CN212157144U - Biomass low nitrogen gasification device - Google Patents
Biomass low nitrogen gasification device Download PDFInfo
- Publication number
- CN212157144U CN212157144U CN201921271979.0U CN201921271979U CN212157144U CN 212157144 U CN212157144 U CN 212157144U CN 201921271979 U CN201921271979 U CN 201921271979U CN 212157144 U CN212157144 U CN 212157144U
- Authority
- CN
- China
- Prior art keywords
- combustion
- inlet
- gasification device
- biomass
- flue gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 238000002309 gasification Methods 0.000 title claims abstract description 31
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 22
- 238000002485 combustion reaction Methods 0.000 claims abstract description 68
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000003546 flue gas Substances 0.000 claims abstract description 43
- 230000001172 regenerating effect Effects 0.000 claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 19
- 239000000446 fuel Substances 0.000 claims abstract description 8
- 239000000779 smoke Substances 0.000 claims abstract description 6
- 238000005338 heat storage Methods 0.000 claims description 26
- 239000000919 ceramic Substances 0.000 claims description 17
- 229910001018 Cast iron Inorganic materials 0.000 claims description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 4
- 235000011152 sodium sulphate Nutrition 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 239000002918 waste heat Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Abstract
本实用新型公开一种生物质低氮气化装置,其包括气化炉、燃烧器和锅炉,所述气化炉的出气口通过管道与所述燃烧器的燃料进口连接,所述燃烧器安装在所述锅炉上,所述锅炉设置两个排烟口通过管道与两个蓄热式换热器烟气侧和烟囱依次连接;预热风管分别与两个蓄热式换热器空气侧连接后分别与辅助混合室连接,所述辅助混合室设置第一出口与混合器的第一入口连接,所述辅助混合室设置第二出口与气化炉高温空气入口和燃烧器的助燃空气第二入口连接,所述混合器的出口与燃烧器的助燃空气第一入口连接;烟囱通过管道和风机与气化炉的烟气入口和混合器的第二入口连接。本实用新型的有益效果是:有效节约能源,提高生物质气转换率,可达70‑78%;燃烧充分,可以有效的降低Nox排放,Nox排放可以控制在80‑150mg。
The utility model discloses a biomass low-nitrogen gasification device, which comprises a gasifier, a burner and a boiler. The gas outlet of the gasifier is connected with the fuel inlet of the burner through a pipeline, and the burner is installed in the On the boiler, the boiler is provided with two smoke exhaust ports which are connected to the flue gas side and the chimney of the two regenerative heat exchangers in turn through pipes; the preheating air pipes are respectively connected to the air sides of the two regenerative heat exchangers. Afterwards, they are respectively connected with auxiliary mixing chambers. The auxiliary mixing chamber is provided with a first outlet and is connected with the first inlet of the mixer. The inlet is connected, and the outlet of the mixer is connected with the first inlet of combustion-supporting air of the burner; the chimney is connected with the flue gas inlet of the gasifier and the second inlet of the mixer through pipes and fans. The beneficial effects of the utility model are as follows: the energy is effectively saved, the biomass gas conversion rate is improved, up to 70-78%; the combustion is sufficient, the NOx emission can be effectively reduced, and the NOx emission can be controlled at 80-150mg.
Description
技术领域technical field
本实用新型涉及生物质气化炉和锅炉系统领域,具体地说是一种生物质低氮气化装置。The utility model relates to the field of biomass gasifiers and boiler systems, in particular to a biomass low-nitrogen gasification device.
背景技术Background technique
矿物燃料日益短缺,其导致的环境问题日趋严峻,生物能源作为可替代能源之一,越发受到重视。生物质能具有独特的优点:可再生性,低污染性,广泛分布性和总量丰富。开发利用生物质能等具有环境友好、可再生和资源十分丰富的清洁能源资源,是解决中国石油、煤炭短缺,保障国家能源安全,保护生态环境,提高我国持续发展能力的主要战略措施。Fossil fuels are becoming increasingly scarce, and the environmental problems caused by them are becoming more and more serious. As one of the alternative energy sources, bioenergy has received more and more attention. Biomass energy has unique advantages: renewable, low pollution, widely distributed and abundant in total. The development and utilization of biomass energy and other environmentally friendly, renewable and resource-rich clean energy resources are the main strategic measures to solve China's oil and coal shortages, ensure national energy security, protect the ecological environment, and improve my country's sustainable development capabilities.
生物能源含氧量多、硫含量低、灰分低,燃烧后硫氧化物和氮氧化物排放浓度低。虽然生物质中N含量小于煤,但由于生物质的低热值,以能量为标准,生物质的N含量与煤同在一个数量级上,生物质燃烧产物的氮氧化物排放量不容小觑。Bioenergy has high oxygen content, low sulfur content, low ash content, and low emission concentrations of sulfur oxides and nitrogen oxides after combustion. Although the N content of biomass is lower than that of coal, due to the low calorific value of biomass, the N content of biomass is on the same order of magnitude as that of coal, and the nitrogen oxide emissions of biomass combustion products should not be underestimated.
目前,生物质燃料在供热系统中有两种燃烧方式:一种采用生物质锅炉直接燃烧;另一种是采用气化后燃烧。直接燃烧因锅炉本体结构的问题导致粉尘和NOx远远超标而无法达到环保排放要求;而采用气化后燃烧方式也存在气化率较低(普遍低于60%),NOx超标严重等问题,急待改进。目前较多的是采用气化后再输送的方式燃烧,但其工艺较复杂,投资也较大,还存在气化率较低和NOx超标严重等问题。At present, biomass fuels have two combustion methods in heating systems: one is direct combustion in biomass boilers; the other is combustion after gasification. Due to the problem of the structure of the boiler body, the direct combustion cannot meet the environmental protection emission requirements due to the fact that the dust and NOx far exceed the standard; while the post-gasification combustion method also has problems such as low gasification rate (generally lower than 60%) and serious NOx exceeding the standard. Awaiting improvement. At present, the method of gasification and then transportation is often used for combustion, but the process is more complicated, the investment is also large, and there are still problems such as low gasification rate and serious NOx exceeding the standard.
实用新型内容Utility model content
本实用新型的目的是针对以上所述现有气化技术存在的不足,提供一种可以提高生物质气转换率,有效降低NOx排放的生物质低氮气化装置。The purpose of the present invention is to provide a biomass low-nitrogen gasification device that can improve the conversion rate of biomass gas and effectively reduce the emission of NOx, aiming at the shortcomings of the existing gasification technologies mentioned above.
为了实现上述目的,本实用新型提供如下技术方案:一种生物质低氮气化装置,其包括气化炉、燃烧器和锅炉,所述气化炉的出气口通过管道与所述燃烧器的燃料进口连接,所述燃烧器安装在所述锅炉上,所述锅炉设置两个排烟口分别与蓄热式换热器的烟气侧入口连接,所述蓄热式换热器的烟气侧出口通过管道与烟囱连接,将烟气通过烟囱排放;预热风管分别与两个蓄热式换热器的空气侧接口连接后分别与辅助混合室连接,所述辅助混合室设置第一出口与混合器的第一入口连接,所述辅助混合室设置第二出口与气化炉高温空气入口和燃烧器的助燃空气第二入口连接,所述混合器的出口与燃烧器的助燃空气第一入口连接;烟囱通过管道和风机与气化炉的烟气入口和混合器的第二入口连接。In order to achieve the above purpose, the present utility model provides the following technical solutions: a biomass low-nitrogen gasification device, which includes a gasifier, a burner and a boiler, and the gas outlet of the gasifier is connected to the fuel of the burner through a pipeline. Inlet connection, the burner is installed on the boiler, and the boiler is provided with two smoke exhaust ports respectively connected to the inlet of the flue gas side of the regenerative heat exchanger, and the flue gas side of the regenerative heat exchanger is The outlet is connected to the chimney through a pipe, and the flue gas is discharged through the chimney; the preheating air duct is respectively connected to the air side interface of the two regenerative heat exchangers and then connected to the auxiliary mixing chamber, and the auxiliary mixing chamber is provided with a first outlet It is connected with the first inlet of the mixer, the auxiliary mixing chamber is provided with a second outlet and is connected with the high temperature air inlet of the gasifier and the second inlet of the combustion-supporting air of the burner, and the outlet of the mixer is connected with the first inlet of the combustion-supporting air of the burner. The inlet is connected; the chimney is connected with the flue gas inlet of the gasifier and the second inlet of the mixer through pipes and fans.
所述蓄热式换热器的烟气侧入口的管道和烟气侧出口管道上均设置控制阀。Control valves are provided on both the flue gas side inlet pipe and the flue gas side outlet pipe of the regenerative heat exchanger.
所述蓄热式换热器的空气侧入口管道和空气侧出口管道上均设置控制阀。Control valves are provided on both the air-side inlet pipe and the air-side outlet pipe of the regenerative heat exchanger.
所述蓄热式换热器包括壳体和设置在壳体内的蓄热介质,所述蓄热介质吸收高温烟气热量,用于加热进入的低温助燃空气。The regenerative heat exchanger includes a shell and a heat storage medium arranged in the shell, and the heat storage medium absorbs the heat of the high-temperature flue gas and is used to heat the incoming low-temperature combustion-supporting air.
所述蓄热介质在壳体内分三层设置,从烟气侧入口到烟气侧出口依次设置有三层,分别是填充多孔相变陶瓷球的第一层,填充蓄热陶瓷球的第二层和填充蓄热铸铁球的第三层。The heat storage medium is arranged in three layers in the casing, and three layers are arranged in sequence from the inlet of the flue gas side to the outlet of the flue gas side. And fill the third layer of regenerative cast iron balls.
所述多孔相变陶瓷球由多孔陶瓷外壳和封装在外壳内腔的硫酸钠组成,多孔相变陶瓷球平均外径在30-50mm,其中内腔内径为 20mm。The porous phase-change ceramic ball is composed of a porous ceramic shell and sodium sulfate encapsulated in the inner cavity of the shell. The average outer diameter of the porous phase-change ceramic ball is 30-50 mm, and the inner diameter of the inner cavity is 20 mm.
所述第一层、第二层和和第三层在壳体内空间的高度比为1∶2∶2。The height ratio of the first layer, the second layer and the third layer in the inner space of the casing is 1:2:2.
所述燃烧器包括进气管、燃烧外腔和燃烧内腔,所述进气管设置第一开口与燃烧外腔连接相通,所述进气管设置第二开口与燃烧内腔切向连通;所述燃烧外腔设置在燃烧内腔外的夹套空间内,所述燃烧外腔的末端与燃烧内腔的末端相通。The burner includes an intake pipe, an outer combustion chamber and an inner combustion chamber, the intake pipe is provided with a first opening to communicate with the combustion outer chamber, and the intake pipe is provided with a second opening in tangential communication with the combustion inner chamber; the combustion The outer cavity is arranged in the jacket space outside the combustion inner cavity, and the end of the combustion outer cavity communicates with the end of the combustion inner cavity.
所述燃烧外腔与第一开口之间设置预混腔,所述预混腔与燃烧外腔之间设置均风板,所述预混腔与第一开口相通。设置均风板将生物质气均匀的分布在所述燃烧外腔中,使燃烧更加均匀,燃烧效率得到提高。A premixing cavity is arranged between the combustion outer cavity and the first opening, an air equalizing plate is arranged between the premixing cavity and the combustion outer cavity, and the premixing cavity is communicated with the first opening. The provision of an air uniform plate distributes the biomass gas evenly in the combustion outer cavity, so that the combustion is more uniform and the combustion efficiency is improved.
所述均风板可以是多孔板。The air equalizing plate may be a perforated plate.
与现有技术相比,本实用新型的有益效果是:可以有效节约能源,提高生物质气转换率,转化率可以达到70-78%;燃烧充分,可以有效的降低Nox排放,使其排放在国家标准以下,Nox排放可以控制在80-150mg。Compared with the prior art, the beneficial effects of the utility model are: the energy can be effectively saved, the conversion rate of biomass gas can be improved, and the conversion rate can reach 70-78%; Below the national standard, NOx emissions can be controlled at 80-150mg.
附图说明Description of drawings
图1为本实用新型生物质低氮气化装置的系统架构示意图;1 is a schematic diagram of the system architecture of the biomass low-nitrogen gasification device of the present invention;
图2为本实用新型生物质低氮气化装置中燃烧器的轴向剖视示意图;Fig. 2 is the axial sectional schematic diagram of the burner in the biomass low nitrogen gasification device of the present invention;
图3为本实用新型生物质低氮气化装置中燃烧器的左视示意图;Fig. 3 is the left side schematic diagram of the burner in the biomass low nitrogen gasification device of the present invention;
图4为本实用新型生物质低氮气化装置中蓄热式换热器的剖视图。4 is a cross-sectional view of a regenerative heat exchanger in the biomass low nitrogen gasification device of the present invention.
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present utility model will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present utility model, rather than all the implementations. example. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
一种生物质低氮气化装置,如图1所示,其包括气化炉1、燃烧器2和锅炉3,所述气化炉1的出气口通过管道与所述燃烧器2的燃料进口连接,所述燃烧器2安装在所述锅炉3上,所述锅炉3设置两个排烟口分别与蓄热式换热器(41,42)的烟气侧入口连接,所述蓄热式换热器(41,42)的烟气侧出口通过管道与烟囱5连接,将换热后的烟气通过烟囱5排放。预热风管设置分支管路分别与两个蓄热式换热器(41,42)的空气侧接口连接后分别与辅助混合室7连接,将被蓄热式换热器(41,42)加热的空气在辅助混合室7进行汇集,目的是平衡两个蓄热式换热器(41,42)的预热空气温度,并保证混合器8始终具有热空气量,可以不间断的供给混合器8。所述辅助混合室7可以是一个空腔,用于存储和缓冲预热空气。所述辅助混合室7设置第一出口与混合器8的第一入口连接,所述烟囱5设置管路通过风机6与混合器8的第二入口连接,用于引入部分烟气与高温助燃空气在混合器8内进行混合。所述混合器8优选气体混合器。所述混合器8出口与燃烧器2的助燃空气第一入口28连接。所述辅助混合室7设置第二出口与气化炉1的高温空气入口和燃烧器2的助燃空气第二入口29连接,利用高温空气进行气化,可以提高气化温度,从而提高生物质气的燃烧温度,进而有效提高气化效率。烟囱5 通过管道和风机6与气化炉1的烟气入口连接,利用烟气余热对气化炉1内生物质进行预热,从而有效减少氮氧化物的排放。A biomass low nitrogen gasification device, as shown in Figure 1, includes a gasifier 1, a
其中,所述蓄热式换热器(41,42)的烟气侧入口管道和烟气侧出口管道上均设置控制阀9。所述蓄热式换热器(41,42)的空气侧入口管道和空气侧出口管道均设置控制阀9,通过控制阀可以调控烟气或者助燃空气的流向。所述控制阀9优选电磁阀。Wherein, a control valve 9 is provided on both the flue gas side inlet pipe and the flue gas side outlet pipe of the regenerative heat exchanger (41, 42). The air side inlet pipe and the air side outlet pipe of the regenerative heat exchanger (41, 42) are both provided with control valves 9, through which the flow direction of flue gas or combustion-supporting air can be regulated. The control valve 9 is preferably a solenoid valve.
所述蓄热式换热器(41,42)如图4所示,其包括壳体和设置在壳体内的蓄热介质,所述壳体上设置烟气侧入口48、烟气侧出口49、空气侧入口47和空气侧出口46。所述蓄热介质吸收高温烟气热量,然后用来加热进入的低温助燃空气。其中,所述蓄热介质在壳体内分层设置,以便于提高换热效率。所述蓄热介质在壳体内分三层设置,从烟气侧入口48到烟气侧出口49依次设置有三层,依次分别是填充多孔相变陶瓷球的第一层,填充蓄热陶瓷球的第二层和填充蓄热铸铁球的第三层。第一层多孔相变陶瓷球,具有耐火功能,且热容量高、传热快,可将烟气余热储存在作为蓄热体的陶瓷球内的相变介质中,并通过相变介质的熔化来吸收高温烟气的余热,通过相变介质的凝固来释放热量加热低温助燃空气;经过第一次换热的烟气依次通过蓄热量相对小的蓄热陶瓷球换热后再通过蓄热量更小的铸铁球进行换热,可以有效的吸收烟气余热,提高换热效率。其中,所述多孔相变陶瓷球由多孔陶瓷外壳和封装在外壳内腔的硫酸钠组成,硫酸钠吸热后在外壳内腔产生相变蓄热,蓄热量非常高。多孔相变陶瓷球平均外径在 30-50mm,其中内腔内径为20mm左右。其中,第一层、第二层和和第三层在壳体内空间的高度比为1∶2∶2,这样可以最大限度与烟气换热,吸收烟气余热,另外也可以最大限度的与空气进行换热,加热空气。The regenerative heat exchanger (41, 42) is shown in FIG. 4, which includes a shell and a heat storage medium arranged in the shell, and the shell is provided with a flue
所述燃烧器如图2-3所示,其包括进气管21、燃烧外腔25和燃烧内腔26,所述进气管21设置第一开口22与燃烧外腔25连接,将部分生物质气输入燃烧外腔25进行燃烧;所述进气管21设置第二开口27与燃烧内腔26切向连通,将其余生物质气输入燃烧内腔 26进行旋转燃烧;这样可以形成内外层分级燃烧,形成双重火焰叠加,燃烧更加充分,可以有效提高燃烧效率并降低NOx的排放。所述燃烧外腔25设置在燃烧内腔26外与壳体形成的夹套空间内,所述燃烧外腔25的末端与燃烧内腔26的末端相通,使内外两层燃烧的火焰在出口处叠加,进一步提高燃烧效率。在所述燃烧外腔25与第一开口22之间设置预混腔23,所述预混腔23与燃烧外腔25之间设置均风板24,所述预混腔23与第一开口22相通,通过设置的均风板24将生物质气均匀的分布在所述燃烧外腔25中,使燃烧更加均匀,燃烧效率得到提高。在所述第一开口22处设置引导块30,用于将燃料在引导块的引导下在均风板24中均匀溢出,以达到燃料均匀分布的目的。其中,所述均风板24可以是多孔板。所述燃烧外腔25设置助燃空气第一入口28,所述助燃空气第一入口28与所述燃烧外腔25可以为切向连接。助燃空气第一入口28引用的是高温空气与烟气混合气,可以有效的提高燃烧效率。所述燃烧内腔26设置助燃空气第二入口29,所述助燃空气第二入口29与燃烧内腔26 连接。助燃空气第二入口29引用的是高温空气,可以有效提高燃烧温度以保证燃料稳定着火,与燃烧外腔25火焰叠加,有效降低氮氧化物排放。As shown in Figures 2-3, the burner includes an
本实用新型锅炉两个排放口分别与蓄热式换热器(41,42)的进风口连接,两个所述换蓄热式换热器(41,42)的排风口连接烟囱5,将处理后的废气排放。在工作时,当锅炉排放废气从第一蓄热式换热器41进入烟囱5,助燃空气通过第二蓄热式换热器42后进入辅助混合室7;当锅炉排放废气从第二蓄热式换热器42进入烟囱5,助燃空气通过第一蓄热式换热器41后进入辅助混合室7,两个所述换蓄热式换热器(41,42)进行切换式换热,以提高换热效率。锅炉排放烟气经过蓄热介质由排风口输出烟囱5中,高温烟气在经过蓄热式换热器(41,42)内的蓄热介质时将蓄热介质加热到700℃-800℃。在设定时间后通过控制阀9控制切换,关闭当前蓄热式换热器(41,42)的进气控制阀9,开启助燃空气管控制阀9,开启另一蓄热式换热器(41,42)进气控制阀9,并且关闭其控制阀9;排放废气被所述蓄热式换热器(41,42)中的蓄热介质吸热后温度降低到 100℃-150℃,然后排放到烟囱5中,同时加热所述蓄热式换热器 (41,42)内的蓄热介质。助燃空气被所述蓄热式换热器(41,42) 中的蓄热介质加热后温度上升到650℃-750℃后进入辅助混合室7。在烟气排放切换中充分利用了燃烧后的烟气余热对助燃空气进行预热,可以有效节约能源,提高处理效果。The two discharge ports of the boiler of the utility model are respectively connected with the air inlets of the regenerative heat exchangers (41, 42), and the air exhaust ports of the two regenerative heat exchangers (41, 42) are connected to the chimney 5, Discharge the treated exhaust gas. During operation, when the boiler exhaust gas enters the chimney 5 from the first regenerative heat exchanger 41, the combustion-supporting air enters the auxiliary mixing chamber 7 after passing through the second
本实用新型所述的气化炉按NY/T2907-2016《生物质常压固定床气化炉技术条件》,NY/T1417-2007《秸秆气化炉质量评价技术规范》和GB/T10180-2017《工业锅炉热工性能实验规程》标准测试方法测得气化效率达到70%以上,气体热值为4.48MJ/Nm3,气体产率为2.5m3/kg.The gasifier of the utility model is in accordance with NY/T2907-2016 "Technical Conditions for Biomass Atmospheric Pressure Fixed Bed Gasifier", NY/T1417-2007 "Technical Specification for Quality Evaluation of Straw Gasifier" and GB/T10180-2017 The standard test method of "Experimental Regulations on Thermal Performance of Industrial Boilers" shows that the gasification efficiency is over 70%, the gas calorific value is 4.48MJ/Nm3, and the gas yield is 2.5m3/kg.
本实用新型生物质低氮气化装置的烟气排放参照HJ57-2017 《固定污染源废气-二氧化硫的测定-定电位电解法》, GB/13271-2047《锅炉大气污染物排放标准》,GB/T16157-1996 《固定污染源排气中颗粒物和气态污染物采样方法》, GB/T10180-2017《工业锅炉热工性能实验规程》,GB/5468-1991 《锅炉烟尘测试方法》标准检测得到的数据是,氮氧化物控制在 80-150mg/m3之间,一般检测平均值在130mg/m3,含氧量为 5.1-5.4%。The flue gas emission of the biomass low nitrogen gasification device of the utility model refers to HJ57-2017 "Fixed Pollution Source Waste Gas-Determination of Sulfur Dioxide-Constant Potential Electrolysis", GB/13271-2047 "Boiler Air Pollutant Emission Standard", GB/T16157- 1996 "Sampling Methods for Particulate Matter and Gaseous Pollutants in Exhaust from Stationary Pollution Sources", GB/T10180-2017 "Experimental Regulations on Thermal Performance of Industrial Boilers", GB/5468-1991 "Test Methods for Boiler Smoke and Dust" The data obtained by the standard test are, nitrogen The oxide is controlled between 80-150mg/m3, the average detection value is generally 130mg/m3, and the oxygen content is 5.1-5.4%.
以上所述者,仅为本新型的较佳实施例而已,当不能以此限定本新型实施的范围,即大凡依本新型申请专利范围及新型说明内容所作的简单的等效变化与修饰,皆仍属本新型专利涵盖的范围内。The above are only preferred embodiments of the present invention, and should not limit the scope of implementation of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the description of the new model are all It still falls within the scope of the new patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921271979.0U CN212157144U (en) | 2019-08-07 | 2019-08-07 | Biomass low nitrogen gasification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921271979.0U CN212157144U (en) | 2019-08-07 | 2019-08-07 | Biomass low nitrogen gasification device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212157144U true CN212157144U (en) | 2020-12-15 |
Family
ID=73703599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921271979.0U Expired - Fee Related CN212157144U (en) | 2019-08-07 | 2019-08-07 | Biomass low nitrogen gasification device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212157144U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110513687A (en) * | 2019-08-07 | 2019-11-29 | 广东工业大学 | Biomass high temperature gasification and low nitrogen combustion comprehensive utilization system |
CN113154412A (en) * | 2021-04-17 | 2021-07-23 | 浙江宜可欧环保科技有限公司 | Resource treatment method for pyrolysis desorption gas |
-
2019
- 2019-08-07 CN CN201921271979.0U patent/CN212157144U/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110513687A (en) * | 2019-08-07 | 2019-11-29 | 广东工业大学 | Biomass high temperature gasification and low nitrogen combustion comprehensive utilization system |
CN113154412A (en) * | 2021-04-17 | 2021-07-23 | 浙江宜可欧环保科技有限公司 | Resource treatment method for pyrolysis desorption gas |
CN113154412B (en) * | 2021-04-17 | 2024-08-16 | 浙江宜可欧环保科技有限公司 | Recycling treatment method of pyrolysis desorption gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020204370B2 (en) | Comprehensive utilization system for high-temperature gasification and low-nitrogen combustion of biomass | |
CN103423869B (en) | A kind of Horizontal type circulating fluid bed heat-conducting oil furnace | |
CN205783767U (en) | A kind of fume afterheat high efficiente callback utilizes boiler | |
CN101285576B (en) | Low calorific value gas high temperature air combustion system and method | |
CN100467946C (en) | Methanol-to-hydrogen fuel combustion system for industrial furnaces and thermal power stations | |
CN212157144U (en) | Biomass low nitrogen gasification device | |
CN206478864U (en) | A kind of multi fuel high-efficiency cleaning condensing combustion stove | |
CN102235684A (en) | Three-return-stroke reverse-combustion biomass superconductive hot half gasification furnace | |
CN201866788U (en) | Direct exchange type heat exchanger | |
CN207422244U (en) | Carbon black tail gas burning boiler with the processing of carbon black dry waste gas | |
CN107559812A (en) | Modular multistage phase-change heat-storage high-temperature air burning energy saver | |
CN209459021U (en) | A central heating system using three waste boilers | |
CN203549758U (en) | Carbon calciner waste heat boiler | |
CN202730150U (en) | Power generation system utilizing waste heat of waste gas at tail of blast furnace hot blast stove | |
CN201170547Y (en) | Oxygen-increasing combustion-supporting device for circulating fluidized bed coal-fired power boiler | |
CN202012948U (en) | Three-return counter heating type biomass super-thermal-conductive semi-gasification furnace | |
CN113654037B (en) | Horizontal internal combustion wet-back type boiler shell boiler and working method thereof | |
CN204438210U (en) | Superconductive environmental protection energy-saving heater | |
CN209165371U (en) | High-efficient superheated system of saturated steam | |
CN201827872U (en) | Smokeless energy saving horizontal counter-burning heat pipe boiler | |
CN106090893A (en) | A kind of high performance clean burning method of coal-burning boiler | |
CN101726012A (en) | Counter-burning type biomass superconductive gasifier | |
CN103697450B (en) | Regenerator boiler | |
CN221371103U (en) | Self-circulation system for preparing high calorific value gas based on gasification reaction | |
CN205137434U (en) | Burning furnace is fired to heat accumulation formula |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201215 Termination date: 20210807 |