[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE19911103B4 - Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen - Google Patents

Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen Download PDF

Info

Publication number
DE19911103B4
DE19911103B4 DE19911103A DE19911103A DE19911103B4 DE 19911103 B4 DE19911103 B4 DE 19911103B4 DE 19911103 A DE19911103 A DE 19911103A DE 19911103 A DE19911103 A DE 19911103A DE 19911103 B4 DE19911103 B4 DE 19911103B4
Authority
DE
Germany
Prior art keywords
frequency
laser
mode
resonator
light pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19911103A
Other languages
English (en)
Other versions
DE19911103A1 (de
Inventor
Ronald Holzwarth
Jörg REICHERT
Thomas Dr. Udem
Theodor W. Prof. Dr. Hänsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19911103A priority Critical patent/DE19911103B4/de
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority to PCT/EP2000/002135 priority patent/WO2000055948A1/de
Priority to US09/936,388 priority patent/US6785303B1/en
Priority to ES00910810T priority patent/ES2183790T3/es
Priority to AT00910810T priority patent/ATE225988T1/de
Priority to DK00910810T priority patent/DK1161782T3/da
Priority to AU32884/00A priority patent/AU3288400A/en
Priority to DE50000624T priority patent/DE50000624D1/de
Priority to JP2000605290A priority patent/JP4668423B2/ja
Priority to EP00910810A priority patent/EP1161782B1/de
Publication of DE19911103A1 publication Critical patent/DE19911103A1/de
Application granted granted Critical
Publication of DE19911103B4 publication Critical patent/DE19911103B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • H01S2301/085Generation of pulses with special temporal shape or frequency spectrum solitons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1625Solid materials characterised by an active (lasing) ion transition metal titanium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Verfahren zum Betrieb einer Lasereinrichtung (1, 200), bei dem in einer Resonatoranordnung (3) umlaufende Lichtpulse, die jeweils aus spektralen Komponenten entsprechend einer Vielzahl longitudinaler Moden (M, M1, M2) der Resonatoranordnung (3) zusammengesetzt sind, erzeugt und einer Kompensation der Gruppengeschwindigkeitsdispersion unterzogen werden, dadurch gekennzeichnet, daß eine vorbestimmte lineare Dispersion in den Lichtweg der Resonatoranordnung (3) eingeführt wird, so daß mindestens eine Mode eine bestimmte Frequenz besitzt und/oder der Modenabstand zwischen den Moden einen bestimmten Wert besitzt.

