoff ist insofern besonders vorteilhaft, als dabei Herstellungstechniken verwendet werden können, die eine besondere Maßhaltigkeit gestatten. Auch wird die Herstellung des Federkontaktfeldkörpers dadurch besonders erleichtert, daß er aus kleineren aneinander anreihbaren oder zusammenfügbaren Abschnitten aufgebaut wird.Manufacture of the spring contact field body from ceramic or plastic is particularly advantageous insofar as manufacturing techniques can be used which allow a particular dimensional accuracy. The manufacture of the spring contact field body is particularly facilitated by the fact that it is made up of smaller sections that can be arranged or joined together.

Um den pro Druckfeder zur Verfügung stehenden Anteil des gesamten Anpreßdruckes möglichst wirkungsvoll zur Erzeugung eines sicheren Kontaktes zur Wirkung kommen zu lassen, kann es besonders vorteilhaft sein, ein oder beide Enden der Druckfedern so zu wickeln, daß eine stift- oder kegelähnliche Gestalt dort vorgesehen wird.In order to make the portion of the total contact pressure available per compression spring as effective as possible for producing a reliable contact, it can be particularly advantageous to wind one or both ends of the compression springs in such a way that a pin-like or cone-like shape is provided there .

Weiterhin kann es von Vorteil sein, ein oder beide Enden der Druckfedern so zu wickeln, daß ein Innenkonus zur direkten Aufnahme eines Prüf- oder Kontaktstiftes entsteht. Dadurch haben diese Stifte dann einen sicheren Halt unmittelbar auf der Druckfeder.Furthermore, it can be advantageous to wind one or both ends of the compression springs in such a way that an inner cone is formed for directly receiving a test or contact pin. As a result, these pins then have a secure hold directly on the compression spring.

Um eine besonders gute Führung der Druckfedern in ihren Bohrungen zu erreichen, können sie in ihren Endbereichen aneinanderliegende Windungen maximalen Durchmessers aufweisen. Zur weiteren Verbesserung der mechanischen Stabilität der Druckfedern können sämtliche aneinanderliegenden Windungen der Druckfedern mechanisch miteinander verbunden werden, was etwa durch galvanische Abscheidung eines Metalles auf den meist aus Federstahl hergestellten Druckfedern geschieht. Dadurch werden dann die aneinanderliegenden Windungen der Druckfeder "zusammenwachsen". Ein Überziehen der Endabschnitte der Druckfedern mit einem speziellen Kontaktwerkstoff - eventuell ebenfalls durch galvarische Abscheidung - kann zur erheblichen Verringerung des Kontaktwiderstandes beitragen.For a particularly good guidance of the compression springs in their To reach holes, they can have adjacent turns of maximum diameter in their end regions. To further improve the mechanical stability of the compression springs, all adjacent turns of the compression springs can be mechanically connected to one another, which is done, for example, by electrodeposition of a metal on the compression springs, which are usually made of spring steel. As a result, the adjacent turns of the compression spring will "grow together". Covering the end sections of the compression springs with a special contact material - possibly also by galvanic deposition - can contribute to a considerable reduction in the contact resistance.

Insbesondere wenn der die Druckfedern in Bohrungen aufnehmende bzw. fuhrende Federkontaktfeldkörper aus rasterförmig zusammenfügbaren kleineren Segmenten aufgebaut ist, hat es sich als besonders vorteilhaft erwiesen, diese auf ein Tragteil aufzubringen, das als nagelbrettartiger Stecker ausgebildet ist und zur Kraftableitung des aufgebrachten Druckes dient und entsprechend im Leiterplattenprufgerät abgestützt ist.In particular, if the spring contact field body receiving or guiding the compression springs in bores is made up of smaller segments which can be joined together in a grid, it has proven to be particularly advantageous to apply them to a supporting part which is designed as a nail board-like plug and is used to derive the applied pressure and accordingly in PCB tester is supported.

Wenn dieser Stecker im Verhältnis zu den rasterförmig zusammenfügbaren Segmenten des Federkontaktfeldkörpers relativ groß ist, kann er fur einen guten Zusammenhalt der einzelnen Segmente untereinander sorgen.If this connector is relatively large in relation to the segments of the spring contact field body which can be joined in a grid, it can ensure good cohesion between the individual segments.

Ein Ausfuhrungsbeispiel der vorliegenden Erfindung wird unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Darin zeigt:
Fig. 1 eine Übersicht über den grundsätzlichen Aufbau eines - allerdings nicht vollständig dargestellten - Leiterplattenprüfgerätes, das nach der vorliegenden Erfindung aufgebaut ist;
Fig. 2 in Seiten- bzw. Draufsicht eine sogenannte Treiberplatte mit dem am oberer Ende angeordneten Nagelbrettstecker, der auf Tragschienen abgestützt ist;
Fig. 3 eine ausschnittsweise Teil vergrößerung der erfindungsgemäßen Kontaktierung zwischen der Treiberplatte (der Prüfelektronik) und den starren Prüfstiften; und
Fig. 4a, b, c verschiedene Alternativen der Ausgestaltung der Druckfedern im Federkontaktfeldkörper.
An exemplary embodiment of the present invention is described in more detail with reference to the accompanying drawings. It shows:
Figure 1 is an overview of the basic structure of a - but not fully shown - PCB testing device, which is constructed according to the present invention.
Figure 2 is a side or plan view of a so-called driver plate with the nail board connector arranged at the upper end, which is supported on mounting rails.
3 shows a partial enlargement of the contact according to the invention between the driver plate (the test electronics) and the rigid test pins; and
4a, b, c different alternatives of the design of the compression springs in the spring contact field body.

In Fig. 1 ist in prinzipieller Darstellung die Anordnung und Abstützung der einzelnen Bauteile dargestellt, die zusammen das Kontaktfeld 2 mit den einzelnen, beispielsweise bis zu ca. 265.000 Kontaktfeldpunkten 4 ausbilden, die uber Prüfstifte 6 mit dem zu prüfenden Verdrahtungsträger/Leiterplatte 8 verbindbar sind. Jeweils 4×32 Kontaktfeldpunkte 4 sind einem nagelbrettartigen Kontaktfeldstecker 10 zugeordnet, der am oberen Ende einer sogenannten Treiberplatte 12 sitzt, die die Elektronikbauteile trägt, die zur elektronischen Prüfung der 4×32 = 128 Kontaktpunkte eines Kontaktfeldsteckers 10 beitragen. Am unteren Ende dieser Treiberplatte 12 sind nicht dargestellte Kontaktstecker vorgesehen, die jede der bis zu 2.000 Treiberplatten 12 (Kontaktfeldmoduln) mit einer elektronischen Ansteuerungs- und Meßvorrichtung verbinden, die im unteren Teil der Prüfvorrichtung angeordnet (nicht dargestellt) ist und auf die hier nicht näher eingegangen wird. Wie aus Fig. 2 ersichtlich ist, liegt jeder nagelbrettartige Kontaktfeldstecker 10 an seinen beiden stirnseitigen Enden an Tragteilen 14 auf, die von hochkant angeordneten Platten ausgebildet werden, die den sehr erheblichen Kontaktdruck auf das Gestell 16 des Leiterplattenprüfgerätes ableiten: Da beim Prüfen von Leiterplatten 8 zur Erzeugung eines zuverlässigen Kontaktes eine Andruckkraft von ca. 1,23N (125 p) pro Kontakt 4 erzeugt werden muß, ergibt sich bei den genannten maximal 256.000 Kontakten eine Gesamtkraft von 0,31.10⁶N, was einem Gewicht von ca. 32 t entspricht, das über diese Tragteile 14 abgeleitet werden muß.In Fig. 1, the arrangement and support of the individual components is shown in a basic representation, which together form the contact field 2 with the individual, for example up to about 265,000 contact field points 4, the test pins 6 with the to be tested Wiring carrier / circuit board 8 are connectable. Each 4 × 32 contact field points 4 are assigned to a nail board-like contact field connector 10, which sits at the upper end of a so-called driver plate 12, which carries the electronic components that contribute to the electronic testing of the 4 × 32 = 128 contact points of a contact field connector 10. At the lower end of this driver plate 12, contact plugs, not shown, are provided, which connect each of the up to 2,000 driver plates 12 (contact field modules) to an electronic control and measuring device, which is arranged in the lower part of the test device (not shown) and is not described in more detail here is received. As can be seen from Fig. 2, each nail board-like contact field connector 10 rests at its two front ends on supporting parts 14 which are formed by upright arranged plates which derive the very considerable contact pressure on the frame 16 of the circuit board tester: Because when testing circuit boards 8 To generate a reliable contact, a contact pressure of approx. 1.23N (125 p) must be generated per contact 4, with a maximum of 256,000 contacts mentioned, the total force is 0.31.10⁶N, which corresponds to a weight of approx. 32 t, that must be derived via these support members 14.

Der aus einem elektrisch nicht leitenden Werkstoff wie Kunststoff oder Keramik bestehende Kontaktfeldstecker 10 weist auf seiner oberen Stirnfläche beispielsweise 4×32 = 128 senkrecht nach oben weisende Kontaktstifte 18 auf, die jeweils einen Durchmesser in der Größenordnung von 0,8 mm haben und beispielsweise 2,5 mm hoch sind. Diese Kontaktstifte 18 des Kontaktfeldsteckers 10 setzen sich im Inneren desselben in Leitungen 20 fort, die jeweils mit einem Anschlußpunkt 22 auf der gedruckten Schaltung der Treiberplatte 12 verbunden sind und somit die elektrische Verbindung mit den elektronischen Komponenten 24 (nur eine ist dargestellt) auf der Treiberplatte 12 herstellt, die Teil der Prüfschaltung des Leiterplattenprüfgerätes sind. Jeder der Kontaktstifte 18 ragt in eine Bohrung 25 eines Federkontaktfeldkörpers 26 hinein, die eine Kontaktfeder 28 aus elektrisch leitendem Werkstoff enthält und diese Bohrung 25 im wesentlichen ausfüllt. In dem gezeichneten bevorzugten Ausführungsbeispiel der Fig. 3 besteht der Federkontaktfeldkörper 26 aus zahlreichen Streifen mit jeweils einer Reihe von Bohrungen darin (entsprechend der Anordnung der Kontaktstifte), doch liegt es auf der Hand, daß es sich nicht um streifenförmige Körper mit nur einer Reihe von Bohrungen 25 handeln muß, sondern es ist ebenso gut möglich, mehrere oder viele Reihen von Bohrungen in einem entsprechend größer gestalteten Federkontaktfeldkörper 26 vorzusehen, da die Größe der Unterteilung dieser Federkontaktfeldkörper an sich nur von der gunstigsten Herstellbarkeit solcher Körper abhängig ist: Zur Zeit werden allerdings wegen der genaueren Herstellbarkeit solche Körper als Streifen mit nur einer Reihe von Bohrungen bevorzugt, wobei diese Streifen in Längsrichtung (Fig. 3) oder auch in Querrichtung (nicht dargestellt) auf den Kontaktfeldsteckern 10 angeordnet sein können, d.h. im letztgenannten Fall erstrecken sie sich gerade über die Breite der Kontaktfeldstecker 10. Die Streifen sind etwa 50 mm hoch und 1,27 mm breit. Die Bohrungen darin haben einen Durchmesser von ca. 0,8 mm und der Abstand von Bohrung zu Bohrung beträgt entsprechend dem Rastermaß der Kontaktpunkte 1,27 mm.The contact field connector 10 consisting of an electrically non-conductive material such as plastic or ceramic has on its upper end face, for example, 4 × 32 = 128 vertically upward-pointing contact pins 18, each of which has a diameter of the order of 0.8 mm and are, for example, 2.5 mm high. These contact pins 18 of the contact field connector 10 continue inside the same in lines 20, each of which is connected to a connection point 22 on the printed circuit of the driver board 12 and thus the electrical connection to the electronic components 24 (only one is shown) on the driver board 12 manufactures that are part of the test circuit of the circuit board tester. Each of the contact pins 18 projects into a bore 25 of a spring contact field body 26, which contains a contact spring 28 made of electrically conductive material and essentially fills this bore 25. In the preferred embodiment of FIG. 3 shown, the spring contact body 26 consists of numerous strips, each with a row of holes therein (according to the arrangement of the contact pins), but it is obvious that they are not strip-shaped bodies with only one row Bores 25 must act, but it is equally possible to provide several or many rows of holes in a correspondingly larger spring contact field body 26, since the size of the subdivision of these spring contact field bodies is itself only dependent on the cheapest manufacture of such bodies: At the moment However, because of the more precise manufacturability, such bodies are preferred as strips with only one row of bores, these strips being able to be arranged in the longitudinal direction (FIG. 3) or also in the transverse direction (not shown) on the contact field plugs 10, ie in the latter case they extend just over the width of the contact field connector 10. The strips are about 50 mm high and 1.27 mm wide. The holes in it have a diameter of approx. 0.8 mm and the distance from hole to hole is 1.27 mm according to the pitch of the contact points.

Die Federkontaktf eldkörper 26 werden auf den bzw. die nagelbrettartigen Kontaktfeldstecker 10 aufgesteckt. In jede somit von unten von jeweils einem Kontaktstift 18 abgeschlossene Bohrung 25 wird eine besonders ausgebildete Druckfeder 28 eingesetzt, die diese Bohrung vollständig ausfüllt, d.h., die Windungen der Druckfeder liegen im federnden Teil derselben unmittelbar an den Wandungen der Bohrung an, so daß trotz der beengten Platzverhältnisse Druckfedern mit dem größtmöglichen Durchmesser verwendet werden können.The spring contact field body 26 is plugged onto the nail board-like contact field connector 10. In each thus closed from below by a contact pin 18 bore 25, a specially designed compression spring 28 is used, which completely fills this bore, that is, the turns of the compression spring are in the resilient part of the same directly against the walls of the bore, so that despite the confined spaces compression springs with the largest possible diameter can be used.

Die stirnseitigen Enden 30, 31 der Druckfedern 28, die in der Fig. 3 nur in prinzipieller Darstellung gezeigt sind, sind in besonderer Weise zur direkten Kontaktierung mit dem Kontaktstift 18 des nagelbrettartigen Kontaktfeldsteckers 10 bzw. dem starren Prüfstift 6 ausgestaltet. Gemäß Fig. 4a ist die Druckfeder 28 an beiden stirnseitigen Enden, d.h. auswärts vom federnden Teil 32, der voneinander beabstandete Windungen aufweist, mit in Längsrichtung aneinanderliegenden Windungen gewickelt, die zur Ausbildung eines Innenkonusses sich in Wickelrichtung der Feder im Durchmesser verjungen und anschließend wieder erweitern. Auf diese Weise wird an beiden Stirnseiten dieser Druckfeder ein Innenkonus 34 zur Aufnahme der Spitzen des Kontaktstiftes 18 bzw. des Prüfstiftes 6 ausgebildet. Vorzugsweise können diese aus einem Federstahl gewickelten Druckfedern 28 durch galvanische Abscheidung mit einem geeigneten Kontaktwerkstoff beschichtet sein, wobei die aneinanderliegenden Windungen an den stirnseitigen Enden "zusammenwachsen" können.The front ends 30, 31 of the compression springs 28, which are only shown in principle in FIG. 3, are in a special way for direct contact with the contact pin 18 of the nail board-like Contact field connector 10 and the rigid test pin 6 configured. According to FIG. 4a, the compression spring 28 is wound at both end ends, ie outwards from the resilient part 32, which has turns which are spaced apart from one another, with turns which lie in the longitudinal direction and which taper in diameter to form an inner cone in the winding direction of the spring and then widen again . In this way, an inner cone 34 for receiving the tips of the contact pin 18 or the test pin 6 is formed on both ends of this compression spring. These compression springs 28, which are wound from a spring steel, can preferably be coated with a suitable contact material by means of galvanic deposition, the windings lying against one another being able to “grow together” at the front ends.

Aus Fig. 4b ist eine alternative Kontaktierungsform ersichtlich. Die Druckfeder ist in ihrem oberen Bereich zum Angriff an dem Prüfstift 6 identisch ausgebildet, d.h., sie weist einen wie zuvor beschrieben gewickelten Innenkonus 34 auf, während das entgegengesetzte Ende mit einem sich stiftartig verjüngenden Ansatz 36 gewickelt ist, dessen einzelne Windungen 33 wiederum aneinanderliegen. Dieser stiftartige Ansatz ragt in eine beispielsweise kegel- oder napfförmige Vertiefung im Kontaktfeldstecker 10 hinein, wobei diese Vertiefung als Alternative zu den zuvor beschriebenen Kontaktstiften 18 anzusehen ist.An alternative form of contacting can be seen from FIG. 4b. The compression spring is designed identically in its upper area for engagement with the test pin 6, that is to say it has an inner cone 34 which has been wound as described above, while the opposite end is wound with a pin 36 which tapers like a pin, the individual windings 33 of which in turn abut one another. This pin-like approach protrudes into, for example, a conical or cup-shaped depression in the contact field connector 10, this depression being a An alternative to the contact pins 18 described above can be seen.

In der Fig. 4c ist eine weitere alternative Ausführungsform der Druckfeder gezeigt: Das dem Kontaktfeldstecker bzw. der Treiberplatte zugewandte Ende der Druckfeder 28 ist mit einem sich in Längsrichtung der Druckfeder erstreckenden Kontaktzungenteil 42 versehen, der sich unmittelbar bis zu dem zugehörigen Kontaktpunkt auf der Oberfläche der Treiberplatte 12 erstreckt. Dies bedeutet, daß der Kontaktfeldstecker lediglich mit entsprechend positionierten dünnen Bohrungen 44 versehen sein muß, durch die diese Kontaktzungen 42 beim Aufbau des Kontaktfeldes eingeführt werden. Das dem Prüfstift 6 zugewandte Ende der Druckfeder 28 ist auch in diesem Fall so gewickelt, daß ein Innenkonus 34 aus in Längsrichtung aneinanderliegenden Windungen der Druckfeder gebildet wird.4c shows a further alternative embodiment of the compression spring: that end of the compression spring 28 which faces the contact field plug or the driver plate is provided with a tongue part 42 which extends in the longitudinal direction of the compression spring and which extends directly to the associated contact point on the surface the driver plate 12 extends. This means that the contact field plug only has to be provided with appropriately positioned thin bores 44 through which these contact tongues 42 are inserted when the contact field is being set up. The end of the compression spring 28 facing the test pin 6 is also wound in this case such that an inner cone 34 is formed from turns of the compression spring lying against one another in the longitudinal direction.

Es liegt auf der Hand, daß die erfindungsgemäße besondere Art der Kontaktierung der in Längsrichtung starren Prüfstifte 6 über als Druckfedern (Spiralfedern) ausgebildete Kontaktpunkte ebenso gut auch bei Leiterplattenprufgeräten eingesetzt werden kann, die mit einem fest verdrahteten Kontaktpunktraster versehen sind, also keine Kontaktfeldmoduln aufweisen, die untereinander identisch und in Bezug auf die jeweiligen Plätze auf der Grundplatte austauschbar sind. Dennoch ist die vorliegende Erfindung gerade bei diesem letztgenannten Konzept besonders wertvoll, da es ebenso wie die vorliegende Erfindung wesentlich darauf abstellt, die für die Kontaktierung der zu prüfenden Leiterplatte/Verdrahtungsträger anfallenden Kosten stark zu reduzieren.It is obvious that the particular type of contacting of the test pins 6, which are rigid in the longitudinal direction, via contact points designed as compression springs (spiral springs) according to the invention can also be used just as well in circuit board testers which are provided with a hard-wired contact point grid, that is to say have no contact field modules, which are identical to each other and in relation to the respective places on the Base plate are interchangeable. Nevertheless, the present invention is particularly valuable with this last-mentioned concept, since it, like the present invention, essentially aims to greatly reduce the costs incurred for contacting the circuit board / wiring carrier to be tested.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

2 Kontaktfeld
4 Kontaktfeldpunkte
6 Prüfstifte
8 Leiterplatte
10 Kontaktfeldstecker (Nagelbrett-)
12 Treiberplatte
14 Tragteile
16 Gestell
18 Kontaktstifte
20 Leitungen
22 Anschlußpunkt
24 elektr. Komponenten
26 Federkontaktfeldkörper
28 Kontaktfeder/Druckfeder
30 stirnseitige Enden der Druckfeder
31 stirnseitige Enden der Druckfeder
32 federnder Teil der Druckfeder
33 Windungen der Druckfeder
34 Innenkonus
36 stiftartiger Ansatz
42 Kontaktzungenteil
44 Bohrungen
2 contact field
4 contact field points
6 test pins
8 circuit board
10 contact field plug (nail board)
12 driver plate
14 supporting parts
16 frame
18 contact pins
20 lines
22 connection point
24 electr. Components
26 spring contact field body
28 contact spring / compression spring
30 front ends of the compression spring
31 front ends of the compression spring
32 resilient part of the compression spring
33 turns of the compression spring
34 inner cone
36 pen-like approach
42 tongue part
44 holes

Claims (10)

  1. Printed circuit board test device with a number of contact points (4) arranged in the plane of the contact panel (2) of the device, which are connected to an electronic control and measuring device and which can be connected to the contact points of the printed conductors of the circuit boards (8) being tested, via rigid test probes (6) arranged in the longitudinal direction, whereby the contact points (4) in the printed circuit test device are supported against the applied contact pressure by electrically-conducting compression springs (28) which are located in holes (25) of a spring contact panel (26) of electrically-insulating material, and on which the rigid test probes (6) are directly supported, characterised in that the compression springs (28) are placed in the spring contact panel (26) with their centre section in direct contact with the walls of the holes (25), whereby in the longitudinal direction of the compression springs they have adjacent windings (33), the diameter of whose spring coils is a maximum in the end regions (30, 31) to provide stable control in the spring contact panel (26), and that at least one end (30, 31) the compression springs (28) take the form of an internal cone (34) to directly take a test probe (6) or one end of a contact pin (18) for connection to the test circuit of the printed circuit board test device, said cone resulting from a reduction and then an enlargement of the diameter of adjacent windings (33) of the spring coil.
  2. Printed circuit board test device with a number of contact points (4) arranged in the plane of the contact panel (2) of the device, which are connected to an electronic control and measuring device and which can be connected to the contact points of the printed conductors of the circuit boards (8) being tested via rigid test probes (6) arranged in the longitudinal direction, whereby the contact points (4) in the printed circuit test device are supported against the applied contact pressure by electrically-conducting compression springs (28) which are located in holes (25) of a spring contact panel (26) of electrically-insulating material, and on which the rigid test probes (6) are directly supported, characterised in that the compression springs (28) are placed in the spring contact panel (26) with their centre section in direct contact with the walls of the holes (25), whereby in the longitudinal direction of the compression springs they have adjacent windings (33), the diameter of whose spring coils is a maximum in the end regions (30, 31) to provide stable control in the spring contact panel (26), and that at least one end (30, 31) the compression springs (28) have a pin-like or cone-like shape (36) for direct contact with an internal cone or other contact surface, said pin-like or cone-like shape resulting from a stepped and/or continuous reduction of the diameter of adjacent windings (33) of the spring coil.
  3. Device according to one of the above claims, characterised in that the adjacent windings of the compression springs are interconnected mechanically, for instance by electrodeposition of a metal.
  4. Device according to one of the above claims, characterised in that the end regions (30, 31) of the compression springs are coated with a special contact material to improve contact.
  5. Device according to one of the above claims, characterised in that a driver board (12) used as a support for the electronic components (24) required for control, carries a studded contact panel connector (10) on its front end, which is located at the end of the spring contact panel (26) opposite the test probes, and in addition to making electrical contact with the compression springs (28), is also used to distribute force to the support sections (14, 16) in the printed circuit test device.
  6. Device according to one of the above claims, characterised in that the spring contact panel (26) is made from ceramic or plastic.
  7. Device according to one of the above claims, characterised in that the spring contact panel (26) is constructed from matrix-type segments which can be attached and joined together.
  8. Device according to claim 7, characterised in that a solid section of contact panel, that can be withdrawn and replaced as a complete unit, is formed by inserting the contact pins (18) of one or more contact panel connectors (10) into the holes (25) or one or more segments of the spring contact panel (26).
  9. Device according to claim 8, characterised in that the end of the compression spring opposite the test probe (6) has a spring contact tab (42) extending away from the spring in the longitudinal direction, for direct connection to contact areas of the driver board (12) supporting the electronic components of the contact panel section.
  10. Device according to one of the above claims, characterised in that areas of differing contact density are provided in the plane of the contact panel (2), which can be interchanged in accordance with the requirements of the printed circuit boards (8) being tested.
EP87109884A 1986-09-08 1987-07-08 Apparatus for the electronic testing of printed circuits with contact points in an extremely fine raster (1/20th to 1/10th inch) Expired - Lifetime EP0263244B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP90116283A EP0406919B1 (en) 1986-09-08 1987-07-08 Arrangement for electronically testing printed circuits with extremely fine contact-point screen
AT87109884T ATE63169T1 (en) 1986-09-08 1987-07-08 DEVICE FOR ELECTRONIC TESTING OF CIRCUIT BOARDS WITH CONTACT POINTS IN EXTREMELY FINE PITCH (1/20 TO 1/10 INCH).

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863630548 DE3630548A1 (en) 1986-09-08 1986-09-08 DEVICE FOR ELECTRONICALLY CHECKING CIRCUITS WITH CONTACT POINTS IN 1/20 INCH GRID
DE3630548 1986-09-08

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP90116283A Division EP0406919B1 (en) 1986-09-08 1987-07-08 Arrangement for electronically testing printed circuits with extremely fine contact-point screen
EP90116283A Division-Into EP0406919B1 (en) 1986-09-08 1987-07-08 Arrangement for electronically testing printed circuits with extremely fine contact-point screen
EP90116283.4 Division-Into 1987-07-08

Publications (2)

Publication Number Publication Date
EP0263244A1 EP0263244A1 (en) 1988-04-13
EP0263244B1 true EP0263244B1 (en) 1991-05-02

Family

ID=6309148

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90116283A Expired - Lifetime EP0406919B1 (en) 1986-09-08 1987-07-08 Arrangement for electronically testing printed circuits with extremely fine contact-point screen
EP87109884A Expired - Lifetime EP0263244B1 (en) 1986-09-08 1987-07-08 Apparatus for the electronic testing of printed circuits with contact points in an extremely fine raster (1/20th to 1/10th inch)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP90116283A Expired - Lifetime EP0406919B1 (en) 1986-09-08 1987-07-08 Arrangement for electronically testing printed circuits with extremely fine contact-point screen

Country Status (7)

Country Link
US (2) US4851765A (en)
EP (2) EP0406919B1 (en)
JP (1) JPS6370174A (en)
AT (2) ATE63169T1 (en)
CA (1) CA1289678C (en)
DE (3) DE3630548A1 (en)
ES (2) ES2121743T3 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69033254T2 (en) * 1989-06-30 2000-03-16 Fujitsu Personal Systems, Inc. COMPACT PORTABLE COMPUTER
GB2237939B (en) * 1989-09-22 1994-03-23 Multiprobe Limited Testing apparatus
IT221408Z2 (en) * 1990-06-11 1994-03-16 Circuit Line Spa ADAPTER FOR TESTING PRINTED CIRCUITS
IT1243302B (en) * 1990-06-19 1994-05-26 St Microelectronics Srl MULTI-CONTACT UNIVERSAL CONNECTION BETWEEN EWS PROBE CARD AND TEST CARD FOR A TEST STATION ON SLICE OF SEMICONDUCTOR DEVICES.
WO1992003741A1 (en) * 1990-08-13 1992-03-05 Mania Gmbh & Co. Spring contact field component for wiring/printed circuit board testing device
FR2666693A1 (en) * 1990-09-11 1992-03-13 Option Device for the connection to an electrical or electronic circuit of a multiplicity of conducting elements distributed over an area of restricted size
ATE140542T1 (en) 1991-04-11 1996-08-15 Methode Electronics Inc DEVICE FOR ELECTRONIC TESTING OF PRINTED CIRCUIT BOARDS OR SIMILAR
US5436570A (en) * 1991-05-21 1995-07-25 Tan; Yin L. Burn-in test probe for fine-pitch packages with side contacts
US5216361A (en) * 1991-07-10 1993-06-01 Schlumberger Technologies, Inc. Modular board test system having wireless receiver
US5223787A (en) * 1992-05-29 1993-06-29 Tektronix, Inc. High-speed, low-profile test probe
CA2079418A1 (en) * 1992-11-18 1994-05-19 Cody Zane Slater Apparatus and method for manufacturing printed circuit boards
US5311120A (en) * 1993-01-06 1994-05-10 Bartholomew Mark R Test fixture with test function feature
DE4323276A1 (en) * 1993-07-12 1995-01-19 Mania Gmbh Solid material adapter
JP3442137B2 (en) * 1993-12-17 2003-09-02 日本発条株式会社 Conductive contact unit
DE9401114U1 (en) * 1994-01-24 1995-02-16 Siemens AG, 80333 München Connection module
US5485096A (en) * 1994-04-05 1996-01-16 Aksu; Allen Printed circuit board tester having a test bed with spring probes and easily replaceable switch cards
DE19627801C1 (en) * 1996-07-10 1998-03-26 Atg Test Systems Gmbh Device for testing electrical circuit boards
US5804984A (en) * 1996-08-02 1998-09-08 International Business Machines Corporation Electronic component test apparatus with rotational probe
US6051982A (en) * 1996-08-02 2000-04-18 International Business Machines Corporation Electronic component test apparatus with rotational probe and conductive spaced apart means
US5945836A (en) * 1996-10-29 1999-08-31 Hewlett-Packard Company Loaded-board, guided-probe test fixture
DE19748823B4 (en) * 1997-11-05 2005-09-08 Feinmetall Gmbh Service-friendly contacting device
JP3466453B2 (en) * 1997-12-10 2003-11-10 ファナック株式会社 Signal connector for semiconductor
US6064195A (en) * 1998-05-11 2000-05-16 R-Tec Corporation Test probe positioning device
US6194904B1 (en) 1998-05-19 2001-02-27 R-Tec Corporation Socket test probe and method of making
AU9183498A (en) * 1998-08-19 2000-03-14 Eles Equipment S.R.L. Equipment for performing electrical and environmental tests on semiconductor electronic devices
US7382142B2 (en) 2000-05-23 2008-06-03 Nanonexus, Inc. High density interconnect system having rapid fabrication cycle
AU5171800A (en) * 1999-05-27 2000-12-18 Nanonexus, Inc. Massively parallel interface for electronic circuit
US6812718B1 (en) 1999-05-27 2004-11-02 Nanonexus, Inc. Massively parallel interface for electronic circuits
DE19943388B4 (en) 1999-09-10 2010-04-08 Atg Luther & Maelzer Gmbh Device for testing printed circuit boards
GB0010282D0 (en) * 2000-04-27 2000-06-14 Oxley Dev Co Ltd Electrical connector
US7952373B2 (en) * 2000-05-23 2011-05-31 Verigy (Singapore) Pte. Ltd. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
US6824427B1 (en) * 2003-05-13 2004-11-30 3M Innovative Properties Company Coaxial probe interconnection system
US7109732B2 (en) * 2003-07-31 2006-09-19 Endicott Interconnect Technologies, Inc. Electronic component test apparatus
US7154286B1 (en) * 2005-06-30 2006-12-26 Interconnect Devices, Inc. Dual tapered spring probe
JP4842027B2 (en) * 2006-06-20 2011-12-21 日本電子材料株式会社 Probe card connection pad
DE102008006130A1 (en) 2008-01-25 2009-07-30 Atg Luther & Maelzer Gmbh Module for a parallel tester for testing printed circuit boards
DE102009016181A1 (en) * 2009-04-03 2010-10-14 Atg Luther & Maelzer Gmbh Contacting unit for a test device for testing printed circuit boards
CN101923104A (en) * 2010-05-13 2010-12-22 王云阶 General adapter of electron and circuit board detection device
US11057989B1 (en) * 2019-12-16 2021-07-06 Arista Networks, Inc. Adjustable mount for contacting probes to a dense pattern of pads in a circuit board
CN114354992B (en) * 2021-12-13 2024-03-22 木王芯(苏州)半导体科技有限公司 Unidirectional parallel double-head test probe

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR959460A (en) * 1950-03-30
US3258736A (en) * 1966-06-28 Electrical connector
US2982935A (en) * 1958-08-25 1961-05-02 Gen Dynamics Corp Jack type electrical connector
US3437984A (en) * 1968-02-08 1969-04-08 Ney Co J M Probe assembly
DE2437651A1 (en) * 1974-08-05 1976-02-19 Breidenbach Gert Testing adapter for electronic subassemblies - is mounted on cards which have direct or indirect plug-in connection
DE2920226C2 (en) * 1979-05-18 1983-04-07 Siemens AG, 1000 Berlin und 8000 München Adapter for the connection of a large number of test objects having connection points distributed in a grid-like manner
US4357062A (en) * 1979-12-10 1982-11-02 John Fluke Mfg. Co., Inc. Universal circuit board test fixture
DE3038665C2 (en) * 1980-10-13 1990-03-29 Riba-Prüftechnik GmbH, 7801 Schallstadt Testing device for testing printed circuit boards provided with conductor tracks
DE3110056C2 (en) * 1981-03-16 1986-02-27 MANIA Elektronik Automatisation Entwicklung und Gerätebau GmbH, 6384 Schmitten Contact arrangement with a plurality of contacts arranged in a contact plane
US4496903A (en) * 1981-05-11 1985-01-29 Burroughs Corporation Circuit board test fixture
AU8336382A (en) * 1982-03-05 1983-10-18 Malloy, J.T. Bed-of-pins test fixture
DE3249770C2 (en) * 1982-11-05 1987-11-12 Martin Maelzer Device for testing electrical circuit boards
JPS59121171U (en) * 1983-02-04 1984-08-15 株式会社日立製作所 High voltage connection device
DE3311480A1 (en) * 1983-03-29 1984-10-11 Feinmetall Gmbh, 7033 Herrenberg Contact component
US4574236A (en) * 1983-10-27 1986-03-04 At&T Technologies, Inc. High frequency test fixture
DE3340179C1 (en) * 1983-11-07 1985-05-09 MANIA Elektronik Automatisation Entwicklung und Gerätebau GmbH Arrangement on a printed circuit board tester to adapt the spacing of contacts
DE3340180C1 (en) * 1983-11-07 1985-05-15 MANIA Elektronik Automatisation Entwicklung und Gerätebau GmbH Contact field arrangement for a computer-controlled printed circuit board tester
DE3340243A1 (en) * 1983-11-08 1985-05-23 Hans-Jürgen 6477 Limeshain Wagner Device for testing printed-circuit boards
JPS61169774A (en) * 1985-01-22 1986-07-31 Hitachi Electronics Eng Co Ltd Support construction for ic measuring socket
US4620761A (en) * 1985-01-30 1986-11-04 Texas Instruments Incorporated High density chip socket
US4724383A (en) * 1985-05-03 1988-02-09 Testsystems, Inc. PC board test fixture
US4632485A (en) * 1985-06-06 1986-12-30 Brown Kenneth C Electrical circuit testing apparatus
EP0215146B1 (en) * 1985-09-16 1988-08-03 MANIA Elektronik Automatisation Entwicklung und Gerätebau GmbH Device for electronic testing of printed boards or similar devices

Also Published As

Publication number Publication date
EP0406919B1 (en) 1998-10-14
JPS6370174A (en) 1988-03-30
EP0406919A2 (en) 1991-01-09
DE3630548A1 (en) 1988-03-10
DE3752227D1 (en) 1998-11-19
US4851765A (en) 1989-07-25
EP0263244A1 (en) 1988-04-13
ES2121743T3 (en) 1998-12-16
ATE63169T1 (en) 1991-05-15
ATE172306T1 (en) 1998-10-15
EP0406919A3 (en) 1991-06-12
US4952872A (en) 1990-08-28
ES2021640B3 (en) 1991-11-16
CA1289678C (en) 1991-09-24
DE3769741D1 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
EP0263244B1 (en) Apparatus for the electronic testing of printed circuits with contact points in an extremely fine raster (1/20th to 1/10th inch)
DE2845234C2 (en)
DE2525166A1 (en) CONTACT PROBE DEVICE
DE2707900C3 (en) Universal adapter for devices for electrical testing of various printed circuits
DE3716240A1 (en) Test adaptor, especially for an integrated circuit
DE69708661T2 (en) MODULAR CIRCUIT STRUCTURE FOR HEARING AID
DE3909284A1 (en) CONNECTOR ARRANGEMENT
DE69931591T2 (en) Circuit board for modular plug
EP0184619B1 (en) Printed circuit testing device
DE3343274C2 (en)
DE2812332C3 (en) Multiple connector for cards with printed circuit boards
DE2418440A1 (en) SWITCHBOARD MODULE FOR AN INTEGRATED ELECTRIC CIRCUIT
DE4226172C2 (en) Power supply element for printed circuit boards
EP0034243A2 (en) Pluggable connection
DE3806792A1 (en) DEVICE FOR CHECKING PCBS
WO2000028627A1 (en) Electric components for printed boards and method for automatically inserting said components in printed boards
EP0878870A1 (en) High Frequency coaxial connector
DE2707620A1 (en) ELECTRONIC EXPERIMENTAL DEVICE
DE3722485C2 (en)
DE3231380C2 (en) Method for making an electrical connection
DE19511565A1 (en) Test adapter
DE8624055U1 (en) Device for electronic testing of printed circuit boards with contact points in 1/20 inch grid
DE2637894B2 (en) Device for connecting the connecting pins of a device under test to the connecting lines of a measuring circuit
DE2303969B2 (en) Arrangement for the electrical and mechanical connection of posts to connectors with metal plates
EP1083434A2 (en) Apparatus for testing printed circuit boards

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880916

17Q First examination report despatched

Effective date: 19900924

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 63169

Country of ref document: AT

Date of ref document: 19910515

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 90116283.4 EINGEREICHT AM 08/07/87.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3769741

Country of ref document: DE

Date of ref document: 19910606

ET Fr: translation filed
ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910725

Year of fee payment: 5

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930730

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19940709

EAL Se: european patent in force in sweden

Ref document number: 87109884.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950721

Year of fee payment: 9

Ref country code: NL

Payment date: 19950721

Year of fee payment: 9

Ref country code: AT

Payment date: 19950721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950809

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960731

Ref country code: CH

Effective date: 19960731

Ref country code: BE

Effective date: 19960731

BERE Be: lapsed

Owner name: MANIA ELEKTRONIK AUTOMATISATION ENTWICKLUNG UND G

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970201

EUG Se: european patent has lapsed

Ref document number: 87109884.4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010618

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010717

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010730

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050708