[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0000389A1 - Verfahren zur Herstellung von Polyurethankunststoffen - Google Patents

Verfahren zur Herstellung von Polyurethankunststoffen Download PDF

Info

Publication number
EP0000389A1
EP0000389A1 EP78100346A EP78100346A EP0000389A1 EP 0000389 A1 EP0000389 A1 EP 0000389A1 EP 78100346 A EP78100346 A EP 78100346A EP 78100346 A EP78100346 A EP 78100346A EP 0000389 A1 EP0000389 A1 EP 0000389A1
Authority
EP
European Patent Office
Prior art keywords
compounds
catalysts
optionally
groups
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100346A
Other languages
English (en)
French (fr)
Other versions
EP0000389B1 (de
Inventor
Peter Dr. Haas
Johannes Dr. Blahak
Werner Dr. Mormann
Manfred Dr. Kapps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000389A1 publication Critical patent/EP0000389A1/de
Application granted granted Critical
Publication of EP0000389B1 publication Critical patent/EP0000389B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1808Catalysts containing secondary or tertiary amines or salts thereof having alkylene polyamine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1825Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/2865Compounds having only one primary or secondary amino group; Ammonia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • Y10T428/249992Linear or thermoplastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/3158Halide monomer type [polyvinyl chloride, etc.]

Definitions

  • the present invention relates to a process for the production of polyurethane plastics, preferably foams, using novel catalysts having tertiary nitrogen atoms which are incorporated into the polyurethane and at the same time act as aging and light stabilizers.
  • Polyurethane foams with a wide variety of physical properties are made by the known isocyanate polyaddition process from compounds with several active hydrogen atoms, in particular compounds containing hydroxyl and / or carboxyl groups, and polyisocyanates, with the use of water and / or blowing agents and, if appropriate, catalysts, emulsifiers and other additives, has long been produced on an industrial scale (Angew. Chem. A, 59 (1948), p. 257). With a suitable choice of components, either elastic or rigid foams or all products lying between these extremes are obtained.
  • Polyurethane foams are preferably produced from liquid starting components, the starting materials to be reacted with one another either in one step process are mixed together or an NCO group-containing pre-adduct is first prepared from a polyol and an excess of polyisocyanate, which is then foamed, for example by reaction with water.
  • Tertiary amines have proven themselves as catalysts in the production of polyurethane foams primarily because they accelerate both the reaction between hydroxyl or carboxyl groups and NCO groups (urethane reaction) and the reaction between water and isocyanates (blowing reaction), also in the case of One-step process (“one-shot”) the speeds of the two reactions running side by side can be coordinated.
  • catalysts which, on their own or in a mixture with known amine catalysts, prevent discoloration of foam-backed plastic films (e.g. PVC films) under thermal stress and / or exposure to light, as well as aging effects in the case of free-foamed polyurethane plastics.
  • foam-backed plastic films e.g. PVC films
  • preferred catalysts (A) are compounds of the general formulas (1) and (2).
  • the catalysts characterized by the general formulas (1) to (4) have a special position compared to the tertiary amines previously used due to their stabilizing action against thermal and photochemical aging. This is probably due to the fact that despite their content of active hydrogen atoms - due to steric hindrance - they are only very slowly incorporated into the polyurethane during the foaming process. As a result, they can surprisingly develop their stabilizing effect at the phase interfaces.
  • amine catalysts (B) known per se in an amount of 3 to 97 mol%, preferably 10 to 90 mol%, particularly preferably 30 up to 70 mol%, based on the total amount of catalyst can also be used, for example tertiary amines containing ether groups according to US Pat. No. 3,330,782, DAS 1 030 558 or DOS 1 804 361 or the ether-free catalysts from DOS having at least 4 tertiary nitrogen atoms 2,624,527 and DOS 2,624,528.
  • preferred co-catalysts (B) are compounds which, in addition to at least one tertiary nitrogen atom, contain at least one amide group, in particular one formamide group.
  • acylated amines are described in detail in DOS 2 523 633.
  • the formylation products of the compounds (A) of the general formulas (1) to (4) and the compounds are particularly preferred in this context and where R and n have the meaning given above.
  • catalysts or co-catalysts to be used according to the invention are the following tertiary amines:
  • the catalysts to be used according to the invention can be prepared in a manner known per se, for example in DAS 1 154 269, DOS 2 523 633 and in "Die Angewandte Makromolekulare Chemie” 34, pp. 111-132 (1973), and from F Möller in Houben-Weyl, XI / 2 (pp. 27-29).
  • a total of 0.01-5% by weight, preferably 0.1-3% by weight, based on the entire reaction mixture, of catalyst is generally used.
  • aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates come into consideration, as described, for. B. by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136, for example ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1, 3-diisocyanate, cyclohexane-1,3- and -1,4-diiaocyanate and any mixtures of these isomers, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (DAS 1 202 785, American patent specification 3 401 190), 2,4- and 2,6-hexahydrotoluiene diisocyanate and any mixtures of these iso
  • distillation residues obtained in the industrial production of isocyanate and containing isocyanate groups optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use any mixtures of the aforementioned polyisocyanates.
  • polyisocyanates e.g. 2,4- and 2,6-tolylene diisocyanate as well as any mixtures of these isomers
  • TDI polyisocyanates
  • polyphenyl-polymethylene polyisocyanates such as those produced by aniline-formaldehyde condensation and subsequent phosgenation ("crude MDI") and carbodiimide groups
  • Urethane groups allophanate groups
  • isocyanurate groups urea groups
  • polyisocyanates containing biuret groups modified polyisocyanates
  • Starting components to be used according to the invention are furthermore compounds having at least two isocyanate-reactive hydrogen atoms with a molecular weight of generally 400-10,000.
  • These include compounds containing amino groups, thiol groups or carboxyl groups, preferably polyhydroxyl compounds, in particular two to eight compounds containing hydroxyl groups, especially those of Molecular weight 800 to 10,000, preferably 1000 to 6000, e.g. at least two, usually 2 to 8, but preferably 2 to 4, hydroxyl-containing polyesters, polyethers, polythioethers, polyacetals, polycarbonates and polyesteramides, as are known per se for the production of homogeneous and cellular polyurethanes.
  • the hydroxyl group-containing polyesters are e.g. Reaction products of polyhydric, preferably dihydric and optionally additionally trihydric alcohols with polyhydric, preferably dihydric, carboxylic acids.
  • polyhydric preferably dihydric and optionally additionally trihydric alcohols
  • polyhydric preferably dihydric, carboxylic acids.
  • the corresponding polycarboxylic anhydrides or corresponding polycarboxylic esters of lower alcohols or mixtures thereof can also be used to produce the polyesters.
  • the polycarboxylic acids can be aliphatic, cycloaliphatic, aromatic and / or heterocyclic in nature and optionally, e.g. by halogen atoms, substituted and / or unsaturated.
  • succinic acid adipic acid, azelaic acid, phthalic acid, trimellitic anhydride, phthalic anhydride, hexahydrophthalic anhydride, tetrachlorophthalic endomethylenetetrahydrophthalic, glutaric anhydride, maleic anhydride, Fumärklare, dimeric and trimeric fatty acids such as oleic acid, optionally mixed with monomeric fatty acids, dimethyl terephthalate and bis-glycol terephthalate.
  • polyhydric alcohols are e.g.
  • the polyesters can have
  • the at least two, usually two to eight, preferably two to three, hydroxyl groups-containing polyethers which are suitable according to the invention are also of the type known to aich and are, for example, by poly merization of epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with themselves, for example in the presence of BF 3 , or by addition of these epoxides, optionally in a mixture or in succession, to starting components with reactive hydrogen atoms such as water, alcohols, ammonia or Amines, for example ethylene glycol, propylene glycol (1,3) or - (1,2), trimethylolpropane, 4,4'-dihydroxy-diphenylpropane, aniline, ethanolamine or ethylenediamine.
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, sty
  • Sucrose polyethers such as are described, for example, in German publications 1 176 358 and 1 064 938, are also suitable according to the invention. In many cases, those polyethers are preferred which predominantly (up to 90% by weight, based on all the OH groups present in the polyether) have primary OH groups.
  • Polyethers modified by vinyl polymers such as those formed, for example, by polymerizing styrene and acrylonitrile in the presence of polyethers (American patents 3,383,351, 3,304,273, 3,523,093, 3,110,695, German patent 1,152,536), are also suitable Polybutadienes containing OH groups.
  • the condensation products of thiodiglycol with themselves and / or with other glycols, dicarboxylic acids, formaldehyde, aminocarboxylic acids or amino alcohols should be mentioned in particular.
  • the products are polythio ether, polythio ether ester or polythio ether ester amide.
  • polyacetals e.g. the compounds which can be prepared from glycols, such as diethylene glycol, triethylene glycol, 4,4'-dioxethoxydiphenyldimethylmethane, hexanediol and formaldehyde, are suitable.
  • glycols such as diethylene glycol, triethylene glycol, 4,4'-dioxethoxydiphenyldimethylmethane, hexanediol and formaldehyde
  • Polyacetals suitable according to the invention can also be prepared by polymerizing cyclic acetals.
  • Suitable polycarbonates containing hydroxyl groups are those of the type known per se, which e.g. by reacting diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6), diethylene glycol, triethylene glycol or tetraethylene glycol with diaryl carbonates, e.g. Diphenyl carbonate, or phosgene can be produced.
  • diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6)
  • diethylene glycol triethylene glycol or tetraethylene glycol
  • diaryl carbonates e.g. Diphenyl carbonate, or phosgene
  • polyester amides and polyamides include e.g. the predominantly linear condensates obtained from polyvalent saturated and unsaturated carboxylic acids or their anhydrides and polyvalent saturated and unsaturated amino alcohols, diamines, polyamines and their mixtures.
  • Polyhydroxyl compounds already containing urethane or urea groups and optionally modified natural polyols such as castor oil, carbohydrates or starch can also be used.
  • Addition products of alkylene oxides on phenol-formaldehyde resins or also on urea-formaldehyde resins can also be used according to the invention.
  • Compounds with at least two isocyanate-reactive hydrogen atoms with a molecular weight of 32-400 are also suitable as starting components to be used according to the invention, if appropriate in a mixture with the higher molecular weight compounds mentioned.
  • These compounds generally have 2 to 8 isocyanate-reactive hydrogen atoms, preferably 2 or 3 reactive hydrogen atoms.
  • Examples of such compounds are: ethylene glycol, (1,2) and - (1,3) propylene glycol, (1,4) and - (2,3) butylene glycol, (1,5) pentanediol, hexanediol (1,6), octanediol- (1,8), neopentyl glycol, 1,4-bishydroxymethyl-cyclohexane, 2-methyl-1,3-propanediol, glycerin, trimethylolpropane, hexanetriol- (1,2,6), trimethylolethane, Pentaerythritol, quinite, mannitol and sorbitol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycols with a molecular weight of up to 400, dipropylene glycol, polypropylene glycols with a molecular weight of up to 400, dibutylene glycol, polybutylene glycols with
  • mixtures of different compounds with at least two isocyanate-reactive hydrogen atoms with a molecular weight of 32-400 can be used.
  • polyhydroxyl compounds can also be used in which high molecular weight polyadducts or polycondensates are contained in finely dispersed or dissolved form.
  • modified polyhydroxyl compounds are obtained if polyaddition reactions (for example reactions between polyisocyanates and amino-functional compounds) or polycondensation reactions (for example between formaldehyde and phenols and / or amines) are carried out directly in situ in the above-mentioned compounds containing hydroxyl groups.
  • water and / or volatile organic substances can also be used as blowing agents.
  • Acetone, ethyl acetate, halogen-substituted alkanes such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, dichlorodifluoromethane, butane, hexane, heptane or diethyl ether are also suitable.
  • a blowing effect can also be achieved by adding compounds which decompose at temperatures above room temperature with the elimination of gases, for example nitrogen.
  • Azo compounds such as azoisobutyronitrile can be achieved.
  • propellants as well as details on the use of propellants can be found in the Kunststoff-Handbuch, Volume VII, published by Vieweg and Höchtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. on pages 108 and 109, 453 to 455 and 507 to 510.
  • tertiary amines such as triethylamine, tributylamine, N-methyl-morpholine, N-ethyl-morpholine, N-cocomorpholine, N, N, N ', N'-tetramethyl-ethylenediamine, 1,4-diaza-bicyclo- (2.2 , 2) octane, N-methyl-N'-dimethylaminoethyl-piperazine, N, N-dimethylbenzylamine, bis (N, N-di-ethylaminoethyl) adipate, N, N-diethylbenzylamine, pentamethyldiethylenetriamine, N, N -Dimethylcyclohexylamine, N, N, N ', N'-tetramethyl-1,3-butanediamine, N, N-dimethyl- ⁇ -phenylethy
  • tertiary amines such as triethylamine, tribut
  • Mannich bases known per se from secondary amines such as dimethylamine and aldehydes, preferably formaldehyde, or ketones such as acetone, methyl ethyl ketone or cyclohexanone and phenols such as phenol, nonylphenol or bisphenol are also suitable as additional catalysts.
  • Tertiary amines which have hydrogen atoms active against isocyanate groups as catalysts are e.g. Triethanolamine, triisopropanolamine, N-methyldiethanolamine, N-ethyl-diethanolamine, N, N-dimethyl-ethanolamine, and their reaction products with alkylene oxides, such as propylene oxide and / or ethylene oxide.
  • Silaamines with carbon-silicon bonds such as those e.g. in German Patent 1,229,290 (corresponding to American Patent 3,620,984) are in question, e.g. 2,2,4-trimethyl-2-silamorpholine and 1,3-diethylaminomethyltetramethyl-disiloxane.
  • Suitable additional catalysts are also nitrogenous bases such as tetraalkylammonium hydroxides, alkali metal hydroxides such as sodium hydroxide, alkali phenolates such as sodium phenolate or alkali metal alcoholates such as sodium methylate. Hexahydrotriazines can also be used as catalysts.
  • organic metal compounds in particular organic tin compounds, can also be used as catalysts.
  • Preferred organic tin compounds are tin (II) salts of carboxylic acids such as tin (II) acetate, tin (II) octoate, tin (II) ethylhexoate and tin (II) laurate and the tin (IV) compounds,
  • tin (II) salts of carboxylic acids such as tin (II) acetate, tin (II) octoate, tin (II) ethylhexoate and tin (II) laurate and the tin (IV) compounds
  • tin oxide dibutyltin dichloride
  • dibutyltin diacetate dibutyltin dilaurate
  • dibutyltin maleate or dioctyltin diacetate can be considered.
  • all of the above catalysts can be used as mixtures.
  • surface-active additives such as emulsifiers and foam stabilizers, can also be used.
  • the emulsifiers are e.g. the sodium salts of castor oil sulfonates or salts of fatty acids with amines such as oleic acid diethylamine or stearic acid diethanolamine.
  • Alkali or ammonium salts of sulfonic acids such as dodecylbenzenesulfonic acid or dinaphthylmethane disulfonic acid or of fatty acids such as ricinoleic acid or of polymeric fatty acids can also be used as surface-active additives.
  • Polyether siloxanes are particularly suitable as foam stabilizers. These compounds are generally constructed in such a way that a copolymer of ethylene oxide and propylene oxide is linked to a polydimethylsiloxane radical.
  • foam stabilizers are e.g. in U.S. Patents 2,834,748, 2,917,480, and 3,629,308.
  • reaction retarders e.g. acid-reacting substances such as hydrochloric acid or organic acid halides, furthermore cell regulators of the type known per se such as paraffins or fatty alcohols or dimethylpolysiloxanes as well as pigments or dyes and flame retardants of the type known per se, e.g. Tris-chloroethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate, also stabilizers against aging and weather influences, plasticizers and fungistatic and bacteriostatic substances, and fillers such as barium sulfate, diatomaceous earth, carbon black or sludge chalk are also used.
  • acid-reacting substances such as hydrochloric acid or organic acid halides
  • cell regulators of the type known per se
  • pigments or dyes and flame retardants e.g. Tris-chloroethyl phosphate, tricresyl phosphate or ammonium phosphate and
  • the reaction components are reacted according to the one-step process, the prepolymer process or the semi-prepolymer process, which are known per se, machine equipment often being used, e.g. those described in U.S. Patent 2,764,565. Details of processing devices that are also suitable according to the invention are given in the plastics manual, volume VI, published by Vieweg and Höchtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. described on pages 121 to 205.
  • foaming is often carried out in molds according to the invention.
  • the reaction mixture is introduced into a mold.
  • Metal for example aluminum, or plastic, for example epoxy resin, can be used as the molding material.
  • the foamable reaction mixture foams in the mold and forms the shaped body.
  • the foaming of the mold can be carried out in such a way that the molded part has a cell structure on its surface, but it can also be carried out in such a way that the molded part has a compact skin and a cellular core. According to the invention, one can proceed in this connection in such a way that so much foamable reaction mixture is introduced into the mold that the foam formed just fills the mold.
  • Cold-curing foams can also be produced according to the invention (cf. British patent specification 1 162 517, German patent application specification 2 153 086).
  • foams can also be produced by block foaming or by the double conveyor belt process known per se.
  • the process products are preferably flexible, semi-flexible or hard polyurethane foams. You will find the known use for such products, e.g. as mattresses and upholstery material in the furniture and automotive industry, also for the manufacture of fittings such as are used in the automotive industry and finally as insulation and means for heat or cold insulation, e.g. in the construction sector or in the refrigeration industry.
  • Example 1 is repeated, but using 1.2 parts of tetramethylethylenediamine instead of the catalyst mixture according to the invention.
  • Example 1 is repeated, but using 1.2 parts of N-dimethylamino-N '- (2-dimethylamino-propionyl) aminal instead of the catalyst mixture according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethankunststoffen durch Umsetzung von a) Polyisocyanaten mit b) Verbindungen mit mindestens 2 gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen, in Gegenwart von c) tertiären Aminen als Katalysatoren, gegebenenfalls unter Mitverwendung von d) Treibmitteln, Stabilisatoren und weiteren an sich bekannten Zusatzstoffen, dadurch gekennzeichnet, dass als Katalysatoren, gegebenenfalls im Gemisch mit an sich bekannten tertiären Aminkatalysatoren, Verbindungen eingesetzt werden, welche neben mindestens 2 tertiären Stickstoffatomen mindestens ein primäres oder sekundäres Stickstoffatom enthalten.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethankunststoffen, vorzugsweise Schaumstoffen, unter Verwendung neuartiger, tertiäre Stickstoffatome aufweisender Katalysatoren, die in das Polyurethan eingebaut werden und gleichzeitig als Alterungs- und Lichtschutzmittel wirken.
  • Polyurethanschaumstoffe mit den verschiedensten physikalischen Eigenschaften werden nach dem bekannten Isocyanat-Polyadditionsverfahren aus Verbindungen mit mehreren aktiven Wasserstoffatomen, insbesondere Hydroxyl- und/oder Carboxylgruppen enthaltenden Verbindungen, und Polyisocyanaten, unter Mitverwendung von Wasser und/oder Treibmitteln und gegebenenfalls Katalysatoren, Emulgatoren und anderen Zusatzstoffen,seit langem in technischem Maßstab hergestellt (Angew. Chem. A, 59 (1948), S. 257). Bei geeigneter Wahl der Komponenten werden entweder elastische oder starre Schaumstoffe bzw. auch alle zwischen diesen Extremen liegenden Produkte erhalten.
  • Polyurethanschaumstoffe werden bevorzugt aus flüssigen Ausgangskomponenten hergestellt, wobei die miteinander umzusetzenden Ausgangsmaterialien entweder in einem Einstufenverfahren zusammengemischt werden oder aber zunächst ein NCO-Gruppen aufweisendes Voraddukt aus einem Polyol und einem Überschuß an Polyisocyanat hergestellt wird, das dann,z.B. durch Reaktion mit Wasser, verschäumt wird.
  • Als Katalysatoren haben sich bei der Herstellung von Polyurethanschaumstoffen tertiäre Amine vor allem deshalb bewährt, weil sie sowohl die Reaktion zwischen Hydroxyl- bzw. Carboxylgruppen und NCO-Gruppen (Urethanreaktion) als auch die Reaktion zwischen Wasser und Isocyanaten (Treibreaktion) beschleunigen, wobei auch beim Einstufenverfahren ("one-shot") die Geschwindigkeiten der nebeneinander ablaufenden beiden Reaktionen aufeinander abgestimmt werden können.
  • Neben den bereits erwähnten Reaktionen laufen beim Verschäumungsprozeß noch zusätzliche Vernetzungsreaktionen unter Ausbildung von Allophanat-, Biuret- und Cyanuratstrukturen ab.
  • In Anbetracht dieser Vielzahl von Reaktionen ist es erforderlich, den Katalysator so zu wählen, daß einerseits der synchrone Ablauf der Reaktionen gewährleistet ist und andererseits der Katalysator nicht zu früh durch Einbau in den Schaum fixiert wird oder später den hydrolytischen Abbau des fertigen Schaumes beschleunigt. Dieses Problem ist bis jetzt noch nicht voll zufriedenstellend gelöst. Darüber hinaus ist der unangenehme Geruch vieler in der Praxis verwendeter tertiärer Amine von Nachteil. Außerdem neigen Polyurethanschäume auch in Gegenwart der technisch meist verwendeten Aminkatalysatoren wie z.B. Dabco oder Bis-(dialkylaminoalkyl)-äthern (DOS 1 804 361 und US-Patentschrift 3 330 782) für sich oder auch laminiert mit gefärbten Kunststoffolien (z.B. PVC-Folien) zur Vergilbung bzw. Verfärbung und Schwärzung bei thermischer Belastung bzw. Lichteinwirkung. Besonders störend ist dabei die Schwärzung von gefärbten Kunststoffolien,wie sie zur Verkleidung von Polyurethanschaumstoffen technisch z.B. bei Automobilsitzen, Kühlschränken und Elektrogeräten verwendet werden. Diese nachteiligen Effekte versperren den Polyurethanschäumen und Polyurethankunststoffen viele sonst mögliche Anwendungsgebiete.
  • Überraschenderweise wurden nun Katalysatoren gefunden, die für sich oder im Gemisch mit bekannten Aminkatalysatoren Verfärbungen von hinterschäumten Kunststoffolien (z.B. PVC-Folien) unter thermischer Belastung und/oder Lichteinwirkung ebenso verhindern, wie Alterungseffekte bei freigeschäumten Polyurethankunststoffen.
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethankunststoffen durch Umsetzung von
    • (a) Polyisocyanaten mit
    • (b) Verbindungen mit mindestens 2 gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen, in Gegenwart von
    • (c) tertiären Aminen als Katalysatoren, gegebenenfalls unter Mitverwendung von
    • (d) Treibmitteln, Stabilisatoren und weiteren an sich bekannten Zusatzstoffen,
      welches dadurch gekennzeichnet ist, daß als Komponente (c) (A) Verbindungen der allgemeinen Formel
      Figure imgb0001
      und/oder
      Figure imgb0002
      und/oder
      Figure imgb0003
      und/oder
      Figure imgb0004
      gegebenenfalls im Gemisch mit (B) anderen tertiären Aminen als Co-Katalysator, eingesetzt werden, wobei
      • die Reste R unabhängig voneinander gegebenenfalls verzweigte Alkylgruppen mit 1 - 4 C-Atomen, vorzugsweise Methylgruppen,darstellen,
      • die Zahlen n unabhängig voneinander für 2 oder 3, vorzugsweise für 3,
      • die Zahlen m unabhängig voneinander für 2 oder 3, vorzugsweise für 2, und
      • k für eine ganze Zahl zwischen 1 und 5 stehen.
  • Erfindungsgemäß bevorzugt sind als Katalysatoren (A) Verbindungen der allgemeinen Formel (1) und (2).
  • Die durch die allgemeinen Formeln (1) bis (4) gekennzeichneten Katalysatoren nehmen durch ihre stabilisierende Wirkung gegen thermische und photochemische Alterung eine Sonderstellung gegenüber den bisher verwendeten tertiären Aminen ein. Dies ist vermutlich darauf zurückzuführen, daß sie trotz ihres Gehaltes an aktiven Wasserstoffatomen - bedingt durch sterische Hinderung - nur sehr langsam beim Schäumprozeß in das Polyurethan eingebaut werden. Dadurch können sie überraschenderweise an den Phasengrenzflächen ihre stabilisierende Wirkung entfalten.
  • Im erfindungsgemäßen Verfahren können neben den Verbindungen (A) der allgemeinen Formel (1) bis (4) an sich bekannte Aminkatalysatoren (B) in einer Menge von 3 bis 97 Mol-%, vorzugsweise 10 bis 90 Mol.-%, besonders bevorzugt 30 bis 70 Mol.-%, bezogen auf Gesamtmenge an Katalysator, mitverwendet werden, beispielsweise Äthergruppen aufweisende tertiäre Amine gemäß US-Patentschrift 3 330 782, DAS 1 030 558 oder DOS 1 804 361 oder die äthergruppenfreien, mindestens 4 tertiäre Stickstoffatome aufweisenden Katalysatoren von DOS 2 624 527 und DOS 2 624 528. Als Co-Katalysatoren (B) sind jedoch erfindungsgemäß Verbindungen bevorzugt, welche neben mindestens einem tertiären Stickstoffatom mindestens eine Amidgruppe, insbesondere eine Formamidgruppe enthalten. Derartige acylierte Amine werden in der DOS 2 523 633 eingehend beschrieben. Erfindungsgemäß besonders bevorzugt sind in diesem Zusammenhang die Formylierungsprodukte der Verbindungen (A) der allgemeinen Formel (1) bis (4) sowie die Verbindungen
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    und
    Figure imgb0008
    wobei R und n die oben angegebene Bedeutung haben.
  • Beispiele für erfindungsgemäß zu verwendende Katalysatoren bzw. Co-Katalysatoren sind die folgenden tertiären Amine:
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
  • Die erfindungsgemäß zu verwendenden Katalysatoren können in an sich bekannter Weise hergestellt werden, wie beispielsweise in der DAS 1 154 269, der DOS 2 523 633 und in "Die Angewandte Makromolekulare Chemie" 34, S. 111 - 132 (1973), sowie von F. Möller in Houben-Weyl, XI/2 (S. 27-29) beschrieben.
  • Erfindungsgemäß werden in der Regel insgesamt 0,01 - 5 Gew.-%, vorzugsweise 0,1 - 3 Gewichtsprozent, bezogen auf gesamtes Reaktionsgemisch, an Katalysator eingesetzt.
  • Als erfindungsgemäß einzusetzende Ausgangskomponenten kommen aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate in Betracht, wie sie z. B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise Äthylen-diisocyanat, 1,4-Tetramethylendiisocyanat, 1,6-Hexamethylendiisocyanat, 1,12-Dodecandiisocyanat, Cyclobutan-1,3-diisocyanat, Cyclohexan-1,3- und -1,4-diiaocyanat sowie beliebige Gemische dieser Isomeren, 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (DAS 1 202 785, amerikanische Patentschrift 3 401 190), 2,4- und 2,6-Hexahydrotoluyiendiisocyanat sowie beliebige Gemische dieser Isomeren, Hexahydro-1,3- und/oder-1,4-phenylen-diisocyanat, Perhydro-2,4'- und/oder -4,4'-diphenylmethan-diisocyanat, 1,3- und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'- und/oder -4,4'-diisocyanat, Naphthylen-1,5-diisocyanat, Triphenylmethan-4,4',4"-triisocyanat, Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten und z.B. in den britischen Patentschriften 874 430 und 848 671 beschrieben werden, m- und p-Isocyanatophenylsulfonyl-isocyanate gemäß der amerikanischen Patentschrift 3 454 606, perchlorierte Arylpolyisocyanate, wie sie z.B. in der deutschen Auslegeschrift 1 157 601 (amerikanische Patentschrift 3 277 138) beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der deutschen Patentschrift 1 092 007 (amerikanische Patentschrift 3 152 162) beschrieben werden, Diisocyanate, wie sie in der amerikanischen Patentschrift 3 492 330 beschrieben werden, Allophanatgruppen aufweisende Polyisocyanate, wie sie z.B. in der britischen Patentschrift 994 890, der belgischen Patentschrift 761 626 und der veröffentlichten holländischen Patentanmeldung 7 102 524 beschrieben werden, Isocyanuratgruppen aufweisende Polyisocyanate, wie sie z.B. in der amerikanischen Patentschrift 3 001 973, in den deutschen Patentschriften 1 022 789, 1 222 067 und 1 027 394 sowie in den deutschen Offenlegungsschriften 1 929 034 und 2 004 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in der belgischen Patentschrift 752 261 oder in der amerikanischen Patentschrift 3 394 164 beschrieben werden, acylierte Harnstoffgruppen aufweisende Polyisocyanate gemäß der deutschen Patentschrift 1 230 778, Biuretgruppen aufweisende Polyisocyanate, wie sie z.B. in der deutschen Patentschrift 1 101 394 (amerikanische Patentschriften 3 124 605 und 3 201 372) sowie in der britischen Patentschrift 889 050 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie z.B. in der amerikanischen Patentschrift 3 654 106 beschrieben werden, Estergruppen aufweisende Polyisocyanate, wie sie zum Beispiel in den britischen Patentschriften 965 474 und 1 072 956, in der amerikanischen Patentschrift 3 567 763 und in der deutschen Patentschrift 1 231 688 genannt werden, Umsetzungsprodukte der obengenannten Isocyanate mit Acetalen und gemäß der deutschen Patentschrift 1 072 385 und polymere Fettsäurereste enthaltende Polyisocyanate gemäß der amerikanischen Patentschrift 3 455 883.
  • Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden,Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
  • Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen aier Biuretgruppen aufweisenden Polyisocyanate ("modifizierte Polyisocyanate").
  • Erfindungsgemäß einzusetzende Ausgangskomponenten sind ferner Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht in der Regel von 400 - 10 000. Hierunter versteht man neben Aminogruppen, Thiolgruppen oder Carboxylgruppen aufweisenden Verbindungen vorzugsweise Polyhydroxylverbindungen, insbesondere zwei bis acht Hydroxylgruppen aufweisende Verbindungen, speziell solche vom Molekulargewicht 800 bis 10 000, vorzugsweise 1000 bis 6000, z.B. mindestens zwei, in der Regel 2 bis 8, vorzugsweise aber 2 bis 4, Hydroxylgruppen aufweisende Polyester, Polyäther, Polythioäther, Polyacetale, Polycarbonate und Polyesteramide, wie sie für die Herstellung von homogenen und von zellförmigen Polyurethanen an sich bekannt sind.
  • Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z.B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätzlich dreiwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen, Carbonsäuren. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niedrigen Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein.
  • Als Beispiele hierfür seien genannt: Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Trimellitsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumärsäure, dimere und trimere Fettsäuren wie Ölsäure, gegebenenfalls in Mischung mit monomeren Fettsäuren, Terephthalsäuredimethylester und Terephthalsäure-bis-glykolester. Als mehrwertige Alkohole kommen z.B. Äthylenglykol, Propylenglykol-(1,2) und -(1,3), Butylenglykol-(1,4) und -(2,3), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol, Cyclohexandimethanol(1,4-Bis-hydroxymethylcyclo- hexan), 2-Methyl-1,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-(1,2,6), Butantriol-(1,2,4), Trimethyloläthan, Pentaerythrit, Chinit, Mannit und Sorbit, Methylglykosid, ferner Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol, Polyäthylenglykole, Dipropylenglykol, Polypropylenglykole, Dibutylenglykol und Polybutylenglykole in Frage. Die Polyester können anteilig endständige Carboxylgruppen aufweisen. Auch Polyester aus Lactonen, z.B. E-Caprolacton oder Hydroxycarbonsäuren, z.B. ω-Hydroxycapronsäure, sind einsetzbar.
  • Auch die erfindungsgemäß in Frage kommenden, mindestens zwei, in der Regel zwei bis acht, vorzugsweise zwei bis drei, Hydroxylgruppen aufweisenden Polyäther sind solche der an aich bekannten Art und werden z.B. durch Polymerisation von Epoxiden wie Äthylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von BF3, oder durch Anlagerung dieser Epoxide, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Wasser, Alkohole, Ammoniak oder Amine, z.B. Äthylenglykol, Propylenglykol-(1,3) oder -(1,2), Trimethylolpropan, 4,4'-Dihydroxy-diphenylpropan, Anilin, Äthanolamin oder Äthylendiamin hergestellt. Auch Sucrosepolyäther, wie sie z.B. in den deutschen Auslegeschriften 1 176 358 und 1 064 938 beschrieben werden, kommen erfindungsgemäß in Frage. Vielfach sind solche Polyäther bevorzugt, die überwiegend (bis zu 90 Gew.-%, bezogen auf alle vorhandenen OH-Gruppen im Polyäther) primäre OH-Gruppen aufweisen. Auch durch Vinylpolymerisate modifizierte Polyäther, wie sie z.B. durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyäthern entstehen (amerikanische Patentschriften 3 383 351, 3 304 273, 3 523 093, 3 110 695, deutsche Patentschrift 1 152 536), sind geeignet, ebenso OH-Gruppen aufweisende Polybutadiene.
  • Unter den Polythioäthern seien insbesondere die Kondensationsprodukte von Thiodiglykol mit sich selbst und/ oder mit anderen Glykolen, Dicarbonsäuren, Formaldehyd, Aminocarbonsäuren oder Aminoalkoholen angeführt. Je nach den Co-Komponenten handelt es sich bei den Produkten um Polythiomischäther, Polythioätherester oder Polythioätheresteramide.
  • Als Polyacetale kommen z.B. die aus Glykolen, wie Diäthylenglykol, Triäthylenglykol, 4,4'-Dioxäthoxydiphenyldimethylmethan, Hexandiol und Formaldehyd herstellbaren Verbindungen in Frage. Auch durch Polymerisation cyclischer Acetale lassen sich erfindungsgemäß geeignete Polyacetale herstellen.
  • Als Hydroxylgruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht, die z.B. durch Umsetzung von Diolen wie Propandiol-(1,3), Butandiol-(1,4) und/oder Hexandiol-(1,6), Diäthylenglykol, Triäthylenglykol oder Tetraäthylenglykol mit Diarylcarbonaten, z.B. Diphenylcarbonat,oder Phosgen hergestellt werden können.
  • Zu den Polyesteramiden und Polyamiden zählen z.B. die aus mehrwertigen gesättigten und ungesättigten Carbonsäuren bzw. deren Anhydriden und mehrwertigen gesättigten und ungesättigten Aminoalkoholen, Diaminen, Polyaminen und ihren Mischungen gewonnenen, vorwiegend linearen Kondensate.
  • Auch bereits Urethan- oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen sowie gegebenenfalls modifizierte natürliche Polyole, wie Rizinusöl, Kohlenhydrate oder Stärke, sind verwendbar. Auch Anlagerungsprodukte von Alkylenoxiden an Phenol-Formaldehyd-Harze oder auch an Harnstoff-Formaldehydharze sind erfindungsgemäß einsetzbar.
  • Vertreter dieser erfindungsgemäß zu verwendenden Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfaßt von Saunders-Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32-42 und Seiten 44-54 und Band II, 1964, Seiten 5-6 und 198-199, sowie im Kunststoff-Handbuch, Band VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den Seiten 45-71, beschrieben.
  • Selbstverständlich können Mischungen der obengenannten Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen mit einem Molekulargewicht von 400 - 10 000, z.B. Mischungen von Polyäthern und Polyestern, eingesetzt werden.
  • Als erfindungsgemäß - gegebenenfalls im Gemisch mit den genannten höhermolekularen Verbindungen - einzusetzende Ausgangskomponenten kommen auch Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht 32-400 in Frage. Auch in diesem Fall versteht man hierunter Hydroxylgruppen und/oder Aminogruppen und/oder Thiolgruppen und/oder Carboxylgruppen aufweisende Verbindungen, vorzugsweise Hydroxylgruppen und/oder Aminogruppen aufweisende Verbindungen, die als Kettenverlängerungsmittel oder Vernetzungsmittel dienen. Diese Verbindungen weisen in der Regel 2 bis 8 gegenüber Isocyanaten reaktionsfähiqe Wasserstoffatome auf, vorzugsweise 2 oder 3 reaktionsfähige Wasserstoffatome.
  • Als Beispiele für derartige Verbindungen seien genannt: Äthylenglykol, Propylenglykol-(1,2) und -(1,3), Butylenglykol-(1,4) und -(2,3), Pentandiol-(1,5), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol, 1,4-Bishydroxymethyl-cyclohexan, 2-Methyl-1,3-propandiol, Glyzerin, Trimethylolpropan, Hexantriol-(1,2,6), Trimethyloläthan, Pentaerythrit, Chinit, Mannit und Sorbit, Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol, Polyäthylenglykole mit einem Molekulargewicht bis 400, Dipropylenglykol, Polypropylenglykole mit einem Molekulargewicht bis 400, Dibutylenglykol, Polybutylenglykole mit einem Molekulargewicht bis 400, 4,4'-Dihydroxydiphenylpropan, Di-hydroxymethyl-hydrochinon, Äthanolamin, Diäthanolamin, Triäthanolamin, 3-Aminopropanol, Äthylendiamin, 1,3-Diaminopropan, 1-Mercapto-3-amino- propan, 4-Hydroxy- oder -Amino-phthalsäure, Bernsteinsäure, Adipinsäure, Hydrazin, N,N'-Dimethylhydrazin, 4,4'-Diaminodiphenylmethan, Toluylendiamin, Methylen-bis-chloranilin, Methylen-bis-anthranilsäureester Diaminobenzoesäureester und die isomeren Chlorphenylendiamine.
  • Auch in diesem Fall können Mischungen von verschiedenen Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen mit einem Molekulargewicht von 32-400 verwendet werden.
  • Erfindungsgemäß können jedoch auch Polyhydroxylverbindungen eingesetzt werden, in welchen hochmolekulare Polyaddukte bzw. Polykondensate in feindisperser oder gelöster Form enthalten sind. Derartige modifizierte Polyhydroxylverbindungen werden erhalten, wenn man Polyadditionsreaktionen (z.B. Umsetzungen zwischen Polyisocyanaten und aminofunktionellen Verbindungen) bzw. Polykondensationsreaktionen (z.B. zwischen Formaldehyd und Phenolen und/oder Aminen) direkt in situ in den oben genannten, Hydroxylgruppen aufweisenden Verbindungen ablaufen läßt. Derartige Verfahren sind beispielsweise in den Deutschen Auslegeschriften 1 168 075 und 1 260 142, sowie den Deutschen Offenlegungsschriften 2 324 134, 2 423 984, 2 512 385, 2 513 815, .2 550 796, 2 550 797, 2 550 833 und 2 550 862 beschrieben. Es ist aber auch möglich, gemäß US-Patent 3 869 413 bzw. Deutscher Offenlegungsschrift 2 550 860 eine fertige wäßrige Polymerdispersion mit einer Polyhydroxylverbindung zu vermischen und anschließend aus dem Gemisch das Wasser zu entfernen.
  • Bei der Verwendung von modifizierten Polyhydroxylverbindungen der oben genannten Art als Ausgangskomponente im Polyisocyanat-Polyadditionsverfahren entstehen in vielen Fällen Polyurethankunststoffe mit wesentlich verbesserten mechanischen Eigenschaften.
  • Erfindungsgemäß können Wasser und/oder leicht flüchtige organische Substanzen als Treibmittel mitverwendet werden Als organische Treibmittel kommen z.B. Aceton, Äthylacetat, halogensubstituierte Alkane wie Methylenchlorid, Chloroform, Äthyliden-chlorid, Vinylidenchlorid, Monofluortrichlormethan, Chlordifluormethan, Dichlordifluormethan, ferner Butan, Hexan, Heptan oder Diäthyläther infrage. Eine Treibwirkung kann auch durch Zusatz von bei Temperaturen über Raumtemperatur unter Abspaltung von Gasen, beispielsweise von Stickstoff, sich zersetzenden Verbindungen, z.B. Azoverbindungen wie Azoisobuttersäurenitril, erzielt werden. Weitere Beispiele für Treibmittel sowie Einzelheiten über die Verwendung von Treibmitteln sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 108 und 109, 453 bis 455 und 507 bis 510 beschrieben.
  • Erfindungsgemäß können selbstverständlich auch weitere an sich bekannte Katalysatoren mitverwendet werden, z.B. tertiäre Amine, wie Triäthylamin, Tributylamin, N-Methyl-morpholin, N-Äthyl-morpholin, N-Cocomorpholin , N,N,N',N'-Tetramethyl-äthylendiamin, 1,4-Diaza-bicyclo-(2,2,2)-octan, N-Methyl-N'-dimethyl- aminoäthyl-piperazin, N,N-Dimethylbenzylamin, Bis-(N,N-di- äthylaminoäthyl)-adipat, N,N-Diäthylbenzylamin, Pentamethyldiäthylentriamin, N,N-Dimethylcyclohexylamin, N,N,N',N'-Tetramethyl-1,3-butandiamin, N,N-Dimethyl-β-phenyläthyl- amin, 1,2-Dimethylimidazol und 2-Methylimidazol. Als zusätzliche Katalysatoren kommen auch an sich bekannte Mannichbasen aus sekundären Aminen, wie Dimethylamin, und Aldehyden, vorzugsweise Formaldehyd, oder Ketonen wie Aceton, Methyläthylketon oder Cyclohexanon und Phenolen, wie Phenol, Nonylphenol oder Bisphenol in Frage.
  • Gegenüber Isocyanatgruppen aktive Wasserstoffatome aufweisende tertiäre Amine als Katalysatoren sind z.B. Triäthanolamin, Triisopropanolamin, N-Methyldiäthanolamin, N-Äthyl-diäthanolamin, N,N-Dimethyl-äthanolamin, sowie deren Umsetzungsprodukte mit Alkylenoxiden, wie Propylenoxid und/oder Äthvlenoxid.
  • Als zusätzliche Katalysatoren kommen ferner Silaamine mit Kohlenstoff-Silizium-Bindungen, wie sie z.B. in der deutschen Patentschrift 1 229 290 (entsprechend der amerikanischen Patentschrift 3 620 984) beschrieben sind, in Frage, z.B. 2,2,4-Trimethyl-2-silamorpholin und 1,3-Diäthylaminomethyltetramethyl-disiloxan.
  • Als zusätzliche Katalysatoren kommen auch stickstoffhaltige Basen wie Tetraalkylammoniumhydroxide, ferner Alkalihydroxide wie Natriumhydroxid, Alkaliphenolate wie Natriumphenolat oder Alkalialkoholate wie Natriummethylat in Betracht. Auch Hexahydrotriazine können als Katalysatoren eingesetzt werden.
  • Erfindungsgemäß können auch organische Metallverbindungen, insbesondere organische Zinnverbindungen, als Katalysatoren mitverwendet werden.
  • Als organische Zinnverbindungen kommen vorzugsweise Zinn(II)-salze von Carbonsäuren wie Zinn(II)-acetat, Z1nn(II}-octoat, Zinn(II)-äthylhexoat und Zinn(II)-laurat und die Zinn(IV)-Verbindungen, z.B. Dibutylzinnoxid, Dibutylzinndichlorid, Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinnmaleat oder Dioctylzinndiacetat in Betracht. Selbstverständlich können alle obengenannten Katalysatoren als Gemische eingesetzt werden.
  • Weitere Vertreter von erfindungsgemäß gegebenenfalls zu verwendenden Katalysatoren sowie Einzelheiten über die Wirkungsweise der Katalysatoren sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 96 bis 102 beschrieben.
  • Erfindungsgemäß können auch oberflächenaktive Zusatzstoffe, wie Emulgatoren und Schaumstabilisatoren, mitverwendet werden.
  • Als Emulgatoren kommen z.B. die Natriumsalze von Ricinusölsulfonaten oder Salze von Fettsäuren mit Aminen wie ölsaures Diäthylamin oder stearinsaures Diäthanolamin infrage. Auch Alkali-oder Ammoniumsalze von Sulfonsäuren wie etwa von Dodecylbenzolsulfonsäure oder Dinaphthylmethandisulfonsäure oder von Fettsäuren wie Ricinolsäure oder von polymeren Fettsäuren können als oberflächenaktive Zusatzstoffe mitverwendet werden.
  • Als Schaumstabilisatoren kommen vor allem Polyäthersiloxane, speziell wasserlösliche Vertreter, infrage. Diese Verbindungen sind im allgemeinen so aufgebaut, daß ein Copolymerisat aus Athylenoxid und Propylenoxid mit einem Polydimethylsiloxanrest verbunden ist. Derartige Schaumstabilisatoren sind z.B. in den amerikanischen Patentschriften 2 834 748 , 2 917 480 und 3 629 308 beschrieben.
  • Erfindungsgemäß können ferner auch Reaktionsverzögerer, z.B. sauerreagierende Stoffe wie Salzsäure oder organische Säurehalogenide, ferner Zellregler der an sich bekannten Art wie Paraffine oder Fettalkohole oder Dimethylpolysiloxane sowie Pigmente oder Farbstoffe und Flammschutzmittel der an sich bekannten Art, z.B. Tris-chloräthylphosphat, Trikresylphosphat oder Ammoniumphosphat und -polyphosphat, ferner Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher und fungistatisch und bakteriostatisch wirkende Substanzen sowie Füllstoffe wie Bariumsulfat, Kieselgur, RuB oder Schlämmkreide mitverwendet werden.
  • Weitere Beispiele von gegebenenfalls erfindungsgemäß mitzuverwendenden oberflächenaktiven Zusatzstoffen und Schaumstabilisatoren sowie Zellreglern, Reaktionsverzögerern, Stabilisatoren, flammhemmenden Substanzen, Weichmachern, Farbstoffen und Füllstoffen sowie fungistatisch und bakteriostatisch wirksamen Substanzen sowie Einzelheiten über Verwendungs- und Wirkungsweise dieser Zusatzmittel sind im Kunststoff-Handbuch, Band VT, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 103 bis 113 beschrieben.
  • Die Reaktionskomponenten werden erfindungsgemäß nach dem an sich bekannten Einstufenverfahren, dem Prepolymerverfahren oder dem Semiprepolymerverfahren zur Umsetzung gebracht, wobei man sich oft maschineller Einrichtungen bedient, z.B. solcher, die in der amerikanischen Patentschrift 2 764 565 beschrieben werden. Einzelheiten über Verarbeitungseinrichtungen, die auch erfindungsgemäß infrage kommen, werden im Kunststoff-Handbuch, Band VI, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 121 bis 205 beschrieben.
  • Bei der Schaumstoffherstellung wird erfindungsgemäß die Verschäumung oft in Formen durchgeführt. Dabei wird das Reaktionsgemisch in eine Form eingetragen. Als Formmaterial kommt Metall, z.B. Aluminium, oder Kunststoff, z.B. Epoxidharz, in Frage. In der Form schäumt das schäumfähige Reaktionsgemisch auf und bildet den Formkörper. Die Formverschäumung kann dabei so durchgeführt werden, daß das Formteil an seiner Oberfläche Zellstruktur aufweist, es kann aber auch so durchgeführt werden, daß das Formteil eine kompakte Haut und einen zelligen Kern aufweist. Erfindungsgemäß kann man in diesem Zusammenhang so vorgehen, daß man in die Form so viel schäumfähiges Reaktionsgemisch einträgt, daß der gebildete Schaumstoff die Form gerade ausfüllt. Man kann aber auch so arbeiten, daß man mehr schäumfähiges Reaktionsgemisch in die Form einträgt, als zur Ausfüllung des Forminneren mit Schaumstoff notwendig ist. Im letztgenannten Fall wird somit unter "overcharging" gearbeitet; eine derartige Verfahrensweise ist z.B. aus den amerikanischen Patentschriften 3178 490 und 3 182 104 bekannt.
  • Bei der Formverschäumung werden vielfach an sich bekannte 'äußere Trennmittel", wie Siliconöle, mitverwendet. Man kann aber auch sogenannte "innere Trennmittel", gegebenenfalls im Gemisch mit äußeren Trennmitteln, verwenden, wie sie z.B. aus den deutschen Offenlegungsschriften 2 121 670 und 2 307 589 bekanntgeworden sind.
  • Erfindungsgemäß lassen sich auch kalthärtende Schaumstoffe herstellen (vgl. britische Patentschrift 1 162 517, deutsche Offenlegungsschrift 2 153 086).
  • Selbstverständlich können aber auch Schaumstoffe durch Blockverschäumung oder nach dem an sich bekannten Doppeltransportbandverfahren hergestellt werden.
  • Die Verfahrensprodukte sind vorzugsweise flexible, semiflexible oder harte Polyurethanschaumstoffe. Sie finden die an sich bekannte Verwendung für derartige Produkte, z.B. als Matralzen und Polsterungsmaterial in der Möbel- und Automobilindustrie, ferner zur Herstellung von Armaturen, wie sie in der Automobilindustrie angewendet werden und schließlich als Dämmittel und Mittel zur Wärme- bzw. Kälteisolierung, z.B. im Bausektor oder in der Kühlmöbelindustrie.
  • Die folgenden Beispiele erläutern das erfindungsgemäße Verfahren, ohne es zu begrenzen. Wenn nicht anders vermerkt, sind Mengenangaben als Gewichtsteile bzw. Gewichtsprozente zu verstehen.
  • Beispiel 1
  • 100 g einer Mischung aus 100 Teilen eines auf Trimethylolpropan gestarteten Copolyäthers mit einem mittleren Molekulargewicht von 4800 aus 87 % Propylenoxid und 13 % Äthylenoxid
  • 2 Teilen Triäthanolamin,
  • 2,3 Teilen Wasser und
  • 1,2 Teilen eines Gemsiches aus gleichen Gewichtsanteilen an Bis-(dimethylamino-n-propyl)-amin und N-Methyl-N'-(3-formyl- aminopropyl)-piperazin
  • werden mit 46 g des Phosgenierungsprodukts eines technischen Anilin-Formaldehyd-Kondensats (Viskosität: 200 cP bei 25°C) intensiv verrührt. Man deckt den so erhaltenen Schaumstoff teilweise mit einer grün eingefärbten PVC-Folie ab und lagert bei 100°C im Trockenschrank. Die Lichtechtheit des freigeschäumten Produktes wird gesondert in Anlehnung an DIN 54 004 bestimmt
  • Vergleichsbeispiel 1a:
  • Beispiel 1 wird wiederholt, jedoch unter Verwendung von 1,2 Teilen Tetramethyl-äthylendiamin anstelle des erfindungsgemäßen Katalysatorgemisches.
  • Vergleichsbeispiel 1b:
  • Beispiel 1 wird wiederholt, jedoch unter Verwendung von 1,2 Teilen N-Dimethylamino-N'-(2-dimethylamino-propionyl)-aminal anstelle des erfindungsgemäßen Katalysatorgemisches.
  • Die Ergebnisse der Versuche sind in der folgenden Tabelle zusammengefaßt:
    Figure imgb0018
  • Beispiel 2
  • Es wird vorgegangen wie in Beispiel 1 beschrieben, jedoch mit 1,2 Teilen Bis-(3-dimethylamino-n-propyl)-amin gearbeitet. Man erhält folgende Ergebnisse:
    Figure imgb0019
  • Beispiel 3
  • Es wird vorgegangen wie in Beispiel 1 beschrieben, jedoch mit 1,2 Teilen N,N-Bis-(3-dimethylamino-n-propyl)-propylendiamin gearbeitet.
    Figure imgb0020
  • Beispiel 4
  • Es wird vorgegangen wie in Beispiel 1 beschrieben, jedoch mit 1,2 Teilen eines Gemisches aus gleichen Gewichtsteilen Bis-(3-dimethylamino-n-propyl)-amin und 1-N-Formyl-4-N-(2-formyl- amino-äthyl)-piperazin gearbeitet.
  • Man erhält folgende Ergebnisse:
    Figure imgb0021
  • Beispiel 5
  • Es wird vorgegangen wie in Beispiel 1 beschrieben, jedoch mit 1,2 Teilen eines Gemisches aus gleichen Gewichtsteilen Bis-(3-dimethylamino-n-propyl)-amin und Methyl-bis-(3-N-formylamino- propyl)-amin gearbeitet.
  • Man erhält folgendes Ergebnis der thermischen und photochemischen Alterungsversuche:
    Figure imgb0022
  • Beispiel 6
  • Es wird vorgangen wie in Beispiel 1 beschrieben, jedoch mit 1,2 Teilen eines Gemisches aus gleichen Gewichtsteilen Bis-(3-dimethylamino-n-propyl)-amin und Dimethylamino-n-propyl-formamid gearbeitet. Man erhält folgende Ergebnisse:
    Figure imgb0023

Claims (7)

1) Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethankunststoffen durch Umsetzung von
(a) Polyisocyanaten mit
(b) Verbindungen mit mindestens 2 gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen, in Gegenwart von
(c) tertiären Aminen als Katalysatoren, gegebenenfalls unter Mitverwendung von
(d) Treibmitteln, Stabilisatoren und weiteren an sich bekannten Zusatzstoffen,
dadurch gekennzeichnet daß als Komponente (c) (A) Verbindungen der allgemeinen Formel
Figure imgb0024
und/oder
Figure imgb0025
und/oder
Figure imgb0026
und/oder
Figure imgb0027
gegebenenfalls im Gemisch mit (B) anderen tertiären Aminen als Co-Katalysator, eingesetzt werden, wobei
die Reste R unabhängig voneinander gegebenenfalls verzweigte Alkylgruppen mit 1-4 C-Atomen darstellen
die Zahlen n unabhängig voneinander für 2 oder 3,
die Zahlen m unabhängig voneinander für 2 oder 3 und
k für eine ganze Zahl zwischen 1 und 5 stehen.
2) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß neben den Verbindungen (A) der allgemeinen Formeln (1) bis (4) 3 bis 97 Mol.-%, bezogen auf gesamtes Katalysatorgemisch, an weiteren tertiären Aminen (B) als Co-Katalysator mitverwendet werden.
3) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß 10 bis 90 Mol.-%, bezogen auf gesamtes Katalysatorgemisch, an Co-Katalysatoren (B) mitverwendet werden.
4) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß 30 bis 70 Mol.-%, bezogen auf gesamtes Katalysatorgemisch, an Co-Katalysatoren (B) mitverwendet werden.
5) Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß als Co-Katalysator (B) Verbindungen mit mindestens einem tertiären Stickstoffatom und mindestens einer Amidgruppe eingesetzt werden.
6) Verf.ihren nach Anspruch 5, dadurch gekennzeichnet, daß als Co-Katalysator (B) Formylierungsprodukte der Verbindungen (A) der allgemeinen Formeln (1) bis (4) aus Anspruch 1 und/oder die Verbindungen
Figure imgb0028
Figure imgb0029
Figure imgb0030
und/oder
Figure imgb0031
eingesetzt werden,
wobei R und n die in Anspruch 1 angegebene Bedeutung haben.
7.) Verfahren nach Anspruch 1 bis 6 dadurch gekennzeichnet, daß
R für eine Methylgruppe,
m für 2 und
n für 3 stehen.
EP78100346A 1977-07-16 1978-07-11 Verfahren zur Herstellung von Polyurethankunststoffen Expired EP0000389B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2732292 1977-07-16
DE19772732292 DE2732292A1 (de) 1977-07-16 1977-07-16 Verfahren zur herstellung von polyurethankunststoffen

Publications (2)

Publication Number Publication Date
EP0000389A1 true EP0000389A1 (de) 1979-01-24
EP0000389B1 EP0000389B1 (de) 1980-08-06

Family

ID=6014144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100346A Expired EP0000389B1 (de) 1977-07-16 1978-07-11 Verfahren zur Herstellung von Polyurethankunststoffen

Country Status (7)

Country Link
US (1) US4248930A (de)
EP (1) EP0000389B1 (de)
JP (1) JPS5420099A (de)
AT (1) AT367779B (de)
BR (1) BR7804545A (de)
DE (2) DE2732292A1 (de)
IT (1) IT1106265B (de)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300366A1 (de) * 1987-07-20 1989-01-25 Air Products And Chemicals, Inc. Nichtflüchtige aromatische Diamine als katalytische Kettenverlängerungsmittel
EP0300349A1 (de) * 1987-07-20 1989-01-25 Air Products And Chemicals, Inc. Nichtflüchtige Diaminobenzoate als katalytische Kettenverlängerungsmittel
EP0410467A2 (de) * 1989-07-28 1991-01-30 Tosoh Corporation Verfahren zur Herstellung von hochelastischem Polyurethanschaum
EP0469545A2 (de) * 1990-07-30 1992-02-05 Tosoh Corporation Aminkatalysator zur Herstellung von Polyurethanschäumen und Verfahren zur Herstellung dieser Schäume
US5229430A (en) * 1990-07-30 1993-07-20 Tosoh Corporation Amine catalyst for producing polyurethane and process for producing polyurethane
EP2138520A2 (de) 2008-06-28 2009-12-30 Bayer MaterialScience AG Verfahren zur Erniedrigung von Emissionen eines Polyurethanschaumstoffes
EP2256141A2 (de) 2009-05-27 2010-12-01 Bayer MaterialScience AG Verrfahren zur Herstellung von Polyurethan-Weichschaumstoffen mit niedriger Emission
WO2011003590A2 (de) 2009-07-09 2011-01-13 Bayer Materialscience Ag Verfahren zur herstellung von flammgeschützten polyurethanschaumstoffen mit guten dauergebrauchseigenschaften
DE102009047846A1 (de) 2009-09-30 2011-03-31 Bayer Materialscience Ag Verfahren zur Erniedrigung von Emissionen eines Polyurethanschaumstoffes
WO2012069385A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2012069386A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2012069383A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyricinolsäureester-polyolen mit primären hydroxyl-endgruppen
WO2012069384A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2012130760A1 (de) 2011-03-28 2012-10-04 Bayer Materialscience Ag Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP2530101A1 (de) 2011-06-01 2012-12-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2013174745A1 (de) 2012-05-22 2013-11-28 Bayer Materialscience Ag Verfahren zur herstellung von flammgeschützten polyurethanschaumstoffen mit niedrigen rohdichten
WO2013182527A1 (en) 2012-06-06 2013-12-12 Bayer Materialscience Ag Process for the production of viscoelastic polyurethane foam
EP2730602A1 (de) 2012-11-09 2014-05-14 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2014072336A1 (de) 2012-11-09 2014-05-15 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP2881411A1 (de) 2013-12-05 2015-06-10 Bayer MaterialScience AG Verfahren zur Herstellung von viskoelastischen Polyurethanschaumstoffen auf Basis von phasenstabilen Polyolformulierungen
WO2016135259A1 (de) 2015-02-27 2016-09-01 Covestro Deutschland Ag Verwendung von polyethercarbonatpolyolen zur erzeugung farbstabiler polyurethanschaumstoffe
WO2017085201A1 (de) 2015-11-19 2017-05-26 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3178858A1 (de) 2015-12-09 2017-06-14 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3293218A1 (de) 2016-09-13 2018-03-14 Covestro Deutschland AG Verfahren zur erniedrigung der aldehydemissionen von polyurethanschaumstoffen
EP3330307A1 (de) 2016-12-05 2018-06-06 Covestro Deutschland AG Verwendung von acrylsäureestern und amiden zur erniedrigung von emissionen eines polyurethanschaumstoffes
EP3336130A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verfahren zur herstellung von polyetherthiocarbonatpolyolen
EP3336115A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verfahren zur erniedrigung von emissionen eines polyurethanschaumstoffes
EP3336137A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verwendung von physikalischen treibmitteln zur erzeugung von polyethercarbonatpolyol-basierten polyurethanschaumstoffen mit reduzierter emission von cyclischem propylencarbonat
EP3409704A1 (de) 2017-06-01 2018-12-05 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3425187A1 (de) 2017-07-07 2019-01-09 Covestro Deutschland AG Flammgeschütze isolierung für verbrennungsmotoren
EP3428212A1 (de) 2017-07-11 2019-01-16 Covestro Deutschland AG Weichschaumstoff mit halogenfreiem flammschutz
WO2019011956A1 (de) 2017-07-11 2019-01-17 Covestro Deutschland Ag Weichschaumstoff mit halogenfreiem flammschutz
EP3444287A1 (de) 2017-08-15 2019-02-20 Covestro Deutschland AG Dämmkörper, insbesondere dämmkörper zur zwischensparrendämmung
WO2019034658A1 (de) 2017-08-15 2019-02-21 Covestro Deutschland Ag Dämmkörper, insbesondere dämmkörper zur zwischensparrendämmung
US10233298B2 (en) 2014-04-24 2019-03-19 Covestro Deutschland Ag Polyurethane foams based on polyether carbonate polyols
EP3536727A1 (de) 2018-03-07 2019-09-11 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2019170590A1 (de) 2018-03-07 2019-09-12 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3543268A1 (de) 2018-03-22 2019-09-25 Covestro Deutschland AG Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2019180156A1 (de) 2018-03-22 2019-09-26 Covestro Deutschland Ag Verfahren zur herstellung von polyurethanweichschaumstoffen mit hoher rohdichte
EP3549969A1 (de) 2018-04-06 2019-10-09 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3594255A1 (de) 2018-07-09 2020-01-15 Covestro Deutschland AG Verfahren zur herstellung von viskoelastischen polyurethanschaumstoffen
EP3608347A1 (de) 2018-08-08 2020-02-12 Covestro Deutschland AG Weichschaumstoff mit halogenfreiem flammschutz
EP3838964A1 (de) 2019-12-18 2021-06-23 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3892660A1 (de) 2020-04-08 2021-10-13 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP4101873A1 (de) 2021-06-11 2022-12-14 Covestro Deutschland AG Einsatz von bismut-katalysatoren zur verringerung von cyclischem propylencarbonat bei der herstellung von weichschaumstoffen basierend auf polyethercarbonatpolyolen
EP4194476A1 (de) 2021-12-07 2023-06-14 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP4219576A1 (de) 2022-01-28 2023-08-02 Covestro Deutschland AG Herstellung von aliphatischen polyurethan-polyisocyanuratschaumstoffen (pur-pir) unter verwendung eines katalysatorgemischs aus salzen organischer carbonsäuren und 1,1,3,3-tetraalkylguanidinen
EP4219579A1 (de) 2022-01-28 2023-08-02 Covestro Deutschland AG Herstellung von aliphatischen polyurethan-weichschaumstoffe in einem präpolymerverfahren basierend auf aliphatischen oligomeren polyisocyanaten und monohydroxyfunktionellen verbindungen
EP4219578A1 (de) 2022-01-28 2023-08-02 Covestro Deutschland AG Herstellung von aliphatischen polyurethan-weichschaumstoffe in einem präpolymerverfahren basierend auf aliphatischen oligomeren polyisocyanaten und monohydroxyfunktionellen verbindungen
WO2023144058A1 (de) 2022-01-28 2023-08-03 Covestro Deutschland Ag Herstellung von aliphatischen polyurethan-weichschaumstoffen mit verkürzten abbindezeiten (klebfreizeiten) und steigzeiten

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854384A1 (de) * 1978-12-16 1980-07-03 Bayer Ag Verfahren zur herstellung von polyurethan-kunststoffen
US4500654A (en) * 1983-11-01 1985-02-19 Abbott Laboratories Catalyst system and process for the production of polyurethanes
JPH0615602B2 (ja) * 1985-06-27 1994-03-02 東ソー株式会社 表皮付きポリウレタンフオ−ム製造用触媒
DE3721058A1 (de) 1987-06-26 1989-01-05 Bayer Ag Verfahren zur herstellung von kalthaertenden polyurethan-weichformschaumstoffen
DE3868202D1 (de) 1987-09-15 1992-03-12 Bayer Ag Verfahren zur herstellung von polyurethan-hartschaumstoffen.
DE3737524C2 (de) * 1987-11-05 1994-12-22 Bayer Ag Verfahren zur Herstellung von Skikernen
DE3739764A1 (de) * 1987-11-24 1989-06-08 Bayer Ag Verwendung von phosphorigsaeure-tris(2-propyl-2-phosphonsaeure- dimethylester) bei der herstellung von kunststoffen aus isocyanatbasis
DE3933705C1 (de) * 1989-04-24 1990-12-13 Hans Wilhelm 4060 Viersen De Huetzen
JPH0762090B2 (ja) * 1989-04-24 1995-07-05 ビルヘルム フュッツェン,ハンス ハロゲン化炭化水素を含まないウレタンフォーム材料およびその製造方法
DE3925790A1 (de) * 1989-08-04 1991-02-07 Bayer Ag Zweikomponenten-polyurethanklebstoff
EP0461072B1 (de) * 1990-06-07 1998-07-29 Ciba SC Holding AG Verfahren zur Herstellung von Polyurethanstoffen unter Verwendung von spezifischen Stabilisatorsystemen
DE4038783A1 (de) * 1990-12-05 1992-06-11 Basf Ag Polyvinylchlorid-polyurethanschaumstoff-verbundelemente, verfahren zu ihrer herstellung und zur herstellung des polyurethanschaumstoffs verwendbare fluessige, urethangruppen enthaltende polyisocyanatmischungen
US5039713A (en) * 1991-02-07 1991-08-13 Air Products And Chemicals, Inc. Blowing reaction catalyst composition that provides cell opening of the resulting polyurethane foam
CA2107950C (en) * 1992-10-22 2001-08-14 Bayer Corporation Stabilization of rim systems containing acidic additives
DE4344180A1 (de) 1993-12-23 1995-06-29 Bayer Ag Verwendung von Antikernverfärbungsmitteln bei der Herstellung von Schaumstoffen auf Isocyanatbasis
EP0693526A1 (de) 1994-07-20 1996-01-24 Bayer Ag Verfahren zur Herstellung von harten Urethan- und gegebenenfalls Isocyanuratgruppen aufweisenden Schaumstoffen
DE4445281A1 (de) 1994-12-19 1996-06-20 Bayer Ag Zu harten Polyurethanschaumstoffen führende Mischungen
US5633293A (en) * 1995-11-30 1997-05-27 Air Products And Chemicals, Inc. Hydroxy-functional triamine catalyst compositions for polyurethane production
US6313346B1 (en) 1999-03-26 2001-11-06 Air Products And Chemicals, Inc. Catalyst compositions for the production of polyurethanes
US6156814A (en) * 1999-03-26 2000-12-05 Air Products And Chemicals, Inc. Amido functional amine catalysts for the production of polyurethanes
US6037496A (en) * 1999-03-26 2000-03-14 Air Products And Chemicals, Inc. 3-{N-[2-(N',N'-dimethylamino ethoxy)ethyl]-N-methylamino}propionamide for the production of polyurethanes
DE19927548C2 (de) 1999-06-16 2002-12-12 Clariant Gmbh Verfahren zur Herstellung von flammwidrigen Polyurethanweichschäumen
US6258867B1 (en) * 1999-07-23 2001-07-10 Bayer Corporation Method for making semi-rigid energy-absorbing foam with polyurethane fillers
DE19954739A1 (de) 1999-11-12 2001-06-07 Bayer Ag Flammwidriger HR-Kaltformschaum mit reduzierter Rauchgasdichte und -toxizität
DE10014597C2 (de) 2000-03-27 2002-06-27 Clariant Gmbh Halogenfreier, pentangetriebener flammwidriger Polyurethanhartschaum und ein Verfahren zu seiner Herstellung
DE10014596C2 (de) 2000-03-27 2002-06-27 Clariant Gmbh Halogenfreier, wassergetriebener flammwidriger Polyurethanhartschaum und ein Verfahren zu seiner Herstellung
DE10014593C2 (de) 2000-03-27 2002-06-27 Clariant Gmbh Halogenfreier, flammwidriger Polyurethanhartschaum und ein Verfahren zu seiner Herstellung
JP2002179755A (ja) * 2000-12-13 2002-06-26 Inoac Corp 低蛍光性軟質ポリウレタンフォーム
EP1262500B1 (de) * 2001-05-22 2015-12-30 Tosoh Corporation Katalysator für die Herstellung eines Polyurethanharzes und Verfahren zum Herstellen eines Polyurethanharzes
JP4867111B2 (ja) * 2001-09-06 2012-02-01 東ソー株式会社 ポリウレタン製造用触媒及びポリウレタンの製造方法
DE10247973B4 (de) * 2002-10-15 2005-05-04 Clariant Gmbh Halogenreduzierte Flammschutzmittelmischungen zur Herstellung von emissionsstabilen Polyurethanweichschäumen
DE10247974A1 (de) * 2002-10-15 2004-05-13 Clariant Gmbh Flammwidrige Polyurethanweichschäume mit hoher Alterungsbeständigkeit
DE10343099B3 (de) * 2003-09-18 2005-06-09 Bayer Materialscience Ag Verfahren zur Herstellung schadstoffarmer Kunststoffformteile und Verwendung von Carbonsäureanhydriden dafür
US6858654B1 (en) * 2003-10-27 2005-02-22 Air Products And Chemicals, Inc. Catalyst blends for producing low thermal desorption polyurethane foams
EP1813599A4 (de) 2004-11-02 2011-02-23 Tosoh Corp Zusammensetzung hydroxyalkylierter polyalkylenpolyamine, verfahren zu deren herstellung und verfahren zur herstellung von polyurethanharz unter anwendung einer solchen zusammensetzung hydroxyalkylierter polyalkylenpolyamine
US8729146B2 (en) 2005-06-14 2014-05-20 Momentive Performance Materials Inc. Catalyst composition and process using same
DE102007010160A1 (de) 2007-03-02 2008-09-04 Lanxess Deutschland Gmbh Halogenfreie, flammgeschützte Polyurethanschaumstoffe
JP5018139B2 (ja) * 2007-03-02 2012-09-05 東ソー株式会社 ポリウレタン樹脂製造用触媒及びそれを用いたポリウレタン樹脂の製造法
US20080227879A1 (en) 2007-03-15 2008-09-18 Bayer Materialscience Llc Water-blown polyurethane foams and a process for their production
DE102007046187A1 (de) 2007-09-26 2009-04-09 Bayer Materialscience Ag Dachmodul
JP4914855B2 (ja) * 2008-03-18 2012-04-11 株式会社イノアックコーポレーション 水処理担体
US20110077376A1 (en) * 2008-05-30 2011-03-31 Katsumi Tokumoto Process for producing hydroxyalkyltriethylenediamine, and catalyst composition for the production of polyurethane resin using it
CN103265677B (zh) 2008-05-30 2016-06-08 东曹株式会社 羟基烷基三亚乙基二胺类化合物的制造方法及使用其的聚氨酯树脂制造用催化剂组合物
DE102008038054A1 (de) 2008-08-16 2010-02-18 Lanxess Deutschland Gmbh Halogenfreie, flammgeschützte Polyurethanschaumstoffe mit geringem Scorch
DE102008051882A1 (de) 2008-10-16 2010-04-29 Bayer Materialscience Ag Verfahren zur Herstellung von Polyetheresterpolyolen
DE102009011995A1 (de) 2009-03-06 2010-09-09 Bayer Materialscience Ag Verfahren zur Herstellung primäre Aminogruppen enthaltender Polyamine
US20110230581A1 (en) 2010-03-17 2011-09-22 Bayer Materialscience Llc Process for the production of polyether polyols with a high ethylene oxide content
JP2014501826A (ja) 2010-12-20 2014-01-23 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ポリエーテルエステルポリオールの製造方法
PL2657237T3 (pl) 2010-12-22 2015-11-30 Tosoh Corp Cykliczny związek aminowy i proces produkcji żywicy poliuretanowej z jego zastosowaniem
EP2687534A1 (de) 2012-07-20 2014-01-22 LANXESS Deutschland GmbH Halogenfreie Poly(alkylenphosphate)
EP2848640A1 (de) 2013-09-13 2015-03-18 LANXESS Deutschland GmbH Phosphorsäureester-Zubereitungen mit verringerter Hygroskopie
DE102014215384A1 (de) * 2014-08-05 2016-02-11 Evonik Degussa Gmbh Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen
EP2985335A1 (de) 2014-08-15 2016-02-17 LANXESS Deutschland GmbH Flammwidrige Polyurethanschaumstoffe mit geringer Kernverfärbung
CN115433335A (zh) * 2014-09-12 2022-12-06 赢创运营有限公司 用异氰酸酯反应性胺晶体制得的低排放聚氨酯泡沫
KR101947421B1 (ko) * 2014-10-20 2019-02-14 (주)엘지하우시스 표면코팅용 수성 조성물 및 이를 적용한 자동차용 시트
WO2016079175A1 (de) 2014-11-18 2016-05-26 Covestro Deutschland Ag Verfahren zur herstellung von flammgeschützten polyurethanschaumstoffen unter verwendung von halogenfreien flammschutzmitteln
EP3050890A1 (de) 2015-01-27 2016-08-03 LANXESS Deutschland GmbH Hydroxylgruppen-haltige Poly(alkylenphosphate)
PL3387035T3 (pl) 2015-12-09 2022-08-16 Covestro Intellectual Property Gmbh & Co. Kg Poliuretanowe materiały piankowe na bazie polioli polieterowęglanowych
EP3388479A1 (de) 2017-04-10 2018-10-17 LANXESS Deutschland GmbH Poly(alkylenphosphate) mit verringerter hygroskopie
EP3660064A1 (de) 2018-11-28 2020-06-03 LANXESS Deutschland GmbH Zubereitungen mit verbesserter wirksamkeit als flammschutzmittel
EP3741788A1 (de) 2019-05-24 2020-11-25 Covestro Deutschland AG Verfahren zur herstellung von polyoxyalkylenpolyol-mischungen
EP3838963A1 (de) 2019-12-17 2021-06-23 Covestro Deutschland AG Verfahren zur herstellung von polyoxyalkylenpolyesterpolyolen
WO2022096390A1 (de) 2020-11-06 2022-05-12 Covestro Deutschland Ag Verfahren zur herstellung eines polyol-gemisches
WO2022238293A1 (en) 2021-05-11 2022-11-17 Clariant International Ltd Flexible foams comprising flame-retardant polyurethane, a process for their production and use thereof
CN118159578A (zh) 2021-10-07 2024-06-07 科思创德国股份有限公司 制备聚氧化烯聚酯多元醇的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1445579A (fr) * 1964-05-23 1966-07-15 Bayer Ag élastomères de polyuréthanes et leur procédé de préparation
FR2085965A1 (de) * 1970-04-09 1971-12-31 Dow Chemical Co

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL275583A (de) * 1961-03-06 1900-01-01
US4007140A (en) * 1972-11-01 1977-02-08 Imperial Chemical Industries Limited Tertiary amines as catalysts in polyurethane manufacture
DE2425448A1 (de) * 1974-05-25 1975-12-04 Bayer Ag Verfahren zur herstellung von polyurethanschaumstoffen
DE2624527A1 (de) * 1976-06-01 1977-12-22 Bayer Ag Verfahren zur herstellung von polyurethanen
US4080343A (en) * 1976-09-22 1978-03-21 Abbott Laboratories Polyurethane catalyst
US4049591A (en) * 1976-10-18 1977-09-20 Texaco Development Corporation Foams and elastomers prepared in the presence of high tertiary amine content polyurethane catalysts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1445579A (fr) * 1964-05-23 1966-07-15 Bayer Ag élastomères de polyuréthanes et leur procédé de préparation
FR2085965A1 (de) * 1970-04-09 1971-12-31 Dow Chemical Co

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0300366A1 (de) * 1987-07-20 1989-01-25 Air Products And Chemicals, Inc. Nichtflüchtige aromatische Diamine als katalytische Kettenverlängerungsmittel
EP0300349A1 (de) * 1987-07-20 1989-01-25 Air Products And Chemicals, Inc. Nichtflüchtige Diaminobenzoate als katalytische Kettenverlängerungsmittel
EP0410467A2 (de) * 1989-07-28 1991-01-30 Tosoh Corporation Verfahren zur Herstellung von hochelastischem Polyurethanschaum
EP0410467A3 (en) * 1989-07-28 1992-03-18 Tosoh Corporation Process for producing high resilience polyurethane foam
EP0469545A2 (de) * 1990-07-30 1992-02-05 Tosoh Corporation Aminkatalysator zur Herstellung von Polyurethanschäumen und Verfahren zur Herstellung dieser Schäume
EP0469545A3 (en) * 1990-07-30 1992-09-16 Tosoh Corporation Amine catalyst for producing polyurethane and process for producing polyurethane
US5229430A (en) * 1990-07-30 1993-07-20 Tosoh Corporation Amine catalyst for producing polyurethane and process for producing polyurethane
US5374666A (en) * 1990-07-30 1994-12-20 Tosoh Corporation Amine catalyst for producing polyurethane and process for producing polyurethane
EP2138520A2 (de) 2008-06-28 2009-12-30 Bayer MaterialScience AG Verfahren zur Erniedrigung von Emissionen eines Polyurethanschaumstoffes
DE102008030763A1 (de) 2008-06-28 2009-12-31 Bayer Materialscience Ag Verfahren zur Erniedrigung von Emissionen eines Polyurethanschaumstoffes
EP2256141A2 (de) 2009-05-27 2010-12-01 Bayer MaterialScience AG Verrfahren zur Herstellung von Polyurethan-Weichschaumstoffen mit niedriger Emission
WO2011003590A2 (de) 2009-07-09 2011-01-13 Bayer Materialscience Ag Verfahren zur herstellung von flammgeschützten polyurethanschaumstoffen mit guten dauergebrauchseigenschaften
DE102009047846A1 (de) 2009-09-30 2011-03-31 Bayer Materialscience Ag Verfahren zur Erniedrigung von Emissionen eines Polyurethanschaumstoffes
WO2011038846A1 (de) 2009-09-30 2011-04-07 Bayer Materialscience Ag Verfahren zur erniedrigung von emissionen eines polyurethanschaumstoffes
WO2012069385A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2012069386A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2012069383A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyricinolsäureester-polyolen mit primären hydroxyl-endgruppen
WO2012069384A1 (de) 2010-11-22 2012-05-31 Bayer Materialscience Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
US9328196B2 (en) 2010-11-22 2016-05-03 Bayer Materialscience Ag Process for the preparation of polyricinoleic acid ester polyols having primary hydroxyl end groups
WO2012130760A1 (de) 2011-03-28 2012-10-04 Bayer Materialscience Ag Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP2530101A1 (de) 2011-06-01 2012-12-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2012163944A1 (de) 2011-06-01 2012-12-06 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyetherpolyolen
WO2013174745A1 (de) 2012-05-22 2013-11-28 Bayer Materialscience Ag Verfahren zur herstellung von flammgeschützten polyurethanschaumstoffen mit niedrigen rohdichten
WO2013182527A1 (en) 2012-06-06 2013-12-12 Bayer Materialscience Ag Process for the production of viscoelastic polyurethane foam
US9512258B2 (en) 2012-06-06 2016-12-06 Covestro Deutschland Ag Process for the production of viscoelastic polyurethane foam
EP2730602A1 (de) 2012-11-09 2014-05-14 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2014072336A1 (de) 2012-11-09 2014-05-15 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP2881411A1 (de) 2013-12-05 2015-06-10 Bayer MaterialScience AG Verfahren zur Herstellung von viskoelastischen Polyurethanschaumstoffen auf Basis von phasenstabilen Polyolformulierungen
US10233298B2 (en) 2014-04-24 2019-03-19 Covestro Deutschland Ag Polyurethane foams based on polyether carbonate polyols
WO2016135259A1 (de) 2015-02-27 2016-09-01 Covestro Deutschland Ag Verwendung von polyethercarbonatpolyolen zur erzeugung farbstabiler polyurethanschaumstoffe
WO2017085201A1 (de) 2015-11-19 2017-05-26 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3178858A1 (de) 2015-12-09 2017-06-14 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3293218A1 (de) 2016-09-13 2018-03-14 Covestro Deutschland AG Verfahren zur erniedrigung der aldehydemissionen von polyurethanschaumstoffen
WO2018050628A1 (de) 2016-09-13 2018-03-22 Covestro Deutschland Ag Verfahren zur erniedrigung der aldehydemissionen von polyurethanschaumstoffen
EP3330307A1 (de) 2016-12-05 2018-06-06 Covestro Deutschland AG Verwendung von acrylsäureestern und amiden zur erniedrigung von emissionen eines polyurethanschaumstoffes
WO2018104222A1 (de) 2016-12-05 2018-06-14 Covestro Deutschland Ag Verwendung von acrylsäureestern und –amiden zur erniedrigung von emissionen eines polyurethanschaumstoffes
EP3336130A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verfahren zur herstellung von polyetherthiocarbonatpolyolen
EP3336115A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verfahren zur erniedrigung von emissionen eines polyurethanschaumstoffes
EP3336137A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verwendung von physikalischen treibmitteln zur erzeugung von polyethercarbonatpolyol-basierten polyurethanschaumstoffen mit reduzierter emission von cyclischem propylencarbonat
WO2018114820A1 (de) 2016-12-19 2018-06-28 Covestro Deutschland Ag Verfahren zur erniedrigung von emissionen eines polyurethanschaumstoffes
WO2018114837A1 (de) 2016-12-19 2018-06-28 Covestro Deutschland Ag Verfahren zur herstellung von polyetherthiocarbonatpolyolen
WO2018114830A1 (de) 2016-12-19 2018-06-28 Covestro Deutschland Ag Verwendung von physikalischen treibmitteln zur erzeugung von polyethercarbonatpolyol-basierten polyurethanschaumstoffen mit reduzierter emission von cyclischem propylencarbonat
EP3409704A1 (de) 2017-06-01 2018-12-05 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2018219893A1 (de) 2017-06-01 2018-12-06 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3425187A1 (de) 2017-07-07 2019-01-09 Covestro Deutschland AG Flammgeschütze isolierung für verbrennungsmotoren
EP3428212A1 (de) 2017-07-11 2019-01-16 Covestro Deutschland AG Weichschaumstoff mit halogenfreiem flammschutz
WO2019011956A1 (de) 2017-07-11 2019-01-17 Covestro Deutschland Ag Weichschaumstoff mit halogenfreiem flammschutz
EP3444287A1 (de) 2017-08-15 2019-02-20 Covestro Deutschland AG Dämmkörper, insbesondere dämmkörper zur zwischensparrendämmung
WO2019034658A1 (de) 2017-08-15 2019-02-21 Covestro Deutschland Ag Dämmkörper, insbesondere dämmkörper zur zwischensparrendämmung
EP3536727A1 (de) 2018-03-07 2019-09-11 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2019170590A1 (de) 2018-03-07 2019-09-12 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2019170568A1 (de) 2018-03-07 2019-09-12 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3543268A1 (de) 2018-03-22 2019-09-25 Covestro Deutschland AG Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2019180156A1 (de) 2018-03-22 2019-09-26 Covestro Deutschland Ag Verfahren zur herstellung von polyurethanweichschaumstoffen mit hoher rohdichte
WO2019180024A1 (de) 2018-03-22 2019-09-26 Covestro Deutschland Ag Verfahren zur herstellung von polyurethanweichschaumstoffen
EP3549969A1 (de) 2018-04-06 2019-10-09 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2019193101A1 (de) 2018-04-06 2019-10-10 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3594255A1 (de) 2018-07-09 2020-01-15 Covestro Deutschland AG Verfahren zur herstellung von viskoelastischen polyurethanschaumstoffen
WO2020011646A1 (de) 2018-07-09 2020-01-16 Covestro Deutschland Ag Verfahren zur herstellung von viskoelastischen polyurethanschaumstoffen
EP3608347A1 (de) 2018-08-08 2020-02-12 Covestro Deutschland AG Weichschaumstoff mit halogenfreiem flammschutz
EP3838964A1 (de) 2019-12-18 2021-06-23 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2021122431A1 (de) 2019-12-18 2021-06-24 Covestro Intellectual Property Gmbh & Co. Kg Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3892660A1 (de) 2020-04-08 2021-10-13 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2021204590A1 (de) 2020-04-08 2021-10-14 Covestro Deutschland Ag Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP4101873A1 (de) 2021-06-11 2022-12-14 Covestro Deutschland AG Einsatz von bismut-katalysatoren zur verringerung von cyclischem propylencarbonat bei der herstellung von weichschaumstoffen basierend auf polyethercarbonatpolyolen
WO2022258503A1 (de) 2021-06-11 2022-12-15 Covestro Deutschland Ag Einsatz von bismut-katalysatoren zur verringerung von cyclischem propylencarbonat bei der herstellung von weichschaumstoffen basierend auf polyethercarbonatpolyolen
EP4194476A1 (de) 2021-12-07 2023-06-14 Covestro Deutschland AG Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP4219576A1 (de) 2022-01-28 2023-08-02 Covestro Deutschland AG Herstellung von aliphatischen polyurethan-polyisocyanuratschaumstoffen (pur-pir) unter verwendung eines katalysatorgemischs aus salzen organischer carbonsäuren und 1,1,3,3-tetraalkylguanidinen
EP4219579A1 (de) 2022-01-28 2023-08-02 Covestro Deutschland AG Herstellung von aliphatischen polyurethan-weichschaumstoffe in einem präpolymerverfahren basierend auf aliphatischen oligomeren polyisocyanaten und monohydroxyfunktionellen verbindungen
EP4219578A1 (de) 2022-01-28 2023-08-02 Covestro Deutschland AG Herstellung von aliphatischen polyurethan-weichschaumstoffe in einem präpolymerverfahren basierend auf aliphatischen oligomeren polyisocyanaten und monohydroxyfunktionellen verbindungen
WO2023144057A1 (de) 2022-01-28 2023-08-03 Covestro Deutschland Ag Polyurethan-weichschaumstoffe basierend auf aliphatischen oligomeren polyisocyanaten und monohydroxyfunktionellen verbindungen
WO2023144056A1 (de) 2022-01-28 2023-08-03 Covestro Deutschland Ag Herstellung von aliphatischen polyurethan-weichschaumstoffe in einem präpolymerverfahren basierend auf aliphatischen oligomeren polyisocyanaten und monohydroxyfunktionellen verbindungen
WO2023144058A1 (de) 2022-01-28 2023-08-03 Covestro Deutschland Ag Herstellung von aliphatischen polyurethan-weichschaumstoffen mit verkürzten abbindezeiten (klebfreizeiten) und steigzeiten

Also Published As

Publication number Publication date
JPS6131727B2 (de) 1986-07-22
IT7850306A0 (it) 1978-07-14
ATA510778A (de) 1981-12-15
JPS5420099A (en) 1979-02-15
US4248930A (en) 1981-02-03
DE2732292A1 (de) 1979-02-01
BR7804545A (pt) 1979-04-10
AT367779B (de) 1982-07-26
EP0000389B1 (de) 1980-08-06
DE2860114D1 (en) 1980-11-27
IT1106265B (it) 1985-11-11

Similar Documents

Publication Publication Date Title
EP0000389B1 (de) Verfahren zur Herstellung von Polyurethankunststoffen
EP0007502B1 (de) Verfahren zur Herstellung von Formschaumstoffen
DE2537685C2 (de) Verfahren zur teilweisen Carbodiimidisierung der Isocyanatgruppen von organischen Polyisocyanaten
DE2523633C2 (de) Verfahren zur Herstellung von Polyurethanschaumstoffen und Katalysatoren zur Durchführung des Verfahrens
DE2624527A1 (de) Verfahren zur herstellung von polyurethanen
DE2624528A1 (de) Verfahren zur herstellung von polyurethanschaumstoffen
EP0380993A2 (de) Verfahren zur Herstellung von elastischen und offenzelligen Polyurethan-Weichformschaumstoffen
DE2637170A1 (de) Verfahren zur herstellung von isocyanuratgruppen und urethangruppen aufweisenden kunststoffen
DE2854384A1 (de) Verfahren zur herstellung von polyurethan-kunststoffen
EP0017111A1 (de) Dispersionen von hochschmelzenden Polyestern in Polyhydroxylverbindungen, Verfahren zu deren Herstellung und deren Verwendung bei der Herstellung von Polyurethankunststoffen
EP0263280A1 (de) Verfahren zur Herstellung von elastischen, offenzelligen Polyurethan-Weichschaumstoffen mit erhöhter Stauchhärte
CH636364A5 (en) Process for the preparation of cold-curing, flexible foams containing urethane groups
EP0137182A1 (de) Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethanen
DE2441843A1 (de) Verfahren zur herstellung von polyisocyanaten
DE3015440A1 (de) Verfahren zur herstellung von polyurethan-kunststoffen unter verwendung von cyclischen, n-hydroxyalkyl-substituierten, amidingruppen aufweisenden verbindungen als katalysatoren
CH626899A5 (en) Process for the preparation of foams containing urethane and isocyanurate groups
DE2914134A1 (de) Verfahren zur herstellung von polyurethan-schaumstoffen
DE2340995A1 (de) Verfahren zur herstellung von polyurethanschaumstoffen
EP0000761B1 (de) Verfahren zur Herstellung von Urethangruppen aufweisenden Schaumstoffen
EP0461072B1 (de) Verfahren zur Herstellung von Polyurethanstoffen unter Verwendung von spezifischen Stabilisatorsystemen
DE3430285A1 (de) Verwendung von 1-phosphonoethan- und/oder -propan-2-carbonsaeure-tri-c(pfeil abwaerts)1(pfeil abwaerts)-c(pfeil abwaerts)4(pfeil abwaerts)-alkylestern bei der herstellung von kunststoffen auf isocyanatbasis
DE3620504A1 (de) Verfahren zur herstellung von polyurethan(harnstoff)-schaumstoffen und entsprechende, amin-modifizierte schaumstoffe
EP0077964A1 (de) Verfahren zur Herstellung von flammfesten, kaltzähen Polyurethanschaumstoffen und deren Verwendung als Innenauskleidung von Lagertanks
DE2309861A1 (de) Verfahren zur herstellung von schaumstoff-formkoerpern
EP0171019B1 (de) Verfahren zur Herstellung von gegebenenfalls zellförmigen Polyurethanen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2860114

Country of ref document: DE

Date of ref document: 19801127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920623

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920630

Year of fee payment: 15

Ref country code: FR

Payment date: 19920630

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920706

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930711

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 78100346.2

Effective date: 19940210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT