DE1573617A1 - Arrangement to compensate for the change in the ultrasonic speed with temperature - Google Patents
Arrangement to compensate for the change in the ultrasonic speed with temperatureInfo
- Publication number
- DE1573617A1 DE1573617A1 DE19661573617 DE1573617A DE1573617A1 DE 1573617 A1 DE1573617 A1 DE 1573617A1 DE 19661573617 DE19661573617 DE 19661573617 DE 1573617 A DE1573617 A DE 1573617A DE 1573617 A1 DE1573617 A1 DE 1573617A1
- Authority
- DE
- Germany
- Prior art keywords
- temperature
- sound
- speed
- change
- arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 238000004154 testing of material Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/30—Arrangements for calibrating or comparing, e.g. with standard objects
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
Anordnung zur Kompehsation der Änderung der Ultraschallgeschwindigkeit mit der Temperatur.Arrangement for the compensation of the change in the ultrasonic speed with temperature.
Die Erfindung betrifft eine Anordnung zur Kompensation der Änderung der Schallgeschwindigkeit mit der Temperatur, insbesondere in einem Prüfkopf für das Impuls-Echo-Verfahren zur Ultraschall-Werkstoffprüfung und/odbr Wanddickenmessung an heissen Oberflächen utit mindsstens iner Vorlaufstrecke zwischen deifi plezoelsktrischen Wandler und der Kontaktfläche de Prüflings.The invention relates to an arrangement for compensating for the change the speed of sound with temperature, especially in a probe for the pulse-echo method for ultrasonic material testing and / or wall thickness measurement On hot surfaces, there is at least one advance section between the deifi plezoelsctrical ones Transducer and the contact surface of the test object.
Für die Wanddickenmessung besonders an innen-kor@o-@ierten Rohren und Behältern ist es bekannt, einen @ltranschall-Prüfkopf mit getrennten plezoelektrischen Sender- und Empfänger-Schwingern zu verwenden.For wall thickness measurement, especially on internally cor @ o @ ized pipes and containers it is known to have an acoustic sound probe with separate plezoelectric To use transmitter and receiver transducers.
D@rin sind die Schwinger über Vorlaufstrecken von der Oberfläche des Präfllngs getrennt. D@@ Vorlaufstrecken bestchen vorteilhaft aus Kunststoffen wie Acrylharzen oder Gleßherzen, Für Messungen an beißen Oberflächen vor@@ilhafterweise auch aus Gießharzen mit erhöhter Tempor@@turfestigkeit. Nach einer Eichung eines Impuls-Echo-@@rät@@ in V@rbindung mit @inom solchen Prüfkopf auf einem @ich@@rper b@kannter Dicke läßt sich eine Wand, die auf d@gebung@temperatur ist, mit einer @@ßz@it von einigen Sekunden auf eine Genauigkeit von etwa 0,1 mm (bei Stahl) messen. Bei heißen Oberflächen dagegen beginnt sofort nach dem Aufsetzen (mit einem wärmefesten Kopplunsmittel, wie z.B0 Silikonfett) ein Wärmefluß, der die Vorlaufstrecken von der Kontaktfläche her aufheizt. Nun sind gerade Kunststoffe in ihrer Schallgeschwindigkeit recht erheblich von der Temperatur abhängig, so daß die Laufzeit der Schallimpulse in den Vorlaufstrecken sofort zuzunehmen beginnt. Das Rückwandecho, dessen Lage auf dem Bildschirm die Dicke der Wand bezeichnet, wandert infolge der abnehmenden Schallgeschwindigkeit in der Vorlaufstrecke mit deren Erwärmung sofort zu größeren Dicken hin. Zur Messung steht nur eine kurze Zeit nach dem Kontakt von einigen zehntel Sekunden zur Verfügung, wodurch die Ablesung unsicher und ungenau wird, Zwischenzeitliche und auch dauernde Kühlung der Vorlaufstrecken durch bekannte Maßnahmen bringt keine wesentliche Behebung der Schwierigkeit, weil der tatsächliche Verlauf der Temperatur zwischen Kontaktflächen und Schwinger immer unsicher bleibt.D @ rin are the transducers over advance distances from the surface of the Prefling separately. D @@ flow lines are advantageously made of plastics such as Acrylic resins or glue hearts, for measurements on bite surfaces in front of @@ unfortunately also made from casting resins with increased tempo @@ strength. After a calibration of a Impulse echo - @@ advises @@ in connection with @inom such a probe on a @ ich @@ rper b @ known thickness can be a wall that is at d @ gebung @ temperature, with a @@ ßz @ it by some Seconds to an accuracy of about 0.1 Measure mm (for steel). In the case of hot surfaces, on the other hand, it starts immediately after touching down (with a heat-resistant coupling agent such as silicone grease) a heat flow that heats up the flow sections from the contact surface. Now are just plastics in their speed of sound depends quite considerably on the temperature, so that the transit time of the sound impulses in the flow lines begins to increase immediately. The back wall echo, the position of which on the screen indicates the thickness of the wall, migrates with the advance path due to the decreasing speed of sound their heating immediately to greater thicknesses. There is only a short one available for measurement Time available after contact of a few tenths of a second, reducing the reading becomes insecure and imprecise, intermittent and permanent cooling of the flow lines known measures do not provide a significant solution to the problem because the actual course of the temperature between the contact surfaces and the transducer remains unsure.
Der Erfindung liegt die Aufgabe zugrunde, eine sichere und genauere Messung auch an heißen Oberflächen zu ermöglichen.The invention is based on the object of a safer and more accurate To enable measurements even on hot surfaces.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein elektrisches Temperaturmeßelement in die Vorlaufbtrecke, parallel zur Schallrichtung eingebaut wird und den Temperatureinfluß in der Meiste kompensiert, daß durch dessen Anzeigewert die Eichung des Bildschirmes selbk, ttätig verändert wird. Dazu muß der Temperaturfühler insbesondere eine linien-oder streifenförmige Ausdehnung haben, über seine ganze Länge mit der Vorlaufstrecke in Wärmekontakt stehen und als Anzeigewert einen Integralwert liefern, der dem Integral der Temperatur über di@ Länge der Vorlaufstrecke proportional ist.This object is achieved according to the invention in that an electrical Temperature measuring element in the supply section, installed parallel to the direction of sound and most of the temperature influence is compensated by its display value the calibration of the screen is actively changed. To do this, the temperature sensor in particular have a linear or strip-shaped extension over its entire length Length are in thermal contact with the flow path and an integral value as the display value supply which is proportional to the integral of the temperature over the length of the flow path is.
Die genannten Sorderunoen werden z.B. durch einen elektrischen Leitet oder halbleiter erfüllt, de'sen elektrischer Widerstand in einem gewissen bereich der Temperatur proportional ist.The mentioned sensors are e.g. conducted by an electrical conductor or semiconductors, whose electrical resistance is within a certain range is proportional to the temperature.
Verfahren, die dazu dienen, den Meßwert eines ähnlichen Elemente zur elektrischen Dehnung der Zeitlinie der Bildröhre im Impuls-Schall-Gerät oder zur mechanischen Dehnung einer Skala vor dem Bildschirm auszunutzen, sind an sich bekannt, betreffen aber einen anderen Zusammenhang.Procedures used to obtain the measured value of a similar element electrical expansion of the time line of the picture tube in the impulse sound device or for to use mechanical expansion of a scale in front of the screen are known per se, but concern a different context.
Literatur 1) H. Stoll, Fortschritte bei der Ultraschall-Prüfung durch Benutzung eines Prüfkopfes mit getrenntem Sender und Empfänger, MaterialprüSung", Bd. 3 (1961) Nr. 12, 5. 448 - 454.Literature 1) H. Stoll, Advances in Ultrasonic Testing by Use of a test head with separate transmitter and receiver, material testing ", Vol. 3 (1961) No. 12, pp. 448-454.
2) Krautkrämer, Werkstoffprüfung mit Ultraschall, Springer-Verlag, Berlin-Göttingen-eidelberg, 1961, S. 184.2) Krautkrämer, materials testing with ultrasound, Springer-Verlag, Berlin-Göttingen-Eidelberg, 1961, p. 184.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEK0058493 | 1966-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1573617A1 true DE1573617A1 (en) | 1970-11-26 |
Family
ID=7228702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19661573617 Pending DE1573617A1 (en) | 1966-02-21 | 1966-02-21 | Arrangement to compensate for the change in the ultrasonic speed with temperature |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE1573617A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2214378A5 (en) * | 1973-01-16 | 1974-08-09 | Commissariat Energie Atomique | |
FR2353056A1 (en) * | 1976-05-26 | 1977-12-23 | Krautkraemer Gmbh | METHOD FOR THE NON DESTRUCTIVE TESTING OF MATERIALS BY ULTRASONICS |
EP0081243A3 (en) * | 1981-12-08 | 1984-03-14 | Bethlehem Steel Corporation | Articulated test probe mechanism with fluid bearing in roll gap |
EP0081244A3 (en) * | 1981-12-08 | 1984-03-14 | Bethlehem Steel Corporation | Automatic nondestructive roll defect inspection system |
EP0202497A1 (en) * | 1985-04-26 | 1986-11-26 | Siemens Aktiengesellschaft | Temperature-compensated ultrasonic wall thickness measurement |
EP2120046A1 (en) * | 2008-05-13 | 2009-11-18 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Ultrasonic modelling |
WO2009139627A1 (en) * | 2008-05-13 | 2009-11-19 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Ultrasonic modelling |
-
1966
- 1966-02-21 DE DE19661573617 patent/DE1573617A1/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2214378A5 (en) * | 1973-01-16 | 1974-08-09 | Commissariat Energie Atomique | |
FR2353056A1 (en) * | 1976-05-26 | 1977-12-23 | Krautkraemer Gmbh | METHOD FOR THE NON DESTRUCTIVE TESTING OF MATERIALS BY ULTRASONICS |
EP0081243A3 (en) * | 1981-12-08 | 1984-03-14 | Bethlehem Steel Corporation | Articulated test probe mechanism with fluid bearing in roll gap |
EP0081244A3 (en) * | 1981-12-08 | 1984-03-14 | Bethlehem Steel Corporation | Automatic nondestructive roll defect inspection system |
EP0202497A1 (en) * | 1985-04-26 | 1986-11-26 | Siemens Aktiengesellschaft | Temperature-compensated ultrasonic wall thickness measurement |
EP2120046A1 (en) * | 2008-05-13 | 2009-11-18 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Ultrasonic modelling |
WO2009139627A1 (en) * | 2008-05-13 | 2009-11-19 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Ultrasonic modelling |
US8639488B2 (en) | 2008-05-13 | 2014-01-28 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Ultrasonic modelling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1725019B (en) | Clamp type doppler ultrasonic flow rate distribution instrument | |
DE69611081T2 (en) | IMPROVEMENTS RELATING TO IMPULSE Echo DISTANCE MEASUREMENT | |
US3930404A (en) | Inside diameter, outside diameter and wall tube gage | |
US6067861A (en) | Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler | |
ATE27359T1 (en) | TRANSDUCER FOR DETERMINING THE FLOW RATE OF A FLOWING LIQUID. | |
EP3688430A1 (en) | Temperature measuring device and method for determining temperature | |
WO1988008516A1 (en) | Ultrasonic fluid flowmeter | |
US3350942A (en) | Ultrasonic pyrometer | |
SE7604537L (en) | DEVICE FOR PRECISION MEASUREMENT OF FOREMAL BY ULTRASOUND | |
DE1573424A1 (en) | Device for material examination with ultrasound | |
DE1573617A1 (en) | Arrangement to compensate for the change in the ultrasonic speed with temperature | |
DE657021T1 (en) | FLOWMETER. | |
US5780744A (en) | Out-of-plane ultrasonic velocity measurement | |
CA2152102C (en) | High resolution measurement of thickness using ultrasound | |
DE102004037135B4 (en) | Method and device for synchronous pressure and temperature determination in a high-pressure vessel by means of ultrasonic transit time measurement | |
US3599478A (en) | Self-calibrating ultrasonic thickness-measuring apparatus | |
US3080752A (en) | Continuous level measuring apparatus | |
DE3031678A1 (en) | METHOD FOR MEASURING THERMAL STATE SIZES OF FLUIDS | |
EP3614109A1 (en) | Measuring device and measuring probe for a flowing fluid | |
DE10133395A1 (en) | Ultrasonic flow meter sensor has heat conducting moulded mount | |
DE4124692A1 (en) | Ultrasonic flow measuring head for clamp=on application - has graphite acoustic coupling body with metal layer, onto which electroacoustic transducer is soldered | |
US3543578A (en) | Flow metering system | |
DE19858307A1 (en) | Determining vol. flow or flow speed and/or temp. of flowing medium in pipe involves computing flow or flow rate from measured heat flow at pipe surface, medium and ambient temp. | |
Viumdal et al. | Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters | |
US3538752A (en) | Ultrasonic thickness measuring apparatus |