EP0026529A1 - Detergent compositions - Google Patents
Detergent compositions Download PDFInfo
- Publication number
- EP0026529A1 EP0026529A1 EP80200878A EP80200878A EP0026529A1 EP 0026529 A1 EP0026529 A1 EP 0026529A1 EP 80200878 A EP80200878 A EP 80200878A EP 80200878 A EP80200878 A EP 80200878A EP 0026529 A1 EP0026529 A1 EP 0026529A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- component
- detergent composition
- composition according
- detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 91
- 239000003599 detergent Substances 0.000 title claims abstract description 42
- -1 alkyl primary Chemical class 0.000 claims abstract description 36
- 239000004927 clay Substances 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 16
- 150000001767 cationic compounds Chemical class 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 25
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 19
- 239000011734 sodium Substances 0.000 claims description 16
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 14
- 125000002091 cationic group Chemical group 0.000 claims description 14
- 229910052708 sodium Inorganic materials 0.000 claims description 14
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 9
- 238000005342 ion exchange Methods 0.000 claims description 8
- 239000008187 granular material Substances 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 5
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 150000001450 anions Chemical group 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims 1
- 229910021647 smectite Inorganic materials 0.000 abstract description 16
- 238000004140 cleaning Methods 0.000 abstract description 14
- 239000004753 textile Substances 0.000 abstract description 10
- 239000004615 ingredient Substances 0.000 abstract description 5
- 150000003512 tertiary amines Chemical class 0.000 abstract description 4
- 150000003335 secondary amines Chemical class 0.000 abstract description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 239000000344 soap Substances 0.000 description 11
- 239000002734 clay mineral Substances 0.000 description 9
- 229910052901 montmorillonite Inorganic materials 0.000 description 9
- 239000004744 fabric Substances 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000002736 nonionic surfactant Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 235000013162 Cocos nucifera Nutrition 0.000 description 6
- 244000060011 Cocos nucifera Species 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 6
- 229910000271 hectorite Inorganic materials 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910000275 saponite Inorganic materials 0.000 description 6
- 150000003871 sulfonates Chemical class 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 239000007844 bleaching agent Substances 0.000 description 5
- 238000005341 cation exchange Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000003760 tallow Substances 0.000 description 5
- 239000002888 zwitterionic surfactant Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 235000019832 sodium triphosphate Nutrition 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 150000008051 alkyl sulfates Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003240 coconut oil Substances 0.000 description 3
- 235000019864 coconut oil Nutrition 0.000 description 3
- 229910052900 illite Inorganic materials 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 239000004902 Softening Agent Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical group 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 235000002949 phytic acid Nutrition 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical compound OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- OTERXISGTBORBX-UHFFFAOYSA-N 2,2-dihydroxyethyl-dodecyl-methylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCC[NH+](C)CC(O)O OTERXISGTBORBX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 125000002853 C1-C4 hydroxyalkyl group Chemical group 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical group [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- WGQKYBSKWIADBV-UHFFFAOYSA-N aminomethyl benzene Natural products NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000002752 cationic softener Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012297 crystallization seed Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- KRHIGIYZRJWEGL-UHFFFAOYSA-N dodecapotassium;tetraborate Chemical class [K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[K+].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] KRHIGIYZRJWEGL-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- XWENCHGJOCJZQO-UHFFFAOYSA-N ethane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C(C(O)=O)C(C(O)=O)C(O)=O XWENCHGJOCJZQO-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- UPBDXRPQPOWRKR-UHFFFAOYSA-N furan-2,5-dione;methoxyethene Chemical compound COC=C.O=C1OC(=O)C=C1 UPBDXRPQPOWRKR-UHFFFAOYSA-N 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000010423 industrial mineral Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MBKDYNNUVRNNRF-UHFFFAOYSA-N medronic acid Chemical class OP(O)(=O)CP(O)(O)=O MBKDYNNUVRNNRF-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N monoethyl amine Natural products CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- IOKYPACLTOWHCM-UHFFFAOYSA-N n,n-diethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(CC)CC IOKYPACLTOWHCM-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 1
- JZBRFIUYUGTUGG-UHFFFAOYSA-J tetrapotassium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical class [K+].[K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O JZBRFIUYUGTUGG-UHFFFAOYSA-J 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- KCYJBQNPOFBNHE-UHFFFAOYSA-K trisodium;hydroxy-(1-hydroxy-1-phosphonatoethyl)phosphinate Chemical compound [Na+].[Na+].[Na+].OP(=O)([O-])C(O)(C)P([O-])([O-])=O KCYJBQNPOFBNHE-UHFFFAOYSA-K 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/40—Monoamines or polyamines; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
Definitions
- This invention relates to detergent compositions that clean well and also act as textile softeners.
- organic textile softening compounds are cationic materials that are reactive towards the anionic surfactants used in conventional laundry detergents. If both types of material are formulated in a single product, they tend to interact on addition to a wash liquor and, although in some instances the resulting complex has useful textile softening properties, its formation normally depresses the cleaning performance of the formulation and is therefore generally considered undesirable.
- compositions have been proposed that have sought to minimise the mutual reactivity of the anionic and cationic materials by the addition of compatibilising compounds such as the amido amines and fatty acids described in U.S. Patent Nos. 3,886,075 and 3,954,632.
- compatibilising compounds such as the amido amines and fatty acids described in U.S. Patent Nos. 3,886,075 and 3,954,632.
- An alternative approach has been to incorporate one of the reactant materials in a form that inhibits its contact with the other in the wash liquor and examples of this type of formulation are taught in U.S. Patent Nos. 3,936,537 and 3 , 644 ,2 03 .
- the performance of these compositions is however sensitive to the washing conditions that are employed.
- nonionic surfactants have been proposed in place of the conventional anionic surfactants and compositions of this type are described in e.g. British Patent Specification No. 1,079,388, German Auslegeschrift 1,220,956 and U.S. Patent No. 3,607,763.
- levels of nonionic surfactant sufficient to provide good cleaning impair the softening of the cationic softener.
- Another proposal to provide acceptable cleaning and textile softening by avoiding the surfactant-softener interaction has been made in British Patent Specification No. 1,514,276 which teaches the use of certain long chain tertiary amines that are nonionic in character at the wash liquor pH existing when a conventional laundry detergent is used.
- detergent compositions containing smectite-type clays and certain cationic compounds can be formulated which have cleaning performance equivalent to that of commercially available heavy duty laundry detergents together with textile softening performance that approaches that of rinse added fabric softeners.
- component (b) is a C 12 -C 14 alkyl tri C 1 -C 4 alkyl or C 1 -C 4 hydroxy alkyl ammonium salt and component (c) comprises a montmorillonite.
- component (b) is added to preformed spray dried detergent granules comprising components (a), (c) and also a detergent builder salt component (d).
- the invention comprises three components, namely the anionic surfactant component (a), the the water soluble cationic component (b), and the smectite type clay component (c).
- anionic surfactants can be used in the compositions of the present invention.
- Suitable anionic non-soap surfactants are water soluble salts of alkyl benzene sulfonates, alkyl sulfates, alkyl polyethoxy ether sulfates, paraffin sulfonates, alphaolefin sulfonates, alpha-sulfocarboxylates and their esters, alkyl glyceryl ether sulfonates, fatty acid monoglyceride sulfates and sulfonates, alkyl phenol polyethoxy ether sulfates, 2- acyloxy-alkane-l-sulfonates, and beta-alkyloxy alkane sulfonates.
- Soaps are also suitable anionic surfactants.
- Especially preferred alkyl benzene sulfonates have about 9 to about 15 carbon atoms in'a linear or branched alkyl chain, more especially about 11 to about 13 carbon atoms.
- Suitable alkyl sulfates have about 10 to about 22 carbon atoms in the alkyl chain, more especially from about 12 to about 18 carbon atoms.
- Suitable alkyl polyethoxy ether sulfates have about 10 to about 18 carbon atoms in the alkyl chain and have an average of about 1 to about 12 - CH 2 CH 2 0- groups per molecule, especially about 10 to about 16 carbon atoms in the alkyl chain and an average of about 1 to about 6 -CH 2 CH 2 0- groups per molecule.
- Suit.able paraffin sulfonates are essentially linear and contain from about 8 to about 24 carbon atoms, more especially from about 14 to about 18 carbon atoms.
- Suitable alphaolefin sulfonates have about 10 to about 24 carbon atoms, more especially about 14 to about 16 carbon atoms; alphaolefin sulfonates can be made by reaction with sulfur trioxide followed by neutralization under conditions such that any sultones present are hydrolyzed to the corresponding hydroxy alkane sulfonates.
- Suitable alpha-sulfocarboxylates contain from about 6 to about 20 carbon atoms; included herein are not only the salts of alpha- sulfonated fatty acids but also their esters made from alcohols containing about 1 to about 14 carbon atoms.
- Suitable alkyl glyceryl ether sulfates are ethers of alcohols having about 10 to about 18 carbon atoms, more especially those derived from coconut oil and tallow.
- Suitable alkyl phenol polyethoxy ether sulfates have about 8 to about 12 carbon atoms in the alkyl chain and an average of about 1 to about 6-CH 2 CH 2 0- groups per molecule.
- Suitable 2-acyloxy-alkane-l-sulfonates contain from about 2 to about 9 carbon atoms in the acyl group and about 9 to about 23 carbon atoms in the alkane moiety.
- Suitable beta-alkyloxy alkane sulfonates contain about 1 to about 3 carbon atoms in the alkyl group and about 8 to about 20 carbon atoms in the alkane moiety.
- alkyl chains of the foregoing non-soap anionic surfactants can be derived from natural sources such as coconut oil or tallow, or can be made synthetically as for example using the Ziegler or Oxo processes. Water solubility can be achieved by using alkali metal, ammonium, or alkanol-ammonium cations; sodium is preferred. Mixtures of anionic surfactants are contemplated by this invention; a satisfactory mixture contains alkyl benzene sulfonate having 11 to 13 carbon atoms in the alkyl group and alkyl sulfate having 12 to 18 carbon atoms in the alkyl group.
- Suitable soaps contain about 8 to about 18 carbon atoms, more especially about 12 to about 18'carbon atoms.
- Soaps can be made by direct saponification of natural fats and oils such as coconut oil, tallow and palm oil, or by the neutralization of free fatty acids obtained from either natural or synthetic sources.
- the soap cation can be alkali metal, ammonium or alkanol-ammonium; sodium is preferred.
- compositions contain from 3 to 40% of organic detergent, preferably from 4 to 15 of anionic detergent, more preferably 5-10% of anionic surfactant.
- the second essential component of the compositions of the present invention is an organic nitrogenous compound capable of existing in cationic form in a 0.1% aqueous solution at pH 10.
- This can be a compound of any of the following types;
- R 7 is C 8 -C 16 alkyl
- each of R 8 ,R 9 , and R 10 is independently selected from C 1 -C 4 alkyl, C 1 -C 4 hydroxy alkyl, benzyl, and -(C 2 H 4 O) x H where x has a value from 2 to 5, and X is an anion.
- R 8 ,R 9 , and R 10 should be benzyl.
- the preferred alkyl chain length for R 7 is C 12 -C 14 particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived synthetically by olefin build up or OXO alcohol synthesis.
- Preferred groups for R 8 R 9 and R 10 are methyl and hydroxyethyl groups and the anion X may be selected from halide, methosul- phate, acetate and phosphate ions.
- quaternary ammonium compounds are coconut trimethyl anunonium bromide - coconut methyl dihydroxyethyl ammonium bromide decyl triethyl ammonium chloride decyl dimethyl hydroxyethyl ammonium bromide myristyl trimethyl ammonium methyl sulphate lauryl dimethyl benzyl ammonium bromide lauryl methyl (ethenoxy) 4 ammonium bromide
- R 11 is C 8 -C 14 alkyl
- R 12 and R 13 are independently selected from hydrogen, C l -C 4 alkyl, C l -C 4 hydroxyalkyl, benzyl or -(C 2 H 4 O) x H where x has a value from 2 to 5, and the water soluble salts thereof.
- Suitable amine salts can be the hydrohalide salts of primary, secondary, or tertiary amines, examples of such amines being:
- compositions of the present invention combine good softening and cleaning performance and in order to maintain the latter it is essential that the overall surfactant character be anionic.
- the molar ratio of the cationic component (b) to the anionic surfactant component (a) should therefore be less than 1:1 and desirably should be less than 1:1.5. In preferred - embodiments of the invention such as heavy duty laundry detergent formulations, the molar ratio should be less than 1:2.
- the cationic compound will normally be present in an amount of from 0.5% to 1.5% by weight of the composition, preferably from 1% to 5% and most preferably from 1.5% to 3% by weight.
- the third component of the invention is a smectite-type clay having a particle size which cannot be perceived tactilely.
- Impalpable clays have particle sizes below about 50 microns; the clays used herein normally have a particle size range of from about 5 microns to about 50 microns.
- the clay minerals can be described as expandable, three-layer clays, i.e., aluminosilicates and magnesium silicates, having an ion exchange capacity of at least 50 meq/100 g. of clay and preferably at least 60 meq/100 g. of clay.
- expandable as used to describe clays relates to the ability of the layered clay structure to be swollen, or expanded, on contact with water.
- the three-layer expandable clays used herein are those materials classified geologically as smectites.
- the dioctahedral minerals are primarily trivalent metal ion-based clays and are comprised of the prototype pyrophyllite and the members montmorillonite (OH) 4 Si 4- y (Al 4-x Mg x )O 20 , nontronite (OH) 4 Si 8-y Al y (Al 4-x Fe x )O 20 , and volchonskoite (OH) 4 Si 8-y Al y (Al 4-x Cr x )O 20 , where x has a value of from 0 to about 4.0 and y-has a value of from O to about 2.0.
- montmorillonites having exchange capacities greater than 50 meq/100 g. are suitable for the present invention and provide fabric softening softening
- the trioctahedral minerals are primarily divalent metal ion based and comprise the prototype talc and the members hectorite (OH) 4 Si 8-y Al y (Mg 6-x Li x )O 20 , saponite (OH) 4 Si a- y Al y (Zn 6-y Al x )O 20 , vermiculite (OH) 4 Si 8-y Al y (Mg 6-x Fe x )O 20 , wherein y has a value of 0 to about 6.0.
- Hectorite and saponite are the only minerals in this class that are of value in the present invention, the fabric softening performance being related to the type of exchangeable cationic as well as to the exchange capacity.
- the range of the water of hydration in the above formulas can vary with the processing to which the clay has been subjected. This is immaterial to the use of the smectite clays in the present invention in that the expandable characteristics of the hydrated clays are dictated by the silicate lattice structure.
- the clays employed in the compositions of the present invention contain cationic counterions such as protons, sodium ions, potassium ions, calcium ions, and lithium ions. It is customary to distinguish between clays on the basis of one cation predominantly or exclusively absorbed.
- a sodium clay is one in which the absorbed cation is predominantly sodium.
- Such absorbed cations can become involved in exchange reactions with cations present in aqueous solutions.
- a typical exchange reaction involving a smectite-type clay is expressed by the following equation.
- the cation exchange capacity of a clay mineral relates to such factors as the expandable properties of the clay, the charge of the clay, which, in turn, is determined at least in part by the lattice structure, and the like.
- the ion exchange capacity of clays varies widely in the range from about 2 mcq/100 g. for kaolinites to about 150 meq/100 g., and greater, for certain smectite clays.
- Illite clays although having a three layer structure, are of a non- expanding lattice type and have an ion exchange capacity somewhere in the lower-portion of the range, i.e., around 26 meq/100 g. for an average illite clay.
- Attapulgites another class of clay minerals, have a spicular (i.e. needle-like) crystalline form with a low cation exchange capacity (25-30 meq/100 g.).
- Their structure is composed of chains of silica tetrahedrons linked together by octahedral groups of oxygens and hydroxyls containing Al and Mg atoms.
- smectite clays useful herein can be characterised as montmorillonite, hectorites, and saponite clay minerals having an ion exchange capacity of at least about 50 meq/100 g. and preferably at least 60 meq/100 g.
- Most of the smectite clays useful in the compositions herein are commercially available under various trade names, for example, ThixogelNo.l and Gelwhite GP from Georgia Kaolin Co., Elizabeth, New Jersey; Imvite K from Industrial Mineral Ventures; Volclay BC and Volclay 325, from American Colloid Co., Skokie Illinois; and Veegum F from R.T. Vanderbilt. It is to be recognised that such smectite minerals obtained under the foregoing tradenames can comprise mixtures of the various discrete mineral entities. Such mixtures of the smectite minerals are suitable for use herein.
- Gelwhite GP is an extremely white form of smectite clay and is therefore preferred when formulating white granular detergent compositions.
- Volclay BC which is a smectite clay mineral containing at least 3% of iron (expressed as Fe 2 0 3 ) in the crystal lattice, and which has a very high ion exchange capacity, is one of the most efficient and effective clays for use in detergent softening compositions. Imvite K is also very satisfactory.
- Appropriate clay minerals for use herein can be selected by virtue of the fact that smectites exhibit a true 14A x-ray diffraction pattern.
- This characteristic exchange pattern taken in combination with exchange capacity measurements performed in the manner noted above, provides a basis for selecting particular smectite-type minerals for use in the compositions disclosed herein.
- the smectite clay minerals useful in the present invention are hydrophilic in nature, i.e., they display swelling characteristics in aqueous media.
- the smectite clay is present in an amount of from 1.5% to 45% by weight of the composition, preferably from about 2% to 15%, especially from about 5% to about 12% Optional Ingredients
- the detergent compositions of the present invention may of course include, as optional ingredients, components that are usually found in laundry detergents.
- nonionic and zwitterionic surfactants include nonionic and zwitterionic surfactants, builder salts, bleaching agents and organic precursors therefor, suds suppression agents, soil suspending and anti-redeposition agents, enzymes, optical brighteners, colouring agents and perfumes.
- Nonionic and zwitterionic surfactants may be incorporated in amounts of up to 50% by weight of the total surfactant but normally are present in amounts of less than 30% of the total surfactant.
- total surfactant is meant the sum of the anionic surfactant (a) cationic component (b) and any added nonionic and/or zwitterionic surfactant.
- the incorporation of 15-25% nonionic surfactant based on the total surfactant weight (corresponding to 1-2% on a total composition basis) has been found to provide advantages in the removal of oily soils.
- Suitable nonionics are water soluble ethoxylated materials of HLB 11.5-17.0 and include (but are not limited to) C 10 -C 20 primary and secondary alcohol ethoxylates and C 6 -C 10 alkylphenol ethoxylates.
- C 14 -C 18 linear primary alcohols condensed with from seven to thirty moles of ethylene oxide per mole of alcohol are preferred, examples being C 14 - C 15 (EO) 7 , C 16 -C 18 ( EO ) 25 and especially C 16 -C 18 (EO) 11 .
- Suitable zwitterionic surfactants include the C 12 -C 16 alkyl betaines and sultaines. These and other zwitterionic and nonionic surfactants are disclosed in Laughlin & Heuring USP 3,929,678.
- Detergent builder salts are a preferred component (d) of the compositions of-the invention and can be inorganic or organic in character.
- suitable water-soluble, inorganic alkaline detergent builder salts include the alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates, and silicates. Specific examples of such salts.include the sodium and potassium tetraborates, bicarbonates, carbonates, tripolyphosphates, pyrophosphates, penta-polyphosphates and hexametaphosphates. Sulphates are usually also present.
- Suitable organic alkaline detergency builder salts are:
- Mixtures of organic and/or inorganic builders can be used herein.
- One such mixture of builders is disclosed in Canadian Patent No. 755,038, e.g. a ternary mixture of sodium tripolyphosphate, trisodium nitrilotriacetate, and trisodium ethane-1-hydroxy-1,1-diphosphonate.
- a water-soluble material capable of forming a water- insoluble reaction product with water hardness cations preferably in combination with a crystallization seed which is capable of providing growth sites for said reaction product.
- Preferred water soluble builders are sodium tripolyphosphate and sodium silicate, and usually both are present.
- a substantial proportion for instance from 3.% to 15% by weight of the composition of sodium silicate (solids) or ratio (weights ratio SiO 2 :Na 2 O) from l:l to 3.5:1 be employed.
- a further class of detergency builder materials useful in the present invention are insoluble sodium alumino silicates, particularly those described in Belgian Patent 814,874 issued November 12, 1974 incorporated herein by reference.
- This patent discloses and claims detergent compositions containing sodium aluminosilicates of the formula . wherein z and y are integers equal to at least 6, the - molar ratio of z to y is in the range of from 1.0:1 to about 0.5:1 and x is an integer from about 15 to about 264.
- a preferred material is Na 12 (Si O2 AlO 2 ) 12 27H 2 O. If present, incorporation of about 5% to 25% by weight of aluminosilicate is suitable, partially replacing water-soluble builder salts, provided that sufficient water-soluble alkaline salts remain to provide the specified pH of the composition in aqueous solution.
- the detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from 20% to 70% and most usually from 30% to 60% by weight.
- Bleaching agents useful in the compositions of the invention include sodium perborate, sodium percarbonate and other perhydrates at levels of from 5% to 35% by weight of the composition.
- Organic peroxy bleach precursors such as tetra acetyl ethylene diamine and tetra acetyl glycouril can also be included and these and other precursors are disclosed in Belgian Patent No. 859461 published April 6th, 1978
- bleach stabilisers are also preferred components usually at levels of from 0.2% to 2% by weight of the composition.
- the stabilisers may be organic in nature such as the previously mentioned amino polyacetates and amino polyphosphonates or may be inorganic such as magnesium silicate. In the latter case the material may be added to the formulation or formed in situ by the addition of a water-soluble magnesium salt to a slurried detergent mix containing an alkali metal silicate.
- Suds controlling agents are often present. These include suds boosting or suds stabilising agents such as mono- or di-ethanolarnides of fatty acids. More often in modern detergent compositions, suds suppressing agents are required. Soaps especially those having > 18 carbon atoms, or the corresponding fatty acids, can act as effective suds suppressors if included in the anionic surfactant component of the present compositions. Usually about 1% to about 4% of such soap is effective as a suds suppressor. Very suitable soaps when suds suppression is a primary reason for their use, are those derived from Hyfac (C 18 -C 22 hardened marine oil fatty acids available from the Humko Corporation).
- non-soap suds suppressors are preferred in synthetic detergent based compositions of the invention since soap or fatty acid tends to give rise to a characteristic odour in these compositions.
- Preferred suds suppressors comprise silicones.
- these may be employed a particulate suds suppressor comprising silicone and silanated silica releasably enclosed in water soluble or dispersible substantially non-surface active detergent impermeable carrier.
- Suds suppressing agent of this sort are dis-: closed in British patent specification 1,407,997.
- a very suitable granular (prilled) suds suppressing product comprises 7% silica/silicone (15% by weight silanated silica, 85% silicone, obtained from Messrs. Dow Corning), 65% sodium tripolyphosphate, 25% Tallow alcohol condensed with 25 molar proportions of ethylene oxide, and 3% moisture.
- silica/silicone suds suppressor employed depends upon the degree of suds suppression desired but it is often in the range from 0.01% to 0.5% by weight of the detergent composition.
- Other suds suppressors which may be used are water insoluble, preferably microcrystalline, waxes having melting point in the range from 35 to 125°C and saponification value less than 100, as described in British patent specification 1,492,938.
- suds suppressing systems are mixtures of hydrocarbon oil, a hydrocarbon wax and hydrophobic silica as described in European patent application 782000035 and, especially, particulate suds suppressing compositions comprising such mixtures, combined with a nonionic ethoxylate having hydrophilic lipophilic balance in the range from 14-19 and a compatibilising agent capable of forming inclusion compounds, such as urea.
- a compatibilising agent capable of forming inclusion compounds such as urea.
- Soil suspending agents are usually present at about 0.1 to 10%, such as water soluble salts of carboxymethyl cellulose, carboxyhydroxymethyl cellulose, polyethylene glycols of molecular weight from about 400 to 10000 and copolymers of methylvinylether and maleic anhydride or acid, available from the General Aniline and Film Corporation under the Trade Name Gantrez.
- Proteolytic, amylolytic or lipolytic enzymes especially proteolytic, and optical brighteners, of anionic, cationic or nonionic types, especially the derivatives of sulphonated triazinyl diamino stilbene may be present.
- a further useful additive is a photo- activated bleach comprising mixture of the tri- and tetra sulphonated derivatives of zinc phthalocyanine as described in B.P. Specification Nos. 1372035 and 1408144.
- sodium salts have been referred to potassium, lithium or ammonium or amine salts may be used instead if their extra cost etc., are justified for special.reasons.
- the detergent compositions may be prepared in any way, as appropriate to their physical form, as by mixing the components, co-agglomerating them or dispersing them in a liquid carrier.
- the compositions are granular and incorporate a detergent builder salt and are prepared by spray drying an aqueous slurry of the non-heat-sensitive components, (a), (c) and the builder salt (d) to form spray dried granules into'iihich may be admixed the heat sensitive components such as persalts, enzymes, perfumes etc.
- the water soluble cationic (b) may be included in the slurry for spray drying, or it may be incorporated by dissolving or dispersing the cationic component in water or another suitable volatile liquid and then spraying this solution or dispersion onto the spray dried granules before or after other heat sensitive solids have been dry mixed with them.
- the cationic component (b) can be dry mixed together with the other heat sensitive solids.
- the clay component may be added to the slurry for spray drying or may be dry mixed, as preferred for reasons unrelated to its softening effect, such as for optimum colour of the product.
- compositions were made up The compositions were made by first forming designated ingredients (a) into spray dried base granules. A concentrated aqueous solution of the quaternary ammonium compound (b) was then made up and sprayed on to the base powder to give crisp free flowing granules into which were dry mixed the remaining ingredients (c).
- compositions were then used to wash 81b soiled fabric loads in a Miele Model 422 Drum Automatic machine set to a prewash-mainwash cycle in which the mainwash was a boil wash.
- the water hardness was 14° Clark (Ca:Mg molar ratio 2:1) and the product usage was 70g in the prewash and 140 g in the mainwash.
- Artifically soiled cotton tracers and clean terry towelling tracers were added to each wash to permit evaluation of respectively, the cleaning and softening performance of the compositions. Following the wash each load was air dried at ambient temperatures before being assessed by an expert panel. No differences in cleaning performance were apparent between either of the formulations but the softness assessment was as follows.
- composition B was rated better for softness than A by 1.62 panel score units with a least significant difference (LSD) of 0.39 psu at the 95% confidence level.
- LSD least significant difference
- compositios B in accordance with the invention is superior in fabric softening performance to the prior art composition A whilst being equivalent to or slightly better than Composition A in cleaning performance.
- the C 14 alkyl trimethyl quaternary component may be replaced by lauryl methyl dihydroxyethyl ammonium bromide, lauryl primary amine, C 12 -C 14 alkyl dimethyl amine, coconut alkyl trimethyl ammonium bromide and. N-tallowyl propylene diamine diacetate, whilst the sodium montmorillonite may be replaced by calcium montmorillonite, sodium hectorite or sodium saponite.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- This invention relates to detergent compositions that clean well and also act as textile softeners.
- Numerous attempts have been made to formulate laundry detergent compositions that have both good cleaning properties and also textile softening properties so as to avoid the need to use a separate rinse-added textile softener product in addition to the usual laundry detergent. As cleaning by definition involves the removal of material from the textile surface and as textile softening normally involves deposition of material onto the same surface, these attempts have necessarily required a compromise in formulation to be reached between cleaning and softening performance.
- Furthermore, the most common commercially available organic textile softening compounds are cationic materials that are reactive towards the anionic surfactants used in conventional laundry detergents. If both types of material are formulated in a single product, they tend to interact on addition to a wash liquor and, although in some instances the resulting complex has useful textile softening properties, its formation normally depresses the cleaning performance of the formulation and is therefore generally considered undesirable.
- In order to overcome this problem, compositions have been proposed that have sought to minimise the mutual reactivity of the anionic and cationic materials by the addition of compatibilising compounds such as the amido amines and fatty acids described in U.S. Patent Nos. 3,886,075 and 3,954,632. An alternative approach has been to incorporate one of the reactant materials in a form that inhibits its contact with the other in the wash liquor and examples of this type of formulation are taught in U.S. Patent Nos. 3,936,537 and 3,644,203. The performance of these compositions is however sensitive to the washing conditions that are employed.
- In an attempt to avoid the reactivity problem altogether, nonionic surfactants have been proposed in place of the conventional anionic surfactants and compositions of this type are described in e.g. British Patent Specification No. 1,079,388, German Auslegeschrift 1,220,956 and U.S. Patent No. 3,607,763. However it has been found that levels of nonionic surfactant sufficient to provide good cleaning impair the softening of the cationic softener. Another proposal to provide acceptable cleaning and textile softening by avoiding the surfactant-softener interaction has been made in British Patent Specification No. 1,514,276 which teaches the use of certain long chain tertiary amines that are nonionic in character at the wash liquor pH existing when a conventional laundry detergent is used. The commonly- assigned British Patent Application No. 11340 published May 28, 1980 and British Patent Application No. 7923527 filed July 5, 1979 respectively also disclose cleaning and softening compositions comprising a combination of a long chain tertiary amine and a smectite-type clay in an anionic surfactant based detergent. The use of smectite-type clays as softening agents in detergent compositions is taught in British Patent Specification No. 1,400;898. This type of softening agent does not affect the cleaning performance of the detergent composition but, if used on its own, requires a high level of incorporation for effective softening performance possibly because the deposition of the clay on fabrics is not very efficient in the presence of anionic.surfactants.
- It has now been found that detergent compositions containing smectite-type clays and certain cationic compounds can be formulated which have cleaning performance equivalent to that of commercially available heavy duty laundry detergents together with textile softening performance that approaches that of rinse added fabric softeners.
- According to the present invention there is provided a detergent composition comprising
- (a) 3%-40% of an anionic surfactant
- (b) 0.5%-150% of an organic nitrogenous compound capable of existing in cationic form in a 0.1% aqueous solution of pH 10 and selected from the group consisting of
- (i) quaternary ammonium compounds of formula
- (ii) aliphatic amines of general formula
- (c) from 1.5% to 45% by weight of the composition of an impalpable smectite-type clay having an ion exchange capacity of at least 50 meq per lOOg, provided that the molar ratio of component (b) to component
- (a) is less than 1:1.
- Preferably component (b) is a C12-C14 alkyl tri C1-C4 alkyl or C1-C4 hydroxy alkyl ammonium salt and component (c) comprises a montmorillonite. In an especially preferred form of this embodiment component (b) is added to preformed spray dried detergent granules comprising components (a), (c) and also a detergent builder salt component (d).
- In its broadest aspect the invention comprises three components, namely the anionic surfactant component (a), the the water soluble cationic component (b), and the smectite type clay component (c).
- A wide range of anionic surfactants can be used in the compositions of the present invention.
- Suitable anionic non-soap surfactants are water soluble salts of alkyl benzene sulfonates, alkyl sulfates, alkyl polyethoxy ether sulfates, paraffin sulfonates, alphaolefin sulfonates, alpha-sulfocarboxylates and their esters, alkyl glyceryl ether sulfonates, fatty acid monoglyceride sulfates and sulfonates, alkyl phenol polyethoxy ether sulfates, 2- acyloxy-alkane-l-sulfonates, and beta-alkyloxy alkane sulfonates.. Soaps are also suitable anionic surfactants.
- Especially preferred alkyl benzene sulfonates have about 9 to about 15 carbon atoms in'a linear or branched alkyl chain, more especially about 11 to about 13 carbon atoms. Suitable alkyl sulfates have about 10 to about 22 carbon atoms in the alkyl chain, more especially from about 12 to about 18 carbon atoms. Suitable alkyl polyethoxy ether sulfates have about 10 to about 18 carbon atoms in the alkyl chain and have an average of about 1 to about 12 - CH2CH20- groups per molecule, especially about 10 to about 16 carbon atoms in the alkyl chain and an average of about 1 to about 6 -CH2CH20- groups per molecule.
- Suit.able paraffin sulfonates are essentially linear and contain from about 8 to about 24 carbon atoms, more especially from about 14 to about 18 carbon atoms. Suitable alphaolefin sulfonates have about 10 to about 24 carbon atoms, more especially about 14 to about 16 carbon atoms; alphaolefin sulfonates can be made by reaction with sulfur trioxide followed by neutralization under conditions such that any sultones present are hydrolyzed to the corresponding hydroxy alkane sulfonates. Suitable alpha-sulfocarboxylates contain from about 6 to about 20 carbon atoms; included herein are not only the salts of alpha- sulfonated fatty acids but also their esters made from alcohols containing about 1 to about 14 carbon atoms.
- Suitable alkyl glyceryl ether sulfates are ethers of alcohols having about 10 to about 18 carbon atoms, more especially those derived from coconut oil and tallow. Suitable alkyl phenol polyethoxy ether sulfates have about 8 to about 12 carbon atoms in the alkyl chain and an average of about 1 to about 6-CH2CH20- groups per molecule. Suitable 2-acyloxy-alkane-l-sulfonates contain from about 2 to about 9 carbon atoms in the acyl group and about 9 to about 23 carbon atoms in the alkane moiety. Suitable beta-alkyloxy alkane sulfonates contain about 1 to about 3 carbon atoms in the alkyl group and about 8 to about 20 carbon atoms in the alkane moiety.
- The alkyl chains of the foregoing non-soap anionic surfactants can be derived from natural sources such as coconut oil or tallow, or can be made synthetically as for example using the Ziegler or Oxo processes. Water solubility can be achieved by using alkali metal, ammonium, or alkanol-ammonium cations; sodium is preferred. Mixtures of anionic surfactants are contemplated by this invention; a satisfactory mixture contains alkyl benzene sulfonate having 11 to 13 carbon atoms in the alkyl group and alkyl sulfate having 12 to 18 carbon atoms in the alkyl group.
- Suitable soaps contain about 8 to about 18 carbon atoms, more especially about 12 to about 18'carbon atoms. Soaps can be made by direct saponification of natural fats and oils such as coconut oil, tallow and palm oil, or by the neutralization of free fatty acids obtained from either natural or synthetic sources. The soap cation can be alkali metal, ammonium or alkanol-ammonium; sodium is preferred.
- The compositions contain from 3 to 40% of organic detergent, preferably from 4 to 15 of anionic detergent, more preferably 5-10% of anionic surfactant.
- The second essential component of the compositions of the present invention is an organic nitrogenous compound capable of existing in cationic form in a 0.1% aqueous solution at pH 10. This can be a compound of any of the following types;
-
- Examples of suitable quaternary ammonium compounds are coconut trimethyl anunonium bromide - coconut methyl dihydroxyethyl ammonium bromide decyl triethyl ammonium chloride decyl dimethyl hydroxyethyl ammonium bromide myristyl trimethyl ammonium methyl sulphate lauryl dimethyl benzyl ammonium bromide lauryl methyl (ethenoxy)4 ammonium bromide
-
- wherein R11 is C8-C14 alkyl, R12 and R13 are independently selected from hydrogen, Cl-C4 alkyl, Cl-C4 hydroxyalkyl, benzyl or -(C2H4O)xH where x has a value from 2 to 5, and the water soluble salts thereof.
- Suitable amine salts can be the hydrohalide salts of primary, secondary, or tertiary amines, examples of such amines being:
- Secondary Coconut methylamine
- primary myristyl amine
- lauryl dimethyl amine
- lauryl diethyl amine
- decyl dihydroxy ethyl amine
- tallow dimethyl amine
- secondary lauryl benzyl amine
- Coconut dimethyl amine
- dodecyl dipropyl amine
- As stated previously, the compositions of the present invention combine good softening and cleaning performance and in order to maintain the latter it is essential that the overall surfactant character be anionic. The molar ratio of the cationic component (b) to the anionic surfactant component (a) should therefore be less than 1:1 and desirably should be less than 1:1.5. In preferred - embodiments of the invention such as heavy duty laundry detergent formulations, the molar ratio should be less than 1:2.
- Subject to these constraints the cationic compound will normally be present in an amount of from 0.5% to 1.5% by weight of the composition, preferably from 1% to 5% and most preferably from 1.5% to 3% by weight.
- The third component of the invention is a smectite-type clay having a particle size which cannot be perceived tactilely. Impalpable clays have particle sizes below about 50 microns; the clays used herein normally have a particle size range of from about 5 microns to about 50 microns.
- The clay minerals can be described as expandable, three-layer clays, i.e., aluminosilicates and magnesium silicates, having an ion exchange capacity of at least 50 meq/100 g. of clay and preferably at least 60 meq/100 g. of clay. The term "expandable" as used to describe clays relates to the ability of the layered clay structure to be swollen, or expanded, on contact with water. The three-layer expandable clays used herein are those materials classified geologically as smectites.
- These are two distinct classes of smectite clays that can be broadly differentiated on the basis of the numbers of octahedral metal-oxygen arrangements in the central layer for a given number of silicon-oxygen atoms in the outer layers. The dioctahedral minerals are primarily trivalent metal ion-based clays and are comprised of the prototype pyrophyllite and the members montmorillonite (OH)4Si4- y (Al4-xMgx)O20, nontronite (OH)4 Si8-yAly(Al4-xFex)O20, and volchonskoite (OH)4Si8-yAly (Al4-xCrx)O20, where x has a value of from 0 to about 4.0 and y-has a value of from O to about 2.0. Of these only montmorillonites having exchange capacities greater than 50 meq/100 g. are suitable for the present invention and provide fabric softening softening benefits.
- The trioctahedral minerals are primarily divalent metal ion based and comprise the prototype talc and the members hectorite (OH)4Si8-yAly(Mg6-xLix)O20, saponite (OH)4Sia- yAly(Zn6-yAlx)O20, vermiculite (OH)4Si8-yAly (Mg6-xFex)O20, wherein y has a value of 0 to about 6.0. Hectorite and saponite are the only minerals in this class that are of value in the present invention, the fabric softening performance being related to the type of exchangeable cationic as well as to the exchange capacity. It is to be recognized that the range of the water of hydration in the above formulas can vary with the processing to which the clay has been subjected. This is immaterial to the use of the smectite clays in the present invention in that the expandable characteristics of the hydrated clays are dictated by the silicate lattice structure.
- As noted hereinabove, the clays employed in the compositions of the present invention contain cationic counterions such as protons, sodium ions, potassium ions, calcium ions, and lithium ions. It is customary to distinguish between clays on the basis of one cation predominantly or exclusively absorbed. For example, a sodium clay is one in which the absorbed cation is predominantly sodium. Such absorbed cations can become involved in exchange reactions with cations present in aqueous solutions. A typical exchange reaction involving a smectite-type clay is expressed by the following equation.
- Smectite clay (Na)+ smectite clay (NH4) + NaOH. Since in the foregoing equilibrium reaction one equivalent weight of ammonium ion replaces an equivalent weight of sodium, it is customary to measure cation exchange capacity (sometimes termed "base exchange capacity") in terms of milli-equivalents per 100 g. of clay (meq/100 g). The cation exchange capacity of clays can be measured in several ways, including by electrodialysis, by exchange with ammonium ion followed by titration or by a methylene blue procedure, all as fully set forth in Grimshaw, "The Chemistry and Physics of Clays", pp. 264-265, Interscience (1971). The cation exchange capacity of a clay mineral relates to such factors as the expandable properties of the clay, the charge of the clay, which, in turn, is determined at least in part by the lattice structure, and the like. The ion exchange capacity of clays varies widely in the range from about 2 mcq/100 g. for kaolinites to about 150 meq/100 g., and greater, for certain smectite clays. Illite clays although having a three layer structure, are of a non- expanding lattice type and have an ion exchange capacity somewhere in the lower-portion of the range, i.e., around 26 meq/100 g. for an average illite clay. Attapulgites, another class of clay minerals, have a spicular (i.e. needle-like) crystalline form with a low cation exchange capacity (25-30 meq/100 g.). Their structure is composed of chains of silica tetrahedrons linked together by octahedral groups of oxygens and hydroxyls containing Al and Mg atoms.
- It has been determined that illite, attapulgite, and kaolinite clays, with their relatively low ion exchange capacities, are not useful in the present compositions. However, the alkali metal montmorillonites, saponites, and hectorites, and certain alkaline earth metal varieties of these minerals such as calcium montmorillonites have been found to show useful fabric softening benefits when in corporated in the compositions in accordance with the present invention.
- Specific non-limiting examples of such fabric softening smectite clay minerals are:
- Sodium Montmorillonite
- Brock
- Volclay BC
- Gelwhite GP
- Thixo-Jel
- Ben-A-Gel
- Sodium Hectorite
- Veegum F
- Laponite SP
- Sodium Saponite
- Barasym NAS 100
- Calcium Montmorillonite
- Soft Clark
- Gelwhite L
- Imvite K
- Lithium Hectorite
- Barasym LIH 200
- Accordingly, smectite clays useful herein can be characterised as montmorillonite, hectorites, and saponite clay minerals having an ion exchange capacity of at least about 50 meq/100 g. and preferably at least 60 meq/100 g. Most of the smectite clays useful in the compositions herein are commercially available under various trade names, for example, ThixogelNo.l and Gelwhite GP from Georgia Kaolin Co., Elizabeth, New Jersey; Imvite K from Industrial Mineral Ventures; Volclay BC and Volclay 325, from American Colloid Co., Skokie Illinois; and Veegum F from R.T. Vanderbilt. It is to be recognised that such smectite minerals obtained under the foregoing tradenames can comprise mixtures of the various discrete mineral entities. Such mixtures of the smectite minerals are suitable for use herein.
- Within the classes of montmorillonites, hectorite and saponite clay minerals having a cation exchange capacity of at least about 50 meq/100 g., certain clays are preferred for fabric softening purposes. For example, Gelwhite GP is an extremely white form of smectite clay and is therefore preferred when formulating white granular detergent compositions. Volclay BC, which is a smectite clay mineral containing at least 3% of iron (expressed as Fe203) in the crystal lattice, and which has a very high ion exchange capacity, is one of the most efficient and effective clays for use in detergent softening compositions. Imvite K is also very satisfactory.
- Appropriate clay minerals for use herein can be selected by virtue of the fact that smectites exhibit a true 14A x-ray diffraction pattern. This characteristic exchange pattern, taken in combination with exchange capacity measurements performed in the manner noted above, provides a basis for selecting particular smectite-type minerals for use in the compositions disclosed herein.
- The smectite clay minerals useful in the present invention are hydrophilic in nature, i.e., they display swelling characteristics in aqueous media.
- When used in compositions according to the invention, the smectite clay is present in an amount of from 1.5% to 45% by weight of the composition, preferably from about 2% to 15%, especially from about 5% to about 12% Optional Ingredients
- The detergent compositions of the present invention may of course include, as optional ingredients, components that are usually found in laundry detergents.
- These include nonionic and zwitterionic surfactants, builder salts, bleaching agents and organic precursors therefor, suds suppression agents, soil suspending and anti-redeposition agents, enzymes, optical brighteners, colouring agents and perfumes.
- Nonionic and zwitterionic surfactants may be incorporated in amounts of up to 50% by weight of the total surfactant but normally are present in amounts of less than 30% of the total surfactant. By 'total surfactant'is meant the sum of the anionic surfactant (a) cationic component (b) and any added nonionic and/or zwitterionic surfactant. The incorporation of 15-25% nonionic surfactant based on the total surfactant weight (corresponding to 1-2% on a total composition basis) has been found to provide advantages in the removal of oily soils. Suitable nonionics are water soluble ethoxylated materials of HLB 11.5-17.0 and include (but are not limited to) C10-C20 primary and secondary alcohol ethoxylates and C6-C10 alkylphenol ethoxylates. C14-C18 linear primary alcohols condensed with from seven to thirty moles of ethylene oxide per mole of alcohol are preferred, examples being C14-C 15 (EO)7, C16-C18 (EO)25 and especially C16-C18 (EO)11.
- Suitable zwitterionic surfactants include the C12-C16 alkyl betaines and sultaines. These and other zwitterionic and nonionic surfactants are disclosed in Laughlin & Heuring USP 3,929,678.
- Detergent builder salts are a preferred component (d) of the compositions of-the invention and can be inorganic or organic in character. Non limiting examples of suitable water-soluble, inorganic alkaline detergent builder salts include the alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates, and silicates. Specific examples of such salts.include the sodium and potassium tetraborates, bicarbonates, carbonates, tripolyphosphates, pyrophosphates, penta-polyphosphates and hexametaphosphates. Sulphates are usually also present.
- Examples of suitable organic alkaline detergency builder salts are:
- (1) water-soluble amino polyacetates, e.g., sodium and potassium ethylenediaminetetraacetates, nitrilotriacetates, N-(2-hydroxyethyl) nitrilo- diacetates and diethylene triamine pentaacetates;
- (2) water-soluble salts of phytic acid, e.g. sodium and potassium phytates;
- (3) water-soluble polyphosphonates, including sodium, potassium and lithium salts of methylenediphos- phonic acid and the like and aminopolymethylene phosphonates such as ethylenediaminetetramethylene- phosphonate and diethylene triaminepentamethylene phosphonate.
- (4) water-soluble polycarboxylates such as the salts of lactic acid, succinic acid, malonic acid, maleic acid, citric acid, carboxymethylsuccinic acid, 2-oxa-l,l,3-propane tricarboxylic acid, 1,1,2,2-ethane tetracarboxylic acid, mellitic acid and pyromellitic acid.
- Mixtures of organic and/or inorganic builders can be used herein. One such mixture of builders is disclosed in Canadian Patent No. 755,038, e.g. a ternary mixture of sodium tripolyphosphate, trisodium nitrilotriacetate, and trisodium ethane-1-hydroxy-1,1-diphosphonate.
- Another type of detergency builder material useful in the present compositions and processes comprises a water-soluble material capable of forming a water- insoluble reaction product with water hardness cations preferably in combination with a crystallization seed which is capable of providing growth sites for said reaction product. Such "seeded builder" compositions are fully disclosed in British Patent Specification No. 1,424,406.
- Preferred water soluble builders are sodium tripolyphosphate and sodium silicate, and usually both are present. In particular, it is preferred that a substantial proportion, for instance from 3.% to 15% by weight of the composition of sodium silicate (solids) or ratio (weights ratio SiO2:Na2O) from l:l to 3.5:1 be employed.
- A further class of detergency builder materials useful in the present invention are insoluble sodium alumino silicates, particularly those described in Belgian Patent 814,874 issued November 12, 1974 incorporated herein by reference. This patent discloses and claims detergent compositions containing sodium aluminosilicates of the formula .
- The detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from 20% to 70% and most usually from 30% to 60% by weight.
- Bleaching agents useful in the compositions of the invention include sodium perborate, sodium percarbonate and other perhydrates at levels of from 5% to 35% by weight of the composition. Organic peroxy bleach precursors such as tetra acetyl ethylene diamine and tetra acetyl glycouril can also be included and these and other precursors are disclosed in Belgian Patent No. 859461 published April 6th, 1978
- In compositions incorporating oxygen bleaches, bleach stabilisers are also preferred components usually at levels of from 0.2% to 2% by weight of the composition. The stabilisers may be organic in nature such as the previously mentioned amino polyacetates and amino polyphosphonates or may be inorganic such as magnesium silicate. In the latter case the material may be added to the formulation or formed in situ by the addition of a water-soluble magnesium salt to a slurried detergent mix containing an alkali metal silicate.
- Suds controlling agents are often present. These include suds boosting or suds stabilising agents such as mono- or di-ethanolarnides of fatty acids. More often in modern detergent compositions, suds suppressing agents are required. Soaps especially those having > 18 carbon atoms, or the corresponding fatty acids, can act as effective suds suppressors if included in the anionic surfactant component of the present compositions. Usually about 1% to about 4% of such soap is effective as a suds suppressor. Very suitable soaps when suds suppression is a primary reason for their use, are those derived from Hyfac (C18-C22 hardened marine oil fatty acids available from the Humko Corporation).
- However, non-soap suds suppressors are preferred in synthetic detergent based compositions of the invention since soap or fatty acid tends to give rise to a characteristic odour in these compositions.
- Preferred suds suppressors comprise silicones. In particular these may be employed a particulate suds suppressor comprising silicone and silanated silica releasably enclosed in water soluble or dispersible substantially non-surface active detergent impermeable carrier. Suds suppressing agent of this sort are dis-: closed in British patent specification 1,407,997. A very suitable granular (prilled) suds suppressing product comprises 7% silica/silicone (15% by weight silanated silica, 85% silicone, obtained from Messrs. Dow Corning), 65% sodium tripolyphosphate, 25% Tallow alcohol condensed with 25 molar proportions of ethylene oxide, and 3% moisture. The amount of silica/silicone suds suppressor employed depends upon the degree of suds suppression desired but it is often in the range from 0.01% to 0.5% by weight of the detergent composition. Other suds suppressors which may be used are water insoluble, preferably microcrystalline, waxes having melting point in the range from 35 to 125°C and saponification value less than 100, as described in British patent specification 1,492,938.
- Yet other suitable suds suppressing systems are mixtures of hydrocarbon oil, a hydrocarbon wax and hydrophobic silica as described in European patent application 782000035 and, especially, particulate suds suppressing compositions comprising such mixtures, combined with a nonionic ethoxylate having hydrophilic lipophilic balance in the range from 14-19 and a compatibilising agent capable of forming inclusion compounds, such as urea. These particulate suds suppressing compositions are described in European patent application No. 0008830.
- Soil suspending agents are usually present at about 0.1 to 10%, such as water soluble salts of carboxymethyl cellulose, carboxyhydroxymethyl cellulose, polyethylene glycols of molecular weight from about 400 to 10000 and copolymers of methylvinylether and maleic anhydride or acid, available from the General Aniline and Film Corporation under the Trade Name Gantrez.
- Proteolytic, amylolytic or lipolytic enzymes, especially proteolytic, and optical brighteners, of anionic, cationic or nonionic types, especially the derivatives of sulphonated triazinyl diamino stilbene may be present. A further useful additive is a photo- activated bleach comprising mixture of the tri- and tetra sulphonated derivatives of zinc phthalocyanine as described in B.P. Specification Nos. 1372035 and 1408144.
- Colours, non-substantive, and perfumes, as required to improve the aesthetic acceptability of the product, are usually incorporated.
- Throughout the description herein where sodium salts have been referred to potassium, lithium or ammonium or amine salts may be used instead if their extra cost etc., are justified for special.reasons.
- The detergent compositions may be prepared in any way, as appropriate to their physical form, as by mixing the components, co-agglomerating them or dispersing them in a liquid carrier. Preferably the compositions are granular and incorporate a detergent builder salt and are prepared by spray drying an aqueous slurry of the non-heat-sensitive components, (a), (c) and the builder salt (d) to form spray dried granules into'iihich may be admixed the heat sensitive components such as persalts, enzymes, perfumes etc. The water soluble cationic (b) may be included in the slurry for spray drying, or it may be incorporated by dissolving or dispersing the cationic component in water or another suitable volatile liquid and then spraying this solution or dispersion onto the spray dried granules before or after other heat sensitive solids have been dry mixed with them. Alternatively the cationic component (b) can be dry mixed together with the other heat sensitive solids. The clay component may be added to the slurry for spray drying or may be dry mixed, as preferred for reasons unrelated to its softening effect, such as for optimum colour of the product.
- The invention is illustrated by the following non-limiting examples.
- The following compositions were made up
- The compositions were then used to wash 81b soiled fabric loads in a Miele Model 422 Drum Automatic machine set to a prewash-mainwash cycle in which the mainwash was a boil wash. The water hardness was 14° Clark (Ca:Mg molar ratio 2:1) and the product usage was 70g in the prewash and 140 g in the mainwash. Artifically soiled cotton tracers and clean terry towelling tracers were added to each wash to permit evaluation of respectively, the cleaning and softening performance of the compositions. Following the wash each load was air dried at ambient temperatures before being assessed by an expert panel. No differences in cleaning performance were apparent between either of the formulations but the softness assessment was as follows.
- In a paired comparison between terry towelling tracers washed in compositions A and B using a Scheffe scale of assessment, composition B was rated better for softness than A by 1.62 panel score units with a least significant difference (LSD) of 0.39 psu at the 95% confidence level. A comparison of the soiled swatches washed by each composition showed a slight advantage for composition B in soil removal, there being equivalence between the compositions on other soil stains.
- It can thus be seen that compositios B in accordance with the invention is superior in fabric softening performance to the prior art composition A whilst being equivalent to or slightly better than Composition A in cleaning performance.
- In this example the C14 alkyl trimethyl quaternary component may be replaced by lauryl methyl dihydroxyethyl ammonium bromide, lauryl primary amine, C12-C14 alkyl dimethyl amine, Coconut alkyl trimethyl ammonium bromide and. N-tallowyl propylene diamine diacetate, whilst the sodium montmorillonite may be replaced by calcium montmorillonite, sodium hectorite or sodium saponite.
-
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7933870 | 1979-09-29 | ||
GB7933870 | 1979-09-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0026529A1 true EP0026529A1 (en) | 1981-04-08 |
EP0026529B1 EP0026529B1 (en) | 1984-12-05 |
EP0026529B2 EP0026529B2 (en) | 1992-08-19 |
Family
ID=10508185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19800200878 Expired EP0026529B2 (en) | 1979-09-29 | 1980-09-18 | Detergent compositions |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0026529B2 (en) |
DE (1) | DE3069768D1 (en) |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087914A1 (en) * | 1982-03-01 | 1983-09-07 | The Procter & Gamble Company | Detergent composition |
FR2524903A1 (en) * | 1982-04-08 | 1983-10-14 | Colgate Palmolive Co | PARTICULATE SOFTENER FOR BENTONITE FABRICS, PROCESS FOR PREPARING SAME AND DETERGENT COMPOSITION CONTAINING SAME |
DE3311568A1 (en) * | 1982-04-08 | 1983-10-20 | Colgate Palmolive Co | PARTICULATE AND SOFTENING COARSE DETERGENT FOR TEXTILES |
EP0121949A1 (en) * | 1983-02-15 | 1984-10-17 | THE PROCTER & GAMBLE COMPANY | Anionic/cationic detergent mixture with irregular structure |
EP0123489A2 (en) * | 1983-04-20 | 1984-10-31 | The Procter & Gamble Company | Detergent compositions |
EP0146289A2 (en) * | 1983-11-29 | 1985-06-26 | The Procter & Gamble Company | Laundry compositions |
GB2151219A (en) * | 1983-11-05 | 1985-07-17 | Perchem Ltd | Organoclay materials |
EP0163910A1 (en) * | 1984-05-04 | 1985-12-11 | Hoechst Aktiengesellschaft | Washing materials containing softening agent |
EP0181508A2 (en) * | 1984-10-15 | 1986-05-21 | Süd-Chemie Ag | Washing additive |
EP0192630A2 (en) * | 1985-02-21 | 1986-08-27 | Monsanto Europe S.A./N.V. | Aminomethylenephosphonate compositions |
FR2585362A1 (en) * | 1985-07-25 | 1987-01-30 | Colgate Palmolive Co | ANTISTATIC DETERGENT LAUNDRY COMPOSITION AND SOFTENING COMPOSITIONS CONTAINING THE SAME |
FR2593517A1 (en) * | 1986-01-27 | 1987-07-31 | Colgate Palmolive Co | DETERGENT AND PARTICULATE SOFTENING COMPOSITION FOR FABRICS, PROCESS FOR PREPARING THE SAME AND ITS APPLICATION TO TISSUE WASHING |
EP0264615A1 (en) * | 1986-09-22 | 1988-04-27 | Henkel Kommanditgesellschaft auf Aktien | Laundry agent having a reduced phosphate content containing N-alkoxylated fatty acid amides |
EP0277522A2 (en) * | 1987-01-24 | 1988-08-10 | Henkel Kommanditgesellschaft auf Aktien | Detergent for softening textiles |
FR2611213A1 (en) * | 1987-02-20 | 1988-08-26 | Colgate Palmolive Co | SOLID DETERGENT AND SOFTENING COMPOSITIONS WITHOUT PHOSPHATE FOR LAUNDRY WASHING, CONTAINING DIAMONIC COMPOUND |
US4839075A (en) * | 1987-02-02 | 1989-06-13 | Henkel Kommanditgesellschaft Auf Aktien | Fabric-softening detergent |
US4851138A (en) * | 1986-09-02 | 1989-07-25 | Akzo, N.V. | Fabric softening composition and detergent-composition comprising the same |
WO1989009204A1 (en) * | 1988-04-02 | 1989-10-05 | Henkel Kommanditgesellschaft Auf Aktien | Quaternary ammonium compounds |
US4919845A (en) * | 1987-05-21 | 1990-04-24 | Henkel Kommanditgesellschaft Auf Aktien | Phosphate-free detergent having a reduced tendency towards incrustation |
EP0364881A2 (en) | 1988-10-21 | 1990-04-25 | Henkel Kommanditgesellschaft auf Aktien | Process for preparing granules containing surface-active agents |
AT394203B (en) * | 1982-04-08 | 1992-02-25 | Colgate Palmolive Co | PARTICULATE, BLEACHING AND SOFTENING TEXTILE DETERGENT, AND METHOD FOR PRODUCING AGGLOMERED BENTONITE PARTICLES |
US5149455A (en) * | 1988-04-15 | 1992-09-22 | Henkel Kommanditgesellschaft Auf Aktien | Process for increasing the density of spray dried, phosphate-reduced detergents |
DE4306665A1 (en) * | 1993-03-03 | 1994-09-08 | Sued Chemie Ag | Detergent additive for fabric softening detergents |
WO1995029217A1 (en) * | 1994-04-25 | 1995-11-02 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
WO1995029218A1 (en) * | 1994-04-25 | 1995-11-02 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
US5501810A (en) * | 1992-04-08 | 1996-03-26 | Henkel Kommanditgesellschaft Auf Aktien | Process for increasing the apparent density of spray-dried detergents |
WO1997043389A1 (en) * | 1996-05-17 | 1997-11-20 | The Procter & Gamble Company | Detergent composition |
WO1997044432A1 (en) * | 1996-05-17 | 1997-11-27 | The Procter & Gamble Company | Detergent composition |
US5767057A (en) * | 1993-09-04 | 1998-06-16 | Henkel-Ecolab Gmbh & Co. Ohg | Spray-dried granules of high apparent density |
US5880083A (en) * | 1994-08-16 | 1999-03-09 | Henkel Kommanditgesellschaft Auf Aktien | Liquid bleach-containing formulation for washing or cleaning |
US5883066A (en) * | 1993-06-28 | 1999-03-16 | The Procter & Gamble Company | Liquid detergent compositions containing cellulase and amine |
DE19948670A1 (en) * | 1999-10-08 | 2001-04-19 | Cognis Deutschland Gmbh | laundry detergent |
WO2001046088A2 (en) | 1999-12-22 | 2001-06-28 | Cognis Deutchland Gmbh & Co. Kg | Multi-component valuable-product mixtures in solid form for stimulating and promoting plant growth |
GB2366801A (en) * | 2000-09-19 | 2002-03-20 | Procter & Gamble | Detergent compositions with clay fabric softeners |
US6413929B1 (en) | 1996-03-26 | 2002-07-02 | Basf Aktiengesellschaft | Bleaching efficiency boosters for bleach and textile detergent compositions |
US6479452B2 (en) | 2000-06-29 | 2002-11-12 | Cognis Deutschland Gmbh & Co. Kg | Surfactant granules with an improved dissolving rate comprising alky and alkenyl sulfates |
US6494920B1 (en) | 1999-02-04 | 2002-12-17 | Cognis Deutschland Gmbh & Co. Kg | Detergent mixtures |
US6521578B1 (en) | 1999-04-22 | 2003-02-18 | Cognis Deutschland Gmbh | Cleaning agents for hard surfaces |
US6562769B1 (en) | 1997-10-23 | 2003-05-13 | Henkel Kommanditgesellschaft Auf Aktien | Method for producing aromatic beads |
US6610752B1 (en) | 1999-10-09 | 2003-08-26 | Cognis Deutschland Gmbh | Defoamer granules and processes for producing the same |
US6616705B2 (en) | 2000-09-08 | 2003-09-09 | Cognis Deutschland Gmbh & Co. Kg | Laundry detergent compositions |
US6620209B2 (en) | 2000-09-08 | 2003-09-16 | Cognis Deutschland Gmbh & Co. Kg | Laundry detergent compositions |
US6664429B1 (en) | 1999-08-20 | 2003-12-16 | Cognis Deutschland Gmbh & Co. Kg | Production of branched, largely unsaturated fatty alcohol polyglycolethers |
US6686327B1 (en) | 1999-10-09 | 2004-02-03 | Cognis Deutschland Gmbh & Co. Kg | Shaped bodies with improved solubility in water |
US6723867B1 (en) | 1999-08-20 | 2004-04-20 | Cognis Deutschland Gmbh & Co. Kg | Branched, substantially unsaturated fatty alcohol sulfates |
US6723135B2 (en) | 2000-09-19 | 2004-04-20 | Cognis Deutschland Gmbh & Co. Kg | Laundry detergents and cleaning products based on alkyl and/or alkenyl oligoglycosides and fatty alcohols |
US6730131B2 (en) | 2000-12-21 | 2004-05-04 | Cognis Deutschland Gmbh & Co. Kg | Nonionic surfactants |
US6730656B2 (en) | 2000-09-19 | 2004-05-04 | The Procter & Gamble Company | Detergent compositions |
US6756351B2 (en) | 2000-04-18 | 2004-06-29 | Cognis Deutschland Gmbh & Co. Kg | Detergents and cleaning agents |
US6780829B1 (en) | 1998-12-19 | 2004-08-24 | Cognis Deutschland Gmbh & Co. Kg | Tenside granulates comprising fatty alcohol sulfate and olefin sulfonates |
US6841614B1 (en) | 1998-10-29 | 2005-01-11 | Henkel Kommanditgesellschaft Auf Aktien | Polymer granules produced by fluidized bed granulation |
US6846796B2 (en) | 2000-04-15 | 2005-01-25 | Cognis Deutschland Gmbh & Co. Kg | Method for producing non-ionic tenside granulates |
US6881359B2 (en) | 2000-01-26 | 2005-04-19 | Cognis Deutschland Gmbh & Co. Kg | Processes for the preparation of low dust, limited particle size distribution, surfactant granules |
US6951838B1 (en) | 1999-09-15 | 2005-10-04 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US6977239B1 (en) | 1999-11-25 | 2005-12-20 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US7049279B1 (en) | 1999-11-25 | 2006-05-23 | Cognis Deutschland Gmbh & Co. Kg | Process for preparing detergent granules with an improved dissolution rate |
US7087570B2 (en) | 1999-12-24 | 2006-08-08 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US7098178B2 (en) | 2000-03-16 | 2006-08-29 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Silicic acid ester mixtures |
US7145001B1 (en) | 1999-10-27 | 2006-12-05 | Cognis Deutschland Gmbh & Co. Kg | Method for producing solid sugar surfactants |
US7186678B2 (en) | 1999-12-24 | 2007-03-06 | Cognis Deutschland Gmbh & Co. Kg | Tenside granules with improved disintegration rate |
US7199096B1 (en) | 1999-11-09 | 2007-04-03 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US7585825B2 (en) | 2004-04-23 | 2009-09-08 | Henkel Ag & Co. Kgaa | Scented solid substances comprising a non-ionic surfactant-impregnated carrier |
US8398961B2 (en) | 2005-12-24 | 2013-03-19 | Henkel Ag & Co. Kgaa | Powdery styling agents and the dispenser systems thereof |
DE102013226098A1 (en) | 2013-12-16 | 2015-06-18 | Henkel Kgaa | Silyl enol ethers of fragrance ketones or aldehydes |
DE102013226216A1 (en) | 2013-12-17 | 2015-06-18 | Henkel Ag & Co. Kgaa | Michael systems for perfume stabilization |
DE102013226602A1 (en) | 2013-12-19 | 2015-06-25 | Henkel Ag & Co. Kgaa | Use of CNGA2 agonists to enhance the olfactory effect of a fragrance |
EP2963103A1 (en) | 2014-07-04 | 2016-01-06 | Henkel AG & Co. KGaA | pH-sensitive nanocapsules |
DE102015002877A1 (en) | 2015-03-09 | 2016-09-15 | Henkel Ag & Co. Kgaa | Granular detergent or cleaner with improved dissolution rate |
DE102016201295A1 (en) | 2016-01-28 | 2017-08-03 | Henkel Ag & Co. Kgaa | C8-10 Alkylamidoalkylbetain as Antiknitterwirkstoff |
US10066191B2 (en) | 2014-02-20 | 2018-09-04 | Henkel Ag & Co. Kgaa | Washing or cleaning composition having improved foaming characteristics with a high level of soiling |
DE102017206013A1 (en) | 2017-04-07 | 2018-10-11 | Henkel Ag & Co. Kgaa | Detergents or cleaning agents with improved foaming behavior |
DE102017123282A1 (en) | 2017-10-06 | 2019-04-11 | Henkel Ag & Co. Kgaa | Hydrolysis-labile silyl enol ethers of fragrance ketones or aldehydes |
WO2019076588A1 (en) | 2017-10-20 | 2019-04-25 | Henkel Ag & Co. Kgaa | Thermolabile fragrance storage substances of fragrant ketones |
DE102017124612A1 (en) | 2017-10-20 | 2019-04-25 | Henkel Ag & Co. Kgaa | Hydrolysis-labile dienol silyl ethers of fragrance ketones or aldehydes |
DE102017127776A1 (en) | 2017-11-24 | 2019-05-29 | Henkel Ag & Co. Kgaa | Hydrolysis-labile heterocycles of perfume ketones or aldehydes |
EP3578629A1 (en) | 2018-06-07 | 2019-12-11 | Henkel AG & Co. KGaA | Method for the preparation of a liquid detergent composition comprising a preservative-free dye solution |
WO2021115724A1 (en) | 2019-12-11 | 2021-06-17 | Unilever Ip Holdings B.V. | Detergent composition |
US11155771B2 (en) | 2018-11-09 | 2021-10-26 | Henkel Ag & Co. Kgaa | Method for preparing a liquid washing or cleaning agent using a preservative-free dye solution |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8421801D0 (en) * | 1984-08-29 | 1984-10-03 | Unilever Plc | Detergent composition |
DE10019405A1 (en) | 2000-04-19 | 2001-10-25 | Cognis Deutschland Gmbh | Dry detergent granulate production comprises reducing fatty alcohol content in technical mixture of alkyl and/or alkenyl-oligoglycosides and mixing resultant melt with detergent additives in mixer or extruder |
DE10163856A1 (en) | 2001-12-22 | 2003-07-10 | Cognis Deutschland Gmbh | Hydroxy mixed ethers and polymers in the form of solid agents as a pre-compound for washing, rinsing and cleaning agents |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959155A (en) * | 1973-10-01 | 1976-05-25 | The Procter & Gamble Company | Detergent composition |
DE2648304A1 (en) * | 1975-10-31 | 1977-05-05 | Procter & Gamble Europ | LIQUID DETERGENT |
EP0000416A1 (en) * | 1977-07-18 | 1979-01-24 | THE PROCTER & GAMBLE COMPANY | Antistatic, fabric-softening detergent additive |
GB2020689A (en) * | 1978-05-15 | 1979-11-21 | Colgate Palmolive Co | Detergent and softening compositions |
EP0011340A1 (en) * | 1978-11-20 | 1980-05-28 | THE PROCTER & GAMBLE COMPANY | Detergent composition having textile softening properties |
-
1980
- 1980-09-18 EP EP19800200878 patent/EP0026529B2/en not_active Expired
- 1980-09-18 DE DE8080200878T patent/DE3069768D1/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959155A (en) * | 1973-10-01 | 1976-05-25 | The Procter & Gamble Company | Detergent composition |
DE2648304A1 (en) * | 1975-10-31 | 1977-05-05 | Procter & Gamble Europ | LIQUID DETERGENT |
EP0000416A1 (en) * | 1977-07-18 | 1979-01-24 | THE PROCTER & GAMBLE COMPANY | Antistatic, fabric-softening detergent additive |
GB2020689A (en) * | 1978-05-15 | 1979-11-21 | Colgate Palmolive Co | Detergent and softening compositions |
EP0011340A1 (en) * | 1978-11-20 | 1980-05-28 | THE PROCTER & GAMBLE COMPANY | Detergent composition having textile softening properties |
Cited By (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087914A1 (en) * | 1982-03-01 | 1983-09-07 | The Procter & Gamble Company | Detergent composition |
FR2524903A1 (en) * | 1982-04-08 | 1983-10-14 | Colgate Palmolive Co | PARTICULATE SOFTENER FOR BENTONITE FABRICS, PROCESS FOR PREPARING SAME AND DETERGENT COMPOSITION CONTAINING SAME |
DE3311568A1 (en) * | 1982-04-08 | 1983-10-20 | Colgate Palmolive Co | PARTICULATE AND SOFTENING COARSE DETERGENT FOR TEXTILES |
AT394203B (en) * | 1982-04-08 | 1992-02-25 | Colgate Palmolive Co | PARTICULATE, BLEACHING AND SOFTENING TEXTILE DETERGENT, AND METHOD FOR PRODUCING AGGLOMERED BENTONITE PARTICLES |
EP0121949A1 (en) * | 1983-02-15 | 1984-10-17 | THE PROCTER & GAMBLE COMPANY | Anionic/cationic detergent mixture with irregular structure |
EP0123489A3 (en) * | 1983-04-20 | 1987-05-20 | The Procter & Gamble Company | Detergent compositions |
EP0123489A2 (en) * | 1983-04-20 | 1984-10-31 | The Procter & Gamble Company | Detergent compositions |
GB2151219A (en) * | 1983-11-05 | 1985-07-17 | Perchem Ltd | Organoclay materials |
EP0146289A2 (en) * | 1983-11-29 | 1985-06-26 | The Procter & Gamble Company | Laundry compositions |
EP0146289A3 (en) * | 1983-11-29 | 1988-01-13 | The Procter & Gamble Company | Laundry compositions |
EP0163910A1 (en) * | 1984-05-04 | 1985-12-11 | Hoechst Aktiengesellschaft | Washing materials containing softening agent |
EP0181508A2 (en) * | 1984-10-15 | 1986-05-21 | Süd-Chemie Ag | Washing additive |
EP0181508A3 (en) * | 1984-10-15 | 1988-11-09 | Süd-Chemie Ag | Washing additive |
EP0192630A2 (en) * | 1985-02-21 | 1986-08-27 | Monsanto Europe S.A./N.V. | Aminomethylenephosphonate compositions |
EP0192630A3 (en) * | 1985-02-21 | 1988-09-07 | Monsanto Europe S.A. | Aminomethylenephosphonate compositions |
FR2585362A1 (en) * | 1985-07-25 | 1987-01-30 | Colgate Palmolive Co | ANTISTATIC DETERGENT LAUNDRY COMPOSITION AND SOFTENING COMPOSITIONS CONTAINING THE SAME |
FR2593517A1 (en) * | 1986-01-27 | 1987-07-31 | Colgate Palmolive Co | DETERGENT AND PARTICULATE SOFTENING COMPOSITION FOR FABRICS, PROCESS FOR PREPARING THE SAME AND ITS APPLICATION TO TISSUE WASHING |
BE1002175A5 (en) * | 1986-01-27 | 1990-10-02 | Colgate Palmolive Co | DETERGENT COMPOSITION AND PARTICULAR SOFTENER FOR FABRICS, PROCESS FOR PREPARING THE SAME AND ITS APPLICATION TO WASHING TISSUES. |
US4851138A (en) * | 1986-09-02 | 1989-07-25 | Akzo, N.V. | Fabric softening composition and detergent-composition comprising the same |
EP0264615A1 (en) * | 1986-09-22 | 1988-04-27 | Henkel Kommanditgesellschaft auf Aktien | Laundry agent having a reduced phosphate content containing N-alkoxylated fatty acid amides |
EP0277522A3 (en) * | 1987-01-24 | 1990-03-14 | Henkel Kommanditgesellschaft auf Aktien | Detergent for softening textiles |
EP0277522A2 (en) * | 1987-01-24 | 1988-08-10 | Henkel Kommanditgesellschaft auf Aktien | Detergent for softening textiles |
US4839075A (en) * | 1987-02-02 | 1989-06-13 | Henkel Kommanditgesellschaft Auf Aktien | Fabric-softening detergent |
GR880100091A (en) * | 1987-02-20 | 1988-12-16 | Colgate Palmolive Co | Smoothing detergent composition for fabrics not containing phosphorus |
FR2611213A1 (en) * | 1987-02-20 | 1988-08-26 | Colgate Palmolive Co | SOLID DETERGENT AND SOFTENING COMPOSITIONS WITHOUT PHOSPHATE FOR LAUNDRY WASHING, CONTAINING DIAMONIC COMPOUND |
BE1003069A4 (en) * | 1987-02-20 | 1991-11-12 | Colgate Palmolive Co | SOLID PHOSPHATE FREE DETERGENT AND SOFTENER COMPOSITIONS FOR THE WASHING OF LAUNDRY CONTAINING A DIAMMONIC COMPOUND. |
US4919845A (en) * | 1987-05-21 | 1990-04-24 | Henkel Kommanditgesellschaft Auf Aktien | Phosphate-free detergent having a reduced tendency towards incrustation |
WO1989009204A1 (en) * | 1988-04-02 | 1989-10-05 | Henkel Kommanditgesellschaft Auf Aktien | Quaternary ammonium compounds |
EP0336267A2 (en) * | 1988-04-02 | 1989-10-11 | Henkel Kommanditgesellschaft auf Aktien | Quaternary ammonium compounds |
EP0336267A3 (en) * | 1988-04-02 | 1989-10-25 | Henkel Kommanditgesellschaft auf Aktien | Quaternary ammonium compounds |
US5149455A (en) * | 1988-04-15 | 1992-09-22 | Henkel Kommanditgesellschaft Auf Aktien | Process for increasing the density of spray dried, phosphate-reduced detergents |
US5354493A (en) * | 1988-10-21 | 1994-10-11 | Henkel Kommanditgesellschaft Auf Aktien | Process for the production of surfactant-containing granulates |
EP0364881A2 (en) | 1988-10-21 | 1990-04-25 | Henkel Kommanditgesellschaft auf Aktien | Process for preparing granules containing surface-active agents |
US5501810A (en) * | 1992-04-08 | 1996-03-26 | Henkel Kommanditgesellschaft Auf Aktien | Process for increasing the apparent density of spray-dried detergents |
US5480578A (en) * | 1993-03-03 | 1996-01-02 | Sud-Chemie Ag | Detergent additive for detergents containing a fabric softener |
DE4306665A1 (en) * | 1993-03-03 | 1994-09-08 | Sued Chemie Ag | Detergent additive for fabric softening detergents |
US5883066A (en) * | 1993-06-28 | 1999-03-16 | The Procter & Gamble Company | Liquid detergent compositions containing cellulase and amine |
US5767057A (en) * | 1993-09-04 | 1998-06-16 | Henkel-Ecolab Gmbh & Co. Ohg | Spray-dried granules of high apparent density |
WO1995029217A1 (en) * | 1994-04-25 | 1995-11-02 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
WO1995029218A1 (en) * | 1994-04-25 | 1995-11-02 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
US5622925A (en) * | 1994-04-25 | 1997-04-22 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
US5880083A (en) * | 1994-08-16 | 1999-03-09 | Henkel Kommanditgesellschaft Auf Aktien | Liquid bleach-containing formulation for washing or cleaning |
US6413929B1 (en) | 1996-03-26 | 2002-07-02 | Basf Aktiengesellschaft | Bleaching efficiency boosters for bleach and textile detergent compositions |
JPH11511795A (en) * | 1996-05-17 | 1999-10-12 | ザ、プロクター、エンド、ギャンブル、カンパニー | Detergent composition |
WO1997043389A1 (en) * | 1996-05-17 | 1997-11-20 | The Procter & Gamble Company | Detergent composition |
WO1997044432A1 (en) * | 1996-05-17 | 1997-11-27 | The Procter & Gamble Company | Detergent composition |
JPH11510554A (en) * | 1996-05-17 | 1999-09-14 | ザ、プロクター、エンド、ギャンブル、カンパニー | Detergent composition |
JPH11511799A (en) * | 1996-05-17 | 1999-10-12 | ザ、プロクター、エンド、ギャンブル、カンパニー | Detergent composition |
WO1997043390A1 (en) * | 1996-05-17 | 1997-11-20 | The Procter & Gamble Company | Detergent composition |
JP2000504061A (en) * | 1996-05-17 | 2000-04-04 | ザ、プロクター、エンド、ギャンブル、カンパニー | Detergent composition |
US6136769A (en) * | 1996-05-17 | 2000-10-24 | The Procter & Gamble Company | Alkoxylated cationic detergency ingredients |
WO1997044431A1 (en) * | 1996-05-17 | 1997-11-27 | The Procter & Gamble Company | Detergent composition |
US6562769B1 (en) | 1997-10-23 | 2003-05-13 | Henkel Kommanditgesellschaft Auf Aktien | Method for producing aromatic beads |
US6841614B1 (en) | 1998-10-29 | 2005-01-11 | Henkel Kommanditgesellschaft Auf Aktien | Polymer granules produced by fluidized bed granulation |
US6780829B1 (en) | 1998-12-19 | 2004-08-24 | Cognis Deutschland Gmbh & Co. Kg | Tenside granulates comprising fatty alcohol sulfate and olefin sulfonates |
US6494920B1 (en) | 1999-02-04 | 2002-12-17 | Cognis Deutschland Gmbh & Co. Kg | Detergent mixtures |
US6521578B1 (en) | 1999-04-22 | 2003-02-18 | Cognis Deutschland Gmbh | Cleaning agents for hard surfaces |
US6723867B1 (en) | 1999-08-20 | 2004-04-20 | Cognis Deutschland Gmbh & Co. Kg | Branched, substantially unsaturated fatty alcohol sulfates |
US6664429B1 (en) | 1999-08-20 | 2003-12-16 | Cognis Deutschland Gmbh & Co. Kg | Production of branched, largely unsaturated fatty alcohol polyglycolethers |
US6951838B1 (en) | 1999-09-15 | 2005-10-04 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
DE19948670A1 (en) * | 1999-10-08 | 2001-04-19 | Cognis Deutschland Gmbh | laundry detergent |
US6610752B1 (en) | 1999-10-09 | 2003-08-26 | Cognis Deutschland Gmbh | Defoamer granules and processes for producing the same |
US6686327B1 (en) | 1999-10-09 | 2004-02-03 | Cognis Deutschland Gmbh & Co. Kg | Shaped bodies with improved solubility in water |
US7145001B1 (en) | 1999-10-27 | 2006-12-05 | Cognis Deutschland Gmbh & Co. Kg | Method for producing solid sugar surfactants |
US7199096B1 (en) | 1999-11-09 | 2007-04-03 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US6977239B1 (en) | 1999-11-25 | 2005-12-20 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US7049279B1 (en) | 1999-11-25 | 2006-05-23 | Cognis Deutschland Gmbh & Co. Kg | Process for preparing detergent granules with an improved dissolution rate |
WO2001046088A2 (en) | 1999-12-22 | 2001-06-28 | Cognis Deutchland Gmbh & Co. Kg | Multi-component valuable-product mixtures in solid form for stimulating and promoting plant growth |
US7186678B2 (en) | 1999-12-24 | 2007-03-06 | Cognis Deutschland Gmbh & Co. Kg | Tenside granules with improved disintegration rate |
US7087570B2 (en) | 1999-12-24 | 2006-08-08 | Cognis Deutschland Gmbh & Co. Kg | Detergent tablets |
US6881359B2 (en) | 2000-01-26 | 2005-04-19 | Cognis Deutschland Gmbh & Co. Kg | Processes for the preparation of low dust, limited particle size distribution, surfactant granules |
US7098178B2 (en) | 2000-03-16 | 2006-08-29 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Silicic acid ester mixtures |
US6846796B2 (en) | 2000-04-15 | 2005-01-25 | Cognis Deutschland Gmbh & Co. Kg | Method for producing non-ionic tenside granulates |
US6756351B2 (en) | 2000-04-18 | 2004-06-29 | Cognis Deutschland Gmbh & Co. Kg | Detergents and cleaning agents |
US6479452B2 (en) | 2000-06-29 | 2002-11-12 | Cognis Deutschland Gmbh & Co. Kg | Surfactant granules with an improved dissolving rate comprising alky and alkenyl sulfates |
US6620209B2 (en) | 2000-09-08 | 2003-09-16 | Cognis Deutschland Gmbh & Co. Kg | Laundry detergent compositions |
US6616705B2 (en) | 2000-09-08 | 2003-09-09 | Cognis Deutschland Gmbh & Co. Kg | Laundry detergent compositions |
WO2002024850A1 (en) * | 2000-09-19 | 2002-03-28 | The Procter & Gamble Company | Detergent compositions |
US6730656B2 (en) | 2000-09-19 | 2004-05-04 | The Procter & Gamble Company | Detergent compositions |
US6723135B2 (en) | 2000-09-19 | 2004-04-20 | Cognis Deutschland Gmbh & Co. Kg | Laundry detergents and cleaning products based on alkyl and/or alkenyl oligoglycosides and fatty alcohols |
GB2366801A (en) * | 2000-09-19 | 2002-03-20 | Procter & Gamble | Detergent compositions with clay fabric softeners |
US6730131B2 (en) | 2000-12-21 | 2004-05-04 | Cognis Deutschland Gmbh & Co. Kg | Nonionic surfactants |
US7585825B2 (en) | 2004-04-23 | 2009-09-08 | Henkel Ag & Co. Kgaa | Scented solid substances comprising a non-ionic surfactant-impregnated carrier |
US8398961B2 (en) | 2005-12-24 | 2013-03-19 | Henkel Ag & Co. Kgaa | Powdery styling agents and the dispenser systems thereof |
DE102013226098A1 (en) | 2013-12-16 | 2015-06-18 | Henkel Kgaa | Silyl enol ethers of fragrance ketones or aldehydes |
DE102013226216A1 (en) | 2013-12-17 | 2015-06-18 | Henkel Ag & Co. Kgaa | Michael systems for perfume stabilization |
DE102013226602A1 (en) | 2013-12-19 | 2015-06-25 | Henkel Ag & Co. Kgaa | Use of CNGA2 agonists to enhance the olfactory effect of a fragrance |
US10066191B2 (en) | 2014-02-20 | 2018-09-04 | Henkel Ag & Co. Kgaa | Washing or cleaning composition having improved foaming characteristics with a high level of soiling |
EP2963103A1 (en) | 2014-07-04 | 2016-01-06 | Henkel AG & Co. KGaA | pH-sensitive nanocapsules |
DE102015002877A1 (en) | 2015-03-09 | 2016-09-15 | Henkel Ag & Co. Kgaa | Granular detergent or cleaner with improved dissolution rate |
DE102015002877B4 (en) | 2015-03-09 | 2024-09-12 | Henkel Ag & Co. Kgaa | Washing or cleaning active extrudates, their production and use in granular washing or cleaning agents |
DE102016201295A1 (en) | 2016-01-28 | 2017-08-03 | Henkel Ag & Co. Kgaa | C8-10 Alkylamidoalkylbetain as Antiknitterwirkstoff |
DE102017206013A1 (en) | 2017-04-07 | 2018-10-11 | Henkel Ag & Co. Kgaa | Detergents or cleaning agents with improved foaming behavior |
DE102017123282A1 (en) | 2017-10-06 | 2019-04-11 | Henkel Ag & Co. Kgaa | Hydrolysis-labile silyl enol ethers of fragrance ketones or aldehydes |
WO2019068505A1 (en) | 2017-10-06 | 2019-04-11 | Henkel Ag & Co. Kgaa | Hydrolytically labile silyl enol ether fragrance ketones or aldehydes |
DE102017124612A1 (en) | 2017-10-20 | 2019-04-25 | Henkel Ag & Co. Kgaa | Hydrolysis-labile dienol silyl ethers of fragrance ketones or aldehydes |
DE102017124611A1 (en) | 2017-10-20 | 2019-04-25 | Henkel Ag & Co. Kgaa | Thermolabile fragrance storage substances of fragrance ketones |
WO2019076589A1 (en) | 2017-10-20 | 2019-04-25 | Henkel Ag & Co. Kgaa | Hydrolysis-labile dienolsilyl ethers of odorant ketones or odorant aldehydes |
WO2019076588A1 (en) | 2017-10-20 | 2019-04-25 | Henkel Ag & Co. Kgaa | Thermolabile fragrance storage substances of fragrant ketones |
DE102017127776A1 (en) | 2017-11-24 | 2019-05-29 | Henkel Ag & Co. Kgaa | Hydrolysis-labile heterocycles of perfume ketones or aldehydes |
WO2019101444A1 (en) | 2017-11-24 | 2019-05-31 | Henkel Ag & Co. Kgaa | Hydrolytically labile heterocycles of odoriferous ketones or odoriferous aldehydes |
EP3578629A1 (en) | 2018-06-07 | 2019-12-11 | Henkel AG & Co. KGaA | Method for the preparation of a liquid detergent composition comprising a preservative-free dye solution |
US11155771B2 (en) | 2018-11-09 | 2021-10-26 | Henkel Ag & Co. Kgaa | Method for preparing a liquid washing or cleaning agent using a preservative-free dye solution |
WO2021115724A1 (en) | 2019-12-11 | 2021-06-17 | Unilever Ip Holdings B.V. | Detergent composition |
Also Published As
Publication number | Publication date |
---|---|
EP0026529B1 (en) | 1984-12-05 |
DE3069768D1 (en) | 1985-01-17 |
EP0026529B2 (en) | 1992-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0026529B1 (en) | Detergent compositions | |
EP0026528B2 (en) | Detergent compositions | |
EP0011340B1 (en) | Detergent composition having textile softening properties | |
EP0023367B1 (en) | Detergent composition having textile softening property | |
US4292035A (en) | Fabric softening compositions | |
US3954632A (en) | Softening additive and detergent composition | |
US4661289A (en) | Detergent compositions | |
US4062647A (en) | Clay-containing fabric softening detergent compositions | |
US3993573A (en) | Softening additive and detergent composition | |
CA1074966A (en) | Detergent-compatible fabric softening and antistatic compositions | |
CA1205957A (en) | Detergent compositions | |
CA1057907A (en) | Detergent compositions | |
AU600694B2 (en) | Liquid detergent having improved softening properties | |
US4960526A (en) | Diammonium compound containing fabric softening and antistatic detergent composition | |
EP0076572B1 (en) | Fabric softening detergent additive products and use thereof in detergent compositions | |
US4744911A (en) | Dispersible fabric softeners | |
NL8601928A (en) | TISSUE SOFTENING AND ANTI-STATIC DETERGENTS. | |
EP0062372B1 (en) | Fabric softening compositions | |
EP0000235A1 (en) | Low-phosphate detergent composition for fabric washing | |
US4563288A (en) | N-Alkyl isostearamide antistatic agents, detergent compositions containing such agents, and processes for washing laundry in the presence of such agents, and with such compositions | |
GB2201172A (en) | No phosphate fabric softening and detergent composition | |
US4260497A (en) | Methanesulfonamides as antistatic agents for laundered fabrics | |
GB2163770A (en) | Hot water wash cycle detergent-softener compositions | |
FI57794B (en) | TYGMJUKGOERANDE- OCH ANTISTATISK TVAETTMEDELKOMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19810928 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3069768 Country of ref document: DE Date of ref document: 19850117 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN, DUESSELDO Effective date: 19850528 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: UNILEVER PLC / UNILEVER N.V. Effective date: 19850826 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: UNILEVER PLC / UNILEVER N.V. Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN |
|
ITTA | It: last paid annual fee | ||
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19920819 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE FR GB IT NL |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
ITF | It: translation for a ep patent filed | ||
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19921028 Year of fee payment: 13 |
|
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19930930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990630 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990806 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990901 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990927 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20000917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20000918 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20000917 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20000918 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |