[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0007536B1 - Procédé et dispositif pour la granulation d'un metal fondu en vue de la production de poudre - Google Patents

Procédé et dispositif pour la granulation d'un metal fondu en vue de la production de poudre Download PDF

Info

Publication number
EP0007536B1
EP0007536B1 EP79102441A EP79102441A EP0007536B1 EP 0007536 B1 EP0007536 B1 EP 0007536B1 EP 79102441 A EP79102441 A EP 79102441A EP 79102441 A EP79102441 A EP 79102441A EP 0007536 B1 EP0007536 B1 EP 0007536B1
Authority
EP
European Patent Office
Prior art keywords
gas
gas jet
jet
channel
tap stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79102441A
Other languages
German (de)
English (en)
Other versions
EP0007536A1 (fr
Inventor
Hans-Gunnar Larsson
Erik Westman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONCESSIONE DI LICENZA ESCLUSIVA;MINORA FORSCHUNGS
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA AB filed Critical ASEA AB
Publication of EP0007536A1 publication Critical patent/EP0007536A1/fr
Application granted granted Critical
Publication of EP0007536B1 publication Critical patent/EP0007536B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • the invention relates to a method for granulating a molten metal for the purpose of powder production according to the preamble of claim 1 and an apparatus for performing the method.
  • one or more vertical melt casting jets are hit from the side by a high-speed gas flow, through which the melt is broken up into fine droplets, which quickly solidify into a powder, so that after solidification, a fine structure of the material is maintained.
  • a nozzle arrangement for producing inorganic fibers by blowing which has a sickle-shaped outlet opening for a gas jet which strikes a jet of the molten material from the side.
  • the melt jet is broken up into droplets that draw a thread.
  • an auxiliary channel is arranged in the longitudinal direction in the nozzle, from which a second gas jet emerges essentially parallel to the sickle-shaped gas jet and hits the melt jet vertically from the side before it is caught by the sickle-shaped main jet .
  • the melt jet is divided into a number of thinner jets, which are then captured by the main gas stream.
  • a device for atomizing a metal melt in which the metal stream flowing vertically downwards flows through an annular nozzle which atomizes the metal jet by gas flowing out obliquely downwards.
  • the atomized jet emerging from the ring nozzle is then deflected in the horizontal direction by a horizontal gas stream emerging from a further nozzle in order to cool it over a cooling bed.
  • the invention has for its object to develop a method in addition to the device of the type mentioned for granulating a molten metal, by which considerably less energy is required for the granulation process than in the known method mentioned above and in which the device is limited to relatively small dimensions can.
  • a device for performing the method is according to the invention by the
  • the invention By means of the invention it is possible to granulate a molten metal with lower energy consumption than before by suitable formation of the gas jet.
  • the granulation can be carried out in an arrangement whose height is less than that of the known arrangements, so that the building accommodating the system does not have to be excessively high.
  • the invention enables a simpler gas circulation system and easier transport of the melt.
  • the plant according to the invention can in many cases already existing buildings are housed by ironworks.
  • the cost reduction for powder production achieved by the invention extends the area of application of hot isostatic pressing to simpler metal qualities. Alloys that are already well known can now be hot-pressed economically isostatically, which gives them better, more uniform quality than before.
  • the preferably V-shaped main gas jet and the auxiliary gas jet (second jet) have the same main direction, i. that is, they are directed to the same side of the melt pouring jet.
  • the second jet is preferably directed to the point of intersection between the pouring jet and the bottom of the channel-shaped jet or in such a way that it strikes the pouring jet immediately before it is hit by the gas stream of the channel-shaped jet.
  • a certain flattening or broadening of the melt pouring jet can occur. This flattening facilitates the granulation, so that a smaller proportion of coarse powder grains is obtained.
  • Gas at different pressures can be supplied to the nozzles that form the air jets.
  • the control of the path of the droplets formed and the resulting powder grains can be done by varying the pressure of the gas supplied to one or both nozzles, so that the relative strength of the jets is changed.
  • the granulating device contains a closed container which prevents air from entering.
  • a pouring box is attached to the container. From this, molten metal flows down through one or more tap holes into a granulation part of said container.
  • a nozzle which is shaped so that it forms a trough-shaped gas jet is fitted in the granulating part of the container in such a way that the gas jet cuts the pouring jet.
  • the mouth of the nozzle is as close as possible to the downward pouring jet.
  • the droplets that form and the powder grains that result from them are thrown onto a parabolic path and collected in a collecting part in the container that is adapted to this throwing parabola. This is provided with arrangements for removing the powder.
  • the device is provided with a gas supply system.
  • the system contains an auxiliary nozzle which generates the second gas stream directed onto the pouring jet and the bottom of the channel-shaped gas jet.
  • a ladle for collecting pouring stream melt can be arranged in the pelletizer under the pouring box. In this case, molten metal is caught in the event of any malfunctions and possibly during commissioning, so that the material that first passes through and may contain contaminants is not granulated.
  • the system can also contain a cooler and a line for the direct return of gas from the collecting part of the container to the granulating part only for the purpose of cooling the droplets and powder formed. Because of the improved design of the nozzles, the amount of gas in the granulation jets is not always sufficient to cool the droplets and the powder formed to the desired temperature.
  • the method according to the invention can also be used in those granulating devices in which several pouring jets emerge from the casting box at the same time.
  • a channel-shaped main gas jet and one or more auxiliary gas jets are generated for each pouring jet.
  • Fig. 1, 1 denotes a closed container with a granulating part 2 and a collecting part 3 for powder obtained with a shape adapted to the throwing parabola for drops formed and thus powder formed.
  • the container rests on a stand 4.
  • the pelletizing part 2 is provided with a pouring box 5 and with a pan 6 arranged below this pouring box 5 for collecting melt either in the event of malfunctions or possibly at the start of pouring when the melt is particularly heavily contaminated.
  • the lower wall 7 of the collecting part 3 is oblique. The angle of inclination is greater than the natural angle of fall of the powder.
  • the powder obtained is collected in a container 8.
  • the container 1 has a first inspection window 9 on one side wall of the pelletizing part directly in front of the pouring stream and two inspection windows 10 on the one side wall of the collecting part 3.
  • a removal opening for the passage of the used gas.
  • a cooler 11 is connected to this opening, by means of which the gas heated during the granulation process is cooled.
  • Part of the gas is over the Lines 12, 13, 14, 15 and 16 returned to the granulating part 2.
  • Another part of the gas is sucked through cleaning filters to a compressor, which supplies the pelletizing nozzles of the system with gas.
  • Fig. 2 shows the casting box 5 with molten metal.
  • a tap opening 17 through which a vertical pouring jet 18 is generated.
  • a main nozzle 19 and an auxiliary nozzle 20 are arranged to the side of the pouring jet 18.
  • the main nozzle 19 has a V-shaped opening 21 (FIG. 3), which generates a V-shaped gas jet 22 which shatters the pouring jet 18 into droplets which are rapidly cooled and form powder 23 which is thrown into the collecting part 3 of the container 1 in a parabolic throw path.
  • the acute angle of the V-shaped air jet can be between 15 "and 60". An acute angle is generally the most convenient. Because the gas jet 22 is V-shaped, two elliptical cut surfaces are obtained when the gas jet 22 hits the pouring jet 18. The gas jet thereby has a large effective width and thus a strong ability to break the pouring jet into small powder grains.
  • the nozzle 19 is provided with a groove 25 on its upper side.
  • the auxiliary nozzle 20 is directed so that a jet 26 blows down into this channel and into the channel of the gas jet 22 formed.
  • the auxiliary nozzle is also directed so that the auxiliary gas jet 26 hits the pouring jet 18.
  • the main nozzle 19, which produces the V-shaped gas jet 22, can be composed, for example, of a first part 19a with a supply duct 27 for gas and a second part 19b which is connected to the part 19a by means of bolts 28.
  • the parts 19a and 19b are designed such that a channel 31 with an outwardly increasing width is formed between the walls 29 and 30.
  • the nozzle thus has a so-called De Laval design, which means that the energy of the compressed gas is used to a high degree, as a result of which the gas jet has a very high speed and high energy content.
  • the part 19b in the nozzle 19 can be vertically displaceable relative to the part 19a , so that the width of the channel is adjustable.
  • the auxiliary nozzle 20 blows gas into the channel 25 at the nozzle mouth, so that a negative pressure created by the ejector effect is eliminated and the suction of melt into the nozzle mouth is prevented. This prevents the melt of the pouring jet 18 from coming into contact with the nozzle and settling on the nozzle, as a result of which the flow properties of the nozzle can be adversely affected or the nozzle can be completely clogged.
  • This protective effect of the jet 26 makes it possible to press the main nozzle closer to the pouring jet 18. As a result, the energy loss in the gas jet 22 is less until it meets the melt of the pouring jet 18. This means that the atomization effect is stronger, resulting in a higher quality powder that contains a smaller proportion of coarse grains that have to be sieved. A corresponding gas supply on the other sides of the nozzle can also be advantageous.
  • the gas jet 26 also has another important effect. By changing the pressure of the supplied gas and thus the speed and the amount of gas in the gas jet 26, the throwing parabola for the resulting powder can be influenced in such a way that the throwing path adapts best to the shape of the collecting part 3. In this way, the point in time at which the resulting powder reaches the ground can be influenced to a certain extent. This makes it easier to achieve sufficient cooling of the powder grains obtained, so that there is no sticking together.
  • the nozzles 19 and 20 can also be designed as a unit, as shown in FIG.
  • the nozzle 20 is formed from a channel in one part 19a of the main nozzle 19.
  • FIG. 7 shows a nozzle 19 with two auxiliary nozzles 20a and 20b, the orifices of which are arranged close to the uppermost parts of the V-shaped nozzle opening 21.
  • the angle ⁇ (FIG. 2) between the main nozzle 19 and the pouring jet 18 can vary within wide limits.
  • the angle a can be in the range of 45 ° -135 °, preferably it is between 60 and 100 ".
  • the design of the gas jet enables the pouring jet to be atomized with a smaller amount of gas than in known designs. This achieves a considerable reduction in the energy requirement for the compression of the gas, as well as a considerable reduction in the required cleaning devices for the gas which is removed from the container 1 for the purpose of cleaning.
  • the amount of gas required to solidify the melt droplets into solid powder is greater than that consumed by the nozzles 19 and 20. A certain part of the amount of gas which is removed from the collecting part 3 by the cooler 11 is returned to the granulating part 2 in the container 1 via the lines 12, 13, 14, 15 and 16 without cleaning.
  • the nozzle 19 is mounted in the cooling air flow.
  • a suitable design for their cross-section can achieve a significant driving force for the cooling air flow. This ejector effect alone or in combination with a fan can cause the gas circulation required to cool the drops and the powder.
  • the invention makes it possible to reduce the height of the granulating plant. This is achieved by making the gas flow channel-shaped so that a pouring jet can be broken up directly into droplets which form a powder of a suitable grain size without the droplet jet from crossing second gas jet is cut.
  • Known effective pelletizers using gas as the pelletizer require cooling towers that are more than six meters high. This requires expensive high-rise buildings and expensive transportation means for the vertical transportation of raw material for melting furnaces or for molten metal.
  • the granulating plant according to the invention can be accommodated in containers that are only three meters high. As a result, you can achieve great savings in new buildings. Above all, the plant can be accommodated in existing ironworks buildings, and you can use the smelting plants and transport aids available in these. This means that the changeover to powder production according to the invention results in relatively low costs.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Glanulating (AREA)

Claims (14)

1. Procédé de granulation d'une masse métallique fondue par atomisation d'un jet de coulée de masse fondue à l'aide d'un jet gazeux, qui sort d'une buse sous une pression élevée et qui atteint le jet de coulée par le côté à une vitesse élevée, l'atomise en gouttelettes et projette les gouttelettes sur le côté suivant une trajectoires essentiellement parabolique, les gouttelettes étant refroidies en une poudre ayant de préférence une forme de grain sphérique, caractérisé en ce que le jet (22) gazeux a la forme d'une rigole, ouverte vers le haut, ayant de préférence une section droite en forme de V, qui coupe le jet (18) de coulée de manière à ce que le centre du jet de coulée se trouve dans le plan de symétrie vertical du jet (22) gazeux, ou au voisinage de ce plan, et il est prévu un second jet (26) gazeux, qui, par rapport au jet (18) de coulée, a la même direction principale que le jet (22) gazeux en forme de rigole mais qui est dirigé, en étant incliné vers le bas, sur le fond de la rigole du jet (22) gazeux en forme de rigole.
2. Procédé suivant la revendication 1, caractérisé en ce que le jet (22) gazeux est essentiellement horizontal.
3. Procédé suivant la revendication 1, caractérisé en ce que le jet (22) gazeux est dirigé de manière à ce que l'angle (alpha), qu'il forme avec le jet de coulée, soit compris entre 45° et 135° et de préférence entre 60° et 100°.
4. Procédé suivant la revendication 3, caractérisé en ce que le second jet (26) gazeux est dirigé de manière à atteindre le jet (18) de coulée dans le jet (22) gazeux en forme de rigole.
5. Procédé suivant la revendication 3, caractérisé en ce que le second jet (26) gazeux est dirigé essentiellement sur le point d'intersection du jet (18) de coulée et du fond du jet (22) gazeux en forme de rigole.
6. Procédé suivant la revendication 3, caractérisé en ce qu'il consiste à envoyer du gaz sous une pression différente aux buses (19, 20), qui créent le jet (22) gazeux en forme de rigole et le second jet (26) gazeux.
7. Procédé suivant la revendication 6, caractérisé en ce qu'il consiste à influencer la forme de la parabole, sur laquelle les gouttelettes et les particules de poudre sont accélérées par le côté, en réglant la pression des jets (22, 26) gazeux.
8. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'il consiste à réutiliser le gaz, une partie du gaz étant refroidie, purifiée, comprimée et envoyée aux buses (19 et 20), tandis qu'une autre partie est refroidie et n'est recyclée en circuit fermé que pour la dissipation de la chaleur.
9. Installation pour exécuter le procédé suivant l'une des revendications précédentes, caractérisée par un récipient (1) fermé, par un caisson (5) de coulée ayant une ouverture (17) de coulée, débouchant dans la partie (2) de granulation du récipient (1) et destinée à l'obtention d'un jet (18) de coulée, par une buse (19) conformée de manière à obtenir un jet (22) gazeux, en forme de rigole, dirigé de manière à couper le jet (18) de coulée, par une partie (3) de refroidissement adaptée à la trajectoire parabolique décrite par les gouttelettes et par la poudre, par des dispositifs d'enlèvement de la poudre obtenue, par un équipement auxiliaire destiné à l'alimentation en gaz du dispositif et par une seconde buse (20) conformée de manière à créer un jet (26) gazeux, qui est dirigé en étant incliné sur le fond du jet (22) gazeux, en forme de rigole, et sur le jet (18) de coulée.
10. Installation suivant la revendication 9, caractérisée en ce que dans la partie (2) de granulation du récipient (1) est disposée une poche (6) de réception de la masse fondue pour le début de soutirage et lors de l'interruption de l'arrivée du gaz aux buses (19, 20) formant les jets gazeux.
11. Installation suivant la revendication 9 ou 10, caractérisée en ce qu'entre la partie (3) de refroidissement du récipient (1) et sa partie (2) de granulation dans laquelle les buses (19, 20) sont ménagées est interposé un conduit (12, 13, 14,15,16) de recyclage pour le gaz.
12. Installation suivant la revendication 11, caractérisée en ce que la partie (2) du récipient est conformée de manière à ce que le jet (22) gazeux provoque un effet d'éjecteur provoquant la circulation du gaz.
13. Installation suivant la revendication 11, caractérisée en ce qu'il est prévu un refroidisseur (11) destiné à refroidir le gaz circulant dans le récipient (1) eï dans le conduit (12, 13, 14, 15, 16).
14. Installation suivant l'une des revendications 9 à 13, caractérisée en ce que le caisson (5) de coulée est munie de deux ouvertures ou de plusieurs ouvertures et dans la partie de granulation de l'installation sont disposées des buses (19), qui fournissent pour chacun des jets (18) de couiée du caisson (5) de coulée respectivement un jet (22) gazeux en forme de rigole.
EP79102441A 1978-07-21 1979-07-16 Procédé et dispositif pour la granulation d'un metal fondu en vue de la production de poudre Expired EP0007536B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7808028A SE412712B (sv) 1978-07-21 1978-07-21 Forfarande och anleggning for framstellning av pulver genom granulering av smelta
SE7808028 1978-07-21

Publications (2)

Publication Number Publication Date
EP0007536A1 EP0007536A1 (fr) 1980-02-06
EP0007536B1 true EP0007536B1 (fr) 1982-05-12

Family

ID=20335482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79102441A Expired EP0007536B1 (fr) 1978-07-21 1979-07-16 Procédé et dispositif pour la granulation d'un metal fondu en vue de la production de poudre

Country Status (9)

Country Link
US (1) US4385878A (fr)
EP (1) EP0007536B1 (fr)
JP (1) JPS5518593A (fr)
AU (1) AU528552B2 (fr)
BR (1) BR7904670A (fr)
CA (1) CA1125964A (fr)
DE (1) DE2962800D1 (fr)
ES (1) ES482659A1 (fr)
SE (1) SE412712B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE430904C (sv) * 1980-05-13 1986-07-14 Asea Ab Rostfritt, ferrit-austenitiskt stal framstellt av pulver
GB2171032B (en) * 1985-02-18 1988-04-20 Nat Res Dev Distributing liquid onto a substrate
US4778516A (en) * 1986-11-03 1988-10-18 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder
US4784302A (en) * 1986-12-29 1988-11-15 Gte Laboratories Incorporated Gas atomization melt tube assembly
US4780130A (en) * 1987-07-22 1988-10-25 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder using melt overpressure
US5190701A (en) * 1987-12-09 1993-03-02 H.G. Tech Ab Method and equipment for microatomizing liquids, preferably melts
NO165288C (no) * 1988-12-08 1991-01-23 Elkem As Silisiumpulver og fremgangsmaate for fremstilling av silisiumpulver.
GB0708385D0 (en) * 2007-05-01 2007-06-06 Atomising Systems Ltd Method and apparatus for the gas atomisation of molten metal
CA2961075C (fr) * 2014-09-21 2017-07-25 Hatch Ltd. Dispersion par jet de gaz de materiaux fondus au moyen de gaz de degagement sous-produits

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1356780A (en) * 1917-07-23 1920-10-26 American Magnesium Corp Apparatus for the manufacture of magnesium powder
US2638626A (en) * 1949-09-29 1953-05-19 Henry A Golwynne Apparatus for the production of metal powder
US3658311A (en) * 1970-02-19 1972-04-25 Kelsey Hayes Co Apparatus for making powder metal
SE350416B (fr) * 1971-08-24 1972-10-30 Stora Kopparbergs Bergslags Ab
FI51602C (fi) * 1973-12-19 1977-02-10 Outokumpu Oy Tapa ja laite sulan aineen hajottamiseksi kaasumaisen tai höyrymäisen aineen suihkulla.
US4047933A (en) * 1976-06-03 1977-09-13 The International Nickel Company, Inc. Porosity reduction in inert-gas atomized powders
US4080126A (en) * 1976-12-09 1978-03-21 The International Nickel Company, Inc. Water atomizer for low oxygen metal powders

Also Published As

Publication number Publication date
JPS5518593A (en) 1980-02-08
EP0007536A1 (fr) 1980-02-06
BR7904670A (pt) 1980-04-15
SE412712B (sv) 1980-03-17
AU4895079A (en) 1980-01-24
CA1125964A (fr) 1982-06-22
ES482659A1 (es) 1980-09-01
DE2962800D1 (en) 1982-07-01
SE7808028L (sv) 1980-01-23
AU528552B2 (en) 1983-05-05
US4385878A (en) 1983-05-31

Similar Documents

Publication Publication Date Title
DE3043428C2 (de) Verfahren zur Herstellung eines Granulats und Vorrichtung zur Durchführung des Verfahrens
DE69607983T2 (de) Abschrecken von geschmolzenen werkstoffen
EP0081082B1 (fr) Procédé et dispositif pour la fabrication de fibres de laine minérale
DE3505660A1 (de) Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme
DE3505659A1 (de) Schmelz-zerstaeubung mit reduzierter gasstroemung sowie vorrichtung zum zerstaeuben
DE7441597U (de) Vorrichtung zum herstellen von durch die umgebungsluft nicht verunreinigtem kugeligem metallpulver
DE2240643C3 (de) Düsenstein für Gießpfannen an Metallverdüsungsanlagen
DE19758111C2 (de) Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen
DE3787096T2 (de) Schmelz- und raffinierungsverfahren von metallen sowie vorrichtung zur kühlung der verwendeten elektroden.
EP0007536B1 (fr) Procédé et dispositif pour la granulation d'un metal fondu en vue de la production de poudre
EP0017807A1 (fr) Procédé pour évites la formation des bavures lors du découpage au chalumeau des produits métalliques et dispositif pour sa mise en oeuvre
DE3438456A1 (de) Verfahren zur herstellung von feinen fasern aus viskosen materialien
AT223333B (de) Verfahren und Vorrichtung zur Herstellung von Fäden aus thermoplastischem Material, insbesondere von Glasfäden
DE102009010600A1 (de) Herstellung von rundlichen Metallpartikeln
DE3883256T2 (de) Vorrichtung und verfahren zur atomisierung von flüssigkeiten, insbesondere geschmolzenen metallen.
DE2556960A1 (de) Verfahren zum herstellen von metallzerstaeubungspulver
DE1114987B (de) Verfahren zum Giessen von Metallfasern und -faeden
DE2917737A1 (de) Duesenkopf fuer eine glasfaserziehduese
DE60115489T2 (de) Vorrichtung und verfahren zum stranggiessen von flüssigem stahl
DE4417100A1 (de) Verfahren und Vorrichtung zur Herstellung von Metallgranulat
DE2835722C2 (fr)
DE3883788T2 (de) Vorrichtung und verfahren zur mikroatomisierung von flüssigkeiten, insbesondere schmelzen.
DE1921721A1 (de) Verfahren zur Herstellung metallischer Draehte und Vorrichtung zur Durchfuehrung des Verfahrens
EP2602045A1 (fr) Dispositif de coupe d'un flux de coulée d'une installation de coulée verticale continue, de préférence pour la production de produits longs en acier
DE69224505T2 (de) Verfahren und vorrichtung zur herstellung von metallpulver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed
ITF It: translation for a ep patent filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 2962800

Country of ref document: DE

Date of ref document: 19820701

ITPR It: changes in ownership of a european patent

Owner name: CONCESSIONE DI LICENZA ESCLUSIVA;MINORA FORSCHUNGS

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930705

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930709

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940716

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950710

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950911

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960731

BERE Be: lapsed

Owner name: ASEA A.B.

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT