[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE10053272A1 - Neue Bisphosphitverbindungen und deren Metallkomplexe - Google Patents

Neue Bisphosphitverbindungen und deren Metallkomplexe

Info

Publication number
DE10053272A1
DE10053272A1 DE10053272A DE10053272A DE10053272A1 DE 10053272 A1 DE10053272 A1 DE 10053272A1 DE 10053272 A DE10053272 A DE 10053272A DE 10053272 A DE10053272 A DE 10053272A DE 10053272 A1 DE10053272 A1 DE 10053272A1
Authority
DE
Germany
Prior art keywords
aliphatic
aromatic
alicyclic
heterocyclic
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10053272A
Other languages
English (en)
Inventor
Dirk Roettger
Dieter Hess
Klaus-Diether Wiese
Cornelia Borgmann
Armin Boerner
Detlef Selent
Reinhard Schmutzler
Christine Kunze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Oxeno Olefinchemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie GmbH filed Critical Oxeno Olefinchemie GmbH
Priority to DE10053272A priority Critical patent/DE10053272A1/de
Priority to EP01122420A priority patent/EP1201675B1/de
Priority to AT01122420T priority patent/ATE258183T1/de
Priority to ES01122420T priority patent/ES2211710T3/es
Priority to DE50101350T priority patent/DE50101350D1/de
Priority to KR1020010065889A priority patent/KR100732352B1/ko
Priority to JP2001329624A priority patent/JP4141129B2/ja
Priority to US09/984,263 priority patent/US6570033B2/en
Publication of DE10053272A1 publication Critical patent/DE10053272A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65744Esters of oxyacids of phosphorus condensed with carbocyclic or heterocyclic rings or ring systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft Bisphosphite der allgemeinen Formel I DOLLAR F1 mit DOLLAR A Q = zweiwertiger aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, DOLLAR A W, X = aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aliphatisch-aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, die gleich oder unterschiedlich oder kovalent miteinander verknüpft sein können. DOLLAR A Weiterhin betrifft die Erfindung Metallkomplexe dieser Biphosphite und deren Verwendung in Hydroformylierungsreaktionen.

Description

Die vorliegende Erfindung betrifft Bisphosphite und deren Metallkomplexe, die Herstellung, sowie die Verwendung der Bisphosphite als Liganden in katalytischen Reaktionen.
Die Reaktionen zwischen Olefinverbindungen, Kohlenmonoxid und Wasserstoff in Gegenwart eines Katalysators zu den um ein C-Atom reicheren Aldehyden ist als Hydroformylierung (Oxierung) bekannt. Als Katalysatoren in diesen Reaktionen werden häufig Verbindungen der Übergangsmetalle der VIII. Gruppe des Periodensystems der Elemente verwendet, insbesondere Verbindungen des Rhodiums und des Kobalts. Die Hydroformylierung mit Rhodiumverbindungen bietet im Vergleich zur Katalyse mit Kobaltverbindungen in der Regel den Vorteil höherer Selektivität und ist damit meistens wirtschaftlicher. Bei der durch Rhodium katalysierten Hydroformylierung werden zumeist Komplexe eingesetzt, die aus Rhodium und bevorzugt aus trivalenten Phosphorverbindungen als Liganden bestehen. Bekannte Liganden sind beispielsweise Verbindungen aus den Klassen der Phosphine, Phosphite und Phosphonite. Eine gute Übersicht über den Stand der Hydroformylierung von Olefinen findet sich in B. CORNILS, W. A. HERRMANN, "Applied Homogeneous Catalysis with Organometallic Compounds", Vol. 1 & 2, VCH, Weinheim, New York, 1996.
Jedes Katalysatorsystem (Kobalt oder Rhodium) hat seine spezifischen Vorzüge. Je nach Einsatzstoff und Zielprodukt kommen daher unterschiedliche Katalysatorsysteme zum Einsatz, wie folgende Beispiele zeigen. Arbeitet man mit Rhodium und Triphenylphosphin, lassen sich α-Olefine bei niedrigeren Drücken hydroformylieren. Als Phosphor-haltiger Ligand wird in der Regel Triphenylphosphin im Überschuss verwendet, wobei ein hohes Ligand/Rhodium-Verhältnis erforderlich ist, um die Selektivität der Reaktion zum kommerziell erwünschten n-Aldehydprodukt zu erhöhen.
Die Patente US 4 694 109 und US 4 879 416 beschreiben Bisphosphinliganden und ihren Einsatz in der Hydroformylierung von Olefinen bei niedrigen Synthesegasdrücken. Besonders bei der Hydroformylierung von Propen werden mit Liganden dieses Typs hohe Aktivitäten und hohe n/i-Selektivitäten erreicht. In WO 95/30680 werden zweizähnige Phosphinliganden und ihr Einsatz in der Katalyse, unter anderem auch in Hydroformylierungsreaktionen, offen gelegt. Ferrocenverbrückte Bisphosphine werden beispielsweise in den Patentschriften US 4 169 861, US 4 201 714 und US 4 193 943 als Liganden für Hydroformylierungen beschrieben.
Der Nachteil von zweizähnigen Phosphinliganden ist ein relativ hoher Aufwand, der zu ihrer Darstellung notwendig ist. Daher ist es oftmals nicht rentabel, solche Systeme in technischen Prozessen einzusetzen.
Rhodium-Monophosphit-Komplexe sind geeignete Katalysatoren für die Hydroformylierung von verzweigten Olefinen mit innenständigen Doppelbindungen, jedoch ist die Selektivität für endständig hydroformylierte Verbindungen gering. Aus EP 0 155 508 ist die Verwendung von bisarylensubstituierten Monophosphiten bei der rhodiumkatalysierten Hydroformylierung von sterisch gehinderten Olefinen, z. B. Isobuten bekannt.
Rhodium-Bisphosphit-Komplexe katalysieren die Hydroformylierung von linearen Olefinen mit end- und innenständigen Doppelbindungen, wobei überwiegend endständig hydroformylierte Produkte entstehen, dagegen werden verzweigte Olefine mit innenständigen Doppelbindungen nur in geringem Maße umgesetzt. Diese Phosphite ergeben bei ihrer Koordination an ein Übergangsmetallzentrum Katalysatoren von gesteigerter Aktivität, doch ist das Standzeitverhalten dieser Katalysatorsysteme, unter anderem wegen der Hydrolyseempfindlichkeit der Phosphitliganden, unbefriedigend. Durch den Einsatz von substituierten Bisaryldiolen als Edukte für die Phosphitliganden, wie in EP 0 214 622 oder EP 0 472 071 beschrieben, konnten erhebliche Verbesserungen erreicht werden.
Der Literatur zufolge sind die Rhodiumkomplexe dieser Liganden äußerst aktive Hydroformylierungskatalysatoren für α-Olefine. In den Patenten US 4 668 651, US 4 748 261 und US 4 885 401 werden Polyphosphitliganden beschrieben, mit denen α-Olefine, aber auch 2-Buten mit hoher Selektivität zu den terminal hydroformylierten Produkten umgesetzt werden können. Zweizähnige Liganden dieses Typs wurden auch zur Hydroformylierung von Butadien eingesetzt (US 5 312 996).
Obgleich die genannten Bisphosphite sehr gute Komplexliganden für Rhodium- Hydroformylierungskatalysatoren sind, ist es wünschenswert, deren Wirksamkeit noch weiter zu verbessern.
Es wurde gefunden, dass Bisphosphite der allgemeinen Struktur I
einfach hergestellt werden können und als Liganden bei Metall-katalysierten Reaktionen geeignet sind.
Gegenstand der vorliegenden Erfindung sind daher Bisphosphite der allgemeinen Formel I
mit
R1, R2, R3, R4, = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch- aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR7, -COR7, -CO2R7, -CO2M, -SR7, -SO2R7, -SOR7, -SO3R7, -SO3M, -SO2NR7R8, NR7R8, N=CR7R8, NH2, wobei R1 bis R4 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R7, R8 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
Q = zweiwertiger aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatisch-aromatischer, aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen,
W, X = aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aromatisch-aromatische, aliphatisch- aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, die gleich oder unterschiedlich oder kovalent miteinander verknüpft sein können.
Jeweils zwei der Reste R1 bis R4 in Formel I können benzanneliert sein, d. h. jeweils R1 und R2, R2 und R3 oder R3 und R4 können über einen aromatischen Ring miteinander verknüpft sein. Es sind somit drei Isomere realisierbar, die auch als Ligandensystem getrennt oder miteinander verwendet werden können. Die erfindungsgemäßen Bisphosphite der Formel I können daher auch gemäß den Formeln II, III und IV vorliegen.
Die Bedeutungen der Reste R1 bis R6 entsprechen denen der für Formel I definierten Bedeutungen für R1 bis R4. Es ist möglich, dass diese Reste wiederum eine kovalente Verknüpfung miteinander aufweisen bzw. benzanneliert sind.
Spezielle Ausführungsformen der erfindungsgemäßen Bisphosphite betreffen Bisphosphite der Formeln V, VI und VII
wobei W und X aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aromatisch-aromatische, aliphatisch- aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen bedeuten, X und W gleich oder unterschiedlich oder kovalent mit einander verknüpft sein können und R1, R2, R3, R4, R5, R6, R7, R8 und Q die bereits genannten Bedeutungen besitzen.
R9, R10, R11, R12, R13, R14, R15, R16 stehen für H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aroma­ tischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R9 bis R16 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können.
M steht für ein Alkalimetall-, Erdalkalimetall-, Ammonium-, oder Phosphoniumion.
R25 und R26 können gleich oder unterschiedlich sein und jeweils für H, substituierte oder unsubstituierte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung stehen.
Beispiele für Q sind bivalente Kohlenwasserstoffreste, die aliphatisch, alicyclisch, aliphatisch-alicyclisch, heterocyclisch, aliphatisch-heterocylisch, aromatisch, aromatisch-aromatisch oder aliphatisch-aromatisch sein können. Gegebenenfalls vorhandene Ringsysteme können ihrerseits mit den oben genannten Kohlenwasserstoffresten substituiert sein. In offenkettigen Strukturelementen können eine oder mehrere Methylengruppen durch Sauerstoff und/oder Schwefel und/oder NR1 und/oder NH und/oder eine oder mehrere CH-Gruppen durch Stickstoff ersetzt sein.
Bevorzugt steht Q für bivalente Reste, die aromatische Gruppen enthalten. Q kann beispielsweise ein Phenylenrest, Naphthylenrest, ein zweiwertiger Bisarylenrest oder ein bivalenter Rest eines Diphenylethers sein. Weiterhin kann Q die allgemeine Struktur -Ar-Z-Ar- haben. Darin bedeutet Ar einen mono- oder oligocyclischen bivalenten aromatischen Rest. Z steht entweder für eine direkte Bindung oder für eine gegebenenfalls substituierte Methylengruppe -CR27R28-, wobei R27 und R28 für Wasserstoff und/oder aliphatische und/oder aromatische Reste mit 1 bis 25 Kohlenstoffatomen stehen, die darüber hinaus Heteroatome enthalten können. Weiterhin können die Reste R27 und R28 zu einem oder mehreren Ringen verknüpft sein, d. h. eine kovalente Bindung aufweisen.
Von den Bisphosphiten nach den allgemeinen Formeln I, II, III, IV, V, VI und VII sind diejenigen besonders bevorzugt, bei denen der Rest Q für einen Kohlenwasserstoffrest (Bisarylenrest) nach der allgemeinen Formel VIII steht
mit
R17, R18, R19, R20, R21, R22, R23, R24 = H, aliphatischer, alicyclischer, aliphatisch- alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatisch- aromatischer, aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R17 bis R24 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion,
wobei die Positionen a und b als Anknüpfpunkte dieses Substituenten im Strukturelement O-Q-O in den Verbindungen der Formeln I bis VII stehen.
Gegenstand der vorliegenden Erfindung sind auch Bisphosphitmetallkomplexe, enthaltend ein Metall der 4., 5., 6., 7. oder 8. Nebengruppe des Periodensystems der Elemente und ein oder mehrere Bisphosphite der Formeln I, II, III, IV, V, VI und VII. Die Substituenten (R1-R26, Q, X, W) dieser Bisphosphite besitzen die bereits genannten Bedeutungen.
Im Folgenden werden repräsentative Beispiele von Liganden nach den allgemeinen Formeln I, II, III, IV, V, VI und VII im Sinne dieser Erfindung dargestellt, ohne den Schutzbereich der vorliegenden Erfindung zu beschränken.
Die erfindungsgemäßen Bisphosphite können durch eine Folge von Reaktionen von Phosphorhalogeniden mit Alkoholen bzw. α-Hydroxyarylcarbonsäuren, bei denen Halogenatome am Phosphor gegen Sauerstoffgruppen ausgetauscht werden, hergestellt werden. Das grundsätzliche Vorgehen wird an einem Weg zu Verbindungen nach der allgemeinen Formel V illustriert
  • 1. Eine α-Hydroxyarylcarbonsäure wird mit einem Phosphortrihalogenid, vorzugsweise Phosphortrichlorid in Gegenwart einer Base zu Zwischenprodukt A umgesetzt.
  • 2. Ein Phosphortrihalogenid, vorzugsweise Phosphortrichlorid, wird mit einem Diol oder zwei Moläquivalenten Alkohol zu einem Monohalogenphosphit (Zwischenprodukt B) umgesetzt.
  • 3. Aus dem Zwischenprodukt B wird durch Reaktion mit einem Diol (HO-Q-OH) ein hydroxyl-substituiertes Phosphit erhalten (Zwischenprodukt C).
  • 4. Aus der Reaktion von Zwischenprodukt A mit C wird das gewünschte Bisphosphit erhalten.
Dieser Syntheseweg ist nur einer von vielen, zeigt aber das grundsätzliche Vorgehen. Ein alternativer Weg ist zum Beispiel die Umsetzung von Zwischenprodukt A mit der Diolkomponente und anschließende Reaktion mit B zum Zielprodukt.
Da die eingesetzten Diole und ihre Folgeprodukte häufig fest sind, werden die Umsetzungen im Allgemeinen in Lösungsmitteln durchgeführt. Als Solventien werden nicht protische Lösungsmittel, die weder mit den Diolen noch mit den Phosphorverbindungen reagieren, verwendet. Geeignete Lösungsmittel sind beispielsweise Tetrahydrofuran, Diethylether oder aromatische Kohlenwasserstoffe wie Toluol.
Bei der Umsetzung von Phosphorhalogeniden mit Alkoholen entsteht Halogenwasserstoff, der durch zugegebene Basen gebunden wird. Beispielsweise werden dafür tertiäre Amine, wie Triethylamin, eingesetzt. Teilweise ist es auch sinnvoll, die Alkohole vor der Reaktion in Metallalkoholate zu überführen, zum Beispiel durch Reaktion mit Natriumhydrid oder Butyllithium.
Die erfindungsgemäßen Bisphosphite der Formeln I, II, III, IV, V, VI und VII sind geeignete Bausteine für die Herstellung von Komplexen mit Metallen der 4., 5., 6., 7. oder 8. Nebengruppe des Periodensystems der Elemente. Insbesondere mit Metallen der 8. Nebengruppe können diese Komplexe als Katalysatoren für Carbonylierungsreaktionen oder Hydroformylierungsreaktionen verwendet werden, z. B. für die Hydroformylierung von C2-C25-Olefinen. Die Liganden zeichnen sich durch hohe Hydrolysestabilität aus. Besonders bei Einsatz von Rhodium als Katalysatormetall ergeben sich hohe katalytische Aktivitäten in Hydroformylierungsreaktionen. Aufgrund ihres hohen Molekulargewichtes besitzen die erfindungsgemäßen Bisphosphite eine geringe Flüchtigkeit. Sie können daher einfach von den leichter flüchtigen Reaktionsprodukten abgetrennt werden. Sie sind in den gängigen organischen Solventien ausreichend gut löslich.
Weitere Gegenstände der Erfindung sind die Verwendungen der Bisphosphite bzw. der Bisphosphitmetallkomplexe in Verfahren zur Hydroformylierung von Olefinen, bevorzugt mit 2 bis 25 Kohlenstoffatomen, zu den entsprechenden Aldehyden.
Zur Herstellung der katalytisch aktiven Metallkomplexe sind bevorzugt eingesetzte Metalle für die erfindungsgemäßen Bisphosphite Rhodium, Kobalt, Platin und Ruthenium. Aus den erfindungsgemäßen Liganden und dem Metall bildet sich unter Reaktionsbedingungen der aktive Katalysator. Die erfindungsgemäßen Liganden können dabei in freier Form in die Reaktionsmischung gegeben werden. Es ist weiterhin möglich, einen Übergangsmetallkomplex, der die o. g. Bisphosphitliganden enthält, als Precursor für den eigentlichen katalytisch aktiven Komplex einzusetzen. Der Hydroformylierungsprozess kann stöchiometrisch oder mit einer überschüssigen Menge an freien Bisphosphitliganden (z. B. 1 : 1 bis 1 : 200) durchgeführt werden.
Ferner können auch Mischungen verschiedener Liganden - sowohl der erfindungsgemäßen Bisphosphite, hier auch die Isomeren gemäß den Formel II bis IV, als auch anderer geeigneter phosphorhaltiger Liganden als freie Ligandkomponente vorhanden sein.
Als zusätzliche, im Reaktionsgemisch vorhandene Liganden können Phosphine, Phosphite, Phosphonite oder Phosphinite eingesetzt werden.
Beispiele für solche Liganden sind:
Phosphine: Triphenylphosphin, Tris(p-tolyl)phosphin, Tris(m-tolyl)phosphin, Tris(o- tolyl)phosphin, Tris(p-methoxyphenyl)phosphin, Tris(p-dimethylaminophenyl)- phosphin, Tricyclohexylphosphin, Tricyclopentylphosphin, Triethylphosphin, Tri-(1- naphthyl)phosphin, Tribenzylphosphin, Tri-n-butylphosphin, Tri-t-butylphosphin.
Phosphite: Trimethylphosphit, Triethylphosphit, Tri-n-propylphosphit, Tri-i- propylphosphit, Tri-n-butylphosphit, Tri-i-butylphosphit, Tri-t-butylphosphit, Tris(2- ethylhexyl)phosphit, Triphenylphosphit, Tris(2.4-di-t-butylphenyl)phosphit, Tris(2-t- butyl-4-methoxyphenyl)phosphit, Tris(2-t-butyl-4-methylphenyl)phosphit, Tris(p- kresyl)phosphit. Außerdem sind sterisch gehinderte Phosphitliganden, wie sie unter anderem in EP 155 508, US 4 668 651, US 4 748 261, US 4 769 498, US 4 774 361, US 4 835 299, US 4 885 401, US 5 059 710, US 5 113 022, US 5 179 055, US 5 260 491, US 5 264 616, US 5 288 918, US 5 360 938, EP 472 071, EP 518 241 und WO 97/20795 beschrieben werden, geeignete Liganden.
Phosphonite: Methyldiethoxyphosphin, Phenyldimethoxyphosphin, Phenyldi­ phenoxyphosphin, 2-Phenoxy-2H-dibenz[c,e][1,2]oxaphosphorin und dessen Derivate, in denen die Wasserstoffatome ganz oder teilweise durch Alkyl- und/oder Arylreste oder Halogenatome ersetzt sind und Liganden, die in WO 98 43935, JP 09-268152 und DE 198 10 794 und in den deutschen Patentanmeldungen DE 199 54 721 und DE 199 54 510 beschrieben sind.
Gängige Phosphinitliganden sind unter anderem in US 5 710 344, WO 95 06627, US 5 360 938 oder JP 07082281 beschrieben. Beispiele hierfür sind Diphenyl(phen­ oxy)phosphin und dessen Derivate, in denen die Wasserstoffatome ganz oder teilweise durch Alkyl- und/oder Arylreste oder Halogenatome ersetzt sind, Diphenyl(methoxy)phosphin, Diphenyl(ethoxy)phosphin usw.
Im Allgemeinen werden 1 bis 500, vorzugsweise 1 bis 200, bevorzugt 3 bis 50 Mol des erfindungsgemäßen Liganden pro Mol Gruppe-VIII-Übergangsmetall eingesetzt. Frischer Ligand kann zu jedem Zeitprodukt der Reaktion zugesetzt werden, um die Konzentration an freiem Liganden konstant zu halten. Die erfindungsgemäßen Übergangsmetall-Bisphosphitkomplex-Katalysatoren können vor ihrem Einsatz synthetisiert werden. In der Regel werden aber die katalytisch aktiven Komplexe aus einem Katalysatorvorläufer und dem erfindungsgemäßen Bisphosphitliganden in situ im Reaktionsmedium gebildet.
Als Katalysatorvorläufer kommen Salze oder Komplexe der Übergangsmetalle zum Einsatz. Beispiele sind Rhodiumcarbonyle, Rhodiumnitrat, Rhodiumchlorid, Rh(CO)2(acac) (acac = Acetylacetonat), Rhodiumacetat, Rhodiumoctanoat oder Rhodiumnonanoat.
Die Konzentration des Metalls im Reaktionsgemisch liegt im Bereich von 1 ppm bis 1000 ppm, vorzugsweise im Bereich von 5 ppm bis 300 ppm.
Die mit den erfindungsgemäßen Bisphosphiten bzw. den entsprechenden Metallkomplexen durchgeführten Hydroformylierungsreaktionen erfolgten nach bekannten Vorschriften, wie z. B. in J. FALBE, "New Syntheses with Carbon Monoxide", Springer Verlag, Berlin, Heidelberg, New York, Seite 95 ff., (1980) beschrieben.
Die Reaktionstemperaturen für ein Hydroformylierungsverfahren mit den erfindungsgemäßen Bisphosphiten bzw. Bisphosphitmetallkomplexen als Katalysator liegen zwischen 40°C und 180°C, vorzugsweise zwischen 75°C und 140°C. Die Drücke, unter denen die Hydroformylierung abläuft, betragen 1-300 bar Synthesegas, vorzugsweise 15-64 bar. Das Molverhältnis zwischen Wasserstoff und Kohlenmonoxid (H2/CO) im Synthesegas beträgt 10/1 bis 1/10, bevorzugt 1/1 bis 2/1.
Der Katalysator bzw. der Ligand ist homogen im Hydroformylierungsgemisch, bestehend aus Edukt (Olefine) und Produkten (Aldehyden, Alkoholen, im Prozess gebildete Hochsieder), gelöst. Optional kann zusätzlich ein Lösungsmittel verwendet werden.
Die Edukte für die Hydroformylierung sind Monoolefine oder Gemische von Monoolefinen mit 2 bis 25 Kohlenstoffatomen mit end- oder innenständiger C-C- Doppelbindung. Sie können geradkettig, verzweigt oder von cyclischer Struktur sein und auch mehrere olefinisch ungesättigte Gruppen aufweisen. Beispiele sind Propen, 1-Buten, c-2-Buten, t-2-Buten, Isobuten, Butadien, Mischungen der C4- Olefine, 1- oder 2-Penten, 2-Methylbuten-1, 2-Methylbuten-2, 3-Methylbuten-1, 1-, 2- oder 3-Hexen, das bei der Dimerisierung von Propen anfallende C6-Olefingemisch (Dipropen), 1-Hepten, Heptene, 2- oder 3-Methyl-1-hexen, 1-Octen, Octene, 2- Methylheptene, 3-Methylheptene, 5-Methylhepten-2, 6-Methylhepten-2, 2- Ethylhexen-1, das bei der Dimerisierung von Butenen anfallende isomere C8- Olefingemisch (Dibuten), 1-Nonen, Nonene, 2- oder 3-Methyloctene, das bei der Trimerisierung von Propen anfallende C9-Olefingemisch (Tripropen), Decene, 2- Ethyl-1-octen, Dodecene, das bei der Tetramerisierung von Propen oder der Trimerisierung von Butenen anfallende C12-Olefingemisch (Tetrapropen oder Tributen), Tetradecene, Hexadecene, bei der Tetramerisierung von Butenen anfallende C16-Olefingemisch (Tetrabuten) sowie durch Cooligomerisierung von Olefinen mit unterschiedlicher C-Zahl (bevorzugt 2 bis 4) hergestellte Olefingemische, gegebenenfalls nach destillativer Trennung in Fraktionen mit gleicher oder ähnlicher C-Zahl. Ebenfalls können Olefine oder Olefingemische, die durch Fischer-Tropsch-Synthese erzeugt werden, eingesetzt werden, sowie Olefine, die durch Oligomerisierung von Ethen erhalten werden oder die über Methathesereaktionen oder Telomerisationsreaktion zugänglich sind.
Bevorzugte Edukte sind Propen, 1-Buten, 2-Buten, 1-Hexen, 1-Octen, Dimere und Trimere des Butens (Dibuten, Di-n-buten, Di-iso-buten, Tributen) und allgemein α- Olefine.
Die Hydroformylierung kann kontinuierlich oder diskontinuierlich durchgeführt werden. Beispiele für technische Ausführungen sind Rührkessel, Blasensäulen, Strahldüsenreaktoren, Rohrreaktoren, oder Schlaufenreaktoren, die zum Teil kaskadiert und/oder mit Einbauten versehen sein können.
Die Reaktion kann durchgehend oder in mehreren Stufen erfolgen. Die Trennung der entstandenen Aldehydverbindungen und des Katalysators kann durch eine herkömmliche Methode, wie Fraktionierung, durchgeführt werden. Technisch kann dies beispielsweise über eine Destillation, über einen Fallfilmverdampfer oder einen Dünnschichtverdampfer erfolgen. Die gilt besonders, wenn der Katalysator in einem hochsiedenden Lösungsmittel gelöst von den niedriger siedenden Produkten abgetrennt wird. Die abgetrennte Katalysatorlösung kann für weitere Hydroformylierungen verwendet werden. Bei Einsatz niederer Olefine (z. B. Propen, Buten, Penten) ist auch ein Austrag der Produkte aus dem Reaktor über die Gasphase möglich.
Die folgenden Beispiele sollen die Erfindung erläutern, nicht aber ihren Anwendungsbereich beschränken, der sich aus den Patentansprüchen ergibt.
Beispiele
Alle Präparationen wurden mit Standard-Schlenk-Technik unter Schutzgas durchgeführt. Die Lösungsmittel wurden vor Gebrauch über geeigneten Trocknungsmitteln getrocknet.
Das in der Synthese eingesetzte 2-Chlor-1,3-dioxa-2-phospha-anthracen-4-on wurde laut einer Literaturvorschrift synthetisiert (BE 667036, Farbwerke Hoechst AG, 1966; Chem. Abstr 65 (1966) 13741d). Das 3-Chlor-2,4-dioxa-3-phospha­ phenanthren-1-on wurde auf analoge Weise erhalten. 2-Chlor-2.3-dioxa-2- phosphanaphthalin-4-on (von Booms Reagenz) ist kommerziell erhältlich.
Beispiel 1
Synthese der Vorstufen C-1 und C-2
Vorstufe C-1
Zu einer Lösung von 2.42 g 2,2'-Bis(6-tert.-butyl-1-hydroxy-4-methoxyphenyl) (6.75 mmol) und 1.6 ml Pyridin in 22 ml THF tropft man bei 0°C eine Lösung von 0.93 g PCl3 (6.75 mmol) in 10 ml THF. Nach 4 h Rühren bei 25°C wird das Lösungsmittel im Vakuum entfernt. Nach Zusatz von 40 ml Diethylether, Filtration und Einengen im Vakuum werden 2.8 g (98%) an spektroskopisch reinem Chloro- phosphorigsäureester des 2,2'-Bis(6-tert.-butyl-1-hydroxy-4-methoxyphenyl) erhalten: 31P-NMR (CD2Cl2) δ 172.7 ppm. 2.8 g dieses Chloroesters (6.62 mmol) in 20 ml THF gibt man bei Raumtemperatur zu einer bei -20°C erhaltenen Monolithiumphenolatlösung aus 2.37 g 2,2'-Bis(6-tert.-butyl-1-hydroxy-4- methoxyphenyl) (6.62 mmol) in 30 ml THF und 20.7 ml einer 0.32 M Hexanlösung von n-Butyllithium (6.62 mmol). Nach 24 h wird im Vakuum eingeengt. Zugabe von 40 ml Methylenchlorid, Filtration und Entfernen des Solvens im Vakuum ergeben 4.6 g (93%) an hochviskosem Produkt.
Analyse (ber. für C44H57O8P = 744.9 g/Mol) C 70.35 (70.95); H 7.86 (7.71). 31P-NMR (CD2Cl2) δ 140.7 ppm. 1H-NMR (CD2Cl2) δ 1.43 (s, 9 H); 1.56 (s, 9 H); 1.63 (s, 9 H); 1.67 (s, 9 H); 4.01 (s, 3 H); 4.03 (s, 6 H); 4.05 (s, 3 H); 5.42 (s, 1 H); 6.7. . .7.3 (m, 8 H) ppm. FAB MS: m/e 745 (37%, M+); 387 (100%, M+-2,2'-Bis(6-tert.-butyl-1-hydroxy- 4-methoxyphenyl)). IR (CHCl3, 0.1 mm CaF2), ν (OH) = 3549 cm-1.
Vorstufe C-2
Die Synthese wird analog zur Präparation von C-1 durchgeführt. Der Chlorophosphitdiester wird in nahezu quantitativer Ausbeute (98.4%, 31P NMR, CD2Cl2 δ 172.0) erhalten. Für den zweiten Schritt der Reaktionssequenz werden dieser Chlorophosphitdiester (10.7 g, 22.5 mmol), 1.6 M Butyllithiumlösung in Hexan (14.1 ml) und die entsprechende Dihydroxydiphenylverbindung umgesetzt. Nach Entfernen des Lösungsmittels wird der Rückstand mehrmals mit heißem Hexan extrahiert. Aus den vereinigten Hexanfraktionen kristallisiert das Produkt aus, wird isoliert und im Vakuum getrocknet. Ausbeute: 76.4%
Analyse (ber. für C56H81O4P = 849.23 g/Mol) C 78.78 (79.20); H 9.95 (9.61). 31P- NMR (CD2Cl2) δ 142.3 ppm. 1H-NMR (CD2Cl2) δ 0.98 (s, 9 H); 1.15 (s, 9 H); 1.21 (s, 9 H); 1.22 (s, 9 H); 1.23 (s, 9 H); 1.24 (s, 9 H); 1.30 (s, 9 H); 1.36 (s, 9 H); 5.35 (s, 1 H); 6.99 (d, 1 H); 7.01 (d, 1 H); 7.05 (d, 1 H); 7.06 (d, 1 H); 7.26 (d, 2 H); 7.32 (d, 1 H); 7.36 (d, 1 H) ppm.
Beispiel 2 Synthese von Ligand 2-a
Zu einer Lösung von 2.27 g C-1 (3.04 mmol) in 24 ml THF werden bei -20°C unter Rühren innerhalb von 10 min 9.5 ml einer 0.32 M Lösung von n-Butyllithium (3.04 mmol) getropft. Nach Erwärmen auf Raumtemperatur wird zunächst 30 min nachgerührt, und die erhaltene Mischung dann zu 22 ml einer 0.138 M Lösung von 2-Chlor-1,3-dioxa-2-phospha-anthracen-4-on (3.04 mmol) in THF gegeben. Man rührt die Reaktionsmischung 4 h bei 25°C, entfernt das Lösungsmittel im Vakuum und verrührt den sirupösen Rückstand 2 h mit 60 ml Hexan. Man filtriert, wäscht mit 2 × 7 ml Hexan und extrahiert den Filterkuchen durch Rückdestillation von Hexan aus dem Filtrat. 3-tägiges Lagern der Mutterlauge bei 5°C ergibt 0.828 g reinen Feststoff. Eine zusätzliche Extraktion des Filterkuchens der Hexanextraktion mit 35 ml siedendem Diethylether ergibt nach Volumenreduktion des Filtrates auf 50% und Lagerung bei 5°C 0.6 g Produkt. Gesamtausbeute: 1.428 g = 49%. Analyse (ber. für C55H62O11P2 = 961.03 g/mol) C 68.69 (68.74); H 6.73 (6.50); P 6.41 (6.45) %. 31P- NMR (CD2Cl2): δ 118.1; 119.1; 139.0; 140.2. 1H-NMR (CD2Cl2): δ 1.15. . .1.44 (36 H); 3.81. . .3.93 (12 H); 6.57. . .8.71(14 H).
FAB-MS: m/e 961 (30%, M+); 745 (31%); 727 (97%); 387 (100%).
Beispiel 3 Synthese von Ligand 3-a
Als P-Cl Verbindung kommt 3-Chlor-2,4-dioxa-3-phosphaphenanthren-1-on zum Einsatz. Die Synthese wird ausgehend von 2.31 g C-1 (3.10 mmol) bis zur Extraktion des Filterkuchens mit rückdestilliertem Hexan aus dem Filtrat analog zur Darstellung von 2-a durchgeführt. Die anschließende Lagerung der Lösung bei 5°C ergibt zunächst 0.90 g, nach Volumenreduktion auf die Hälfte weitere 1.36 g Produkt, Gesamtausbeute: 2.26 g = 75%. Analyse (ber. für C55H62O11P2 = 961.03 g/mol) C 69.42 (68.74); H 7.16 (6.50); P 5.98 (6.45)%. 31P-NMR (CD2Cl2): δ 120.3; 121.1; 139.7; 140.7. 1H-NMR (CD2Cl2): 0.87. . .1.40 (36 H); 3.75. . .3.88 (12 H); 6.63. . .8.17 (14 H). Cl-MS: m/e 962 (31%, M - H+); 745 (100%); 405 (90%); 387 (80%).
Beispiel 4 Synthese von Ligand 6-a
Als P-Cl Verbindung kommt 2-Chlor-1.3-dioxa-2-phosphanaphthalin-4-on zum Einsatz. Die Synthese wird ausgehend von 6.86 g C-1 bis zur Extraktion des Filterkuchens analog zur Darstellung von 2-a durchgeführt. Die Extraktion erfolgt mit heißem Hexan und mit Diethylether. Nach Reduzierung der Lösungsmittelmenge auf ein Drittel und anschließender Lagerung der Lösung bei -20°C erhält man das Produkt in 54% Ausbeute. 31P-NMR (CD2Cl2): δ 119.2 (m); 119.8 (m); 139.5 (m); 140.1 (m); 1H-NMR (CD2Cl2): 1.02. . .1.26 (36 H); 3.67. . .3.74 (12 H); 6.43. . .7.99 (12 H). FAB-MS: m/e 911 (100%, M+), 744 (18%), 387 (13%).
Beispiel 5 Synthese von Ligand 6-b
Als P-Cl Verbindung kommt 2-Chlor-1.3-dioxa-2-phosphanaphthalin-4-on zum Einsatz. Die Synthese wird ausgehend von 4.93 g C-2 analog zur Synthese von Verbindung 2-a durchgeführt. Gesamtausbeute 50.4%. Analyse (ber. für C63H84O7P2 = 1015.30 g/mol) C 74.86 (74.53); H 8.43 (8.34). 31P-NMR (CD2Cl2): δ 118.5, 119.7, 142.0, 142.8; 1H-NMR (CD2Cl2): 0.90. . .1.36 (72 H); 6.74. . .7.90 (12 H); FAB- MS: m/e 1015 (7%, M+), 832 (100%), 439 (70%).
Beispiel 6 Synthese von Ligand 2-b
Als P-Cl Verbindung kommt 2-Chlor-1,3-dioxa-2-phospha-anthracen-4-on zum Einsatz. Die Synthese wird ausgehend von 5.07 g C-2 analog zur Darstellung von 2-a durchgeführt. Ausbeute: 73%. Analyse (ber. für C67H86O7P2 = 1065.36 g/mol) C 75.24 (75.54); H 8.16 (8.14). 31P-NMR (CD2Cl2): δ 117.8, 118.9, 142.1, 142.9; Verhältnis der Diastereomeren 1.3 : 1. 1H-NMR (CD2Cl2): 0.99. . .1.35 (72 H); 6.95. . .8.55 (14 H). FAB-MS: m/e 1064 (18%, M - H), 831 (100%), 439 (78%).
Beispiel 7 und 8 Hydroformylierung von 1-Octen
Die Versuchsdurchführung erfolgte nach Befüllen unter Schutzgas in einem mit Begasungsrührer, Druckpipette und Nachdruckregler ausgestatteten 200 ml- Edelstahlautoklav der Fa. Buddeberg, Mannheim, im Ölbadthermostaten. Zur Minimierung eines Einflusses von Feuchtigkeit und Sauerstoff wurde das als Solvens benutzte Toluol mit Natrium-Ketyl getrocknet und unter Argon destilliert. Das als Substrat eingesetzte 1-Octen wurde mehrere Stunden über Natrium am Rückfluß erhitzt und unter Argon destilliert.
Der Autoklav wurde beschickt mit 27 ml Toluol, in welchem 5.456 mg = 0.0176 mmol [acacRh(COD)], und 0.088 mmol des jeweiligen Liganden gelöst waren. Das molare Verhältnis Rh/P betrug damit 1 : 10. In die Druckpipette über dem Reaktor gab man 24 ml = ca. 16.8 g (149.3 mmol) 1-Octen. Das Verhältnis Rh/1-Octen betrug damit ca. 1 : 8500. Reaktor und Druckpipette wurden über einen der Druckregelstrecke parallel geschalteten Bypass bei einem Solldruck von 50 bar mit 33 bar, bei einem Solldruck von 20 bar mit 13 bar CO/H2 (1 : 1; Synthesegas) beaufschlagt und der Reaktorinhalt unter magnetischem Rühren mit dem Begasungsrührer mit 1500 min-1 auf 80 bzw. 100°C temperiert. Nach Erreichen der Solltemperatur wurde der Druck auf 47 bar (17 bar) erhöht und das Olefingemisch aus der Druckpipette mit einem Druck von 55 bar (25 bar) in den Reaktor gepreßt. Es stellte sich ein Anfangsdruck der Reaktion von 49.6 bar (19.2 bar) ein. Nach sofortiger manueller Regulierung auf 50 bar (20 bar) wurde der Bypass geschlossen, und der Druck über die gesamte Reaktionszeit mit dem Nachdruckregler konstant gehalten. Der Versuch wurde unter Zwangskühlung nach Ablauf der festgelegten Reaktionszeit beendet. Die Reaktionslösung wurde unter Schutzgas entnommen und gaschromatografisch analysiert.
Die nachfolgende Tabelle enthält die mit den einzelnen Liganden erhaltenen Ergebnisse.
Beispiel 9 bis 19 Hydroformylierung einer Mischung von 1-Octen, 2-Octen, 3-Octen und 4-Octen
Die Versuchsdurchführung erfolgte nach Befüllen unter Schutzgas in einem mit Begasungsrührer, Druckpipette und Nachdruckregler ausgestatteten 200 ml- Edelstahlautoklav der Fa. Buddeberg, Mannheim, im Ölbadthermostaten. Zur Minimierung eines Einflusses von Feuchtigkeit und Sauerstoff wurde das als Solvens benutzte Toluol mit Natrium-Ketyl getrocknet und unter Argon destilliert. Das als Substrat eingesetzte Octenisomerengemisch wurde mehrere Stunden über Natrium am Rückfluß erhitzt und unter Argon destilliert. Zusammensetzung: 1-Octen, 3.3%; cis+trans-2-Octen, 48.5%; cis+trans-3-Octen, 29.2%; cis+trans-Octen-4, 16.4 %; verzweigte C8-Olefine, 2.6%.
Der Autoklav wurde beschickt mit 41 ml Toluol, in welchem 18.75 mg = 0.0604 mmol [acacRh(COD)], der jeweilige Bidentatligand und ggf. der nachfolgend abgebildete Coligand gelöst waren. Das Verhältnis Rh/Bidentatligand (Ligand)/Etherphosphonit (Coligand) ist in der Tabelle angegeben. In die Druckpipette über dem Reaktor gab man 15 ml = 10.62 g (94.63 mmol) Octene. Das Verhältnis Rh/Octene betrug damit ca. 1 : 1570. Reaktor und Druckpipette wurden über einen der Druckregelstrecke parallel geschalteten Bypass mit 13 bar CO/H2 (1 : 1; Synthesegas) beaufschlagt und der Reaktorinhalt unter magnetischem Rühren mit dem Begasungsrührer mit 1500 min -1 auf 130°C temperiert. Nach Erreichen der Solltemperatur wurde der Druck auf 17 bar erhöht, und das Olefingemisch aus der Druckpipette mit einem Druck von 25 bar in den Reaktor gepreßt. Es stellte sich ein Anfangsdruck der Reaktion von 19.2 bar ein. Nach sofortiger manueller Regulierung auf 20 bar wurde der Bypass geschlossen, und der Druck über die gesamte Reaktionszeit mit dem Nachdruckregler konstant gehalten. Der Versuch wurde unter Zwangskühlung nach drei Stunden beendet. Die Reaktionslösung wurde unter Schutzgas entnommen und gaschromatografisch analysiert.
Als Coligand wurde eingesetzt:
Die nachfolgende Tabelle enthält die mit den einzelnen Liganden erhaltenen Ergebnisse.
Beispiel 20-25 Hydroformylierung von technischem Di-n-Buten
Die Versuchdurchführung erfolgte analog zu den Beispielen 9-19 mit 15 ml = 10.70 g (95.34 mmol) einer Mischung von doppelbindungs- und gerüstisomeren Octenen, die durch Dimerisierung von n-Butenen erhalten wurden. Die nachfolgende Tabelle enthält sowohl Ergebnisse, die mit reinen Bidentatliganden, als auch unter Anwendung einer Mischung von Bidentatligand/Coligand CL-1 erhalten wurden.

Claims (17)

1. Bisphosphit der Formel I
mit R1, R2, R3, R4 = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch- aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR7, -COR7, -CO2R7, -CO2M, -SR7, -SO2R7, -SOR7, -SO3R7, -SO3M, -SO2NR7R8, NR7R8, N=CR7R8, NH2, wobei R1 bis R4 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R7, R8 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
Q = zweiwertiger aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aliphatisch- aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen,
W, X = aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aromatisch-aromatische, aliphatisch- aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, die gleich oder unterschiedlich oder kovalent miteinander verknüpft sein können.
2. Bisphospite der Formel II, III und IV
mit R1, R2, R3, R4, R5, R5 = H aliphatischer, alicyclischer, aliphatisch- alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatisch- aromatischer, aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR7, -COR7, -CO2R7, -CO2M, - SR7, -SO2R7, -SOR7, -SO3R7, -SO3M, -SO2NR7R8, NR7R8, N=CR7R8, NH2, wobei R1 bis R5 eine gleiche oder unterschiedliche Bedeutung besitzen,
R7, R8 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
Q = zweiwertiger aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aliphatisch- aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen,
W, X = aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aromatisch-aromatische, aliphatisch- aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, die gleich oder unterschiedlich oder kovalent miteinander verknüpft sein können.
3. Bisphosphit gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass W und X aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aromatisch- aromatische, aliphatisch-aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, mit einer kovalenten Verknüpfung gemäß Formel V
sind und R1, R2, R3, R4 und Q die in Anspruch 1 genannten Bedeutungen und Maßgaben besitzen.
4. Bisphosphit gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass W und X aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen mit kovalenten Verknüpfungen gemäß Formel VI
sind,
mit R9, R10, R11, R12, R13, R14 = H, aliphatischer, alicyclischer, aliphatisch- alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatisch- aromatischer, aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, - SR25,
-SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R9 bis R14 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion und
R1, R2, R3, R4 und Q die in Anspruch 1 genannten Bedeutungen und Maßgaben besitzen.
5. Bisphosphit gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass W und X aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen mit einer kovalenten Verknüpfung gemäß Formel VII
sind,
mit R9, R10, R11, R12, R13, R14, R15, R16 = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R9 bis R16 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion und
R1, R2, R3, R4 und Q die in Anspruch 1 genannten Bedeutungen und Maßgaben besitzen.
6. Bisphosphit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Q ein Kohlenwasserstoffrest gemäß Formel VIII
ist,
mit R17, R18, R19, R20, R21, R22, R23, R24 = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatisch-aromatischer, aromatischer, aliphatisch-aromatischer Kohlenwasser­ stoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R17 bis R24 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
wobei die Positionen a und b als Anknüpfpunkte dienen.
7. Bisphosphitmetallkomplex, enthaltend ein Metall der 4., 5., 6., 7. oder 8. Nebengruppe des Periodensystems der Elemente und ein oder mehrere Bisphosphite der Formel I
mit R1, R2, R3, R4 = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch- aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR7, -COR7, -CO2R7, -CO2M, -SR7, -SO2R7, -SOR7, -SO3R7, -SO3M, -SO2NR7R8, NR7R8, N=CR7R8, NH2, wobei R1 bis R4 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können.
R7, R8 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
Q = zweiwertiger aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch- aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen,
W, X = aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aliphatisch-aromatische Kohlen­ wasserstoffreste mit 1 bis 50 Kohlenstoffatomen, die gleich oder unterschiedlich oder kovalent miteinander verknüpft sein können.
8. Bisphosphitmetallkomplex, enthaltend ein Metall der 4., 5., 6., 7. oder 8. Nebengruppe des Periodensystems der Elemente und ein oder mehrere Bisphosphite der Formeln II, III und/oder IV
mit R1, R2, R3, R4, R5, R5 = H aliphatischer, alicyclischer, aliphatisch- alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR7, -COR7, -CO2R7, -CO2M, -SR7, -SO2R7, -SOR7, -SO3R7, -SO3M, -SO2NR7R8, NR7R8, N=CR7R8, NH2, wobei R1 bis R5 eine gleiche oder unterschiedliche Bedeutung besitzen,
R7, R8 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
Q = zweiwertiger aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch- aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen,
W, X = aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aliphatisch-aromatische Kohlen­ wasserstoffreste mit 1 bis 50 Kohlenstoffatomen, die gleich oder unterschiedlich oder kovalent miteinander verknüpft sein können.
9. Bisphosphitmetallkomplex nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass W und X aliphatische, alicyclische, aliphatisch-alicyclische, heterocyclische, aliphatisch-heterocyclische, aromatische, aromatisch- aromatische, aliphatisch-aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, mit einer kovalenten Verknüpfung gemäß Formel V
sind und R1, R2, R3, R4 und Q die in Anspruch 7 genannten Bedeutungen und Maßgaben besitzen.
10. Bisphosphitmetallkomplex nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass W und X aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen mit kovalenten Verknüpfungen gemäß Formel VI
sind,
mit R9, R10, R11, R12, R13, R14 = H, aliphatischer, alicyclischer, aliphatisch- alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R9 bis R14 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion und
R1, R2, R3, R4 und Q die in Anspruch 1 genannten Bedeutungen und Maßgaben besitzen.
11. Bisphosphitmetallkomplex nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass W und X aromatische Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen mit einer kovalenten Verknüpfung gemäß Formel VII
sind,
mit R9, R10, R11, R12, R13, R14, R15, R16 = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer,
aromatischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R9 bis R14 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen, mit gleicher oder unterschiedlicher Bedeutung,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion und
R1, R2, R3, R4 und Q die in Anspruch 1 genannten Bedeutungen und Maßgaben besitzen.
12. Bisphosphitmetallkomplex nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass das Q ein Kohlenwasserstoffrest gemäß Formel VIII
ist,
mit R17, R18, R19, R20, R21, R22, R23, R24 = H, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch-heterocyclischer, aromatischer, aromatisch-aromatischer, aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen, F, Cl, Br, I, -CF3, -OR25, -COR25, -CO2R25, -CO2M, -SR25, -SO2R25, -SOR25, -SO3R25, -SO3M, -SO2NR25R26, NR25R26, N=CR25R26, NH2, wobei R17 bis R24 eine gleiche oder unterschiedliche Bedeutung besitzen und kovalent miteinander verknüpft sein können,
R25, R26 = H, substituierter oder unsubstituierter, aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 25 Kohlenstoffatomen,
M = Alkalimetall-, Erdalkalimetall-, Ammonium-, Phosphoniumion
wobei die Positionen a und b als Anknüpfpunkte dienen.
13. Bisphosphitmetallkomplex nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass als Metall Rhodium, Platin, Kobalt oder Ruthenium eingesetzt wird.
14. Verwendung der Bisphosphite gemäß einem der Ansprüche 1 bis 6 in einem Verfahren zur Hydroformylierung von Olefinen.
15. Verwendung der Bisphosphitmetallkomplexe gemäß einem der Ansprüche 7 bis 12 in einem Verfahren zur Hydroformylierung von Olefinen.
16. Verwendung der Bisphosphite gemäß einem der Ansprüche 1 bis 6 in einem Verfahren zur Hydroformylierung von Olefinen unter Anwesenheit von weiteren phosphorhaltigen Liganden.
17. Verwendung der Bisphosphitmetallkomplexe gemäß einem der Ansprüche 7 bis 12 in einem Verfahren zur Hydroformylierung von Olefinen unter Anwesenheit von weiteren phosphorhaltigen Liganden.
DE10053272A 2000-10-27 2000-10-27 Neue Bisphosphitverbindungen und deren Metallkomplexe Withdrawn DE10053272A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10053272A DE10053272A1 (de) 2000-10-27 2000-10-27 Neue Bisphosphitverbindungen und deren Metallkomplexe
EP01122420A EP1201675B1 (de) 2000-10-27 2001-09-20 Bisphosphitverbindungen und deren Metallkomplexe
AT01122420T ATE258183T1 (de) 2000-10-27 2001-09-20 Bisphosphitverbindungen und deren metallkomplexe
ES01122420T ES2211710T3 (es) 2000-10-27 2001-09-20 Compuestos de bifosfito y sus complejos metalicos.
DE50101350T DE50101350D1 (de) 2000-10-27 2001-09-20 Bisphosphitverbindungen und deren Metallkomplexe
KR1020010065889A KR100732352B1 (ko) 2000-10-27 2001-10-25 신규한 비스포스파이트 화합물 및 이의 금속 착화합물
JP2001329624A JP4141129B2 (ja) 2000-10-27 2001-10-26 ビスホスフィット、その金属錯体、及びビスホスフィット及び錯体の使用
US09/984,263 US6570033B2 (en) 2000-10-27 2001-10-29 Bisphosphite compounds and their metal complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10053272A DE10053272A1 (de) 2000-10-27 2000-10-27 Neue Bisphosphitverbindungen und deren Metallkomplexe

Publications (1)

Publication Number Publication Date
DE10053272A1 true DE10053272A1 (de) 2002-05-08

Family

ID=7661243

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10053272A Withdrawn DE10053272A1 (de) 2000-10-27 2000-10-27 Neue Bisphosphitverbindungen und deren Metallkomplexe
DE50101350T Expired - Lifetime DE50101350D1 (de) 2000-10-27 2001-09-20 Bisphosphitverbindungen und deren Metallkomplexe

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50101350T Expired - Lifetime DE50101350D1 (de) 2000-10-27 2001-09-20 Bisphosphitverbindungen und deren Metallkomplexe

Country Status (7)

Country Link
US (1) US6570033B2 (de)
EP (1) EP1201675B1 (de)
JP (1) JP4141129B2 (de)
KR (1) KR100732352B1 (de)
AT (1) ATE258183T1 (de)
DE (2) DE10053272A1 (de)
ES (1) ES2211710T3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210918A1 (de) * 2002-03-13 2003-10-02 Oxeno Olefinchemie Gmbh Verbessertes Verfahren zur Herstellung von Bisphosphiten
WO2005063781A1 (de) * 2003-12-23 2005-07-14 Oxeno Olefinchemie Gmbh Verfahren zur herstellung von organoacylphosphiten
WO2008012128A1 (de) * 2006-07-26 2008-01-31 Evonik Oxeno Gmbh Katalysatorvorstufe für einen rh-komplexkatalysator
DE102007023514A1 (de) 2007-05-18 2008-11-20 Evonik Oxeno Gmbh Stabile Katalysatorvorstufe von Rh-Komplexkatalysatoren
WO2010097376A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058383A1 (de) * 2000-11-24 2002-05-29 Oxeno Olefinchemie Gmbh Neue Phosphininverbindungen und deren Metallkomplexe
DE10140083A1 (de) * 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und deren Metallkomplexe
DE10140072A1 (de) * 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Bisphosphitverbindungen und deren Metallkomplexe
DE10140086A1 (de) 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und neue Phosphitmetallkomplexe
US7323586B2 (en) * 2001-09-26 2008-01-29 Oxeno Olefinchemie Gmbh Phthalic acid alkyl ester mixtures with controlled viscosity
DE10149348A1 (de) 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen
WO2003078444A2 (en) * 2002-03-11 2003-09-25 Union Carbide Chemicals & Plastics Technology Corporation Bisphosphite ligands for carbonylation processes
KR20040095305A (ko) * 2002-03-22 2004-11-12 가부시키가이샤 구라레 비스포스핀, 이의 제조방법 및 이의 용도
DE10220801A1 (de) * 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
DE10223593A1 (de) * 2002-05-27 2003-12-11 Degussa Hydroxydiphosphine und deren Verwendung in der Katalyse
DE10225565A1 (de) 2002-06-10 2003-12-18 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen
US6664427B1 (en) * 2002-08-29 2003-12-16 E. I. Du Pont De Nemours And Company Process for preparing aldehyde compounds
WO2004024661A1 (de) 2002-08-31 2004-03-25 Oxeno Olefinchemie Gmbh Verfahren zur herstellung von aldehyden durch hydroformylierung von olefinisch ungesättigten verbindungen, katalysiert durch unmodifizierte metallkomplexe in gegenwart von cyclischen kohlensäureestern
PL206145B1 (pl) 2002-08-31 2010-07-30 Oxeno Olefinchemie Gmbhoxeno Olefinchemie Gmbh Sposób hydroformylowania związków nienasyconych olefinowo, w szczególności olefin, w obecności cyklicznych estrów kwasów karboksylowych
DE60319725T2 (de) * 2002-10-15 2009-01-29 Dow Technology Investments LLC, Midland Bischelatligand und seine verwendung in carbonylierungs-verfahren
FR2847898A1 (fr) * 2002-12-02 2004-06-04 Rhodia Polyamide Intermediates Procede de fabrication de composes nitriles a partir de composes a insaturation ethylenique
DE10257499A1 (de) 2002-12-10 2004-07-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen
DE10329042A1 (de) * 2003-06-27 2005-01-13 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen aus Crack-C4
US20050042182A1 (en) * 2003-08-13 2005-02-24 Moshe Arkin Topical compositions of urea
US20050037040A1 (en) * 2003-08-13 2005-02-17 Moshe Arkin Topical compositions of urea and ammonium lactate
US20050036953A1 (en) * 2003-08-13 2005-02-17 Moshe Arkin Topical compositions of ammonium lactate
US20050020552A1 (en) * 2003-07-16 2005-01-27 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US20050025833A1 (en) * 2003-07-16 2005-02-03 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US20050042268A1 (en) * 2003-07-16 2005-02-24 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
DE10359628A1 (de) * 2003-12-18 2005-07-21 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Herstellung von 1-Olefinen aus 2-Hydroxyalkanen
DE10360771A1 (de) 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von dreiwertigen Organophosphor-Verbindungen
DE102004033410A1 (de) * 2004-02-14 2005-09-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Olefinen mit 8 bis 12 Kohlenstoffatomen
DE102004013514A1 (de) * 2004-03-19 2005-10-06 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen in Anwesenheit von neuen phosphororganischen Verbindungen
JP4994836B2 (ja) * 2004-03-23 2012-08-08 株式会社クラレ ビスホスファイトおよび該ビスホスファイトを用いたアルデヒド化合物の製造方法
DE102004021128A1 (de) * 2004-04-29 2005-11-24 Oxeno Olefinchemie Gmbh Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator
DE102005036039A1 (de) 2004-08-28 2006-03-02 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 2,7-Octadienylderivaten
DE102004063673A1 (de) * 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas
DE102005014055A1 (de) * 2005-03-23 2006-09-28 Degussa Ag Unsymmetrisch substituierte Phospholankatalysatoren
US7259123B2 (en) * 2005-04-08 2007-08-21 Shell Oil Company Catalytic trimerization and tetramerization of olefinic monomers
DE102005035816A1 (de) * 2005-07-30 2007-02-01 Oxeno Olefinchemie Gmbh Verfahren zur Hydrierung von Oxo-Aldehyden mit hohen Estergehalten
DE102005042464A1 (de) * 2005-09-07 2007-03-08 Oxeno Olefinchemie Gmbh Carbonylierungsverfahren unter Zusatz von sterisch gehinderten sekundären Aminen
US7671231B2 (en) 2006-01-18 2010-03-02 Lloyd Michael C Process for making amino acids
CA2649019C (en) 2006-04-04 2014-07-08 Kuraray Co., Ltd. Method for producing aldehyde using bisphosphite and group 8-10 metal compound, and such bisphosphite
DE102006058682A1 (de) 2006-12-13 2008-06-19 Evonik Oxeno Gmbh Bisphosphitliganden für die übergangsmetallkatalysierte Hydroformylierung
DE102007006442A1 (de) 2007-02-05 2008-08-07 Evonik Oxeno Gmbh Gemisch von Diestern von Dianhydrohexitolderivaten mit Carbonsäuren der Summenformel C8H17COOH, Verfahren zur Herstellung dieser Diester und Verwendung dieser Gemische
JP5298119B2 (ja) * 2007-04-09 2013-09-25 エルジー・ケム・リミテッド ホスファイト配位子を含む触媒組成物およびこれを用いたヒドロホルミル化方法
DE102008002187A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil
DE102008002188A1 (de) * 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung
DE102009028975A1 (de) 2009-08-28 2011-03-03 Evonik Oxeno Gmbh Esterderivate der 2,5-Furandicarbonsäure und ihre Verwendung als Weichmacher
DE102009029050A1 (de) 2009-08-31 2011-03-03 Evonik Oxeno Gmbh Organophosphorverbindungen basierend auf Tetraphenol(TP)-substituierten Strukturen
DE102011002639A1 (de) 2011-01-13 2012-07-19 Evonik Oxeno Gmbh Verfahren zur Herstellung von Biphephos
DE102011085883A1 (de) * 2011-11-08 2013-05-08 Evonik Oxeno Gmbh Neue Organophosphorverbindungen auf Basis von Anthracentriol
DE102013217166A1 (de) * 2013-08-28 2015-03-05 Evonik Industries Ag Verfahren zur Hydroformylierung von ungesättigten Verbindungen durch SILP-Katalyse
EP3029056B1 (de) 2014-12-04 2018-11-07 Evonik Degussa GmbH Bisphosphite die einen unsymmetrischen biaryl-zentral-baustein aufweisen
EP3293190A1 (de) * 2016-09-07 2018-03-14 Evonik Degussa GmbH Phosphite mit einem silyloxyphenol
EP3816172B1 (de) * 2019-10-28 2021-12-22 Evonik Operations GmbH Phosphazyklische phosphite aus dem enol des 1-hydroxy-2-acetonaphthons

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668651A (en) * 1985-09-05 1987-05-26 Union Carbide Corporation Transition metal complex catalyzed processes
DE4026406A1 (de) * 1990-08-21 1992-02-27 Basf Ag Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden
US5663403A (en) * 1995-01-24 1997-09-02 Mitsubishi Chemical Corporation Bisphosphite compound and method for producing aldehydes
JP3829351B2 (ja) * 1995-01-24 2006-10-04 三菱化学株式会社 ビスホスファイト化合物およびそれを用いるアルデヒド類の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210918A1 (de) * 2002-03-13 2003-10-02 Oxeno Olefinchemie Gmbh Verbessertes Verfahren zur Herstellung von Bisphosphiten
DE10210918B4 (de) * 2002-03-13 2004-06-03 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Bisphosphiten
WO2005063781A1 (de) * 2003-12-23 2005-07-14 Oxeno Olefinchemie Gmbh Verfahren zur herstellung von organoacylphosphiten
US7345185B2 (en) 2003-12-23 2008-03-18 Oxeno Olefinchemie Gmbh Method for producing organoacylphosphites
CN1898256B (zh) * 2003-12-23 2010-05-26 奥克森诺奥勒芬化学股份有限公司 有机酰基亚磷酸酯的制备方法
WO2008012128A1 (de) * 2006-07-26 2008-01-31 Evonik Oxeno Gmbh Katalysatorvorstufe für einen rh-komplexkatalysator
DE102007023514A1 (de) 2007-05-18 2008-11-20 Evonik Oxeno Gmbh Stabile Katalysatorvorstufe von Rh-Komplexkatalysatoren
WO2010097376A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom
DE102009001225A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur Anreicherung eines Homogenkatalysators aus einem Prozessstrom

Also Published As

Publication number Publication date
JP2002193987A (ja) 2002-07-10
EP1201675B1 (de) 2004-01-21
DE50101350D1 (de) 2004-02-26
KR100732352B1 (ko) 2007-06-27
US20020111487A1 (en) 2002-08-15
EP1201675A1 (de) 2002-05-02
US6570033B2 (en) 2003-05-27
ES2211710T3 (es) 2004-07-16
JP4141129B2 (ja) 2008-08-27
KR20020033058A (ko) 2002-05-04
ATE258183T1 (de) 2004-02-15

Similar Documents

Publication Publication Date Title
EP1201675B1 (de) Bisphosphitverbindungen und deren Metallkomplexe
EP1209164B1 (de) Neue Phosphininverbindung und deren Metallkomplexe
EP1294731B1 (de) Bisphosphitverbindungen, deren metallkomplexe und verwendung der verbindungen und komplexe in der olefinhydroformylierung
EP1417212B1 (de) NEUE PHOSPHITVERBINDUNGEN UND DEREN Rh-KOMPLEXE
EP1586577B1 (de) Neue Phosphitverbindungen und neue Phosphitmetallkomplexe
EP1924357B1 (de) Carbonylierungsverfahren unter zusatz von sterisch gehinderten sekundären aminen
EP2091958B1 (de) Bisphosphitliganden für die übergangsmetallkatalysierte hydroformylierung
EP2748174B1 (de) Neue organophosphorverbindungen auf basis von anthracentriol
WO2008012128A1 (de) Katalysatorvorstufe für einen rh-komplexkatalysator
WO2005090276A1 (de) Verfahren zur hydroformylierung von olefinen in anwesenheit von phosphororganischen verbindungen
WO2008141853A1 (de) Stabile katalysatorvorstufe von rh-komplexkatalysatoren
WO2003016322A1 (de) Neue bisphosphitverbindungen und deren metallkomplexe

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee