[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE19533475A1 - Energieanlage für Gebäude - Google Patents

Energieanlage für Gebäude

Info

Publication number
DE19533475A1
DE19533475A1 DE19533475A DE19533475A DE19533475A1 DE 19533475 A1 DE19533475 A1 DE 19533475A1 DE 19533475 A DE19533475 A DE 19533475A DE 19533475 A DE19533475 A DE 19533475A DE 19533475 A1 DE19533475 A1 DE 19533475A1
Authority
DE
Germany
Prior art keywords
heat
liquid
energy system
solid
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19533475A
Other languages
English (en)
Other versions
DE19533475B4 (de
Inventor
Edmond D Krecke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KRECKE EDMOND DOMINIQUE BEAUFORT LU
Original Assignee
KRECKE EDMOND DOMINIQUE BEAUFORT LU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19533475A priority Critical patent/DE19533475B4/de
Application filed by KRECKE EDMOND DOMINIQUE BEAUFORT LU filed Critical KRECKE EDMOND DOMINIQUE BEAUFORT LU
Priority to AU71286/96A priority patent/AU7128696A/en
Priority to PL96325516A priority patent/PL183921B1/pl
Priority to PCT/EP1996/004009 priority patent/WO1997010474A1/de
Priority to EP96932511A priority patent/EP0850388B1/de
Priority to CZ1998723A priority patent/CZ293436B6/cs
Priority to CA002231638A priority patent/CA2231638C/en
Priority to SK290-98A priority patent/SK284751B6/sk
Priority to AT96932511T priority patent/ATE194868T1/de
Priority to US09/029,696 priority patent/US6220339B1/en
Priority to DE59605627T priority patent/DE59605627D1/de
Publication of DE19533475A1 publication Critical patent/DE19533475A1/de
Application granted granted Critical
Publication of DE19533475B4 publication Critical patent/DE19533475B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Liquid Crystal Substances (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

Die Erfindung betrifft eine Energieanlage für Gebäude nach dem Oberbegriff des Anspruchs 1.
Solarenergieanlagen sind seit langem bekannt und werden zunehmend zur Energieeinsparung eingesetzt. Insbesondere nutzt man dabei die durch direkte Sonneneinstrahlung erzeugte Wärme in Solar-Absorbern zur Erhitzung oder Vorwärmung von Brauchwasser sowie auch in Heizungsanlagen aus. Bekannt ist es auch schon, die jeweils nicht sofort benötigte Wärmeenergie zunächst zu speichern, indem beispielsweise Wasser in einem Tank erwärmt wird. Später kann dann mit Hilfe von Wärmetauschern dem Speicher die Wärmeenergie wieder entnommen werden.
Bei der Energiebilanz eines Gebäudes spielt neben der Energiezufuhr in Form von Solarenergie oder Verbrennungsenergie insbesondere auch die Wärmeisolation eine entscheidende Rolle. Hier sind wesentliche Fortschritte durch Wärmedämmstoffe im Bereich der Außenwände und des Daches erzielt worden. Weitere Verbesserungen der Wärmebilanz sind aber erwünscht, und der Erfindung liegt demgemäß die Aufgabe zugrunde, solche Verbesserungen zu ermöglichen. Die Lösung der Aufgabe ist im Anspruch 1 gekennzeichnet. Sie beruht mit allen, nachfolgend noch näher erläuterten Merkmalen auf physikalischen Grundlagen.
Der Solarabsorber gemäß Merkmal a) ist wesentlich kostengünstiger als bekannte Solar-Absorber, die in Form von Platten zusätzlich auf dem Dach angebracht werden. Durch die Verlegung der Schläuche oder Rohre zwischen der Dachhaut, die im allgemeinen aus Dachziegeln besteht, und der Dämmschicht sind außer den Schläuchen oder Rohren keine zusätzlichen Bauteile erforderlich. Außerdem wird das äußere Bild des Gebäudes nicht beeinträchtigt.
Die Unterteilung des Solarabsorbers gemäß Merkmal b) in wenigstens zwei Bereiche mit je einem eigenen Flüssigkeitskreislauf sorgt dafür, daß nicht eine mittlere Mischtemperatur am Ausgang des Solarabsorbers erzeugt wird, sondern daß die im Absorber erwärmten Flüssigkeiten getrennt nach ihrer jeweiligen Temperatur ausgenutzt werden können. Die Flüssigkeit mit der höheren Temperatur kann beispielsweise einen Wärmespeicher auch dann noch weiter aufladen, wenn die mittlere Mischtemperatur unterhalb der Temperatur des Wärmespeichers liegt.
Der Feststoff-Wärmespeicher gemäß Merkmal c) ist ebenfalls in wenigstens zwei Bereiche unterteilt. Dabei hat der zentrale Bereich die höhere Temperatur. Die Bereiche mit niedrigerer Temperatur können demnach auch durch Absorberflüssigkeiten noch weiter aufgeladen werden, wenn deren Temperatur niedriger als die des zentralen Bereichs ist. Dadurch läßt sich eine sehr gute Energiebilanz erzielen. Das Merkmal e) beschreibt den durch Thermofühler gesteuerten Betrieb genauer. Entsprechendes gilt für die Merkmale f) für den Betrieb, bei dem den Speicherbereichen Wärmeenergie zur Beheizung des Gebäudes entnommen wird.
Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. So kann vorgesehen sein, daß der Solar- Absorber in wenigstens drei Bereiche unterteilt ist, die unterschiedlich orientierten Dachabschnitten zugeordnet sind. Dadurch läßt sich eine noch bessere Trennung zwischen den unterschiedlichen Temperaturbereichen erzielen, die von der geographischen Orientierung der Dachabschnitte abhängen.
Die Schläuche oder Rohre des Solarabsorbers können zweckmäßig in mäanderförmigen Rinnen oder Nuten der Dämmschicht verlegt werden. Sie sind dann sicher untergebracht, ohne zusätzlich die Dicke der Dämmschicht oder der Dachhaut zu erhöhen.
Der äußere Bereich des Feststoff-Wärmespeichers wird auf vorteilhafte Weise trichterförmig nach unten erweitert, wobei die außerhalb des Gebäudegrundrisses liegenden Abschnitte durch eine Wärmedämmschicht abgedeckt ist. Auf diese Weise läßt sich die aus dem Erdinneren aufsteigende Wärmeenergie in größerem Umfang ausnutzen. Selbst im Winter bei Temperaturen unter dem Gefrierpunkt ist das Erdreich aufgrund der aufsteigenden Energie wesentlich wärmer. Beispielsweise liegt eine mittlere Temperatur in einer Tiefe von 2 m bei freie Oberfläche bei etwa +7 bis 9°C. Unter dem Gebäude beträgt die Temperatur in dieser Tiefe etwa +14 bis 16°C. Der gleiche Effekt zur Ausnutzung der Erdwärme ergibt sich beispielsweise beim Abdecken von Pflanzungen. Hier wird verhindert, daß die aufsteigende Erdwärme sofort wieder abstrahlt. Damit läßt sich eine Frostsicherung erreichen.
Der äußere Bereich des Feststoff-Wärmespeichers kann mit Vorteil in einen ersten, den zentralen Bereich umgebenden Abschnitt und einen zweiten, den ersten Bereich umgebenden Abschnitt unterteilt sein. Dadurch läßt sich eine noch feinere Abstufung des Temperaturniveaus der einzelnen Speicherbereiche erzielen.
Der äußere Bereich des Feststoff-Wärmespeichers kann darüber hinaus von einem peripheren Speicherbereich umgeben sein. Dadurch wird die Gewinnung weiterer Erdwärme ermöglicht. Insbesondere kann aber der pheriphere Speicher auch benutzt werden, um im Sommer mit Hilfe der kalten Flüssigkeit eine Kühlung im Gebäude zu erzielen.
Durch die verschiedenen, schalenförmig den zentralen Bereich umgebenden Speicherbereiche mit jeweils geringerer Temperatur wird erreicht, daß der zentrale Bereich besser isoliert ist und weniger Wärme verliert, weil der umgebende erste Abschnitt des äußeren Bereichs weniger kalt ist als das Erdreich. Entsprechendes gilt auch für die Abschnitte des äußeren Speicherbereichs. Der seitliche Abfluß des Speichers wird weitgehend durch die trichterförmige Gestaltung des äußeren Speicherbereichs kompensiert. Außerdem kann durch die Unterteilung des Speichers in mehrere Bereiche auch die geringste Solarwärme mit niedriger Temperatur noch genutzt werden, indem die Flüssigkeit aus den Solarabsorberbereichen in den äußeren oder peripheren Bereich der Feststoffspeicher geleitet werden. Dadurch wird der "Schutzmantel" um den zentralen Speicherbereich durch Erwärmung verbessert. Insgesamt wird es damit möglich, das gefürchtete Energieloch der konventionellen Solarheizungstechnik in den Monaten Dezember bis März zu überbrücken.
Die sonnenseitige und die schattenseitige Gebäudeaußenwand weisen zweckmäßig je ein flüssigkeitsdurchströmtes Schlauch- oder Rohrsystem zur Übertragung von Wärme aus der Wand an die Flüssigkeit oder umgekehrt auf, wobei die beiden Schlauch- oder Rohrsysteme in einen eine Pumpe für die Flüssigkeit enthaltenden Kreislauf schaltbar sind, derart, daß ein Wärmeaustausch zwischen der sonnenseitigen und der schattenseitigen Außenwand stattfindet. Ein solcher "Nord-Süd-Ausgleich" kann den Wärmehaushalt des Gebäudes wesentlich verbessern, wenn im Sommer Wärme aus der heißen Südwand an die kalte Nordwand abgegeben wird. Das führt auch im Winter zu einer gleichmäßigeren Wärmeverteilung im Gebäude. Zweckmäßig können zusätzlich die Gebäudeaußenwände auf der Außenseite mit einer absorptionserhöhenden, transparenten Beschichtung oder Verkleidung versehen sein, um eine bessere Energieausbeute zu erreichen. Eine solche transparente Wärmedämmung wird auch als "TWD" bezeichnet.
Eine Weiterbildung der Erfindung sieht außerdem vor, daß die Schlauch- oder Rohrsysteme der Gebäudeaußenwände über thermogesteuerte Ventile mit den Flüssigkeitskreisläufen der Bereiche des Feststoff- Wärmespeichers verbunden sind. Dann kann die eingestrahlte Energie im Sommer gespeichert und außerdem kühle Flüssigkeit, insbesondere aus dem peripheren Speicher, zur Kühlung den Schlauch- oder Rohrsystemen in den Außenwänden zugeleitet werden. Im Winter können die Rohrsysteme der Gebäudeaußenwände mit Vorteil als Heizungsanlage benutzt werden. Außerdem läßt sich im Winter, insbesondere im Fall einer Beschichtung oder Verkleidung, mit absorptionserhöhendem Material (TWD) zusätzlich Wärmeenergie gewinnen.
Ein Brauchwasser-Wärmetauscher kann als Bypass und mit Priorität über thermisch gesteuerte Ventile an denjenigen Bereich des Solar-Absorbers angeschlossen werden, welcher die höchste Temperatur hat. Auf diese Weise kann eine Erwärmung oder Vorwärmung des Brauchwassers auf mehr als 40°C erreicht werden. Der Feststoff-Wärmespeicher enthält zweckmäßig wegen der niedrigen Kosten und der hohen spezifischen Wärme als Speichermaterial eine Schotter- oder Kiespackung mit einer Stärke von wenigstens 60 cm. Zusätzlich können in den zentralen Bereich des Feststoff- Wärmespeichers Schrottpakete, Stahlträger, Autowürfel (würfelförmig zusammengepreßte Schrottautos) und ähnliches Material mit möglichst hoher spezifischer Wärme eingelagert werden. Gleichzeitig wird damit eine Entsorgung solchen Schrotts erreicht, die sogar noch bezahlt wird.
Der Wärmespeicher insgesamt oder insbesondere sein zentraler Bereich können bodenseitig durch eine Wärmedämmschicht isoliert werden. Dadurch wird eine Energieabgabe aus Bereichen des Wärmespeichers verhindert, die höhere Temperatur als der darunter befindliche Erdboden haben. In den äußeren Bereichen und insbesondere im peripheren Bereich kann dagegen eine Wärmeisolation unzweckmäßig sein, wenn die aus dem Erdinneren aufsteigende Wärme mit höherer Temperatur als der jeweilige Speicherbereich ankommt. Als Flüssigkeit für alle Kreisläufe wird insbesondere Wasser, gemischt mit einem Frostschutzmittel üblicher Art, verwendet.
In den einzelnen Bereichen des Solarabsorbers, des Feststoff-Wärmespeichers und der Gebäudeheizung, die zweckmäßig als Fußbodenheizung oder Außenwandheizung ausgelegt ist, sind gegebenenfalls Umwälzpumpen nötig, die hier nicht im einzelnen beschrieben werden, weil der Fachmann den jeweiligen Einsatz im Einzelfall ohne Schwierigkeiten überblicken kann.
Moderne Gebäude sind so gut abgedichtet, daß periodische Lüftungen unumgänglich sind. Dadurch ergeben sich aber Wärmeverluste bzw. im Sommer eine unerwünschte zusätzliche Wärmezufuhr. Eine Weiterbildung der Erfindung sieht hier vor, daß zum Luftaustausch Öffnungen, insbesondere in den Fensterrahmen, vorgesehen sind, in denen an die Schlauch- oder Rohrsysteme der Gebäudeaußenwände angeschlossene Wärmetauscher mit von den Flüssigkeiten durchströmten Lamellen angeordnet sind. Dann kann im Winter die nach innen strömende Luft durch die Wärmetauscher unter Rückgewinnung der Energie vorerwärmt und im Sommer eine entsprechende Abkühlung der einströmenden Luft erreicht werden.
Nachfolgend werden Ausführungsbeispiele anhand der Zeichnung beschrieben. Es zeigen:
Fig. 1 die schematisch ein Gebäude mit den verschiedenen Systemen und Vorrichtungen nach der Erfindung,
Fig. 2 eine Abwandlung des Ausführungsbeispiels nach Fig. 1.
Die Außenwände 1, 2 das Hauses sind in einer Schalungsbauweise aus Beton mit einer isolierenden Dämmschicht 1a, 2a versehen, die beispielsweise eine Dicke von wenigstens 15 cm besitzt und aus einem Kunststoffschaum ("Styropor®") besteht. Die Bodenplatte 3 des Hauses ist ebenfalls aus Beton gegossen und mit einer Isolierschicht 3a versehen. Von der Bodenplatte 3 und den Außenwänden 1, 2 aus erstreckt sich die Wärmedämmschicht 4. In der Zeichnung sind solche Dämmschichten 4 nur an den beiden dargestellten Seiten mit den Außenwänden 1, 2 gezeigt. Die Vorder- und Rückwand des Hauses ist jedoch gleich gestaltet.
Die schrägen Wärmedämmschichten 4 bilden zusammen mit der Bodenplatte 3 einen Raum für einen Feststoff- Wärmespeicher, der beispielsweise ein Schotter- oder Kiesbett (nicht im einzelnen gezeigt) mit zusätzlichen Speicherkörpern enthält, die nachfolgend noch genauer beschrieben werden sollen.
Das Dach des Hauses enthält auf einem üblichen Unterbau 5 aus beispielsweise Holzsparren und eventuell Brettern eine Wärmedämmschicht 6 mit einer Stärke von etwa 18 cm und aus dem gleichen Material wie die Wärmedämmschichten 1a, 2a der Außenwände 1, 2. Auf der Oberseite der Wärmedämmschicht sind mäanderförmig Rohrleitungen 7, 8 (Polypropylenrohre 20 × 2) in Rinnen oder Nuten der Dämmschicht 6 unterhalb der Dachhaut (nicht gezeigt) in Form von möglichst schwarzen Dachziegeln verlegt. Die Rohrleitungen 7, 8 bilden auf den beiden dargestellten Seiten des Hauses getrennte Flüssigkeitskreisläufe, die über thermogesteuerte Ventile 9, 10 an gemeinsame Kollektoren 11, 12 für die warme bzw. kalte Seite der Rohrleitungssysteme angeschlossen sind. Die Ventile 9, 10 sind hier wie auch alle anderen Ventile zur Vereinfachung als Kreuz in der jeweiligen Leitung dargestellt. Von den Kollektoren 11, 12 führen Rohrleitungen 13, 14 zu weiteren Kollektoren 15, 16, die auch mit den Kollektoren 11, 12 zu einer Einheit zusammengefaßt werden können.
Zur möglichst vollständigen Ausnutzung der Solarenergie können als Alternative (nicht dargestellt) die Kreisläufe der einzelnen Solarbereiche aber auch einzeln solchen Kollektoren in Form von kurzen Rohrstücken zugeführt werden. Dabei münden die Kreisläufe beispielsweise an den Stirnwänden der Kollektoren, so daß die Flüssigkeit dauernd im Kreislauf umläuft bzw. umgepumpt wird. Von der Peripherie der Kollektoren nahe den Enden führen zwei Rohre oder Schläuche zu den weiteren Kollektoren 15, 16, wobei in eines der Rohre oder Schläuche ein thermisch gesteuertes Ventil eingefügt ist. Dann kann nach Öffnen des jeweiligen Ventils die Flüssigkeit (der größte Teil der) dem zweckmäßigen Speicherbereich zugeführt werden.
Fig. 2 zeigt eine weitere Alternative für die Verbindungen zwischen Solarabsorberbereichen I, II und III. Dabei können beispielsweise die Bereiche I und II den Flüssigkeitskreisläufen mit den Rohrleitungen 7, 8 gemäß Fig. 1 entsprechen. Der Bereich III ist zusätzlich vorhanden. Die Vorläufe 35, 36 und 37 der Bereiche I, II bzw. III sind zu einer gemeinsamen Leitung 38 zusammengefaßt und führen über eine Umwälzpumpe 39 einerseits zu einem Kollektor 40 und außerdem zu den Rückläufen 41, 42 bzw. 43 des zentralen Feststoffspeicherbereichs C, der dem Kreislauf 21 in Fig. 1 entspricht, sowie den Abschnitten A, B, die den Kreisläufen 24 bzw. 23 in Fig. 1 entsprechen. Die Vorläufe der Speicherbereiche A, B, C sind über thermisch gesteuerte Ventile 44, 45 bzw. 46 mit dem Kollektor verbunden. Zur Vervollständigung der Kreisläufe sind die Rückläufe 47, 48 und 49 der Absorberbereiche I, II bzw. III über thermisch gesteuerte Ventile 50, 51 und 52 an eine gemeinsame Leitung 53 angeschlossen, die in den Kollektor 40 führt. Außerdem ist eine Leitung 54 zwischen dem Eingang der Pumpe 39 und dem Kollektor 40 vorhanden. Diese Leitung enthält ein weiteres thermisch gesteuertes Ventil 55.
Die thermisch gesteuerten Ventile 50, 51 und 52 sind zweckmäßig Ventile, die über Thermofühler und Relais gesteuert werden. Für die Ventile 44, 45, 46 werden dagegen zweckmäßig von Hand einstellbare Thermostatventile verwendet.
Zur Erläuterung verschiedener Betriebszustände sei beispielsweise davon ausgegangen, daß die Feststoffspeicherbereiche folgende Temperaturen aufweisen:
A = +16°C bis 24°C
B = +25 °C bis 34°C
C = +35°C und höher.
Beispiel 1
Außentemperatur: -4°C
Dachabsorberbereiche: maximal + 8°C.
Die Ventile 50, 51, 52, 55 bleiben geschlossen, die Pumpe 39 ist ausgeschaltet. Es kann dann also keine Wärme an den Feststoffspeicher mit den Bereichen A, B, C abgegeben werden, weil die maximale Temperatur der Flüssigkeit von den Solarabsorberbereichen noch unter der Temperatur des Feststoffspeicherbereichs A mit der niedrigsten Temperatur liegt.
Beispiel 2
Außentemperatur: +6°C
Solarabsorberbereich I: +26°C
Solarabsorberbereiche II und III: +12°C.
Die Ventile 44, 45, 46, 55 werden geöffnet, die Pumpe 39 ist eingeschaltet. Das Ventil 44 öffnet, wenn die Temperatur des Speicherbereichs A wenigstens 2°C unter der Temperatur der Flüssigkeit im Kollektor 40 liegt.
Beispiel 3
Außentemperatur: +36°C
Temperatur der Dachabsorber­ bereiche I, II, III: +64°C bis +75°C.
Die Ventile 50, 51, 52 und 55 sowie das Ventil 46, das zum zentralen Speicherbereich C führt, werden geöffnet. Dann wird der zentrale Speicherbereich C mit der verhältnismäßig hohen Temperatur der Flüssigkeit vom Solarabsorber aufgeladen.
Im Winterbetrieb besteht außerdem die Möglichkeit, die Pumpe sowie die Ventile 50, 51, 52 und 55 über Relaisschaltkreise nur über Intervalle kurzzeitig zu öffnen.
In den Außenwänden 1, 2 sind mäanderförmig weitere Rohrleitungssysteme 17 bzw. 18 verlegt, die an Kollektoren 19, 20 angeschlossen sind. Diese Anschlüsse sind nur für das Rohrleitungssystem 17 dargestellt. Das Rohrleitungssystem 18 führt jedoch in gleicher Weise zu den Kollektoren 19, 20.
Auf diese Weise besteht die Möglichkeit eines Nord-Süd- Wärmeaustauschs durch Umpumpen der wärmeren Flüssigkeit auf der einen Seite zur kälteren Flüssigkeit auf der anderen Seite und umgekehrt. Außerdem kann aber, wie noch erläutert wird, warmes Wasser aus den Rohrleitungssystemen 17, 18 dem Feststoffspeicher zugeführt bzw. kaltes Wasser zur Abkühlung in die Rohrsysteme 17, 18 gepumpt werden.
Der Feststoffspeicher ist in insgesamt drei Bereiche mit unterschiedlichem Temperaturbereich aufgeteilt. Der zentrale Bereich, der durch mäanderförmige, in das Material des Feststoffspeichers eingebettete Rohrleitungen 21 definiert ist, die einen geschlossenen Kreislauf bilden, weist im Schotter- bzw. Kiesbett mit einer Schutzschicht zusätzliche Stahl-Schrott-Pakete 22 auf, die ebenfalls von den Rohrleitungen 21 durchlaufen oder umfaßt werden. Dadurch hat der zentrale Bereich 21, 22, der die höchste Speichertemperatur hat, auch eine erhöhte Wärmekapazität. Die Einbettung der Rohrleitungen 21 erfolgt zweckmäßig mit einer Zwischen- oder Schutzschicht (nicht dargestellt) aus Beton oder ähnlichem Material.
Der äußere Bereich des Feststoffspeichers ist in zwei Abschnitte unterteilt. Der erste, dem zentralen Bereich 21, 22 nahegelegene Abschnitt ist durch einen Flüssigkeitskreislauf mit mäanderförmig verlaufenden Rohren 23 und der zweite Abschnitt, der den ersten Abschnitt 23 umgibt, durch einen Flüssigkeitskreislauf mit mäanderförmig verlaufenden Rohren 24 definiert. Die Rohre 23, 24 sind dabei in das Schotter- bzw. Kiesbett mit einer Schutzschicht eingebettet. Unterhalb des zentralen Bereichs 21, 22 befindet sich eine Wärmedämmschicht, die Wärmeverluste aus dem verhältnismäßig warmen, zentralen Bereich 21, 22 nach unten verhindert.
Der äußere Speicherbereich 23, 24 wird von einem peripheren Speicherbereich mit einem Flüssigkeitssystem aus mäanderförmig verlegten Rohren 26 umgeben. Der periphere Bereich 26 sammelt ebenso wie die weiteren Bereiche des Feststoffspeichers Erdwärme (geothermische Energie), die durch Pfeile 27 symbolisiert ist. Insbesondere der periphere Bereich 26 kann aber auch im Sommer benutzt werden, um kühle Flüssigkeit zur Kühlung des Gebäudes den Außenwand- Rohrsystemen 17, 18 zuzuführen.
Gemäß Fig. 1 erfolgt die Verteilung der aus den Solar-Absorbern 7, 8 kommenden, aufgewärmten Flüssigkeiten auf die einzelnen Speicherbereiche mit Hilfe der Kollektoren 15, 16. Dabei sind in die Rohrleitungen 21a, 23a, 24a, die den Speicherbereichen 22 bzw. 23 bzw. 24 Flüssigkeiten zuführen, jeweils thermisch gesteuerte Ventile 28a, b, c angeordnet. Wenn beispielsweise die Temperatur der vom Solarabsorber kommenden Flüssigkeit hoch ist, beispielsweise zwischen 25 und 35°C liegt, so wird die Flüssigkeit über das Ventil 28c dem zentralen Speicher mit dem Flüssigkeitskreislauf 21 zugeführt. Wenn die Temperatur beispielweise zwischen 15 und 24°C liegt, wird der erste Abschnitt 23 des äußeren Speicherbereichs aufgeladen. Schließlich wird die warme Flüssigkeit dem zweiten Abschnitt 24 des äußeren Speicherbereichs zugeführt, wenn beispielsweise die Temperatur zwischen 7 und 14° liegt.
Über Kollektoren 19, 20 kann Wärme aus den Speicherbereichen 21, 23, 24, 26 über Ventile 29a, b, c, d den Außenwand-Flüssigkeitssystemen 17 und 18 zur Heizung des Gebäudes zugeführt werden. Die Ventile 29a, b, c, d sind ebenfalls thermisch gesteuert, so daß die Systeme 17, 18 jeweils mit einer Flüssigkeit der erforderlichen Temperatur beaufschlagt werden. Es besteht auch die Möglichkeit, im Sommer zur Kühlung kalte Flüssigkeit aus dem peripheren Speicher 26 den Systemen 17, 18 über das Ventil 29d zuzuführen.
Trinkwasser wird im Gebäude über eine Leitung 30 zugeführt, die über eine Abzweigleitung 30a die Verbraucher speist. Eine weitere Leitung 30b führt zu einem nur schematisch dargestellten Wärmetauscher 31. Dieser Wärmetauscher wird über ein thermisch gesteuertes Ventil 32 aus dem Kollektor 11 mit warmer Flüssigkeit im Bypass gespeist. Dadurch kann das durchströmende Wasser auf eine Temperatur von beispielsweise 38°C aufgeheizt bzw. vorgewärmt werden. Ein nachgeschalteter Boiler oder Durchlauferhitzer sorgt für eine Vorratshaltung und gegebenenfalls weitere Aufheizung des warmen Brauchwassers. Anstelle des Wärmetauschers 31 können auch im zentralen Speicherbereich 21 eingebettete Leitungen (nicht dargestellt) in Form von beispielsweise Polyethylenrohren verwendet werden. Der zentrale Speicherbereich arbeitet dann als Wärmetauscher.
Alle dargestellten Ventile können Thermostatventile sein, die sich von Hand auf die gewünschten Temperaturen einstellen lassen, und zwar auch derart, daß die Ventile am Anfang eines einstellbaren Temperaturbereichs öffnen und am Ende des Bereichs wieder schließen. Es besteht aber auch die Möglichkeit, alle Ventile zentral über einen Rechner nach einem vorgegebenen Programm über Relais oder Stellmotoren zu steuern. Dadurch erreicht man maximale Flexibilität unter den verschiedenen Witterungsbedingungen und Wetterabläufen.

Claims (16)

1. Energieanlage für Gebäude unter Verwendung von Solarabsorbern, Wärmetauschern und Wärmespeichern, gekennzeichnet durch folgende Merkmale:
  • a) der Solar-Absorber weist Schläuche oder Rohre (7, 8) auf, die zwischen der Dachhaut und der darunter angeordneten Dämmschicht (6) verlegt sind,
  • b) der Solar-Absorber ist in wenigstens zwei Bereiche (7, 8) mit je einem eigenen Flüssigkeitskreislauf durch die Schläuche oder Rohre des Bereiches unterteilt,
  • c) unter dem Gebäude ist ein Feststoff-Wärmespeicher (21, 22, 23, 24, 26) angeordnet, dem Wärme mittels im Feststoff-Wärmespeicher verlegten Schläuchen oder Rohren zugeführt oder entnommen werden kann,
  • d) der Feststoff-Wärmespeicher ist in wenigstens zwei Bereiche, nämlich einen zentralen (21, 22) und einen äußeren Bereich (23, 24) mit je einem eigenen Flüssigkeitskreislauf durch die Schläuche oder Rohre des Bereiches unterteilt,
  • e) im Wärmespeicherbetrieb wird durch thermisch gesteuerte Ventile (9, 10) aus dem Flüssigkeitskreislauf (7, 8) jedes Bereichs des Solarabsorbers primär dem Flüssigkeitskreislauf (21) des zentralen Wärmespeicherbereichs und sekundär dem Flüssigkeitskreislauf (23, 24) des äußeren Wärmespeicherbereichs Flüssigkeit zuführt, wenn die Temperatur der Flüssigkeit aus dem Kreislauf des jeweiligen Bereichs wenigstens um einen Wert im Bereich von 2 bis 8°C, vorzugsweise 4°C, höher ist als die Temperatur des jeweiligen Feststoff- Speicherbereichs (21, 22, 23, 24, 26)
  • f) im Wärmeentnahmebetrieb wird durch thermisch gesteuerte Ventile (29a, b, c) primär aus dem Flüssigkeitskreislauf des äußeren Wärmespeicherbereichs (23, 24) und sekundär aus dem Flüssigkeitskreislauf des zentralen Wärmespeicherbereichs (21) Flüssigkeit in eine Heizanlage (17, 18) des Gebäudes gepumpt.
2. Energieanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Solar-Absorber in wenigstens drei Bereiche unterteilt ist, die unterschiedlich orientierten Dachabschnitten zugeordnet ist.
3. Energieanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet,
daß Solarabsorberbereiche (Fig. 2: I, II, III) auf der Rücklaufseite (47, 48, 49) über thermisch gesteuerte Ventile (50, 51, 52) zusammengeführt sind und gemeinsam einen Kollektor (40) speisen, und auf der Vorlaufseite (35, 36, 37) über eine Pumpe (39) gemeinsam den zusammengeführten Rücklaufseiten (41, 42, 43) des zentralen Feststoffspeicherbereichs (C) und den Abschnitten (A, B) des äußeren Feststoffspeicherbereichs zugeführt sind, daß die Vorlaufseiten des zentralen Feststoffspeicherbereichs (10) und der Abschnitte (A, B) des äußeren Feststoffspeicherbereichs über je ein thermisch gesteuertes Ventil (44, 45, 46) in den Kollektor (40) münden und
daß zur Aufrechterhaltung des Kreislaufs eine Verbindung (54) über ein thermisch gesteuertes Ventil (55) zwischen dem Eingang der Pumpe (39) und dem Kollektor (40) vorgesehen ist.
4. Energieanlage nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Schläuche oder Rohre (7, 8) des Solarabsorbers in mäanderförmig verlaufenden Rinnen oder Nuten der Dämmschicht (6) verlegt sind.
5. Energieanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der äußere Bereich (23, 24) des Feststoff- Wärmespeichers trichterförmig nach unten erweitert ist und außerhalb des Gebäudegrundrisses durch eine Wärmedämmschicht (4) abgedeckt ist.
6. Energieanlage nach Anspruch 5, dadurch gekennzeichnet, daß der äußere Wärmespeicherbereich in einen ersten (23, B), den zentralen Bereich (21, C) umgebenden Abschnitt und einen zweiten, den ersten Abschnitt (23) umgebenden Abschnitt (24, A) unterteilt ist.
7. Energieanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der äußere Bereich (23, 24; B, A) des Festkörper- Wärmespeichers von einem peripheren Speicherbereich (26) umgeben ist.
8. Energieanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die sonnenseitige und die schattenseitige Gebäudeaußenwand (1, 2) je flüssigkeitsdurchströmte Schlauch- oder Rohrsysteme (17, 18) in einen eine Pumpe für die Flüssigkeit enthaltenden Kreislauf schaltbar sind, derart, daß ein Wärmeaustausch zwischen der sonnenseitigen und der schattenseitigen Außenwand (1, 2) stattfindet.
9. Energieanlage nach Anspruch 8, dadurch gekennzeichnet, daß die Gebäudeaußenwände (1, 2) auf der Außenseite mit einer absorptionserhöhenden, transparenten Beschichtung (TWD) oder Verkleidung versehen sind.
10. Energieanlage nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Schlauch- oder Rohrsysteme (17, 18) der Gebäudeaußenwände (1, 2) über thermisch gesteuerte Ventile (29a, b, c, d) mit den Flüssigkeitskreisläufen (21, 23, 24, 26) der Festkörper-Wärmespeicherbereich verbunden ist.
11. Energieanlage nach einem der Ansprüche 1 bis 10, gekennzeichnet durch einen Brauchwasser-Wärmetauscher (31), der über thermisch gesteuerte Ventile (32) als Bypass und mit Vorrang an denjenigen Bereich (7, 8) des Solar-Absorbers angeschlossen ist, welcher die höchste Temperatur hat.
12. Energieanlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Feststoff-Wärmespeicher als Speichermaterial eine Schotter- oder Kiespackung mit einer Stärke von wenigstens 60 cm enthält.
13. Energieanlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der zentrale Bereich (21) des Festkörper- Wärmespeichers eingelagerte Schrottpakete (22), Stahlträger, Autowürfel oder ähnliches Material mit hoher spezifischer Wärme enthält.
14. Energieanlage nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Festkörper-Wärmespeicher und insbesondere sein zentraler Bereich (21) bodenseitig durch eine Wärmedämmschicht (25) isoliert ist.
15. Energieanlage nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß als Flüssigkeit Wasser, gemischt mit einem Frostschutzmittel, verwendet wird.
16. Energieanlage nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß zum Luftaustausch Öffnungen, insbesondere in den Fensterrahmen, vorgesehen sind, in denen an die Schlauch- oder Rohrsysteme (17, 18) der Gebäudeaußenwände (1, 2) angeschlossene Wärmetauscher mit von den Flüssigkeiten durchströmten Lamellen angeordnet sind.
DE19533475A 1995-09-12 1995-09-12 Energieanlage für Gebäude Expired - Fee Related DE19533475B4 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE19533475A DE19533475B4 (de) 1995-09-12 1995-09-12 Energieanlage für Gebäude
AT96932511T ATE194868T1 (de) 1995-09-12 1996-09-12 Energieanlage für gebäude
PCT/EP1996/004009 WO1997010474A1 (de) 1995-09-12 1996-09-12 Energieanlage für gebäude
EP96932511A EP0850388B1 (de) 1995-09-12 1996-09-12 Energieanlage für gebäude
CZ1998723A CZ293436B6 (cs) 1995-09-12 1996-09-12 Energetické zařízení pro budovy a způsob jeho regulace
CA002231638A CA2231638C (en) 1995-09-12 1996-09-12 Energy system for buildings
AU71286/96A AU7128696A (en) 1995-09-12 1996-09-12 Energy system for buildings
PL96325516A PL183921B1 (pl) 1995-09-12 1996-09-12 Urządzenie energetyczne dla budynków
US09/029,696 US6220339B1 (en) 1995-09-12 1996-09-12 Energy system for buildings
DE59605627T DE59605627D1 (de) 1995-09-12 1996-09-12 Energieanlage für gebäude
SK290-98A SK284751B6 (sk) 1995-09-12 1996-09-12 Energetické zariadenie budov

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19533475A DE19533475B4 (de) 1995-09-12 1995-09-12 Energieanlage für Gebäude

Publications (2)

Publication Number Publication Date
DE19533475A1 true DE19533475A1 (de) 1997-03-13
DE19533475B4 DE19533475B4 (de) 2006-04-13

Family

ID=7771772

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19533475A Expired - Fee Related DE19533475B4 (de) 1995-09-12 1995-09-12 Energieanlage für Gebäude
DE59605627T Expired - Lifetime DE59605627D1 (de) 1995-09-12 1996-09-12 Energieanlage für gebäude

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59605627T Expired - Lifetime DE59605627D1 (de) 1995-09-12 1996-09-12 Energieanlage für gebäude

Country Status (10)

Country Link
US (1) US6220339B1 (de)
EP (1) EP0850388B1 (de)
AT (1) ATE194868T1 (de)
AU (1) AU7128696A (de)
CA (1) CA2231638C (de)
CZ (1) CZ293436B6 (de)
DE (2) DE19533475B4 (de)
PL (1) PL183921B1 (de)
SK (1) SK284751B6 (de)
WO (1) WO1997010474A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747758A1 (de) * 1997-10-29 1999-05-06 Friedrich Werner Dipl Ing Fh Nutzung passiver Sonnenenergie als Lüftungswärmeenergie für Niedrigenergiehäuser und Passivhäuser
EP0931986A2 (de) 1998-01-23 1999-07-28 Andreas Kopatschek Solarenergieversorgte Heiz- und Warmwasseranlage für Gebäude
WO2011012411A2 (de) 2009-07-29 2011-02-03 Vkr Holding A/S Solaranlage mit mindestens zwei solarkollektoren unterschiedlicher exposition
EP2538153A2 (de) * 2011-06-21 2012-12-26 WQ-Tec AG Erdkollektorsystem, Verfahren zur Steuerung und Verfahren zur Errichtung
DE102011108740A1 (de) * 2011-07-28 2013-01-31 Wolfgang Stiefel Energiefassade
DE102013021773A1 (de) 2012-12-21 2014-06-26 Frank Triesch Verfahren und Vorrichtung zum Temperieren eines Objektes gegenüber seiner Umgebung
AT515659B1 (de) * 2014-06-04 2015-11-15 Terkl Ulrich Ing Erdwärmespeicher sowie Verfahren zur Herstellung desselben
BE1023991B1 (nl) * 2016-03-03 2017-10-26 Officeline Bvba Koelen of verwarmen van gebouwen met grote inertie
DE102011053349B4 (de) 2011-09-07 2022-02-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeichersystem und Verfahren zum Speichern von Wärme
CN118328453A (zh) * 2024-06-13 2024-07-12 永忠工程管理(集团)有限公司 一种高寒地区厕所用太阳能发电恒温装置

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808084A1 (de) * 1998-02-20 1999-09-09 Brandtner Sanierung von mehrgeschossigen Plattenbauten mit einer vorgesetzten architektonisch ansprechenden Fassade bei Nutzung neuer solarthermischer Lösung
DE19809974B4 (de) * 1998-03-09 2010-07-08 Krecké, Edmond Dominique Gebäude mit Klimatisierung
US7028685B1 (en) * 1998-03-09 2006-04-18 Edmond Krecke Air conditioning system for buildings and air-conditioned building, especially a zero energy house
DE19856633A1 (de) 1998-12-03 2000-06-29 Peter Klemm EWTS-Erdwärmetauschersonden, System zur Nutzung oberflächennaher thermischer Speichersysteme
NZ338087A (en) * 1999-09-28 2002-05-31 Alternative Heating Ltd Underfloor heating apparatus, using circulation of heated fluid
JP3091195B1 (ja) * 1999-10-18 2000-09-25 株式会社東光工業 地熱利用空調システム
AU2003204209B2 (en) * 2000-09-28 2004-07-01 Alternative Heating Limited Underfloor climate control apparatus-improvements/modifications
EP1321584B1 (de) * 2000-09-29 2009-05-06 Kenji Kugemoto Geothermische energie verwendende struktur
US6679247B1 (en) * 2001-05-16 2004-01-20 David T. Gozikowski Solar water heating
US20040003550A1 (en) * 2002-07-03 2004-01-08 Konopka Peter J. Earth coupled geo-thermal energy free building
DE102004052447A1 (de) * 2004-10-26 2006-04-27 Alex Von Rohr Energiespeicher, Wärmetauscheranordnung für einen Energiespeicher, Verfahren zum Betreiben eines Energiespeichers, Energiespeichersystem sowie Verfahren zum Betreiben eines Energiespeichersystems
WO2007009503A1 (de) 2005-07-22 2007-01-25 Edmond Krecke Temperatur-, wärme- und/oder kältebarriere
ES2277758B2 (es) * 2005-09-28 2008-03-16 Universidad Politecnica De Madrid Sistema integrado de aprovechamiento, control y regulacion de energias renovables en edificios autosuficientes.
US20070284077A1 (en) * 2006-05-29 2007-12-13 Matteo B. Gravina Smart Solar Roof
US7971586B2 (en) * 2006-12-13 2011-07-05 Hanken Michael J Solar heating system and method of forming a panel assembly therefor
GB2450755B (en) 2007-07-06 2012-02-29 Greenfield Energy Ltd Geothermal energy system and method of operation
GB2450754B8 (en) * 2007-07-06 2013-02-06 Greenfield Energy Ltd Geothermal energy system and method of operation
NL2002276C2 (nl) * 2007-12-02 2010-02-05 Fiwihex B V Gebouw met verwarming en koeling.
TR200800946A2 (tr) * 2008-02-13 2009-08-21 Aydin Ahmet Toprak altı ısıtması île sıcak su sistemi.
BE1018017A5 (nl) 2008-02-26 2010-04-06 Nys Manu Gelaagde constructie met buizenstelsel.
EP2098791A1 (de) * 2008-03-05 2009-09-09 Roth Werke GmbH Vorrichtung zur Erwärmung von Wasser
ES2308942B1 (es) * 2008-04-04 2009-09-22 Edificios Sostenibles Getech,S.L Nuevo modelo de edificio sostenible.
GB2461029B (en) * 2008-06-16 2011-10-26 Greenfield Energy Ltd Thermal energy system and method of operation
WO2010001523A1 (ja) * 2008-06-30 2010-01-07 東海ゴム工業株式会社 流体封入式防振装置とそれを用いた自動車用エンジンマウントの制御方法
SM200800043B (it) 2008-07-23 2009-09-07 Mastertag Sa Impianto per captazione della radiazione solare mediante una superficie di raccolta formata con elementi strutturali parzializzabili
IT1391964B1 (it) * 2008-07-23 2012-02-02 Mastertag S A Impianto per captazione della radiazione solare mediante una superficie di raccolta formata con elementi strutturali parzializzabili
WO2010080549A1 (en) * 2008-12-17 2010-07-15 Hulen Michael S Improvements in efficiency of systems and methods of operating environmental equipment utilizing energy obtained from manufactured surface coverings
US8748731B2 (en) 2009-02-02 2014-06-10 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
SE535370C2 (sv) * 2009-08-03 2012-07-10 Skanska Sverige Ab Anordning och metod för lagring av termisk energi
DE202009013639U1 (de) 2009-10-09 2011-03-03 Krecké, Edmond D., Dipl.-Ing. Niedrigenergiegebäude, insbesondere autarkes Nullenergiehaus
US8322092B2 (en) * 2009-10-29 2012-12-04 GS Research LLC Geosolar temperature control construction and method thereof
US8595998B2 (en) 2009-10-29 2013-12-03 GE Research LLC Geosolar temperature control construction and method thereof
DE102010008710B4 (de) * 2010-02-19 2012-12-13 Tracto-Technik Gmbh & Co. Kg Verfahren zum Verlegen von Geothermiesonden und Geothermiesondengewerk
EP2567155A2 (de) 2010-05-07 2013-03-13 Kalús, Daniel Kombinierte bau-energie-systeme für gebäude
WO2011146024A1 (en) 2010-05-20 2011-11-24 Daniel Kalus Self-supporting heat insulating panel for the systems with active regulation of heat transition
WO2012128877A2 (en) 2011-02-22 2012-09-27 Glasspoint Solar, Inc. Concentrating solar power with glasshouses
CN103221756B (zh) 2010-07-05 2016-05-25 玻点太阳能有限公司 太阳能直接生成蒸汽
EP2591291B1 (de) 2010-07-05 2019-05-08 Glasspoint Solar, Inc. Konzentration von sonnenenergie mit glashäusern
WO2012006288A2 (en) 2010-07-05 2012-01-12 Glasspoint Solar, Inc. Subsurface thermal energy storage of heat generated by concentrating solar power
AU2011276380B2 (en) 2010-07-05 2016-05-26 Glasspoint Solar, Inc. Oilfield application of solar energy collection
DE102010039061A1 (de) * 2010-08-09 2012-02-09 Franz-Ludwig Carewicz Verfahren und Anordnung für ein energetisch optimiertes Gebäude
PL2619509T3 (pl) * 2010-09-20 2020-08-24 Ab Svenskt Klimatneutralt Boende System magazynowania energii cieplnej, zespół grzewczy zawierający ten system i sposób wytwarzania tego systemu
GB2488797A (en) 2011-03-08 2012-09-12 Greenfield Master Ipco Ltd Thermal Energy System and Method of Operation
EP2683992B1 (de) * 2011-03-10 2020-06-24 DZSolar Ltd Sonnenenergiegewinnungssystem
DK201170232A (da) * 2011-05-12 2012-11-13 Oertoft Holding Aps En bygningsinstallation med solvarmelagring
US9285140B2 (en) * 2011-06-20 2016-03-15 Melink Corporation Ground loop bypass for ground source heating or cooling
GB2498737B (en) * 2012-01-24 2017-04-19 Future Energy Source Ltd A solar energy capture system
CA2781743C (en) * 2012-06-27 2017-10-17 Huazi Lin Insulating glass style solar heat collector and building using solar energy for heating and cooling employing same
CA2791439C (en) * 2012-09-28 2019-10-29 Gerry Mccahill Energy efficient thermally dynamic building design and method
US9874359B2 (en) 2013-01-07 2018-01-23 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters
US9200799B2 (en) 2013-01-07 2015-12-01 Glasspoint Solar, Inc. Systems and methods for selectively producing steam from solar collectors and heaters for processes including enhanced oil recovery
US9605863B2 (en) * 2013-11-12 2017-03-28 David W. Schonhorst System for the regulation of the internal temperature of a structure
DE102013020310A1 (de) 2013-12-03 2015-06-03 Thomas Piller Wärmespeicher für eine Gebäude-Energieanlage
CN103807908B (zh) * 2014-03-13 2017-04-12 兰州理工大学 建筑地基式沙土储热自供暖系统
CN103807902B (zh) * 2014-03-14 2016-08-31 兰州理工大学 多孔土坯储热的超低温对流辐射供暖系统
US20160047555A1 (en) * 2014-08-18 2016-02-18 Omar Lutfey Interior solar energy collector with fluid-based heat transfer system
US10280626B2 (en) 2014-08-25 2019-05-07 Andreas Hieke Composite materials with tailored electromagnetic spectral properties, structural elements for enhanced thermal management, and methods for manufacturing thereof
AU2015335752A1 (en) 2014-10-23 2017-05-04 Glasspoint Solar, Inc. Heat storage devices for solar steam generation, and associated systems and methods
CN106999838A (zh) 2014-10-23 2017-08-01 玻点太阳能有限公司 使用太阳能的气体净化和相关系统及方法
WO2016089979A1 (en) 2014-12-05 2016-06-09 Andreas Hieke Methods and functional elements for enhanced thermal management of predominantly enclosed spaces
AU2016287485A1 (en) 2015-06-30 2018-01-18 Glasspoint Solar, Inc. Phase change materials for cooling enclosed electronic components, including for solar energy collection, and associated systems and methods
WO2017119998A1 (en) 2016-01-06 2017-07-13 Hieke, Andreas Enhanced thermal management of predominantly enclosed spaces and the use of sensor data for secondary applications
AU2017216399A1 (en) 2016-02-01 2018-08-09 Glasspoint Solar, Inc. Separators and mixers for delivering controlled-quality solar-generated steam over long distances for enhanced oil recovery, and associated systems and methods
RU2631040C1 (ru) * 2016-05-28 2017-09-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система гелиотеплохладоснабжения
US10514179B2 (en) 2017-03-03 2019-12-24 Andreas Hieke Methods of reducing consumption of resources associated with operating predominantly enclosed spaces, in particular with operating buildings
US10641514B2 (en) 2017-03-03 2020-05-05 Andreas Hieke Methods of increasing the average life time of building materials as well as reducing the consumption of other resources associated with operating buildings
US10514180B2 (en) 2017-03-03 2019-12-24 Andreas Hieke Methods of approximating physical and or chemical properties of air in buildings as well as reducing the consumption of other resources associated with operating buildings
US10533767B2 (en) 2017-03-03 2020-01-14 Andreas Hieke Methods of reducing consumption of energy and other resources associated with operating buildings
CN107062474B (zh) * 2017-03-23 2022-12-13 中国建筑第五工程局有限公司 一种基于蓄能的近零能耗建筑系统
US10605488B1 (en) * 2019-04-01 2020-03-31 John Howard Luck Heat transfer device for solar heating
US20210018184A1 (en) * 2019-07-15 2021-01-21 D & M Roofing Company Apparatus and Method for Solar Heat Collection
CN112081312A (zh) * 2020-09-16 2020-12-15 中国建筑第七工程局有限公司 一种房屋建筑节能排水系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2342211A (en) * 1941-10-17 1944-02-22 Honeywell Regulator Co Utilization of natural heating and cooling effects
US3262493A (en) * 1963-05-20 1966-07-26 Ind Institution International Means for heating and cooling a structure
US4000851A (en) * 1975-11-12 1977-01-04 Volkmar Heilemann Solar-heated dwelling
US4184477A (en) * 1977-05-03 1980-01-22 Yuan Shao W Solar heating and storage
US4129177A (en) * 1977-06-06 1978-12-12 Adcock Thomas P Solar heating and cooling system
DE2814243A1 (de) * 1978-04-03 1979-10-11 Resol Elektronische Regelungen Elektronische regelung fuer mehrspeicher-sonnenheizsysteme
US4324289A (en) * 1978-07-12 1982-04-13 Lahti Raymond L Environmental heating and cooling apparatus
FR2495741A2 (fr) * 1979-05-04 1982-06-11 Olivet Jean Systeme de stockage saisonnier de la chaleur dans le sol applique au chauffage solaire
DE2929152A1 (de) * 1979-07-19 1981-02-12 Artus Feist Anordnung zur waermeisolation und gleichzeitiger waermeenergiegewinnung bei einem gebaeude
US4327705A (en) * 1979-11-01 1982-05-04 Steutermann Edward M Solar heat recovery control
US4279241A (en) * 1979-11-29 1981-07-21 Himes John W Solar heat absorbing and radiating wall
DE2948417A1 (de) * 1979-12-01 1981-06-04 Joachim Dipl.-Chem. 5202 Hennef Loosen Quasiisentroper langzeitwaermespeicher
US4248209A (en) * 1980-03-14 1981-02-03 Wasserman Kurt J Coupled toroidal solar collector
US4408596A (en) * 1980-09-25 1983-10-11 Worf Douglas L Heat exchange system
DE3048499A1 (de) * 1980-12-22 1982-07-08 Hermann Ing.(grad.) 8121 Antdorf Kirchmayer Einrichtung zur umsetzung von sonnenenergie in waerme
DE3312329A1 (de) * 1983-04-06 1984-10-11 Georg Dr. 2111 Handeloh Schultze Waerme-erdspeicher
DE9216888U1 (de) * 1992-12-11 1993-09-16 Merkle, Alfred, Dipl.-Ing., 78112 St Georgen Energie- und Wasserversorgungssystem mit Solarkomponente in kleineren Wohngebäuden
SE9500123D0 (sv) * 1994-05-19 1995-01-16 George Wegler Systemlösning

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747758A1 (de) * 1997-10-29 1999-05-06 Friedrich Werner Dipl Ing Fh Nutzung passiver Sonnenenergie als Lüftungswärmeenergie für Niedrigenergiehäuser und Passivhäuser
EP0931986A2 (de) 1998-01-23 1999-07-28 Andreas Kopatschek Solarenergieversorgte Heiz- und Warmwasseranlage für Gebäude
WO2011012411A2 (de) 2009-07-29 2011-02-03 Vkr Holding A/S Solaranlage mit mindestens zwei solarkollektoren unterschiedlicher exposition
WO2011012411A3 (de) * 2009-07-29 2011-10-27 Vkr Holding A/S Solaranlage mit mindestens zwei solarkollektoren unterschiedlicher exposition
EP2538153A2 (de) * 2011-06-21 2012-12-26 WQ-Tec AG Erdkollektorsystem, Verfahren zur Steuerung und Verfahren zur Errichtung
DE102011108740A1 (de) * 2011-07-28 2013-01-31 Wolfgang Stiefel Energiefassade
DE102011053349B4 (de) 2011-09-07 2022-02-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeichersystem und Verfahren zum Speichern von Wärme
DE102013021773A1 (de) 2012-12-21 2014-06-26 Frank Triesch Verfahren und Vorrichtung zum Temperieren eines Objektes gegenüber seiner Umgebung
DE102013021773B4 (de) 2012-12-21 2019-05-29 Frank Triesch Verfahren und Vorrichtung zum Temperieren eines Objektes gegenüber seiner Umgebung
AT515659A4 (de) * 2014-06-04 2015-11-15 Terkl Ulrich Ing Erdwärmespeicher sowie Verfahren zur Herstellung desselben
AT515659B1 (de) * 2014-06-04 2015-11-15 Terkl Ulrich Ing Erdwärmespeicher sowie Verfahren zur Herstellung desselben
BE1023991B1 (nl) * 2016-03-03 2017-10-26 Officeline Bvba Koelen of verwarmen van gebouwen met grote inertie
CN118328453A (zh) * 2024-06-13 2024-07-12 永忠工程管理(集团)有限公司 一种高寒地区厕所用太阳能发电恒温装置

Also Published As

Publication number Publication date
US6220339B1 (en) 2001-04-24
CZ293436B6 (cs) 2004-04-14
PL325516A1 (en) 1998-08-03
CA2231638C (en) 2006-04-11
CZ72398A3 (cs) 1998-09-16
ATE194868T1 (de) 2000-08-15
EP0850388A1 (de) 1998-07-01
CA2231638A1 (en) 1997-03-20
SK284751B6 (sk) 2005-11-03
DE19533475B4 (de) 2006-04-13
SK29098A3 (en) 1998-10-07
AU7128696A (en) 1997-04-01
PL183921B1 (pl) 2002-08-30
DE59605627D1 (de) 2000-08-24
WO1997010474A1 (de) 1997-03-20
EP0850388B1 (de) 2000-07-19

Similar Documents

Publication Publication Date Title
DE19533475B4 (de) Energieanlage für Gebäude
EP0002839A1 (de) Verfahren zur Raumtemperierung sowie nach diesem Verfahren zu beheizendes Gebäude
EP0931986B1 (de) Solarenergieversorgte Heiz- und Warmwasseranlage für Gebäude
DE2729635A1 (de) Heizungs- und klimaausgleichssystem
DE2449277A1 (de) Heizverfahren unter ausnutzung der sonnenenergie
EP0041658B1 (de) Anordnung zum Heizen oder Kühlen von klimatisierten Räumen in Wohnungen, Gewächshäusern oder dergleichen
DE69802568T2 (de) Verfahren zur anlegung einer energieumwandlungsvorrichtung in einer strassendecke
DE19806534C1 (de) Vorrichtung zur Speicherung von Wärmeenergie
DE10139065A1 (de) Vorrichtung zur Gewinnung von Wärmeenergie durch Nutzung der Latentwärme von Wasser und dafür geeigneter Wärmeaustauscher
DE3035538A1 (de) Anordnung zur aufnahme und speicherung von umweltwaerme zwecks beheizung und kuehlung von gebaeuden
WO2001020240A2 (de) Wärmespeicher
EP0582730A1 (de) Plattenelement
DE10114257A1 (de) Verfahren zum Betreiben von Erdwärmespeichern, Erdwärmespeicher zur Ausübung des Verfahrens sowie Vorrichtung zur Regulierung des Erdwärmespeichers
DE3025623A1 (de) Waermeabsorber
AT406521B (de) Erdwärmekollektor für eine wärmepumpe
AT518416B1 (de) Wärmespeicher und Wärmeträgernetz
WO1999042766A1 (de) Anordnung zum aufnehmen von solarenergie an gebäuden
CH636429A5 (de) Klimaanlage fuer wohnhaeuser.
AT395781B (de) Einrichtung zur gewinnung thermischer energie aus dem erdreich
DE3101199A1 (de) Vorrichtung zum erwaermen und zum in erwaermtem zustand speichern von wasser
CH661340A5 (en) Arrangement for absorbing and storing solar energy
DE102008050833A1 (de) Klimatisierungssystem zur Anbringung auf einem Dach
DE102007025103A1 (de) Verfahren und Vorrichtung zur Nutzung von Wärme aus einem Flächenkollektor an einem Gebäude
DE3230371C1 (de) Wärmepumpenheizung
DE3224854A1 (de) Waermespeicher

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110401