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung ultrakurzer Laser-Lichtpulse, insbesondere ein Verfahren zur Stabilisierung des Betriebs eines Pulslasers und ein Verfahren zur Erzeugung hochgenauer optischer Frequenzen, und eine Lasereinrichtung zur Erzeugung ultrakurzer Lichtpulse, insbesondere einen frequenzstabilisierten Pulslaser, und Verwendungen einer derartigen Lasereinrichtung in der Spektroskopie, Zeit- oder Frequenzmeßtechnik und Kommunikationstechnik.
  • Die seit den 70-er Jahren bekannte Erzeugung ultrakurzer Laser-Lichtpulse (Lichtpulse mit charakteristischen Pulsdauern im ns- bis fs-Bereich) basiert auf der sog. Modensynchronisation. In einem Lasermedium können bei genügender Bandbreite des Laserübergangs im Resonator sehr viele Eigenschwingungen mit verschiedenen Frequenzen angeregt werden. Wird durch einen geeigneten Mechanismus zwischen den Eigenschwingungen eine feste Phasenbeziehung eingestellt (Modensynchronisation) so kommt es zur Abstrahlung kurzer Lichtpulse mit einem zeitlichen Abstand τ, der gleich dem Quotienten aus doppelter Resonatorlänge und Umlaufgeschwindigkeit der Pulse ist, und einer spektralen Zusammensetzung entsprechend den im Resonator angeregten, zur Pulsbildung beitragenden optischen Frequenzen.
  • Bei Fourier-Transformation des Intensitätsverlaufs der pulsförmigen Laserstrahlung vom Zeit- in den Frequenzraum ergibt sich ein sogenannter Frequenzkamm, der durch δ-ähnliche Funktionen bei den zu jedem Puls beitragenden optischen Frequenzen gebildet wird und dessen Einhüllende innerhalb der Bandbreite des Laserübergangs im Lasermedium liegt. Die Breite der Einhüllenden ist im wesentlichen umgekehrt proportional zur Puls dauer. Ein Beispiel für einen derartigen Frequenzkamm ist in 5 schematisch gezeigt. Jeder Frequenzbeitrag zu einem derartigen Frequenzkamm wird hier als Mode M bezeichnet. Die Frequenzabstände der Elemente des Frequenzkammes sind entsprechend den (longitudinalen) Lasermoden ganzzahlige Vielfache der Pulswiederholfrequenz fr = τ–1 (Repetitionsrate). Die Kammstruktur von fs-Pulsen im Frequenzraum wird beispielsweise in "Femtosecond Laser Pulses" (Hrsg. C. Rulliere, Springer-Verlag, Berlin 1998) beschrieben.
  • Da die Pulswiederholfrequenz fr von der Resonatorlänge abhängt, treten bei geringsten Instabilitäten des Resonators Verschiebungen der Idealerweise festen Modenabstände auf. Es sind Techniken zur Stabilisierung der Resonatorlänge bekannt, die eine Veränderung der Modenabstände unterdrücken. Hierzu wird beispielsweise ein Resonatorendspiegel in Resonatorlängsrichtung beweglich angeordnet und bei einer Modenverschiebung unter Verwendung eines Regelkreises nachgestellt. Diese herkömmliche Stabilisierung genügt jedoch nicht den aktuellen Genauigkeitsanforderungen bei Anwendungen in der Spektroskopie oder Zeitmeßtechnik.
  • Von J. N. Eckstein et al. (siehe "Physical Review Letters", Bd. 40, 1978, S. 847 ff.) wurde erkannt, daß sich die Aneinanderreihung der Moden als Skala für eine Frequenzkalibrierung eignen könnte. Gleichzeitig wurde aber auch auf die ungenügende Stabilität des Pulslasers und auf rauschbedingte Verschiebungen der Modenfrequenzen hingewiesen. Es wurde festgestellt, daß diese Verschiebungen trotz der Stabilisierung der Resonatorlänge weiter auftreten. Gemäß L. Xu et al. in "Optics Letters", Bd. 21, 1996, S. 2008 ff., wird dies dadurch verursacht, daß die Gruppengeschwindigkeit eines Pulses, die die Umlaufzeit im Resonator und damit die Wiederholfrequenz fr bestimmt, in der Regel nicht mit der Phasengeschwindigkeit der einzelnen Moden übereinstimmt. Die durch ganzzahlige Vielfache der Wiederholfrequenz fr getrennten Moden lassen sich in ihrer absoluten Frequenzlage nicht durch ganzzahlige Vielfache (n) der Wiederholfrequenz fr darstellen, sondern durch die Summe (n·fr + fp) aus n·Wiederholfrequenz fr und einer sogenannten Phasenschlupffrequenz fp, die für alle Moden den gleichen Wert entsprechend dem Quotienten aus den jeweiligen Phasendifferenzen von Puls zu Puls durch die Umlaufzeit (2π)τ ist. Eine Bestimmung dieser Phasendifferenzen ist bisher nicht verfügbar, so daß die Anwendungen von Pulslasern für Meßzwecke oder als Generatoren optischer Frequenzen beschränkt sind.
  • Im folgenden werden zwei Aufgabenfelder beschrieben, in denen ein Interesse an hochgenauen optischen Frequenzen besteht. Die erste Anwendung bezieht sich allgemein auf die Frequenzmessung, insbesondere auf die Bereitstellung von Zeit- oder Frequenznormalen. Die zweite Anwendung liegt im Bereich der Spektroskopie, insbesondere in der Vermessung von atomaren elektronischen Energieübergängen.
  • Ein verbreitet verwendetes Zeitnormal ist durch die sogenannte Cäsium-Atomuhr mit einer Grundfrequenz von 9.2 GHz gegeben. Die Zeitmessung erfolgt durch direktes Auszählen der Grundschwingungen, was gegenwärtig mit einer Relativgenauigkeit von z. B. 10–14 möglich ist. Wesentlich höhere Relativgenauigkeiten bis zu Größenordnungen von 10–18 erwartet man von optischen Frequenznormalen z. B. auf der Basis von gekühlten Ionen in Feldkäfigen (siehe z. B. M. Roberts et al. in "Physical Review Letters", Bd. 78, 1997, S. 1876 ff.) oder von extrem schmalen atomaren Resonanzen wie dem 1S-2S-Übergang des Wasserstoffs (siehe z. B. T. Udem et al. in "Physical Review Letters", Bd. 79, 1997, S. 2646 ff.). Diese Frequenznormale besitzen jedoch optische Frequenzen oberhalb von 80 THz, die nicht mehr direkt elektronisch ausgezählt werden können. Für eine optische Uhr benötigt man daher eine Einrichtung zur Frequenzumsetzung von der hohen Frequenz des Frequenznormals zu einer niedrigen Frequenz, die mit elektronischen Mitteln auswertbar ist. Eine derartige Einrichtung besitzt die Funktion eines "Uhrwerks" für eine "optische Uhr".
  • Zur Überbrückung des großen Frequenzabstands zwischen optischen Frequenzen und (elektronisch zählbaren) Radiofrequenzen werden harmonische Frequenzketten verwendet (siehe H. Schnatz et al. in "Physical Review Letters", Bd. 76, 1996, S. 18 ff.). Bei einer harmonischen Frequenzkette wird an einer Vielzahl von Vervielfacherstufen eine Bezugsfrequenz mit ganzzahligen Faktoren multipliziert, bis die angestrebte Frequenz erreicht ist. Dies erfordert jedoch für jede Vervielfacherstufe einen gesonderten Transfer-Oszillator mit einer Phasenkopplung an das vorangehende harmonische Signal. Die Bereitstellung einer Vielzahl von Oszillatoren bei verschiedenen Frequenzen macht den Aufbau umfangreich, kompliziert und teuer.
  • 11 illustriert ein weiteres Prinzip einer an sich bekannten Teilerstufe für optische Frequenzen (siehe T. W. Hänsch in "The Hydrogen Atom", Hrsg. G. F. Bassani et al., Springer-Verlag, Berlin 1989, S. 93 ff.; H. R. Telle et al. in "Optics Letters", Bd. 15, 1990, S. 532 ff.; und T. W. Hänsch in "Physikalische Blätter", Bd. 54, 1998, S. 1007 ff.). Überlagert man zwei Laserstrahlen, die sich in der Frequenz nur wenig unterscheiden, auf einem Photodetektor, dann beobachtet man eine Modulation der Lichtintensität bei der Differenzfrequenz (Schwebungssignal). Dieses Schwebungssignal kann verwendet werden, um die Frequenz einer der Teilstrahlen auf die Frequenz des anderen Teilstrahls einzuregeln. Bei dem Schema gemäß 11 werden zwei Laserfrequenzen f1 und f2 mit einer dritten Laserfrequenz f3 nahe der Mittenfrequenz (f1 + f2)/2 verglichen. Mit einem nichtlinearen Kristall (+) wird die Summenfrequenz f1 + f2 und mit einem weiteren nichtlinearen Kristall (x2) die Oberschwingung 2f3 erzeugt. Das niederfrequente Schwingungssignal am Photodetektor wird in der digita len Regelschleife Φ dazu ausgenutzt, die Frequenz und Phase des dritten Lasers so zu steuern, daß er präzise auf der mittleren Frequenz schwingt, d.h. f3 = (f1 + f2)/2. Mit einer Kette von n Teilerstufen gemäß 11 läßt sich somit ein Frequenzintervall Δf um einen Faktor 1/2n reduzieren. Beginnt man eine solche Teilerstufenkette mit einer Laserfrequenz f und ihrer zweiten harmonischen Oberschwingung 2f, also mit Δf = f, dann erhält man nach n Teilerstufen einer Differenzfrequenz f/2n. Das Problem der beschriebenen Teilerketten besteht nun darin, daß das für die Überbrückung einer Frequenzlücke von optischen Frequenzen (fopt > 300 THz) zu Radiofrequenzen (fradio < 100 GHz) mindestens zwölf Teilerstufen erforderlich sind. Dies stellt einen für Routineanwendungen unakzeptabel hohen Geräteaufwand dar.
  • Zur Verringerung der Anzahl der erforderlichen Teilerstufen ist vorgeschlagen worden, einen optischen Frequenzkammgenerator (OFC) zu verwenden (s. K. Imai et al. in "IEEE J. Quantum Electron.", Bd. 34, 1998, S. 54 ff.). Bei einem OFC werden mit einem für optische Frequenzen und Mikrowellenfrequenzen ausgelegten Resonator Seitenbänder auf einer optischen Trägerfrequenz erzeugt, die einen durch eine gegebene Mikrowellenfrequenz gelieferten Abstand besitzen. Für die genannte Frequenzlücke sind allerdings auch bei Verwendung eines OFC immer noch rd. fünf bis sechs Teilerstufen erforderlich. Einzelheiten eines OFC sind auch in der genannten Publikation von T. W. Hänsch in "Physikalische Blätter", 1998, erläutert.
  • Mit Blick auf die Schaffung eines "Uhrwerks" für optische Frequenznormale besteht ein Interesse an einem optischen Frequenzgenerator, mit dem insbesondere große Frequenzdifferenzen mit einer Relativgenauigkeit überbrückt werden, die deutlich besser als 10–14 ist und insbesondere eine Verringerung der Zahl der genannten Teilerstufen ermöglicht.
  • Die zweite Anwendung optischer Frequenzgeneratoren in der Spektroskopie betrifft die hochgenaue Frequenzmessung des Licht eines Spektroskopielasers. Die Absolutfrequenz z. B. der D1-Resonanzlinie von Cäsium konnte bisher nur mit einer Relativgenauigkeit von rd. 10–7 gemessen werden (siehe K. H. Weber et al. in "Physical Review A", Bd. 35, 1987, 5.4650). Es besteht ein Interesse an der Erhöhung der Genauigkeit bei der Frequenzmessung elektronischer Zustände.
  • Aus US-A-5 212 698 und der Publikation von T.R. Nelson in "Applied Optics" (Bd. 36, 1997, S. 7752 ff.) sind Lasereinrichtungen zur Erzeugung ultrakurzer Lichtpulse unter Beeinflussung der spektralen Zusammensetzung der Lichtpulse bekannt. Zur spektralen Verschiebung der Einhüllenden des Frequenzkamms der Lichtpulse sind an einem Resonatorende verschiedene Maßnahmen zum Ausblenden von Frequenzkomponenten mittels optischer Blenden oder gekrümmter Spiegel vorgesehen. Übersichten zur Erzeugung ultrakurzer Lichtpulse mit Festkörperlasern werden von T. Brabec et al. in "Laser und Optoelektronik" (Bd. 24, 1992, 5. 56 ff.), Y. Basov in "J. Opt. Technol." (Bd. 64, 1997, S. 3 ff). und S. Backus et al. in "Review of Scientific Instruments" (Bd. 69, 1998, S. 1207 ff.) gegeben.
  • Es ist die Aufgabe der Erfindung, ein neuartiges Verfahren zum Betrieb eines Pulslasers mit definierten Pulsparametern, insbesondere mit einer definierten Modenlage anzugeben, das eine erhebliche Erhöhung der Genauigkeit bei der Erzeugung oder Messung optischer Frequenzen und/oder optischer Differenzfrequenzen ermöglicht. Mit diesem Verfahren soll insbesondere eine Stabilisierung eines Pulslasers geschaffen werden, die als einfache, zuverlässige, schnell ansprechende und genaue Regelung realisierbar ist. Es ist auch eine Aufgabe der Erfindung, ein Verfahren zur Erzeugung oder Messung optischer Frequenzen und/oder optischer Differenzfrequenzen anzugeben. Die Aufgabe der Erfindung besteht auch darin, eine Vorrichtung zur Implementierung der Verfahren anzugeben. Ferner sollen mit der Erfindung neue Verwendungen optischer Frequenzgeneratoren angegeben werden.
  • Diese Aufgaben werden mit Verfahren und Vorrichtungen mit den Merkmalen gemäß den Patentansprüchen 1, 14, 15 bzw. 16 gelöst. Vorteilhafte Ausführungsformen und Verwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Gemäß einem ersten Gesichtspunkt der Erfindung wird ein Verfahren zum Betrieb eines Pulslasers angegeben, bei dem in einer Resonatoranordnung umlaufende Lichtpulse erzeugt werden, wobei eine vorbestimmte Einstellung verschiedener Phasenver schiebungen für verschiedene spektrale Komponenten der Lichtpulse erfolgt. Jede Mode wird einer spektral spezifischen Frequenzänderung unterzogen. Die Einstellung spektral verschieden wirksamer Resonatorlängen kann durch verschiedene Maßnahmen zur Einführung einer linearen Dispersion in den Resonator erfolgen. Zu diesen zählen eine geometrische, spektral spezifische Resonatorlängeneinstellung in einem Resonatorteil, in dem die Pulse spektral räumlich getrennt umlaufen, eine Einführung von Material mit einer linearen Dispersion in die Resonatoranordnung und/oder Maßnahmen zur Einstellung der Pumpleistung am Lasermedium. Der Resonatorteil, in dem die Pulse spektral räumlich getrennt umlaufen, befindet sich auf der vom Lasermedium des Pulslasers abgewandten Seite einer Einrichtung zur Kompensation der Gruppengeschwindigkeitsdispersion (Pulskompressor).
  • Gemäß einer besonderen Ausführungsform wird das erfindungsgemäße Verfahren als Regelverfahren zur Stabilisierung des Betriebs eines Pulslasers ausgeführt, bei dem in Abhängigkeit von einer Frequenzabweichung mindestens einer ersten Bezugsmode der Lichtpulse von einer Referenzfrequenz die Phasenumlaufzeit der Lichtpulse variiert wird. Der Pulslaser wird mit einem Moden-Regelkreis in Bezug auf die Referenzfrequenz und einem Wiederholfrequenz-Regelkreis in Bezug auf ein Frequenznormal stabilisiert. Die Regelkreise wirken zur Einstellung der Pulswiederholfrequenz fr und der Modenlage zusammen.
  • Der Pulslaser besitzt eine Dispersions-Stelleinrichtung zur Einstellung der linearen Dispersion im Resonator und eine Resonatorlängen-Stelleinrichtung zur Einstellung der Resonatorlänge. Aufgrund der unten im einzelnen erläuterten Zusammenwirkung der beiden Regelkreise ist vorgesehen, daß entweder im Moden-Regelkreis die Dispersions-Stelleinrichtung und im Wiederholfrequenz-Regelkreis die Resonatorlängen-Stelleinrichtung oder umgekehrt im Moden-Regelkreis die Reso natorlängen-Stelleinrichtung und im Wiederholfrequenz-Regelkreis die Dispersions-Stelleinrichtung geregelt werden.
  • Diese Regelkreise können gemäß einer Weiterbildung der Erfindung mit einem Referenzlaser-Regelkreis zusammenwirken, mit dem die Referenzfrequenz in Bezug auf eine zweite Bezugsmode des Frequenzkammes stabilisiert wird.
  • Gemäß einer weiteren Ausführungsform wird das erfindungsgemäße Verfahren als Regelverfahren zum Betrieb eines Referenzlasers mit einer stabilisierten Referenzfrequenz ausgeführt. Der Referenzlaser wird in Abhängigkeit von einer Frequenzabweichung der Referenzfrequenz (oder ganzzahligen Teilern oder Vielfachen von dieser) von mindestens einer Bezugsmode der im Pulslaser umlaufenden Lichtpulse, der in Bezug auf ein Frequenznormal stabilisiert ist, geregelt. Der Referenzlaser bildet einen erfindungsgemäßen optischen Frequenz-Synthesizer.
  • Gemäß einem zweiten Gesichtspunkt der Erfindung wird eine Lasereinrichtung zur Erzeugung kurzer Lichtpulse angegeben; bei der eine Resonatoranordnung mit einem aktiven Medium, einer Vielzahl von Resonatorspiegeln und einer Kompensationseinrichtung zur Kompensation der Gruppengeschwindigkeitsdispersion der Lichtpulse vorgesehen ist, wobei die Resonatoranordnung mindestens eine regelbare Dispersions-Stelleinrichtung zur Einstellung der Phasenumlaufzeit der Lichtpulse entsprechend einer der o. a. Maßnahmen aufweist. Die Einstellung der Phasenumlaufzeit erfolgt vorzugsweise als Regelung simultan zur Regelung der Wiederholfrequenz unter Verwendung der Moden- und Wiederholfrequenz-Regelkreise.
  • Die Dispersions-Stelleinrichtung wird vorzugsweise in einem Resonatorzweig auf der vom aktiven Medium abgewandten Seite der Kompensationseinrichtung z. B. in Form einer Kippeinrichtung an einem Resonatorendspiegel realisiert. Alternativ kann die Dispersions-Stelleinrichtung als kippbare transparente Platte oder einschiebbares Prismenpaar oder auch als Einrichtung zur Variation der Pumpleistung für das Lasermedium ausgebildet sein.
  • Gemäß einem weiteren wichtigen Gesichtspunkt der Erfindung wird mit einer erfindungsgemäß stabilisierten Pulslasereinrichtung ein breiter Frequenzkamm erzeugt, der im niederfrequenten Bereich die erste Bezugsmode enthält und bei dem im höherfrequenten Bereich die zweite Bezugsmode im Rahmen eines (dritten) Referenzlaser-Regelkreises zur Einstellung der Referenzfrequenz des Moden-Regelkreises verwendet wird.
  • Gemäß einem weiteren wichtigen Gesichtspunkt der Erfindung wird eine Lasereinrichtung unter Verwendung eines Frequenznormals, vorzugsweise einer Radiofrequenzreferenzquelle, derart stabilisiert, daß die Lasereinrichtung und/oder ein mit dieser gekoppelter Referenzlaser einen Generator optischer Frequenzen (optischer Frequenz-Synthesizer) für Präzisionsanwendungen in der Zeit- oder Frequenzmeßtechnik und Spektroskopie darstellt.
  • Vorteile und Einzelheiten der Erfindung werden im folgenden unter Bezug auf die beigefügten Figuren beschrieben. Es zeigen:
  • 1 eine schematische Übersichtsdarstellung einer erfindungsgemäßen Lasereinrichtung;
  • 24 Illustrationen von Ausführungsformen einer erfindungsgemäß stabilisierten Lasereinrichtung;
  • 58 Illustrationen zur Phasenkopplung bei der erfindungsgemäßen Stabilisierung einer Lasereinrichtung;
  • 9, 10 Illustrationen zur Anwendung der Erfindung bei spektroskopischen Messungen; und
  • 11 eine optische Frequenz-Teilerstufe (Stand der Technik).
  • Obwohl der Betrieb eines stabilisierten Pulslasers unter Verwendung verschiedener stabilisierender Regelmechanismen eine bevorzugte Ausführungsform der Erfindung darstellt, wird die obengenannte Aufgabe bereits durch eine Lasereinrichtung mit einer Resonatoranordnung gelöst, bei der für die verschiedenen spektralen Komponenten der umlaufenden Pulse verschiedene, vorbestimmte Phasenverschiebungen wirksam sind. Eine derartige Lasereinrichtung wird zunächst unter Bezug auf 1 erläutert. Anschließend werden die Einführung der Stabilisierungsregelung illustriert und Anwendungen der Erfindung beschrieben.
  • Lasereinrichtung mit spektral spezifisch verstellbaren Phasenverschiebungen
  • 1 zeigt schematisch eine Ausführungsform einer erfindungsgemäßen Lasereinrichtung 1 mit einem aktiven Lasermedium 2 in einer Resonatoranordnung 3, die einen Einkoppelspiegel 31, einen Auskoppelspiegel 32, eine Vielzahl von Umlenkspiegeln 33a, 33b, 33c und einen Endspiegel 34 umfaßt. Das aktive Lasermedium 2 ist ein Ti:Al2O3-Kristall (mit einer Kerr-Linse modengekoppelt, z. B. der kommerziell verfügbare "Coherent Mira 900", Pulslänge 73 fs, Wiederholfrequenz fr = 75 MHz), der durch den Einkoppelspiegel 31 mit einem diodengepumpten, frequenzverdoppelten Einzelfrequenz-Nd:YVO4-Laser (z. B. "Coherent Verdi", nach Frequenzverdopplung: λ = 532 nm, Leistung 5 W) gepumpt wird. Im Resonator 3 befindet sich ferner zwischen dem Umlenkspiegel 33a und dem Endspiegel 34 eine Kompensationseinrichtung 4 zur Kompensation der Gruppengeschwindigkeitsdisper sion der umlaufenden Lichtpulse (Pulskompressor). Beim dargestellten Beispiel umfaßt die Kompensationseinrichtung 4 zwei Prismen 41, 42, deren Position in Bezug auf den Strahlengang in der Resonatoranordnung in an sich bekannter Weise eingestellt ist. Die Funktion der Prismen 41, 42 könnte auch durch andere spektral wirksame Elemente wie beispielsweise gechirpte Resonatorspiegel übernommen werden (siehe auch "Femtosecond Laser Pulses" von C. Rulliere).
  • Die Resonatorlänge kann durch Verschiebung des Umlenkspiegels 33b entsprechend dessen Spiegelnormalen (Pfeilrichtung) eingestellt werden. Hierzu ist der Umlenkspiegel 33b mit einem als Resonatorlängen-Stelleinrichtung wirkenden Schubantrieb 5 versehen. Der Schubantrieb 5 ist beispielsweise ein in an sich bekannter Weise gesteuerter Piezoantrieb. Das Bezugszeichen 6 bezeichnet einen doppelt brechenden Filter (Lyot-Filter).
  • Die Resonatoranordnung 3 ist, soweit sie bis hier beschrieben wurde, an sich bekannt und entsprechend den üblichen Maßnahmen zur Pulsformung, Pulsmessung und dergleichen modifizierbar. Die erfindungsgemäße Resonatoranordnung 3 unterscheidet sich jedoch von herkömmlichen Resonatoren durch die Einführung einer Stelleinrichtung zur Einstellung und/oder Änderung der linearen Dispersion im Resonator. Diese Stelleinrichtung, die in Bezug auf die unten erläuterten Regelkreise auch als Dispersions-Stelleinrichtung bezeichnet wird, kann durch verschiedene Maßnahmen implementiert werden, für die beispielhaft in 1 die Kipp- oder Schwenkbarkeit des Endspiegels 34 illustriert ist. Durch die Einführung der Dispersions-Stelleinrichtung können bei Zusammenwirken mit dem Schubantrieb 5 zur Verstellung des Umlenkspiegels 33b sowohl die Wiederholfrequenz fr als auch die Modenfrequenzen durch Steuerung der Gruppen- und Phasenumlaufzeiten der im Resonator umlaufenden, solitonenähnlichen Pulse festgelegt werden.
  • Der schwenkbare Endspiegel 34 ist im Resonatorzweig auf der vom aktiven Medium abgewandten Seite der Kompensationseinrichtung 4 vorgesehen. Die Verschwenkbarkeit bedeutet, daß der Endspiegel 34 um eine Achse verschwenkbar ist, die auf der Bezugsebene senkrecht steht, in der die spektrale Pulsaufspaltung in der Kompensationseinrichtung 4 erfolgt. Im unteren Teil von 1 sind zwei vergrößerte Darstellungen des verschwenkbaren Endspiegels 34 gezeigt. Der Endspiegel 34 wird mit einer schematisch dargestellten Schwenkeinrichtung 7 betätigt, die z. B. einen Piezoantrieb umfaßt. Bei Einstellung einer bestimmten Ausrichtung des Endspiegels 34 wird die folgende Wirkung erzielt.
  • Auf der vom aktiven Lasermedium 2 abgewandten Seite der Kompensationseinrichtung 4 sind die Pulse spektral räumlich aufgelöst. Die Moden laufen nebeneinander. Eine Mode trifft auf den Spiegel 34 gerade bei der Schwenkachse der Schwenkeinrichtung (oder am nächsten zu dieser Schwenkachse). Diese Mode wird beim Verschwenken des Spiegels 34 nicht (oder kaum) verändert. Alle anderen Moden besitzen einen räumlichen Abstand von dieser Mode und werden durch das Verschwenken mit zunehmendem Schwenkwinkel auseinandergezogen. Die Modenabstände ändern sich und damit auch die Wiederholfrequenz fr der Lichtpulse. Durch Verschwenken des Endspiegels wird somit geometrisch eine Phasenverschiebung eingeführt, die proportional zum Frequenzabstand von zwei Moden ist und einer Änderung der linearen Dispersion entspricht. Die Phasenverschiebung liefert eine zeitliche Verschiebung des Pulses und ändert damit die wirksame Resonator-Umlaufzeit. Dadurch wird im Unterschied zur Gruppengeschwindigkeitsdispersion (Dispersion zweiter Ordnung), die die Pulse spektral zerfließen läßt, die Gruppenumlaufzeit verändert. Dies führt zu einer Einstellung (bzw. bei einer Regelung gemäß den 24 zu einer Festlegung) der Lage der Modenfrequenzen.
  • Der verschwenkbare Endspiegel 34 wird mit einer Schwenkachse am Spiegelrand (1, links unten) oder in der Spiegelmitte (1, rechts unten) auf einer Kugel gelagert. Die Lagerung in der Spiegelmitte wird, da sich beim Schwenken keine Änderung der mittleren Resonatorlänge ergibt, und aus Gründen einer vereinfachten Justierung bevorzugt. Bei Lagerung am Spiegelrand ist ggf. eine Nachjustierung der Resonatorlänge am Umlenkspiegel 33b vorgesehen. Der Schwenkwinkel wird anwendungsabhängig im Bereich von 0.005° bis 0.05° verschwenkt. Dies entspricht z. B. bei einer Spiegelbreite von rd. 2 cm einem Verschwenken des freien Spiegelrandes um rd. 5 μm. Das Verschwenken mit der Schwenkeinrichtung 7 erfolgt stufenlos.
  • Gemäß einer alternativen Gestaltungsform der ersten Stelleinrichtung ist der Endspiegel 34 fest angebracht. Zur optischen Einführung der linearen Dispersion in den Resonator ist dann in einem beliebigen Resonatorteil ein einschiebbares, transparentes Prismenpaar oder eine verschwenkbare, transparente Platte mit einer Schub- oder Schwenkeinrichtung 8', 8 (gepunktet dargestellt) vorgesehen. Das Prismenpaar besitzt vorzugsweise einen Öffnungswinkel entsprechend dem Brewsterwinkel im betrachteten Wellenlängenbereich (z. B. rd. 69°). Die Platte besitzt z. B. eine Dicke von 2 mm. Die Funktion des Prismenpaares oder der Platte, die beispielsweise aus Glas bestehen, entspricht der oben erläuterten Funktion des verschwenkbaren Endspiegels 34, wobei jedoch wegen des zusätzlichen transparenten Mediums eine zusätzliche Nachregelung der optischen Resonatorlänge erforderlich ist. Beim Verschieben des Prismenpaares (Größenordnung μm) oder Verkippen der Platte (Größenordnung μm) verläuft ein längerer oder kürzerer Lichtweg durch das Glas (z. B. Kronglas SF10, Quarzglas), so daß die lineare Dispersion entsprechend verändert wird. Die Platte kann durch den Lyot-Filter 6 gebildet werden. Entsprechend kann das Prismenpaar auch durch die Prismen 41, 42 der Kompensationseinrichtung gebildet werden. Die Platte kann zur Vermeidung von Interferenzerscheinungen mit einem Keilwinkel ausgebildet sein.
  • Es wird betont, daß die Schubeinrichtung 8' nicht mit den bekannten Schubschlitten herkömmlicher Pulskompressoren zu verwechseln ist. Die Schubeinrichtung 8' (z. B. mit Piezoantrieb) ist für Verstellwege im μm-Bereich eingerichtet, während die Schubschlitten im mm-Bereich zu verstellen sind.
  • Eine weitere Möglichkeit zur Einstellung der linearen Dispersion im Resonator ist durch eine vorbestimmte Einstellung der Pumpleistung für das aktive Lasermedium 2 gegeben. Das Pumplicht wird außerhalb des Resonators (noch vor dem Einkoppelspiegel 31) z. B. mit einem elektro-optischen Intensitätsmodulator 9 (gepunktet dargestellt) moduliert. Dadurch wird insbesondere die lineare Dispersion im aktiven Medium 2 geändert. Zur Variation der Pumpleistung genügen Modulationen im -Bereich.
  • Der Aufbau der Lasereinrichtung gemäß 1 kann in Bezug auf die Wahl des aktiven Lasermediums und der Laserparameter (insbesondere Pulsdauer, Leistung, spektrale Zusammensetzung der Pulse) modifiziert sein. Die Lasereinrichtung 1 kann mit einer nach dem Auskoppelspiegel 32 vorgesehenen optischen Faser 201 (s. 2) kombiniert sein, deren Funktion unten erläutert wird. Es ist auch möglich, sowohl die Schubeinrichtung 5 als auch die Schwenkeinrichtung 7 am Endspiegel 34 vorzusehen, so daß an diesem sowohl die spektral unabhängige Einstellung der Resonatorlänge als auch die Beeinflussung der linearen Dispersion im Resonator erfolgt.
  • Lasereinrichtung mit geregelter Stabilisierung
  • Die in 1 illustrierte Lasereinrichtung wird erfindungsgemäß bevorzugt unter Implementierung mindestens drei Regelkrei sen betrieben, die im folgenden unter Bezug auf die 24 erläutert werden. Die Stabilisierung eines Pulslasers ist jedoch nicht auf die Lasereinrichtung 1 gemäß 1 beschränkt, sondern in entsprechender Weise mit anderen Typen von Lasern zur Erzeugung ultrakurzer Lichtpulse (z. B. Faserlaser, Farbzentrenlaser, Gaslaser, Farbstofflaser) realisierbar. Die Kombination mit einem kompakten Femtosekundenlaser (Faserlaser, Titan-Saphir-Laser) wird jedoch wegen der Stabilität und Kompaktheit für praktische Anwendungen bevorzugt.
  • 2 illustriert schematisch den Aufbau von drei Regelkreisen, nämlich dem Moden-Regelkreis I, dem Wiederholfrequenz-Regelkreis II und dem Referenzlaser-Regelkreis III, an einem ersten Ausführungsbeispiel. Bei einer stabilisierten, geregelten Lasereinrichtung werden vorzugsweise alle drei Regelkreise realisiert, ein Betrieb allein mit den Regelkreisen I und II ist jedoch, insbesondere bei Bereitstellung eines genügend stabilen Referenzlasers, auch möglich, dies ggf. sogar unter Kombination beider Regelkreise I und II mit einem einzigen Regelungsmechanismus.
  • Die Lichtpulse einer Lasereinrichtung 200 (modensynchronisierter Pulslaser) werden durch eine optische Faser 201 von den Spiegeln 202 und 203 zu den signalgebenden Elementen 220 des Wiederholfrequenz-Regelkreises II und vom Spiegel 204 zu den signalgebenden Elementen 210 des Moden-Regelkreises I gelenkt. Die in den 24 gezeigten Umlenkspiegel sind anwendungsabhängig ausgewählte teildurchlässige und/oder dichroitische Spiegel und werden im folgenden sämtlich kurz als Spiegel bezeichnet. Die am Spiegel 204 durchtretenden Pulse werden am Spiegel 206 teilweise auf die signalgebenden Elemente 230 des Referenzlaser-Regelkreises III gelenkt bzw. als Ausgangslichtpulse P durchgelassen.
  • In Abhängigkeit von der jeweiligen Anwendung wird aus einem Teil des Lichtwegs im dargestellten Schema Licht zum weiteren Einsatz ausgekoppelt. Diese Auskopplung erfolgt z. B. wie dargestellt am Spiegel 206 oder zwischen dem Referenzlaser 240 für optische Frequenzen und dem Spiegel 207.
  • Der Referenzlaser 240 wird allgemein auch als optischer Referenzfrequenzgenerator 240 bezeichnet. Es ist vorzugsweise ein schmalbandiger Dauerstrichlaser vorgesehen, dessen optische Frequenz mit ausreichender Genauigkeit bekannt oder der mit dem Referenzlaser-Regelkreis III stabilisiert ist. Falls der Regelkreis III nicht implementiert wird, so umfaßt der Referenzlaser 240 beispielsweise einen methan-stabilisierten Helium-Neon-Laser. Beim dargestellten Beispiel besitzt die erste Bezugsmode eine Frequenz von rd. 350 THz und der Helium-Neon-Laser eine Frequenz von rd. 88 THz, so daß zwei nicht dargestellte Vervielfacherstufen zur Frequenzanpassung (gesamt: Faktor 4, siehe Bezugszeichen 92, 93 in 9) vorgesehen sind. 2 zeigt ferner einen Referenzfrequenzgenerator 250 für Radiofrequenzen. Dieser umfaßt beispielsweise eine Cäsium-Atomuhr 251 mit einer charakteristischen Frequenz von 9.2 GHz und einen Frequenzsynthesizer 252 zur Bereitstellung von gegenüber der Atomuhr abgeleiteten Bezugsfrequenzen.
  • Die in 2 gezeigten Elemente wirken zur Stabilisierung der Lasereinrichtung 200 wie folgt zusammen. Im Moden-Regelkreis I werden die über den Spiegel 204 auf die Elemente 210 gelenkten Ausgangspulse der Lasereinrichtung 200 auf das lichtempfindliche Element 211 gerichtet. Des weiteren wird Licht mit einer Referenzfrequenz fref entsprechend der Ausgangsfrequenz des Referenzlasers 240 (oder mit ganzzahligen Vielfachen und/oder Teilern der Ausgangsfrequenz) über den Spiegel 207 ebenfalls auf das lichtempfindliche Element 211 gerichtet. Das lichtempfindliche Element 211 ist dazu vorgesehen, insbesondere eine Schwebungsfrequenz zwischen einer Bezugsmode der Aus gangspulse und der Referenzfrequenz zu erfassen. Hierzu werden beide Anteile in an sich bekannter Weise unter Verwendung von Polarisations-Teilern überlagert. Das lichtempfindliche Element 211 ist, insbesondere in Abhängigkeit vom jeweiligen Spektralbereich, eine Photodiode oder ein Photomultiplier.
  • Das elektrische Ausgangssignal des lichtempfindlichen Elements 211 enthält das charakteristische Schwebungssignal, das durch die Überlagerung der optischen Frequenz der ausgewählten Bezugsmode innerhalb des Frequenzkamms der Ausgangspulse der Lasereinrichtung 200 und der Referenzfrequenz des Referenzlasers 240 gebildet wird. Das Schwebungssignal wird als Regelgröße an den (Moden-)Regler 214 gegeben, der ein Ausgangssignal zur Betätigung der Dispersions-Stelleinrichtung der Lasereinrichtung 200 abgibt, die eine Schwenkeinrichtung 7 (oder der Einrichtungen 8, 8', s. 1) ist. Das Ausgangssignal kann alternativ auch zur Regelung des Referenzlasers (siehe 3 und 4) oder zur Einstellung der Schubeinrichtung 5 (s. 1) verwendet werden. Der Regler 214 ist in an sich bekannter Weise als analoger oder digitaler Regler aufgebaut. Der Moden-Regelkreis I bildet einen PLL-Regelkreis.
  • Zur Erzielung eines für die Regelung optimalen Schwebungssignals wird einerseits eine geeignete (Bezugs-)Mode des Frequenzkamms der Ausgangspulse ausgewählt. Hierzu kann anwendungsabhängig ein frequenzselektives Element 212 (z. B. ein optisches Gitter) vorgesehen sein, um eine bestimmte spektrale Komponente der Ausgangspulse auf das lichtempfindliche Element 211 zu lenken. Dies dient jedoch nur der Verbesserung des Signal-Rausch-Verhältnisses und ist nicht zwingend erforderlich. Andererseits wird ggf. die Ausgangsfrequenz des Referenzlasers 240 nicht selbst als Referenzfrequenz verwendet, sondern zusätzlich auf die zur Verfügung stehende Mode abgestimmt.
  • Diese Abstimmung umfaßt, insbesondere in Zusammenhang mit der unten erläuterten Referenzlaser-Regelung, eine Vervielfachung und/oder eine Teilung der Ausgangsfrequenz zur Erzielung der Referenzfrequenz fref. Die Vervielfachung ergibt eine Referenzfrequenz fref im Bereich des Frequenzkammes. Die Referenzlaser-Regelung koppelt ein Vielfaches (z. B. Doppeltes) der Ausgangsfrequenz des Referenzlasers 240 an eine weitere Bezugsmode des Frequenzkammes mit Abstand (z. B. Abstand fref) von der ersten Bezugsmode. Die Teilung ist ggf. erforderlich, falls der Frequenzkamm nicht genügend breit ist und keine verwertbare Bezugsmode bei 2fref aufweist. Die Teilung erfolgt mit der Teilerstufe 213, die grundsätzlich wie die Teilerstufe gemäß 11 aufgebaut ist.
  • Der Moden-Regler 214 wirkt so, daß das Schwebungssignal minimiert wird oder eine feste Schwebungsfrequenz besitzt. Als Führungsgröße wird im letzteren Fall beispielsweise das Signal eines Lokaloszillators (z. B. vom Generator 250) oder ein davon abgeleitetes Signal verwendet. Mit der Moden-Regelung wird die ausgewählte erste Bezugsmode des Frequenzkamms auf einen festen Frequenzabstand in Bezug auf die Referenzfrequenz fref oder umgekehrt die Referenzfrequenz fref auf einen festen Frequenzabstand in Bezug auf die Bezugsmode fixiert. Die Fixierung einer Mode des Frequenzkamms kann mit einer außerordentlich hohen Relativgenauigkeit erfolgen. Welches Vorzeichen der Frequenzabstand der Bezugsmode von der Referenzfrequenz besitzt, läßt sich aus dem Verhalten des Reglers 214 ableiten.
  • Mit dem Moden-Regelkreis I wird bei Regelung der Dispersion die Lage des Frequenzkammes relativ zur Referenzfrequenz durch Fixierung einer ausgewählten Mode geregelt, dabei aber auch der Modenabstand aller Moden des Ausgangspulses verändert. Um nun den anwendungsabhängig gewünschten Modenabstand mit der fixierten Bezugsmode einzustellen, erfolgt mit dem Wiederholfrequenz-Regelkreis II die Einstellung der Gruppenumlaufzeit bzw. der effektiven Resonatorlänge des Pulslasers. Im Wiederholfrequenz-Regelkreis II werden die Ausgangspulse über den Spiegel 202 zu den Elementen 220 gelenkt. Das elektrische Ausgangssignal des lichtempfindlichen Elements 221 (Photodiode oder Photomultiplier) wird als Basisfrequenz oder als höhere Harmonische (z. B. 100. oder 200. Harmonische) von dieser am Mischer 222 mit dem Signal des Referenzfrequenzgenerators 250 für Mikrowellen- oder Radiofrequenzen elektrisch gemischt, wobei sich eine Differenz- oder Schwebungsfrequenz zwischen der Pulswiederholfrequenz fr der Ausgangspulse (oder der höheren Harmonischen) und der Radiofrequenz bildet, die beide im GHz-Bereich liegen. Dieses Schwebungssignal wird als Regelgröße vom (Wiederholfrequenz-) Regler 224 zur Einstellung der Resonatorlänge, z. B. am Schubantrieb 5 gemäß 1, oder bei Kopplung des Modenreglers 214 mit der Resonatorlängen-Stelleinrichtung zur Einstellung der Dispersion verwendet. Als Führungsgröße dient wie beim Moden-Regler 214 das Signal des Lokaloszillators. Alternativ erfolgt eine Minimierung des Schwebungssignals. Über die fixierte Einstellung der Wiederholfrequenz fr der Ausgangspulse und damit des Modenabstandes einerseits und der Frequenz einer ausgewählten Mode andererseits erfolgt eine vollständige Stabilisierung der Ausgangspulse der Lasereinrichtung 200 relativ zum Referenzlaser 240.
  • Für das Zusammenwirken der Moden- und Wiederholfrequenz-Regelkreise I und II ist deren gegenseitige Abhängigkeit von Bedeutung. Während der Moden-Regelkreis I die absolute Einstellung einer ersten Bezugsmode erlaubt, können mit dem Wiederholfrequenz-Regelkreis II über die Änderung der Resonatorlänge sowohl die Pulswiederholfrequenz fr (entspricht dem Modenabstand) als auch die Frequenzlage der Moden verändert werden. Wenn mit dem Wiederholfrequenz-Regelkreis II die Pulswiederholfrequenz fr festgehalten wird, so wird mit dem Moden-Regelkreis I die Frequenzlage der Moden definiert. Wenn mit dem Wiederholfrequenz-Regelkreis II die Frequenzlage der Moden festgehalten wird, so wird mit dem Moden-Regelkreis I die Pulswiederholfrequenz fr verändert. Abweichend von der oben beschriebenen Gestaltung ist es daher alternativ möglich, daß der Regler 214 die Resonatorlängen-Stelleinrichtung und der Regler 224 die Dispersions-Stelleinrichtung regelt.
  • Die Regelkreise I und II erlauben zwar bereits eine vollständige Laserstabilisierung relativ zum Referenzlaser 240. Diese ist somit von der Genauigkeit des optischen Referenzfrequenzgenerators und ggf. einer Frequenzvervielfachung abhängig. Der Referenzlaser 240 stellt bei Präzisionsanwendungen ein gesondert stabilisiertes und dennoch relativ ungenaues, platzaufwendiges und empfindliches Gerät dar. Gemäß einer für praktische Anwendungen, insbesondere außerhalb des Laborbereiches, bevorzugten Ausführungsform der Erfindung ist vorgesehen, den optischen Referenzfrequenzgenerator selbst mit den stabilisierten Ausgangspulsen der Lasereinrichtung 200 zu stabilisieren. Hierzu wird der Referenzlaser-Regelkreis III eingerichtet, der wie folgt funktioniert.
  • Das in 2 dargestellte Gesamtsystem besitzt drei Freiheitsgrade in Bezug auf den Betrieb der Lasereinrichtung 200 und des Referenzlasers 240. Diese Freiheitsgrade umfassen erstens die Lage der ersten Bezugsmode bei einer bestimmten optischen Frequenz, zweitens den Modenabstand entsprechend der Pulswiederholfrequenz fr im Radiofrequenzbereich und drittens die Frequenz des Referenzlasers 240. Bei der Lasereinrichtung 200 können über die Resonatorlänge und/oder über die lineare Dispersion die Pulswiederholfrequenz fr und die absolute Modenlage im Resonator eingestellt werden. Eine höherfrequente Bezugsmode des stabilisierten Frequenzkammes wird nun zur Regelung des Referenzlasers 240 bzw. zur Ableitung eines Frequenznormals für diesen verwendet. Für jeden der drei Freiheitsgrade ist also ein Regelkreis vorgesehen. Die Moden- und Wiederholfrequenz-Regelkreise I bzw. II verwenden als Bezugs größen die optische Referenzfrequenz bzw. die Radioreferenzfrequenz der Referenzfrequenzgeneratoren 240 bzw. 250. Im dritten Regelkreis wird das Regelungsprinzip umgekehrt: die optische Referenzfrequenz wird auf einen bestimmten Wert geregelt. Hierzu wird wiederum ein aus zwei optischen Frequenzen abgeleitetes Schwebungssignal als Regelgröße verwendet. Die erste Frequenz wird von der optischen Referenzfrequenz fref selbst abgeleitet, während die zweite Frequenz durch eine weitere Bezugsmode im Frequenzkamm der Ausgangspulse, die einen vorbestimmten Referenzabstand von der im Moden-Regelkreis I eingestellten Mode besitzt, oder eine höhere Harmonische oder ein Bruchteil der Frequenz dieser Bezugsmode gegeben ist.
  • Der Referenzlaser-Regelkreis III enthält gemäß 2 als signalgebende Elemente 230 das lichtempfindliche Element 231 und das frequenzselektive Element 232. Ausgangspulse der Lasereinrichtung 200 werden über den Spiegel 206 und das frequenzselektive Element 232 (z. B. optisches Gitter) auf das lichtempfindliche Element 231 gelenkt. Gleichzeitig empfängt dieses ein frequenzverdoppeltes Signal vom Referenzlaser 240, das nach Passage des Spiegels 207 in der SHG-Einrichtung 241 (Einrichtung zur Erzeugung der zweiten Harmonischen, z. B. KDP- oder KNbO3-Kristall) gebildet und über den Spiegel 208 zum lichtempfindlichen Element 231 gelenkt wird. Das lichtempfindliche Element 231 ist wiederum eine Photodiode oder ein Photomultiplier. Da im Referenzlaser-Regelkreis III höhere optische Frequenzen und damit kürzere Wellenlängen als im Moden-Regelkreis I verarbeitet werden, wird jedoch als lichtempfindliches Element 231 ein Photomultiplier bevorzugt.
  • Die Regelung im dritten Regelkreis III basiert erneut auf der Beobachtung eines Schwebungssignals, das bei Überlagerung der frequenzverdoppelten Referenzfrequenz mit der höherfrequenten Bezugsmode der Ausgangspulse generiert wird. Wie in 5 schematisch illustriert ist, besitzt die höherfrequente Mode M2 der Ausgangspulse einen definierten Frequenzabstand gegenüber der im Moden-Regelkreis I fest eingestellten Bezugsmode M1. Der Frequenzabstand entspricht dem Produkt aus der Modenzahl N zwischen den Bezugsmoden M1 und M2 im Moden- bzw. Referenzlaser-Regelkreis I bzw. III und dem Modenabstand zwischen zwei einzelnen Moden fr, der durch den Wiederholfrequenz-Regelkreis II festgelegt ist. Die Modenzahl zwischen den Bezugsmoden wird durch einen Modenzähler 260 festgestellt. Die Funktion des Modenzählers wird unten erläutert. Alternativ ist die Feststellung der Absolutlage der höherfrequenten Bezugsmode M2 auch durch Vergleich mit einer nahe gelegenen, genau bekannten atomaren Resonanz oder bei genügend großen Pulswiederholfrequenzen (> 300 MHz) durch direktes Messen der Moden mit einem Wavemeter (z. B. vom Typ Burleigh-WA1500) möglich.
  • Das elektrische Ausgangssignal des lichtempfindlichen Elements 231 besitzt einen mit der Differenz- oder Schwebungsfrequenz δf aus der doppelten Referenzfrequenz [2fref = 2 (M1·fr + fp)] und der Frequenz der Bezugsmode bei M2 (M2·fr+ fp) oszillierenden Signalanteil, der als Regelgröße im (Referenzlaser-)Regler 234 verarbeitet wird. Ändert sich die Referenzfrequenz fref um Δf, so ändern sich die Beiträge zur Schwebung entsprechend um 2Δf bzw. Δf. Für δf gilt bei M2 = 2M1: δf = 2fref – (M2·fr + fp) = 2 (M1·fr + fp) – (2M1·fr + fp) = fp
  • Die Schwebungsfrequenz ist also gerade gleich der Schlupffrequenz fp. Zur Stabilisierung von fref ist somit das Schwebungssignal δf auf Null zu minimieren oder auf einen Lokaloszillator abzustimmen. Der Referenzlaser-Regler 234 ist beispielsweise dazu eingerichtet, die optische Frequenz des Referenzlasers 240 mit einer Referenzlaser-Stelleinrichtung so einzustellen, daß die Schwebungsfrequenz einem vorbestimmten Wert ent spricht. Ist der Referenzlaser 240 ein Diodenlaser, so wird dieser mit dem Regler 234 stromstabilisiert oder mit einem als Stelleinrichtung dienenden externen beweglichen Gitter stabilisiert. Für den Fall eines diodengepumpten Festkörperlasers als Referenzlaser 240 erfolgt eine Stabilisierung mit einem als Stelleinrichtung dienenden Piezoregler der Resonatorlänge oder einem elektro-optischen Modulator. Der besondere Vorteil des Aufbaus mit den drei Regelkreisen besteht nun darin, daß an den Referenzlaser 240 keine besonders hohe Eigenstabilität gefordert wird. Der Referenzlaser 240 wird jedoch im Frequenzraum durch die mit dem Radiofrequenzgenerator 250 vorgegebene Genauigkeit von z. B. 10–14 stabilisiert. Bei Bezug auf optische Frequenznormale könnte sogar eine Relativgenauigkeit der Stabilisierung bis zu 10–14 erwartet werden. Es kann ein Referenzfrequenzgenerator verwendet werden, dessen Frequenz an das Meßproblem angepaßt ist. Damit wird mit der Gesamtanordnung ein in der Praxis vielseitig anwendbarer, nicht auf den Laborbereich beschränkter optischer Frequenzgenerator geschaffen.
  • Der Modenzähler 260 arbeitet nach dem folgenden Prinzip. Zur Modenzählung erfolgt eine Ausdünnung der eng benachbarten Moden innerhalb des Frequenzkammes in einen gestreckten Frequenzbereich, in dem die Moden mit einem kommerziell verfügbaren Wavemeter meßbar sind. Hierzu enthält der Modenzähler 260 einen passiven Resonator mit einem gegenüber dem Resonator der Lasereinrichtung 200 erweiterten freien Spektralbereich. Es ist beispielsweise ein 20-fach erweiterter Spektralbereich vorgesehen. In diesem Resonator werden entsprechend nur noch beispielsweise jede zwanzigste Mode transmittiert, so daß ein gestreckter Modenabstand ausgebildet wird (z. B. 1.5 GHz). Dies entspricht im Zeitbild einem 20-fach erniedrigten Pulsabstand τ. Mit dem ausgedünnten Frequenzkamm erfolgt die selbe Regelung mit dem Referenzfrequenzgenerator 240 und dessen frequenzverdoppelten Signal (nach 241) wie mit dem ursprünglichen Kamm entsprechend dem Referenzlaser-Regelkreis. Es ergeben sich zwei Schwebungssignale, deren Abstand mit dem Wavemeter ausgewertet werden kann. Aus dieser Frequenzermittlung und der bekannten Modenausdünnung im passiven Resonator des Modenzählers 260 kann dann auf die Frequenzlage der Bezugsmoden und die Anzahl der zwischen ihnen liegenden Moden rückgeschlossen werden.
  • In 2 ist dem Ausgang der Lasereinrichtung 200 nachgeordnet eine Einrichtung 201 zur Verbreiterung des Ausgangsspektrums der Lasereinrichtung 200 durch Selbstphasenmodulation in einem nichtlinearen Medium illustriert. Diese Einrichtung 201 ist beispielsweise eine optische Faser. Die Selbstphasenmodulation in optischen Fasern ist beispielsweise von K. Imai et al. in "IEEE Journal of Quantum Electronics", Bd. 34, 1998, S. 54 ff., beschrieben. Je nach der Leistung der Ausgangspulse kann eine spektrale Verbreiterung bis hin zum quasi-Weißlichtkontinuum erzielt werden. Dies ist insbesondere dann von Bedeutung, wenn der Frequenzkamm Moden der Frequenz f und von deren zweiten Harmonischen 2f enthalten soll. In diesem Fall wird der Aufbau der Regelkreise I, III vereinfacht, in dem sich der erste Regelkreis I auf die Bezugsmode bei f und der dritte Regelkreis III auf die Bezugsmode 2f bezieht. Falls die Einrichtung 201 nicht eingesetzt wird, ist es zur Erzielung der Referenzlaser-Regelkreises III gegebenenfalls erforderlich, Teilerstufen einzuführen, um ein auswertbares Schwebungssignal zwischen der zweiten Harmonischen der optischen Referenzfrequenz und einer Bezugsmode des Frequenzkamms oder einer Teilfrequenz von dieser zu erzielen.
  • Beim Schema gemäß 2 wird die Lasereinrichtung unter Bezug auf den Referenzlaser 240 stabilisiert. Umgekehrt besteht auch die Möglichkeit, die Frequenz des Referenzlasers 240 oder davon abgeleitete (geteilte oder vervielfachte) Frequenzen zu messen, indem eine erfindungsgemäße Lasereinrichtung im stabilisierten Betrieb mit dem Referenzlaser 240 phasengekoppelt und aus dem Schwebungssignal des (hier nicht geregelten) Referenzlaser-Regelkreises III die Frequenz des Referenzlasers 240 ermittelt wird. Damit wird unmittelbar und hochgenau die Frequenz des Referenzlasers 240 mit dem Radiofrequenzgenerator 250 (Relativgenauigkeit mindestens 10–16) in Bezug gesetzt und das gewünschte "Uhrwerk" zur Überbrückung des Intervalls zwischen optischen Frequenzen und Radiofrequenzen geschaffen.
  • Abwandlungen des Schemas gemäß 2 sind in den 3 und 4 illustriert. Gleiche Teile sind mit gleichen Bezugszeichen versehen. Im folgenden werden lediglich die Unterschiede gegenüber dem Aufbau gemäß 2 erläutert.
  • Der Moden-Regelkreis I ist gemäß 3 in zwei Teilregelungen Ia und Ib aufgeteilt. Die eine Teilregelung Ia dient der Kopplung eines ersten Referenzlaser 240a, der z. B. ein Diodenlaser ist und bei einer bestimmten Frequenz fref läuft, mit einem ersten Moden-Regler 214a an eine Bezugsmode des Puls-Frequenzkammes. Die andere Teilregelung Ib entspricht der oben erläuterten Moden-Regelung der Lasereinrichtung 200 auf der Basis eines Schwebungssignals aus der doppelten Bezugsfrequenz fref und der Frequenz eines bei 2fref betriebenen und an eine höherfrequente Bezugsmode im Frequenzkamm der Pulse angekoppelten zweiten Referenzlasers 240b. Ein Bruchteil (z. B. 1/128) der Schwebungsfrequenz wird als Regelgröße dem zweiten Moden-Regler 214b zugeführt. Durch diese Frequenzteilung des Schwebungssignals, die auch bei der Gestaltung gemäß 2 vorgesehen sein kann, wird die Bandbreite der Regelung um den Teilungsfaktor erhöht. Damit wird die relativ geringe Regelgeschwindigkeit (Bandbreite) der Piezoantriebe in der Lasereinrichtung kompensiert. Die Kopplung des zweiten Referenzlasers 240b an den Modenkamm im Referenzlaser-Regelkreis III ist symmetrisch zur Kopplung zwischen der unteren Bezugsmode und dem ersten Referenzlaser 240a.
  • Der Moden-Regelkreis I ist entsprechend dem oben erläuterten Prinzip auch gemäß 4 in zwei Teilregelungen Ia und Ib aufgeteilt. Zusätzlich ist auch der Referenzlaser-Regelkreis III in zwei Teilregelungen IIIa und IIIb aufgeteilt, von denen eine Teilregelung IIIa der Überbrückung zwischen der höherfrequenten Bezugsmode und dem bei 2fref betriebenen zweiten Referenzlaser 240b dient. Die andere Teilregelung IIIb entspricht im wesentlichen der Referenzlaser-Regelung III gemäß 3.
  • Die Teilregelung IIIa umfaßt die Ankopplung des Referenzlasers 240c an die höherfrequente Bezugsmode des Frequenzkammes. Der Referenzlaser 240c wird bei 3/2fref betrieben und umfaßt im wesentlichen eine Teilerstufe gemäß 11. Nach Frequenzverdopplung des Ausgangssignals des Referenzlasers 240c bei 242 und Summenbildung aus dem Ausgangssignal fref des ersten Referenzlasers 240 und dem Ausgangssignal 2fref des zweiten Referenzlasers 240b bei 243 wird am lichtempfindlichen Element 244 ein Schwebungssignal erzeugt, auf dessen Grundlage der zweite Referenzlaser 240b stabilisiert wird.
  • Die Anwendung der Erfindung ist nicht auf die Stabilisierung eines Pulslasers beschränkt. Die unter Bezug auf die 24 erläuterten Prinzipien können auch verwendet werden, um mit einer stabilisierten Lasereinrichtung eine unbekannte optische Frequenz zu messen. Anwendungen der Erfindung zur Stabilisierung und/oder Messung optischer Frequenzen werden im folgenden beispielhaft erläutert.
  • Anwendungsbeispiel 1: Messung oder Synthese optischer Frequenzen
  • Mit einer erfindungsgemäß stabilisierten Lasereinrichtung können erstmalig optische Frequenzen oder Frequenzdifferenzen mit einer Genauigkeit von mindestens 10–16 unmittelbar oder über wenige Teilerstufen (2 oder 3) zu einem Frequenznormal (z. B. zu einer Atomuhr) in Bezug gesetzt werden. Dies bedeutet entweder, von einer optischen Frequenz (z. B. Meßlicht eines Spektroskopielasers) auszugehen und diese mit einem Radiofrequenznormal in Beziehung zu setzen oder von einer Radiofrequenz auszugehen und damit eine optische Frequenz zu stabilisieren. Die Überbrückung der Frequenzdifferenz zwischen optischer Frequenz und Radiofrequenz wird im folgenden unter Bezug auf die 68 erläutert.
  • Das Ziel der Anwendung besteht beispielsweise in der Ermittlung oder Erzeugung der Frequenz f des Referenzlasers (siehe 6). Der Referenzlaser entspricht dem Referenzfrequenzgenerator 240 in 2. Im folgenden wird lediglich auf die Ermittlung der Frequenz f Bezug genommen. Zur Erzeugung der Frequenz f werden die angegebenen Prinzipien der Phasenkopplung lediglich umgekehrt durchlaufen.
  • Die Frequenz f wird gemäß 6 durch Erfassung der Frequenzdifferenz zwischen f und 2f (2f – f = f) gemessen. Die Frequenzdifferenz f wird durch Vergleich mit einem Frequenzkamm einer erfindungsgemäß stabilisierten Lasereinrichtung erfaßt. Die mit einem Frequenzkamm überbrückbaren Frequenzdifferenzen hängen von der Pulsdauer der Ausgangspulse der Lasereinrichtung ab und betragen für das o. a. Beispiel (Laseraufbau gemäß 1 mit rd. 73 fs) bis zu 20 THz, bei Einsatz der Faser 201 mindestens 50 THz oder bei Pulsdauern von rd. 10 fs bis zu 100 THz. Die mit der Faser 201 erzielte Verbreiterung hängt auch von der Pumpleistung am aktiven Medium des Pulslasers ab. Für optische Frequenzen von rd. 300 THz muß daher mit der verfügbaren Technik eine Teilung der Frequenzdifferenz f erfolgen, bis sie innerhalb des Frequenzkammes liegt. Bei genügend kurzen Pulsen kann bei optischen Frequenzen auf die Teilung verzichtet werden.
  • Mit den oben erläuterten Techniken wird der Referenzlaser mit f mit einer unteren Bezugsmode M1 des Frequenzkammes in Bezug gesetzt. Die Frequenzlücke zwischen f und 2f wird mit einer Tellerstufe gemäß 11 auf eine Frequenzlücke zwischen f und 3/2f geteilt. Die Frequenzdifferenz f/2 liegt innerhalb des Frequenzkammes. Die Frequenz 3/2f wird mit einer oberen Bezugsmode M2 des Frequenzkammes in Bezug gesetzt. Aus dem erfindungsgemäß unter Bezug auf eine Atomuhr stabilisierten und damit bekannten Modenabstand und den Schwebungsfrequenzen wird erfaßt, welche Moden zu f bzw. 3/2f gehören, und nach Auszählen der Moden die gesuchte Frequenz f ermittelt. Alternativ können anwendungsabhängig auch Intervalle z. B. zwischen 4f und 7/2f überbrückt werden.
  • Welche der Frequenzen f bzw. 2f oder der Bezugsmoden M1 bzw. M2 als Anknüpfung für die zu messende oder zu erzeugende Frequenz verwendet wird, hängt von der konkreten Anwendung und den dabei interessierenden Wellenlängen ab. Dies ist in den 7 und 8 illustriert. Gemäß 7 erreicht man bei der Messung eines Referenzlasers bei λ = 972 nm nach Verdopplung und zweifacher Teilung des Frequenzintervalls von rd. 300 THz eine Wellenlänge λ = 778 nm, die von λ = 972 nm einen Abstand von 77 THz besitzt. Je nach verfügbarem Frequenzkamm muß sich eine weitere Teilung anschließen. Gemäß 8 besteht hingegen ein Interesse an der Messung eines Referenzlasers mit λ = 1560 nm. In diesem Fall wird an die verdoppelte Frequenz bei λ = 780 nm angeknüpft. Nach zwei Teilerstufen ergibt sich ein Intervall zwischen λ = 780 nm und λ = 891 nm mit 48 THz, das ohne weitere Teilerstufen mit einem 50 THz-Kamm überbrückt werden kann.
  • Die Teilerkette kann sich somit auf die obere (2f) oder untere (f) Startfrequenz beziehen. Ferner ist die Wahl der Startfrequenz wichtig für die mit wenigen Teilerstufen erzielbare Frequenzdifferenz. Für Frequenzen z. B. in einem interessierenden Wellenlängenbereich von rd. 700 nm bis 1700 nm können die Teilerstufen entsprechend so gewählt werden, daß die Anknüpfung an den Frequenzkamm der Lasereinrichtung optimiert wird. Der Bereich um λ = 1560 nm ist von besonderem Interesse für Anwendungen der Erfindung in der Telekommunikation.
  • Mit dem Bezug der Referenzfrequenz auf die mit einer Genauigkeit von 10–14 arbeitenden Atomuhr wird vorteilhafterweise gegenüber dem Bezug auf einen stabilisierten Helium-Neon-Laser mit einer Genauigkeit von 10–13 eine Größenordnung bei der Genauigkeit bei der Einstellung der Lasereinrichtung bei gleichzeitig erheblich vereinfachtem Aufbau erzielt.
  • Anwendungsbeispiel 2: Messung von Frequenzabständen
  • Die Anwendung der Erfindung im Bereich der Präzisionsspektroskopie basiert auf der Verwendung einer gemäß den 24 stabilisierten Lasereinrichtung mit den Moden- und Wiederholfrequenz-Regelkreisen zur Vermessung der Frequenzlücke zwischen einem Referenzlaser und einem Spektroskopielaser. Hierzu ist der Referenzlaser-Regelkreis (III) nicht erforderlich. Es wurde beispielsweise mit einer erfindungsgemäßen Lasereinrichtung die D1-Linie von Cäsium bei 335 THz (895 nm) vermessen. Dies erfolgte durch Ermittlung des Frequenzabstandes zwischen der vervierfachten Frequenz eines methanstabilisierten Helium-Neon-Lasers (4·88.4 THz = 354 THz) und der D1-Linie unter Verwendung eines Frequenzkamms mit rd. 244000 Moden eines stabilisierten Titan-Saphir-Lasers. Das Meßprinzip ist in 9 illustriert. Im oberen Teil von 9 ist der Frequenzkamm, der sich mit 244000 Moden über 18,39 THz erstreckt, schematisch dargestellt. Am niederfrequenten Ende des Frequenzkammes erfolgt dessen Phasenkopplung an eine genau bekannte Mode M1 auf der Basis der Ausgangsfrequenz des Helium-Neon-Lasers 91. Mit dem Helium-Neon-Laser 91 wird zunächst nach dem oben erläuterten Schwebungssignal-Regelungsprinzip ein Farbzentrenlaser 92 stabilisiert, dessen verdoppelte Ausgangsfrequenz wiederum zur Stabilisierung eines Diodenlasers 93 benutzt wird. Simultan erfolgt über den Regler 94 (Φ) die Einstellung des modengekoppelten Pulslasers 95 wie bei der Stabilisierung gemäß 2.
  • Am hochfrequenten Ende des Frequenzkammes wird der Diodenlaser 96 an einer geeigneten Bezugsmode M2 phasengekoppelt, wobei die Zahl der Moden in Bezug auf die niederfrequente Bezugsmode nach dem obengenannten Verfahren ausgezählt ist. Durch Einführung einer definierten, im 100- bis 200-kHz-Bereich um 1 MHz variierten Offsetfrequenz in Bezug auf die Frequenz des Lasers 93 kann über die entsprechende Verschiebung des Modenkammes die Frequenz des Diodenlasers 96 durchgestimmt werden.
  • Um die D1-Linie von Cäsium in einem Sättigungsspektrometer (z. B. mit zwei linear polarisierten, entgegengesetzt laufenden Laserstrahlen gleicher Intensität, z. B. 10 μW/cm2, Cäsiumzelle, Länge: 7.5 cm, Raumtemperatur) zu vermessen, erfolgt ein Durchstimmen des Diodenlasers 96 über den Linienverlauf. Einzelheiten der an sich bekannten Sättigungsspektroskopie werden hier nicht angegeben. 10 zeigt beispielhaft den Verlauf des Übergangs Fg = 4 → Fe = 4 der D1-Linie. Die Lage der Mittenfrequenz kann durch Einstellung der entsprechenden Schwebungsfrequenzen bei der Phasenkopplung des Frequenzkamms und der Zahl der Moden zwischen den oberen und unteren Bezugsmoden mit einer bisher nicht erreichten Genauigkeit angegeben werden. Dies ist sowohl für die hochgenaue Ermittlung von Substanzeigenschaften als auch für eine genauere Messung der Feinstrukturkonstanten α von Bedeutung.
  • Weitere Anwendungen
  • Neben der Stabilisierung oder Messung optischer Frequenzen für Frequenz- und/oder Zeitmeßzwecke bestehen auch Anwendungen der erfindungsgemäßen Laserstabilisierung im Bereich der Telekommunikation. Bei der standardmäßigen Übertragung einer Vielzahl von Trägerfrequenzen sind bisher bei der optischen Datenübertragung Frequenzdifferenzen zwischen den Trägerfrequenzbändern in der Größenordnung von 100 GHz erforderlich. Dieses beschränkt die auf einem Träger plazierbaren Frequenzbänder und damit die Übertragungskapazität. Eine engere Anordnung der Frequenzbänder mit Abständen unterhalb 10 GHz wird durch eine erfindungsgemäß stabilisierte Lasereinrichtung möglich, wobei dieser Wert noch von der übertragenen Informationsmenge abhängt.
  • Ferner wird bei der zukünftigen Bereitstellung "optischer" Atomuhren, die um mehrere Größenordnungen genauer laufen als die bisherigen Cs-Atomuhren, ein neuer Bezugspunkt für die Messung optischer Frequenzlücken geschaffen, der die Implementierung des Referenzlaser-Regelkreises zur Messung optischer Frequenzen überflüssig machen kann.
  • Mit einer kompletten Stabilisierung mit den Regelkreisen I, II und III wird das gewünschte "Uhrwerk" bereitgestellt, mit dem der Frequenzabstand zwischen Radiofrequenzen und optischen Frequenzen überbrückt werden kann, insbesondere um eine optische Frequenz bereitzustellen, die mit einem Radiofrequenznormal stabilisiert ist oder um eine Radiofrequenz zu erzeugen, die in Bezug auf ein optische Frequenznormal stabilisiert ist. Weitere Anwendungen bestehen in allen Bereichen der Frequenz- und Zeitmeßtechnik, in denen bisher mit den eingangs erläuterten Frequenzteilerstufen gearbeitet werden mußte.

Claims (31)

  1. Verfahren zum Betrieb einer Lasereinrichtung (1, 200), bei dem in einer Resonatoranordnung (3) umlaufende Lichtpulse, die jeweils aus spektralen Komponenten entsprechend einer Vielzahl longitudinaler Moden (M, M1, M2) der Resonatoranordnung (3) zusammengesetzt sind, erzeugt und einer Kompensation der Gruppengeschwindigkeitsdispersion unterzogen werden, dadurch gekennzeichnet, daß eine vorbestimmte lineare Dispersion in den Lichtweg der Resonatoranordnung (3) eingeführt wird, so daß mindestens eine Mode eine bestimmte Frequenz besitzt und/oder der Modenabstand zwischen den Moden einen bestimmten Wert besitzt.
  2. Verfahren gemäß Anspruch 1, bei dem die lineare Dispersion in die Resonatoranordnung (3) durch eine spektral spezifisch wirksame Änderung der Resonatorlänge in einem Resonatorzweig eingeführt wird, den die Lichtpulse nach der Kompensation der Gruppengeschwindigkeitsdispersion spektral räumlich getrennt durchlaufen.
  3. Verfahren gemäß Anspruch 2, bei dem die lineare Dispersion in die Resonatoranordnung (3) durch Verkippen eines Resonatorendspiegels (34) eingeführt wird.
  4. Verfahren gemäß Anspruch 1, bei dem die lineare Dispersion in die Resonatoranordnung (3) durch ein Verkippen einer transparenten Platte, ein Einschieben eines Prismenpaares in den Lichtweg in der Resonatoranordnung (3), oder eine Einstellung der wirksamen Pumpleistung zum Pumpen des aktiven Mediums der Lasereinrichtung (1) eingeführt wird.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Einführung der linearen Dispersion in die Resonatoranordnung (3) im Rahmen eines Moden-Regelkreises (I) in Abhängigkeit von der Frequenzabweichung mindestens einer ersten Bezugsmode (M1) der Lichtpulse von einer Referenzfrequenz (fref) erfolgt, die die Ausgangsfrequenz eines optischen Referenzfrequenzgenerators (240) oder eine höhere Harmonische oder ein ganzzahliger Teil der Ausgangsfrequenz oder der höheren Harmonischen ist.
  6. Verfahren gemäß Anspruch 5, bei dem im Moden-Regelkreis (I) Lichtpulse der Lasereinrichtung (1) und Licht mit der Referenzfrequenz (fref) überlagert und auf ein lichtempfindliches Element (211) gerichtet werden, dessen elektrisches Ausgangssignal eine Modulation bei einer Schwebungsfrequenz entsprechend der Abweichung der Frequenz der ersten Bezugsmode (M1) von der Referenzfrequenz (fref) aufweist, wobei ein Regler (214) vorgesehen ist, der die lineare Dispersion der Resonatoranordnung (3) so einstellt, daß das Schwebungssignal minimal ist oder eine vorbestimmte Schwebungsfrequenz besitzt.
  7. Verfahren gemäß einem der Ansprüche 5 oder 6, bei dem der optische Referenzfrequenzgenerator (240) in einem Referenzlaser-Regelkreis (III) in Bezug auf eine zweite Bezugsmode (M2) der Lichtpulse, die eine andere Frequenz als die erste Bezugsmode besitzt, stabilisiert wird.
  8. Verfahren gemäß einem der Ansprüche 5 bis 7, bei dem der optische Referenzfrequenzgenerator (240) ein stabilisierter Dauerstrichlaser ist.
  9. Verfahren gemäß einem der Ansprüche 1 bis 4, bei dem die Einführung der linearen Dispersion in die Resonatoranordnung (3) im Rahmen eines Moden-Regelkreises (Ia, Ib) in Abhängig keit von der Abweichung der vervielfachten Frequenz eines ersten Referenzlasers (240a), der mit einer ersten Bezugsmode (M1) der Lichtpulse phasengekoppelt ist, von der Frequenz eines zweiten Referenzlasers (240b) erfolgt, der in einem Referenzlaser-Regelkreis (III) mit einer zweiten Bezugsmode (M2) der Lichtpulse, die eine andere Frequenz als die erste Bezugsmode besitzt, phasengekoppelt ist.
  10. Verfahren gemäß Anspruch 9, bei dem der zweite Referenzlaser (240b) mit der zweiten Bezugsmode (M2) der Lichtpulse über eine Teilerstufe phasengekoppelt ist.
  11. Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Resonatorlänge der Lasereinrichtung (1) im Rahmen eines Wiederholfrequenz-Regelkreises (II) geregelt wird, in dem die Wiederholfrequenz (fr) der Lichtpulse mit einer Radiofrequenz, die von einem Radioreferenzfrequenzgenerator (250) abgeleitet ist, überlagert wird, wobei ein Regler (224) vorgesehen ist, der die Resonatorlänge der Lasereinrichtung (1) so einstellt, daß ein bei der Überlagerung gebildetes Schwebungssignal minimal ist oder eine vorbestimmte Schwebungsfrequenz besitzt.
  12. Verfahren gemäß einem der Ansprüche 1 bis 4, bei dem die Einführung der linearen Dispersion in die Resonatoranordnung (3) im Rahmen eines Wiederholfrequenz-Regelkreises (II) geregelt wird, in dem die Wiederholfrequenz (fr) der Lichtpulse mit einer Radiofrequenz, die von einem Radioreferenzfrequenzgenerator (250) abgeleitet ist, überlagert wird, wobei ein Regler (224) vorgesehen ist, der die lineare Dispersion der Resonatoranordnung (3) so einstellt, daß ein bei der Oberlagerung gebildetes Schwebungssignal minimal ist oder eine vorbestimmte Schwebungsfrequenz besitzt.
  13. Verfahren gemäß Anspruch 12, bei dem die Resonatorlänge der Lasereinrichtung (1) im Rahmen eines Moden-Regelkreises (I) in Abhängigkeit von der Frequenzabweichung mindestens einer ersten Bezugsmode (M1) der Lichtpulse von einer Referenzfrequenz (fref) geregelt wird, die die Ausgangsfrequenz eines optischen Referenzfrequenzgenerators (240) oder eine höhere Harmonische oder ein ganzzahliger Teil der Ausgangsfrequenz oder der höheren Harmonischen ist.
  14. Verfahren zum Betrieb eines Referenzlasers (240) bei einer stabilisierten optischen Frequenz, bei dem die Ausgangsfrequenz des Referenzlasers (240) oder eine höhere Harmonische oder ein ganzzahliger Teil der Ausgangsfrequenz oder der höheren Harmonischen mit einer zweiten Bezugsmode (M2) von Lichtpulsen phasengekoppelt wird, die mit einer Lasereinrichtung (1, 200) nach einem Verfahren gemäß einem der Ansprüche 5 bis 13 erzeugt werden, wobei die zweite Bezugsmode (M2) eine andere Frequenz besitzt als die erste Bezugsmode (M1).
  15. Verfahren zur Messung der Ausgangsfrequenz eines Referenzlasers (240), bei dem eine zweite Bezugsmode (M2) von Lichtpulsen, die mit einer Lasereinrichtung (1, 200) nach einem Verfahren gemäß einem der Ansprüche 5 bis 13 erzeugt werden, wobei die zweite Bezugsmode (M2) eine andere Frequenz besitzt als die erste Bezugsmode (M1), mit der Ausgangsfrequenz des Referenzlasers (240) oder einer höheren Harmonischen oder einem ganzzahligen Teil der Ausgangsfrequenz oder der höheren Harmonischen phasengekoppelt wird und aus den Regelparametern der Lasereinrichtung die Ausgangsfrequenz ermittelt wird.
  16. Lasereinrichtung (1, 200) zur Erzeugung kurzer Lichtpulse, die eine Resonatoranordnung (3) mit – einem aktiven Medium (2), – einer Vielzahl von Resonatorspiegeln mit einem Einkoppelspiegel (31) zum Einkoppeln von Pumplicht für das aktive Medium (2), einem Auskoppelspiegel (32) zur Abgabe der Lichtpulse und mehreren Umlenkspiegeln (33a–c, 34), und – einer Kompensationseinrichtung (4) zur Kompensation der Gruppengeschwindigkeitsdispersion der Lichtpulse, enthält, dadurch gekennzeichnet, daß die Resonatoranordnung (3) eine Dispersions-Stelleinrichtung (7, 8, 8') zur Einführung einer linearen Dispersion in den Lichtweg der Resonatoranordnung (3) aufweist.
  17. Lasereinrichtung gemäß Anspruch 16, bei der die Dispersions-Stelleinrichtung (7) in einem Resonatorzweig auf der vom aktiven Medium (2) abgewandten Seite der Kompensationseinrichtung (4) angeordnet ist.
  18. Lasereinrichtung gemäß Anspruch 17, bei der die Dispersions-Stelleinrichtung (7) eine Schwenkeinrichtung (7) an einem als Resonatorendspiegel (34) wirkenden Umlenkspiegel ist.
  19. Lasereinrichtung gemäß Anspruch 16, bei der die Dispersions-Stelleinrichtung eine transparente Platte mit einer Kippeinrichtung (8), ein Prismenpaar mit einer Schubeinrichtung (8'), die in der Resonatoranordnung (3) angeordnet sind, oder eine Einrichtung (9) zur Variation der wirksamen Pumpleistung des Pumplasers umfaßt.
  20. Lasereinrichtung gemäß einem der Ansprüche 16 bis 19, bei der eine Resonatorlängen-Stelleinrichtung (5) zur Veränderung der Resonatorlänge durch Verstellung der Position eines der Umlenkspiegel (33b) vorgesehen ist.
  21. Lasereinrichtung gemäß einem der Ansprüche 16 bis 20, bei der ein Moden-Regelkreis (I, 210, 214) zur Regelung der Dispersions-Stelleinrichtung (7, 8, 8') oder der Resonatorlängen-Stelleinrichtung (5) in Abhängigkeit von der Frequenzabwei chung mindestens einer Frequenzkomponente der Lichtpulse von einer Referenzfrequenz (fref), die die Ausgangsfrequenz eines optischen Referenzfrequenzgenerators (240) oder eine höhere Harmonische oder ein ganzzahliger Teil der Ausgangsfrequenz oder der höheren Harmonischen ist, vorgesehen ist.
  22. Lasereinrichtung gemäß Anspruch 21, bei der der Moden-Regelkreis (I, 210, 214) eine Einrichtung (211) zur Erzeugung eines Schwebungssignals aus der Frequenzkomponente der Lichtpulse und der Referenzfrequenz (fref) und einen Moden-Regler (214) für die Dispersions-Stelleinrichtung (7) oder die Resonatorlängen-Stelleinrichtung (5) umfaßt, wobei der Moden-Regler dazu ausgebildet ist, die Dispersions-Stelleinrichtung (7) oder die Resonatorlängen-Stelleinrichtung (5) so zu betätigen, daß das Schwebungssignal minimal ist oder eine vorbestimmte Schwebungsfrequenz besitzt.
  23. Lasereinrichtung gemäß Anspruch 21 oder 22, bei der ein Referenzlaser (240) und ggf. Vervielfacher- und oder Teilerstufen zur Erzeugung der Referenzfrequenz (fref) vorgesehen sind und die Einrichtung zur Erzeugung des Schwebungssignals ein lichtempfindliches Element (211) umfaßt.
  24. Lasereinrichtung gemäß Anspruch 23, bei der am lichtempfindlichen Element ein Filterelement (212) zur spektral selektiven Erfassung der Lichtpulse vorgesehen ist.
  25. Lasereinrichtung gemäß einem der Ansprüche 16 bis 20, bei der ein Moden-Regelkreis (Ia, Ib, 210, 214) zur Regelung der Dispersions-Stelleinrichtung (7, 8, 8') oder der Resonatorlängen-Stelleinrichtung (5) in Abhängigkeit von der Abweichung der Frequenz eines ersten Referenzlasers (240a), der mit einer ersten Bezugsmode (M1) der Lichtpulse phasengekoppelt ist, von der Frequenz eines zweiten Referenzlasers (290b) vorgesehen ist, der mit einer zweiten Bezugsmode (M2) der Lichtpulse, die eine andere Frequenz als die erste Bezugsmode (M1) besitzt, phasengekoppelt ist.
  26. Lasereinrichtung gemäß einem der Ansprüche 16 bis 25, bei der ein Wiederholfrequenz-Regelkreis (II, 220, 224) zur Regelung der Resonatorlängen-Stelleinrichtung (5) oder der Dispersions-Stelleinrichtung (7, 8, 8') in Abhängigkeit von der Frequenzabweichung mindestens einer Differenzfrequenz zwischen der Wiederholfrequenz der Lichtpulse von einer Radioreferenzfrequenz vorgesehen ist.
  27. Lasereinrichtung gemäß Anspruch 26, bei der ein Radiofrequenzreferenzgenerator (250) zur Erzeugung der Radioreferenzfrequenz vorgesehen ist und der Wiederholfrequenz-Regelkreis eine Einrichtung zur Erzeugung eines Schwebungssignals aus dem Signal eines lichtempfindlichen Elements (221), das die Lichtpulse erfaßt, und dem Signal eines Radiofrequenzreferenzgenerators (250) und einen Wiederholfrequenz-Regler (224) für die Resonatorlängen-Stelleinrichtung (5) oder die Dispersions-Stelleinrichtung (7, 8, 8') umfaßt, wobei der Wiederholfrequenz-Regler (224) dazu ausgebildet ist, die Resonatorlängen-Stelleinrichtung oder die Dispersions-Stelleinrichtung (7, 8, 8') so zu betätigen, daß das zweite Schwebungssignal minimal ist oder eine vorbestimmte Schwebungsfrequenz besitzt.
  28. Lasereinrichtung gemäß einem der Ansprüche 20 bis 27, bei der ferner ein Referenzlaser-Regelkreis (III, 231) zur Regelung des optischen Referenzfrequenzgenerators oder Referenzlasers (240) vorgesehen ist, mit einer Einrichtung (231) zur Erzeugung eines Schwebungssignals aus einer höherfrequenten Frequenzkomponente der Lichtpulse oder eines Teiles dieser Frequenzkomponente und einer Frequenz, die gleich einem Vielfachen der Referenzfrequenz (fref) ist, und einer Stelleinrichtung zur Einstellung des optischen Referenzfrequenzgenerators oder Referenzlasers (240) derart, daß das Schwebungssignal minimal ist oder eine vorbestimmte Schwebungsfrequenz besitzt.
  29. Lasereinrichtung gemäß einem der Ansprüche 16 bis 28, bei der das aktive Medium (4) ein Festkörper- oder ein Farbstoffmedium umfaßt.
  30. Lasereinrichtung gemäß einem der Ansprüche 16 bis 29, bei der eine Einrichtung (201) zur Selbstphasenmodulation vorgesehen ist.
  31. Verwendung eines Verfahrens oder einer Lasereinrichtung gemäß einem der vorhergehenden Ansprüche zur Messung optischer Frequenzen oder Frequenzdifferenzen, Erzeugung optischer Frequenzen, Überbrückung großer Frequenzdifferenzen in optischen Teilerketten, Erzeugung optischer Trägerfrequenzen in der Telekommunikationstechnik, spektroskopischen Vermessung atomarer elektronischer Übergänge, oder Überbrückung der Frequenz eines optischen Frequenznormals zu einer mit elektronischen Mitteln zählbaren Meßfrequenz.
DE19911103A 1999-03-12 1999-03-12 Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen Expired - Fee Related DE19911103B4 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE19911103A DE19911103B4 (de) 1999-03-12 1999-03-12 Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen
JP2000605290A JP4668423B2 (ja) 1999-03-12 2000-03-10 安定化された超短光パルスの発振および光周波数の合成へのその使用
ES00910810T ES2183790T3 (es) 1999-03-12 2000-03-10 Generacion de impulsos de luz ultracortos estabilizados y su uso para la sintesis de frecuencias opticas.
AT00910810T ATE225988T1 (de) 1999-03-12 2000-03-10 Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen
DK00910810T DK1161782T3 (da) 1999-03-12 2000-03-10 Frembringelse af stabiliserede, ultrakorte laserlysimpulser og deres anvendelse til syntese af optiske frekvenser
AU32884/00A AU3288400A (en) 1999-03-12 2000-03-10 Generation of stabilised, ultra-short light pulses and the use thereof for synthesising optical frequencies
PCT/EP2000/002135 WO2000055948A1 (de) 1999-03-12 2000-03-10 Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen
US09/936,388 US6785303B1 (en) 1999-03-12 2000-03-10 Generation of stabilized, ultra-short light pulses and the use thereof for synthesizing optical frequencies
EP00910810A EP1161782B1 (de) 1999-03-12 2000-03-10 Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen
DE50000624T DE50000624D1 (de) 1999-03-12 2000-03-10 Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19911103A DE19911103B4 (de) 1999-03-12 1999-03-12 Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen

Publications (2)

Publication Number Publication Date
DE19911103A1 DE19911103A1 (de) 2000-09-21
DE19911103B4 true DE19911103B4 (de) 2005-06-16

Family

ID=7900773

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19911103A Expired - Fee Related DE19911103B4 (de) 1999-03-12 1999-03-12 Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen
DE50000624T Expired - Lifetime DE50000624D1 (de) 1999-03-12 2000-03-10 Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50000624T Expired - Lifetime DE50000624D1 (de) 1999-03-12 2000-03-10 Erzeugung stabilisierter, ultrakurzer lichtpulse und deren anwendung zur synthese optischer frequenzen

Country Status (9)

Country Link
US (1) US6785303B1 (de)
EP (1) EP1161782B1 (de)
JP (1) JP4668423B2 (de)
AT (1) ATE225988T1 (de)
AU (1) AU3288400A (de)
DE (2) DE19911103B4 (de)
DK (1) DK1161782T3 (de)
ES (1) ES2183790T3 (de)
WO (1) WO2000055948A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122232A1 (de) 2011-12-23 2013-06-27 Menlo Systems Gmbh System zum Erzeugen eines Schwebungssignals
DE102014204941A1 (de) 2014-03-17 2015-09-17 Menlo Systems Gmbh Verfahren zum Betreiben einer Lasereinrichtung, Resonatoranordnung und Verwendung eines Phasenschiebers

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190705B2 (en) 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
DE10044405C2 (de) * 2000-09-08 2003-07-10 Max Planck Gesellschaft Verfahren zur Erzeugung von Radiofrequenzwellen und Radiofrequenzgenerator
DE10044404C2 (de) * 2000-09-08 2002-08-14 Max Planck Gesellschaft Verfahren und Vorrichtung zur Erzeugung von stabilisierten ultrakurzen Laser-Lichtpulsen
WO2002084888A2 (en) * 2001-04-13 2002-10-24 Cb Health Ventures, L.L.C. Frequency comb analysis
CN1313837C (zh) * 2002-02-21 2007-05-02 英弘精机株式会社 气象观测激光雷达系统
DE10220237A1 (de) * 2002-05-06 2003-11-27 Giga Optics Gmbh Laser, Lasersystem und optisches Uhrwerk sowie Verfahren und Verwendung der selben zur Erzeugung eines breitbandigen Emmissionsspektrums und eines Frequenzkamms
EP1537637B1 (de) * 2002-08-30 2006-11-15 Agilent Technologies, Inc. Bezüglich wellenlänge abstimmbarer resonator mit einem prisma
US7361171B2 (en) 2003-05-20 2008-04-22 Raydiance, Inc. Man-portable optical ablation system
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US7711013B2 (en) 2004-03-31 2010-05-04 Imra America, Inc. Modular fiber-based chirped pulse amplification system
DE102004022037B4 (de) * 2004-05-03 2006-12-21 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zum Erzeugen eines Frequenzspektrums in Form eines Frequenzkamms und Lasereinrichtung hierfür
US7602825B1 (en) * 2004-10-20 2009-10-13 Calmar Optcom, Inc. Tunable passively mode-locked lasers with phase-lock feedback for low timing jitters
US7881620B2 (en) * 2005-05-04 2011-02-01 Ofs Fitel, Llc Stabilized optical fiber continuum frequency combs using post-processed highly nonlinear fibers
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
DE102005035173B4 (de) * 2005-07-27 2016-08-11 Menlo Systems Gmbh Interferometer, insbesondere für die Bestimmung und Stabillisierung der relativen Phase kurzer Pulse
US7245419B2 (en) * 2005-09-22 2007-07-17 Raydiance, Inc. Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system
US7809222B2 (en) 2005-10-17 2010-10-05 Imra America, Inc. Laser based frequency standards and their applications
US7839905B2 (en) * 2005-12-09 2010-11-23 Massachusetts Institute Of Technology Carrier-envelope phase shift using linear media
US8232687B2 (en) 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
US7444049B1 (en) 2006-01-23 2008-10-28 Raydiance, Inc. Pulse stretcher and compressor including a multi-pass Bragg grating
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US9130344B2 (en) 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US8120778B2 (en) 2009-03-06 2012-02-21 Imra America, Inc. Optical scanning and imaging systems based on dual pulsed laser systems
US8571075B2 (en) 2010-11-29 2013-10-29 Imra America, Inc. Frequency comb source with large comb spacing
US7822347B1 (en) 2006-03-28 2010-10-26 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
DE102006023601B4 (de) * 2006-05-19 2009-01-15 Menlo Systems Gmbh Lasersystem
KR100841052B1 (ko) * 2006-10-11 2008-06-24 한국표준과학연구원 펨토초레이저 광주입잠금을 이용한 주사 광주파수합성기 및상기 광주파수합성기를 이용한 광주파수합성방법
TWI300471B (en) * 2006-10-25 2008-09-01 Ind Tech Res Inst Method of optical frequency measurement
US8018979B2 (en) * 2007-10-04 2011-09-13 Femtolasers Produktions Gmbh Mode-locked short pulse laser resonator and short pulse laser arrangement
US7903326B2 (en) 2007-11-30 2011-03-08 Radiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
CN102159926B (zh) 2008-07-25 2013-08-28 国立科学研究中心 具有频率梳和同步方案的干涉仪
US8125704B2 (en) 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
DE102008059902B3 (de) * 2008-12-02 2010-09-16 Forschungsverbund Berlin E.V. Verfahren und Vorrichtung zum Erzeugen eines selbstrefernzierten optischen Frequenzkamms
US8718784B2 (en) 2010-01-14 2014-05-06 Nano-Retina, Inc. Penetrating electrodes for retinal stimulation
US8706243B2 (en) 2009-02-09 2014-04-22 Rainbow Medical Ltd. Retinal prosthesis techniques
US8428740B2 (en) 2010-08-06 2013-04-23 Nano-Retina, Inc. Retinal prosthesis techniques
US8442641B2 (en) * 2010-08-06 2013-05-14 Nano-Retina, Inc. Retinal prosthesis techniques
US8150526B2 (en) 2009-02-09 2012-04-03 Nano-Retina, Inc. Retinal prosthesis
US8275263B1 (en) * 2009-06-26 2012-09-25 The Boeing Company Multiplication of phase deviations
US8564785B2 (en) 2009-09-18 2013-10-22 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Comb-based spectroscopy with synchronous sampling for real-time averaging
CN102576971A (zh) * 2009-10-02 2012-07-11 Imra美国公司 锁模激光器的光信号处理
US20110206071A1 (en) * 2010-02-24 2011-08-25 Michael Karavitis Compact High Power Femtosecond Laser with Adjustable Repetition Rate
US8279901B2 (en) * 2010-02-24 2012-10-02 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate and simplified structure
US9054479B2 (en) * 2010-02-24 2015-06-09 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate
US8953651B2 (en) 2010-02-24 2015-02-10 Alcon Lensx, Inc. High power femtosecond laser with repetition rate adjustable according to scanning speed
DE102010018035A1 (de) 2010-04-23 2011-10-27 Gottfried Wilhelm Leibniz Universität Hannover Parametrischer Oszillator und Verfahren zum Erzeugen ultrakurzer Pulse
WO2012037465A1 (en) 2010-09-16 2012-03-22 Raydiance, Inc. Laser based processing of layered materials
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
DE102010048576B9 (de) * 2010-10-18 2012-11-15 Toptica Photonics Ag Laservorrichtung zur Erzeugung eines CEO-freien Frequenzkamms
US8571669B2 (en) 2011-02-24 2013-10-29 Nano-Retina, Inc. Retinal prosthesis with efficient processing circuits
DE112012002271T5 (de) 2011-05-27 2014-03-13 Imra America, Inc. Kompakte optische Frequenzkammsysteme
US8908739B2 (en) 2011-12-23 2014-12-09 Alcon Lensx, Inc. Transverse adjustable laser beam restrictor
DE102011122230B8 (de) 2011-12-23 2023-07-06 Menlo Systems Gmbh Optikanordnung und Verfahren zum Untersuchen oder Bearbeiten eines Objekts
US8787767B2 (en) 2012-02-03 2014-07-22 Raytheon Company High-speed low-jitter communication system
US8780948B2 (en) 2012-02-20 2014-07-15 Raytheon Company Precision photonic oscillator and method for generating an ultra-stable frequency reference using a two-photon rubidium transition
WO2013165945A1 (en) 2012-05-01 2013-11-07 Imra America, Inc. Optical frequency ruler
DE102012023605B4 (de) 2012-12-04 2022-03-03 Toptica Photonics Ag Verfahren und Vorrichtung zur Synthese von elektromagnetischer Strahlung
US9370417B2 (en) 2013-03-14 2016-06-21 Nano-Retina, Inc. Foveated retinal prosthesis
DE102013219338A1 (de) 2013-09-25 2015-03-26 Forschungsverbund Berlin E.V. Verfahren und Vorrichtung zur direkten Stabilisierung der Carrier-Envelope-Phase eines Laserverstärkersystems
US9680287B2 (en) 2013-10-01 2017-06-13 Université De Neuchâtel Opto-optical modulation of a saturable absorber for high bandwidth CEO stabilization of a femtosecond laser frequency comb
EP2866311B8 (de) 2013-10-25 2018-06-27 Ludwig-Maximilians-Universität München Verfahren und Vorrichtung zur Steuerung einer Träger-Einhüllenden-Phase und/oder einer Intensität von Ausgangsimpulsen einer Impulslaservorrichtung
US9474902B2 (en) 2013-12-31 2016-10-25 Nano Retina Ltd. Wearable apparatus for delivery of power to a retinal prosthesis
US9300109B2 (en) 2014-01-13 2016-03-29 Raytheon Company Serial servo system and method for controlling an optical path length and a repetition frequency of a mode-locked laser
US9331791B2 (en) 2014-01-21 2016-05-03 Nano Retina Ltd. Transfer of power and data
EP2933882B1 (de) * 2014-04-14 2016-11-23 Deutsches Elektronen-Synchrotron DESY Vorrichtung und Verfahren zum Strecken oder Verdichten von Laserimpulsen
US9557625B2 (en) 2014-05-20 2017-01-31 The United States Of America, As Represented By The Secretary Of Commerce Fiber frequency comb article
WO2015180762A1 (de) 2014-05-27 2015-12-03 Femtolasers Produktions Gmbh Verfahren zum erzeugen eines optischen pulszugs mit stabilisierter phase zwischen träger und einhüllender mittels spektraler verschiebung durch einen akustischen frequenzkamm
US9778328B2 (en) 2014-05-30 2017-10-03 Northrop Grumman Systems Corporation Optical probe beam stabilization in an atomic sensor system
US9647408B2 (en) 2014-11-03 2017-05-09 The Boeing Company System and method to produce tunable synthesized optical frequency
DE102014226973B4 (de) 2014-12-23 2021-03-18 Menlo Systems Gmbh Optische Resonatoranordnung und Verfahren zum Einstellen einer Umlaufzeit in einem Resonator
DE102015200668B4 (de) 2015-01-16 2017-07-06 Forschungsverbund Berlin E.V. Verfahren und System zum Erzeugen eines Treibersignals für ein akusto-optisches Bauelement zur Carrier-Envelope-Phasenstabilisierung
DE102015002559A1 (de) 2015-02-27 2016-09-01 Menlo Systems Gmbh Stabilisieren optischer Frequenzkämme
US11462881B2 (en) 2017-06-06 2022-10-04 Vescent Photonics LLC Method and device for altering repetition rate in a mode-locked laser
US10050407B1 (en) * 2017-07-12 2018-08-14 Raytheon Company Cavity stabilized laser drift compensation
DE112018006226T5 (de) 2017-12-07 2020-09-24 Irsweep Ag Optischer Frequenzkamm-Aufbau und Verwendung eines externen Hohlraums zur Dispersionskompensation und Frequenzeinstellung
DE102017131244B3 (de) 2017-12-22 2019-06-27 Toptica Photonics Ag Verfahren und Vorrichtung zur Erzeugung stabilisierter, gepulster Laserstrahlung
DE102018109718C5 (de) 2018-04-23 2023-02-02 Toptica Photonics Ag Optische Frequenzsynthese
EP3706259B1 (de) 2019-03-07 2022-02-23 Menlo Systems GmbH Optische frequenzkammanordnung und verfahren
DE102020115338B3 (de) * 2020-06-09 2021-11-18 Toptica Photonics Ag Optische Abtastung
CN112859326B (zh) * 2021-03-01 2021-12-28 中国科学院国家授时中心 一种面向空间应用的参考腔腔前耦合光路及调节方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD218499B1 (de) * 1983-06-08 1991-08-14 Univ Schiller Jena Verfahren zur erzeugung kurzer chirpfreier laserimpulse
US5212698A (en) * 1990-05-02 1993-05-18 Spectra-Physics Lasers, Incorporated Dispersion compensation for ultrashort pulse generation in tuneable lasers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE218499C (de)
US4815085A (en) * 1986-10-06 1989-03-21 Laser Science, Inc. System for generating stable laser pulses
US5054027A (en) * 1989-10-10 1991-10-01 Massachusetts Institute Of Technology Pulsed laser
US5235605A (en) 1991-02-01 1993-08-10 Schwartz Electro-Optics, Inc. Solid state laser
DE19750320C1 (de) * 1997-11-13 1999-04-01 Max Planck Gesellschaft Verfahren und Vorrichtung zur Lichtpulsverstärkung
AT408163B (de) * 1998-02-25 2001-09-25 Wintner Ernst Dr Lasersystem zur erzeugung ultrakurzer lichtimpulse
JP2001244530A (ja) * 2000-02-28 2001-09-07 Inst Of Physical & Chemical Res 超短パルスレーザー発振装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD218499B1 (de) * 1983-06-08 1991-08-14 Univ Schiller Jena Verfahren zur erzeugung kurzer chirpfreier laserimpulse
US5212698A (en) * 1990-05-02 1993-05-18 Spectra-Physics Lasers, Incorporated Dispersion compensation for ultrashort pulse generation in tuneable lasers

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
DE-Z.: Laser und Optoelektronik, Vol. 24, No. 5, 1992, S. 56-61 *
Eckstein, J.N. et al.: High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses. In: Physical review letters, 1978, Vol. 40, No 13 S.847-850 *
Hänsch T.W.: High Resolution Spectroscopy of Hy- drogen. In: The Hydrogen Atom. Hrsg.G.F.Bassani et al., Springer Verlag, Berlin, 1989, S.93-102
Hänsch, T.W.: In: Physikalische Blätter, 1998, Bd.54, S.1007 ff
Imai,K. et al.: 30-THz Span Optical Frequency Comb Generation by SlF-Phase Modulation in an Optical Fiber. In: IEEE Journal of quantum electronics, 1998, Vol.34, No.1, S.54-60;$
NL-Z.: Optics Communications, Vol. 133, 1997, S. 201-204 *
Roberts, M. et al.: Observation of an Electric Oc- tupole Transition in a Single Ion. In: Physical review letters, 1997, Vol.79, No.10, S.1876-1879
Roberts, M. et al.: Observation of an Electric Oc-tupole Transition in a Single Ion. In: Physical review letters, 1997, Vol.79, No.10, S.1876-1879 *
Rullière, C.: Femtosecond Laser Pulses, Springer Verlag, Berlin 1998 *
Schnatz H. et al.: First Phase-Coherent Frequency Measurement of Visible Radiation. In: Physical re- view letters, 1996, Vol.76, No.1, S.18-21
S-Z.: Review of Scientific Instrum., Vol. 69, No. 3, 1998, S. 1207-1223 *
Telle, H.R.: Realisation of a new concept for vis- ible frequency division: phase locking of harmonic and sum frequencies. In: Optics Letters, 1990, Vol.15, No.10, S.532-537
Udem et al.: Phase-Coherent Measurement of the Hydrogen 1S-2S Transition Frequency with an Opti- cal Frequency Interval Divider Chain. In: Physical review letters, 1997, Vol.79, Iss.14, S.2646-2649
US-Z.: Applied Optics, Vol. 36, No. 30, 1997, S. 7752-7755 *
US-Z.: J.Opt.Technol., Vol.64, No.1, 1997, S.3-14 *
US-Z.: Optics Letters, Vol. 21, No. 24, 1996, S. 2008-2010 *
US-Z.: Review of Scientific Instrum., Vol. 69, No. 3, 1998, S. 1207-1223

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122232A1 (de) 2011-12-23 2013-06-27 Menlo Systems Gmbh System zum Erzeugen eines Schwebungssignals
DE102014204941A1 (de) 2014-03-17 2015-09-17 Menlo Systems Gmbh Verfahren zum Betreiben einer Lasereinrichtung, Resonatoranordnung und Verwendung eines Phasenschiebers

Also Published As

Publication number Publication date
WO2000055948A1 (de) 2000-09-21
AU3288400A (en) 2000-10-04
DE19911103A1 (de) 2000-09-21
JP4668423B2 (ja) 2011-04-13
ATE225988T1 (de) 2002-10-15
JP2002539627A (ja) 2002-11-19
DK1161782T3 (da) 2003-01-27
EP1161782B1 (de) 2002-10-09
ES2183790T3 (es) 2003-04-01
US6785303B1 (en) 2004-08-31
DE50000624D1 (de) 2002-11-14
EP1161782A1 (de) 2001-12-12

Similar Documents

Publication Publication Date Title
DE19911103B4 (de) Erzeugung stabilisierter, ultrakurzer Lichtpulse und deren Anwendung zur Synthese optischer Frequenzen
DE112007002376B4 (de) Optischer Frequenzgenerator und optisches Frequenzdarstellungsverfahren mittels Femtosekundenlaser-Injektionssynchronisation
DE3643569C2 (de) Analysator für optische Frequenzen
DE69920386T2 (de) Atomfrequenz-Standard Laserpulsoszillator
DE112010006131B3 (de) Optische Abtast- und Abbildsysteme, die auf dualgepulsten Lasersystemen basieren
EP2374041B1 (de) Verfahren und vorrichtung zum erzeugen eines selbstreferenzierten optischen frequenzkamms
DE69935648T2 (de) Wellenlängenvariabler laser und verfahren zu seinem betrieb
DE69121491T2 (de) Kontinuierlich abgestimmter optischer Resonator
DE112011103954T5 (de) Frequenzkamm-Quelle mit großem Abstand der Kammlinien
EP2577820B1 (de) Verfahren zum erzeugen von phasenkohärenten lichtfeldern mit vorgebbarem wert ihrer frequenz und optischer frequenz-synthesizer
DE112015004310T5 (de) Faseroszillatoren mit geringem trägerphasenrauschen
DE3643553A1 (de) Schaltung zum erzeugen bzw. wobbeln optischer frequenzen bzw. halbleiter-laser-wellenlaengen-stabilisator
DE102011000963A1 (de) Pulslaser, Laser mit stabilisierter optischer Frequenz, Messverfahren und Messvorrichtung
DE10044404C2 (de) Verfahren und Vorrichtung zur Erzeugung von stabilisierten ultrakurzen Laser-Lichtpulsen
DE3314040A1 (de) Frequenzverschiebunshohlraum fuer elektromagnetische strahlung
DE60210920T2 (de) Erzeugung von elektronischen Trägersignalen im optischen Bereich
EP0304601A2 (de) Verfahren zur Freqzuenzstabilisierung eines Halbleiterlasers mit angekoppeltem, externem Ringresonator
DE102005035173B4 (de) Interferometer, insbesondere für die Bestimmung und Stabillisierung der relativen Phase kurzer Pulse
DE10044405C2 (de) Verfahren zur Erzeugung von Radiofrequenzwellen und Radiofrequenzgenerator
EP0568738A1 (de) Laseroszillator
DE10052461B4 (de) Vorrichtung zum Erzeugen von Laserlicht
DE69317923T2 (de) Verstellbare Wellenlängenlasereinrichtung
DE102004022037B4 (de) Verfahren zum Erzeugen eines Frequenzspektrums in Form eines Frequenzkamms und Lasereinrichtung hierfür
DE102017131244B3 (de) Verfahren und Vorrichtung zur Erzeugung stabilisierter, gepulster Laserstrahlung
DE102023101424A1 (de) Vorrichtung zur Erzeugung von Laserstrahlung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8369 Partition in:

Ref document number: 19964432

Country of ref document: DE

Kind code of ref document: P

Q171 Divided out to:

Ref document number: 19964432

Country of ref document: DE

Kind code of ref document: P

8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee