CN1220633C - 脱盐方法和脱盐设备 - Google Patents
脱盐方法和脱盐设备 Download PDFInfo
- Publication number
- CN1220633C CN1220633C CNB988126419A CN98812641A CN1220633C CN 1220633 C CN1220633 C CN 1220633C CN B988126419 A CNB988126419 A CN B988126419A CN 98812641 A CN98812641 A CN 98812641A CN 1220633 C CN1220633 C CN 1220633C
- Authority
- CN
- China
- Prior art keywords
- evaporating pot
- mentioned
- water
- desalter
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 289
- 238000001704 evaporation Methods 0.000 claims abstract description 196
- 239000002918 waste heat Substances 0.000 claims abstract description 62
- 239000012153 distilled water Substances 0.000 claims abstract description 51
- 239000002826 coolant Substances 0.000 claims description 17
- 238000011033 desalting Methods 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000000498 cooling water Substances 0.000 claims description 9
- 239000012141 concentrate Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 4
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 abstract description 21
- 239000013505 freshwater Substances 0.000 abstract description 5
- 239000002699 waste material Substances 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 description 69
- 238000010586 diagram Methods 0.000 description 22
- 239000007788 liquid Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000013535 sea water Substances 0.000 description 7
- 238000004821 distillation Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000012266 salt solution Substances 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008233 hard water Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000007701 flash-distillation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/0011—Heating features
- B01D1/0041—Use of fluids
- B01D1/0047—Use of fluids in a closed circuit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/0011—Heating features
- B01D1/0041—Use of fluids
- B01D1/0052—Use of a liquid transfer medium or intermediate fluid, e.g. bain-marie
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/04—Evaporators with horizontal tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/26—Multiple-effect evaporating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/10—Vacuum distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/006—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/0069—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with degasification or deaeration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/0075—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with heat exchanging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0078—Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
- B01D5/0084—Feeding or collecting the cooling medium
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/16—Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/04—Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/33—Wastewater or sewage treatment systems using renewable energies using wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S159/00—Concentrating evaporators
- Y10S159/16—Vacuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S203/00—Distillation: processes, separatory
- Y10S203/08—Waste heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S203/00—Distillation: processes, separatory
- Y10S203/13—Spirits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S203/00—Distillation: processes, separatory
- Y10S203/18—Control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S203/00—Distillation: processes, separatory
- Y10S203/19—Sidestream
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S203/00—Distillation: processes, separatory
- Y10S203/21—Acrylic acid or ester
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
利用低温废热,脱盐设备能以低成本稳定地得到淡水,其中脱盐设备包括:一个热交换器(92),它与蒸发罐(60)协同操作,以便使低温废热(1)和原水(62)在蒸发罐(60)中经受热交换,并在蒸发罐(60)中产生水蒸汽(63);一个冷凝器(98),它与原水箱(72)协同操作,以便接收来自蒸发罐(60)的水蒸汽,通过使水蒸汽(63)和原水(71)在原水箱(72)中经受热交换来冷却水蒸汽(63)并得到蒸馏水(76);一个蒸馏水箱,它用于存贮蒸馏水(76);真空装置,它用于将蒸发罐(60)抽真空并使其内部减压,以便促进在蒸发罐(60)中产生水蒸汽(63);和原水供给装置,它用于将原水加入到蒸发罐中。
Description
技术领域
本发明涉及一种利用局部未用过的废热源来使原水(比如,盐水、海水)脱盐的脱盐方法和脱盐设备,或者涉及例如通过使硬水软化来生产淡水或适用水、饮用水或去矿质水的脱盐方法和脱盐设备。
背景技术
在各种不同的设施,比如工厂、海洋建筑物和农田中,在内陆地区、岛屿和沙漠区域中,难以得到适合工业用的水、饮用水或农业用水,并且在许多情况下,必须用船或卡车运输水,或是必须铺设管道。在另一些情况下,这些设施采用一种膜式或其它型式的脱盐设备,这些设备肯定要消耗大量的电能。
尽管热电厂或核电站等等再用了高温废热来由汽轮机发电,但低压蒸汽及其潜在的热能都作为废料排放掉了。事实上,各种低温热量存在例如局部的(区域性的)温差、地热、和发酵热。
具有如上所述废热源的许多工厂或其它设施,要求用去矿质水或具有低杂质含量的水操作。如上所述利用船、卡车或管道输送这种水的技术存在以下问题,即运输费、建造费及维护和管理费用都很高。膜式或其它型式的脱盐设备消耗大量的电能,而这也对高操作费用产生影响。
为了有效地使盐水或硬水脱盐,已经提出了真空蒸发式脱盐设备。
尤其是,已经推荐了采用闪蒸系统或多效罐系统的那些设备,作为常用的真空蒸发式脱盐设备。
然而,常用的闪蒸或多效脱盐设备存在以下缺点,即在冷凝器中用来冷却的水量很大,相应地排放的水量也大,这就造成需要大量的泵功率。
在闪蒸系统中,如果在所用热源和冷却水之间的温差小,则效率变低,并且难以实现一种高效的多效系统。同样,常用的多效罐系统存在以下缺点,即如果所用热源和冷却水之间的温差小,则不能增加所用的罐数量,来形成多效脱盐设备。因此,难以改善效率。所以,在所用热源和冷却水之间的温差小的情况下,必须增加设备的传热表面积。这造成安装费用上升,并且必须采用大的安装区域。
而且,由于这两类系统都采用连续操作方式,所以必须总是开动流体输送泵、真空泵等。所以,在整个系统中消耗的动力量很大,并且效率低。关于真空泵,尤其是,由于在低温条件下产生很高的真空度,所以大量水蒸汽被夹带在抽出的气体中。因此,需要有消耗大量动力的大型真空泵。
本发明鉴于上述情况作出,并且本发明的其中一个目的是提供一种脱盐方法和脱盐设备,它能通过级联使用低温废热作为能源,在减少费用下稳定地生产淡水,该低温废热迄今为止都是处理掉没有利用。
发明概述
为了解决上述问题,按照本发明的第一方面,用于原水的脱盐方法包括以下步骤:(1)将原水加入到一有限空间的装置中;(2)将有限空间的装置抽真空并使其内部减压;(3)将低温废热加入到有限空间的装置中,以便使低温废热和有限空间的装置中原水进行热交换,并且在该有限空间的装置中产生水蒸汽;和(4)冷却该水蒸汽,以便得到蒸馏水。
在上述方法中,抽真空步骤是在开始脱盐操作时,间歇式或随时进行例如一预定的时间。
有限空间的装置可以包括一个蒸汽罐。
可供代替的是,有限空间的装置可以包括许多个串联连接的蒸发罐,其中:将低温废热加入到第一蒸发罐中,并且在每对相邻的蒸发罐中,下游侧蒸发罐接收来自上游侧蒸发罐中的水蒸汽,用下游侧蒸发罐中的原水冷却水蒸汽并因而产生蒸馏水,而且还加热下游侧蒸发罐中的原水并产生水蒸汽。
有限空间的装置可以包括许多个并排连接的蒸发罐,其中上述步骤(1)-(4)从一个蒸发罐转换到另一个蒸发罐,以便因而能进行连续的脱盐操作。
将原水加入到有限空间装置中的步骤,可以通过将有限空间的装置抽真空,同时敞开有限空间的装置通向原水源来进行。该方法还可以包括排出有限空间的装置中浓缩原水的步骤,并且这一步骤可以在敞开有限空间的装置通向大气之后,通过敞开有限空间的装置,并让浓缩的原水由其向下流动来进行。
按照本发明的第二个方面,脱盐设备包括:一个热交换器,它与一蒸发罐协同操作,以便使低温废热和蒸发罐的原水进行热交换,并在该蒸发罐中产生水蒸汽;一个冷凝器,它与原水箱协同操作,以便接收来自蒸发罐的水蒸汽,通过使水蒸汽与原水箱中的原水进行热交换来冷却水蒸汽并得到蒸馏水;一个蒸馏水箱,它用于存贮蒸馏水;真空装置,它用于在脱盐操作开始时将蒸发罐抽真空并使其内部减压一预定的时间,以便促进在蒸发罐中产生水蒸汽;和原水供给装置,它用于将原水加入到蒸发罐中。
按照本发明的又一方面,脱盐设备包括:一个热交换器,它与蒸发罐协同操作,以便使低温废热和蒸发罐中的原水进行热交换,并在该蒸发罐中产生水蒸汽;一个冷凝器,用它接收来自蒸发罐的水蒸汽,通过使水蒸汽和冷却水经受热交换来冷却水蒸汽并得到蒸馏水;一个蒸馏水箱,它用于存贮蒸馏水;真空装置,它用于在脱盐操作开始时将蒸发罐抽真空并使其内部减压一预定的时间,以便促进在蒸发罐中产生水蒸汽;和原水供给装置,它用于将原水加入到蒸发罐中。
在上述脱盐设备中,低温废热可以包括从工厂内发电用的汽轮机中出来的废蒸汽的潜热。
脱盐设备可以与发电用汽轮机冷凝器串联和/或并联结合,或者可以代替冷凝器使用。在用脱盐设备代替冷凝器的情况下,对只有一组脱盐设备来说,不容易处理从发电厂排出的大量废蒸汽。因此,可以通过并联结合,使用许多个脱盐设备。
在上述脱盐设备中,可以设置许多个蒸发罐,其中将热交换器配置成与第一蒸发罐协同操作,而将冷凝器这样配置,以便在每对相邻的蒸发罐中,下游侧蒸发罐接收来自上游侧蒸发罐的水蒸汽,用下游蒸发罐中的原水冷却该水蒸汽,并因而产生蒸馏水,而且还加热了下游侧蒸发罐中的原水并产生水蒸汽。
脱盐设备可以包括控制装置,用于控制真空装置的操作及控制连接到蒸发罐上的控制阀的开和关。
控制装置可以如此控制真空装置和控制阀,以便间歇式重复蒸发罐的抽真空和敞开蒸发罐通向大气,因而能进行分批(间断的)操作。
在上述脱盐设备中,可以并排设置许多个蒸发罐,其中每排都包括至少一个蒸发罐,而控制装置可以如此控制真空装置和控制阀,以便各排中的蒸发罐不同时敞开通向大气,因而能连续操作脱盐设备。这种连续操作可以是规定的操作,或者是随着废热(热源)的变化操作。
在上述脱盐设备中,原水供给装置可以由真空装置和控制阀构成,该控制阀连接到蒸发罐上,蒸发罐由控制装置开和关。
脱盐设备还可以包括浓缩原水或废盐水排放装置,用于从蒸发罐中排出浓缩原水。浓缩原水排放装置可以由一控制阀构成,该控制阀连接到蒸发罐的下部,蒸发罐用控制装置开或关。
在上述脱盐设备中,可以将蒸发罐、热交换器、冷凝器、蒸馏水箱、真空装置和原水供给装置组合在一个构架中。在脱盐设备还包括浓缩原水排放装置的情况下,可以再将一浓缩原水排放装置结合在一个构架中。
可以将许多个这样组合在一个构架中的脱盐设备进一步装配在一个组合件中。
因为本发明的脱盐设备利用迄今为止未用过的低温废热源(例如,来自热电厂或核电站的低温废热)作为热源,因此,能够有效地利用这种热量,这种热量迄今为止都排放掉了。
此外,利用热电厂或核电站的位置条件,通过利用从热电厂或核电站排出的低温废热作为热源,及还利用海水作为最后一级冷凝器的冷却源,能够保证极稳定的热源和冷却源的供给,并能进行稳定的脱盐,由于运输发电燃料和保证废热排放地方(亦即热辐射源),它们都设置在海边。
另外,低温废热源是迄今为止未用过的一种能源,它的级联使用使得有可能排除使用化石燃料并使产生全球变暖的气体减至最少。这样,就能利用脱盐提供一种回收资源的技术,这种技术有利于全球环境。
按照本发明,原水存贮在蒸发罐中,蒸发罐的内部用真空泵减压,及原水用低温废热加热。这能够促进在低温下蒸发。因此,能够利用由发电厂等产生的低温废热进行脱盐。
此外,因为蒸发可以在低温下进行,所以即使所用的热源和冷却水之间的温差很小,也可以通过应用多效蒸发罐系统并重复使用热量来改善蒸发效率。
而且,由于存贮在罐中的原水被蒸发,所以能够进行间歇或分批操作。因此,动力消耗可以显著减少。尤其是,如果设备是以分批方式操作,并且如果设备的内部是在开始操作时抽真空,及在操作结束时使设备的内部敞开通向大气,则可以通过起动和停止真空装置的操作来将原水加入到设备中和排出设备中的浓缩水。因此,设备基本上可以只通过真空泵的操作来操纵。因而,动力消耗可以进一步减少。
而且,通过以分批方式操纵许多个并联配置的设备,将它们从一个转换到另一个,可以进行连续操作。
而且,由于设备能够用高效率和低动力操纵,所以可以将整个设备组合成一个紧凑的组合件。因而,能够使设备的运输、装入和安装很方便。
从下面结合附图所作的说明,本发明的上述和另一些目的、特点及优点将变得更明显,在这些附图中,作为说明性的例子示出本发明的优选实施例。
附图的简要说明
图1是示出按照本发明的脱盐设备一种基本结构实例的示意图。
图2是示出按照本发明的脱盐设备另一种基本结构实例的示意图。
图3是示出按照本发明的脱盐设备又一种基本结构实例的示意图。
图4是示出按照本发明的脱盐设备再一种基本结构实例的示意图。
图5是示出在按照本发明的脱盐设备中使用的蒸发罐第一基本结构实例的示意图,其中图5A是蒸发罐的纵向剖面图,而图5B是沿着图5A中线段B-B所取的截面图。
图6是示出在按照本发明的脱盐设备中所用蒸发罐的第二基本结构实例的纵向剖面图。
图7是示出在按照本发明的脱盐设备中所用蒸发罐的第三基本结构实例的视图,其中图7A是蒸发罐的纵向剖面图,而图7B是该蒸发罐的平面图。
图8是示出在按照本发明的脱盐设备中所用蒸发罐的第四基本结构实例的纵向剖面图。
图9是示出按照本发明的脱盐设备另一种结构实例的示意图。
图10A-10C分别示出代表一个系统结构实例的示意图,其中利用从发电厂冷凝式汽轮机中排出的低温和低压蒸汽,作为用于按照本发明的脱盐设备的热源。
图11是示出一种脱盐系统安排的示意图,该脱盐系统装备有太阳能光生伏打发电设备。
图12是示出一种组合式脱盐设备实例的示意图,其中单罐式脱盐设备的各设备元件都装配在一个构架中。
图13是示出一种组合式脱盐设备实例的示意图,其中多效罐式(串联连接)脱盐设备的各设备元件都装配在一个构架中。
图14是示出一种组合式脱盐设备实例的示意图,其中多效罐式(并联连接)脱盐设备的各设备元件都装配在一个构架中。
图15是示出一种组合式脱盐设备实例的示意图,其中许多个组合在一个构架中的设备(图中是两个组合件)再装配在一个组合件中。
图16示出各组合件安排的实例,其中将两个以上的组合件进一步装配在一个组合件中。
图17示出一种安排的实例,其中利用三个蒸发罐将本发明应用于一种真空蒸发式脱盐设备上。
实施本发明的最佳方式
下面将参照附图说明本发明的各实施例。图1是示出按照本发明的脱盐设备基本结构实例的示意图。如图1所示,脱盐设备具有一个热交换器10、一个蒸发罐60、和一个原水箱72。将来自热电厂或核电站或其它发电设施的低温废热源11引入热交换器10,以便在低温废热源11和传热介质13之间进行热交换,因而将传热介质13加热。将热的传热介质13引入热交换器92中,该热交换器92安放在蒸发罐60内的原水62中,以便在传热介质13和原水62之间进行热交换,因而将原水62加热并因此产生水蒸汽63。传热介质13本身被冷却,并返回热交换器10。标号11′显示出一种废热冷凝液或盐水。
将蒸发罐60罐身61中产生的水蒸汽63收集起来并引入冷凝器98中,该冷凝器98安放在原水箱72内的原水71中,以便在水蒸汽63和原水71之间进行热交换。水蒸汽63冷凝成蒸馏水76,并且还加热原水71。将蒸馏水存贮在蒸馏水箱T中。蒸发罐60的罐身61内部,用一真空装置比如真空泵VP经过蒸馏水箱T和控制阀V1、V10减压。这样,使罐身61中的原水62在减压下与传热介质13进行热交换。因此,水蒸汽63高效产生。
在上述脱盐设备中,将低温废热源11引入热交换器10来加热传热介质13,并使传热介质13和原水62通过热交换器92进行热交换。也就是说,热交换是在低温废热和原水之间间接地进行。然而,可以这样安排,即把低温废热源11引入热交换器92中,以便在低温废热源11和原水62之间直接进行热交换。
图2是示出按照本发明的脱盐设备另一种基本结构实例的示意图。如图2所示,脱盐设备具有一个热交换器10、一个蒸发罐60和一个冷凝器20。将来自热电厂或核电站或其它发电设施的低温废热源11引入热交换器10,以便在低温废热源11和传热介质13之间进行热交换,并因而加热了传热介质13。将热的传热介质13引入一热交换器92中,该热交换器92安放在蒸发罐60内的原水62中,以便在传热介质13和原水62之间进行热交换,因而使原水62变热并因此而产生水蒸汽63。传热介质13本身被冷却并返回热交换器10。
将蒸发罐60罐身61中产生的水蒸汽63收集起来,并引入冷凝器20中,以便在水蒸汽63和冷却水21之间进行热交换。水蒸汽63冷凝成蒸馏水,并将该蒸馏水存贮在蒸馏水箱T中。蒸发罐60罐身61的内部,用一真空装置比如真空泵VP经过蒸馏水箱T和控制阀V1、V10减压。这样,使罐身61中的原水62经受在减压下与传热介质13进行热交换。因此,水蒸汽63高效产生。
在上述脱盐设备中,将低温废热源11引入热交换器10中,以便加热传热介质13,并且传热介质13和原水62通过热交换器92进行热交换。也就是说,热交换是在低温废热源11和原水62之间间接地进行。然而,可以这样安排,即把低温废热源11引入热交换器92,以便在低温废热源11和原水62之间直接进行热交换。标号21′显示出一种回流的冷却水。
图3是显示按照本发明的脱盐设备又一种基本结构实例的示意图。如图3所示,脱盐设备具有一个热交换器10和许多个成多级结构配置的蒸发罐60、60′…。将低温废热源11引入热交换器10,以便在低温废热源11和传热介质13之间进行热交换,并因而加热了传热介质13。将热的传热介质13引入热交换器92,该热交换器92安放在第一级蒸发罐60内的原水62中,以便在传热介质13和原水62之间进行热交换,因而加热原水62并因此产生水蒸汽63。传热介质13本身被冷却并返回热交换器10。
将第一级蒸发罐60中产生的水蒸汽63收集起来并引入冷凝器(热交换器)92′中,该冷凝器(热交换器)92′安放在第二级蒸发罐60′内的原水62′中,以便在水蒸汽63和原水62′之间进行热交换,因而加热了原水62′并因此产生水蒸汽63′。水蒸汽63本身以蒸馏水76形式在蒸馏水箱T中回收。第三级和以后各级蒸发罐也具有与上述蒸发罐相同的功能。也就是说,将与各蒸发罐协同操作的冷凝器这样配置,以使在每对相邻的蒸发罐中,下游侧的蒸发罐接收来自上游侧蒸发罐的水蒸汽,以便用下游侧蒸发罐中的原水冷却水蒸汽,因而产生蒸馏水,并且还加热下游侧蒸发罐中的原水和产生水蒸汽。
在最后一级处,水蒸汽被引入一个冷凝器98,该冷凝器98安放在原水箱72内的原水71中,以便在水蒸汽和原水71之间进行热交换来产生蒸馏水76,同样,也将该蒸馏水76存贮在蒸馏水箱T中。
图4是示出按照本发明的脱盐设备再一种基本结构实例的示意图。除最后一级外,此设备的安排和功能与图3所示设备的安排和功能相同。也就是说,如图所示,在本实例中,在最后一级处,将水蒸汽引入一个冷凝器20中,以便在水蒸汽和冷却水21之间进行热交换,来产生蒸馏水76。
图5A和5B是示出蒸发罐60第一基本结构实例的示意图。如图5A和5B所示,蒸发罐60具有至少一根传热管64,该传热管64在一水平安装的罐身61中水平式延伸。在传热管64的两端处,设置室65和66,用于共同安装传热管64。一个室65装配一个传热介质入口或水蒸汽入口67,而另一个室66装配一个冷凝的传热介质出口或冷凝液出口68。传热管64的内部用作传热介质的热辐射部件或用作水蒸汽的冷凝部件,而传热管64的外部用作原水62的加热和蒸发部件。
这样,蒸发罐60具有结合成一个部件的加热和蒸发部件并以水平形式配置。因此,简化了蒸发罐的结构,并且得到即使在温差小的情况下也具有高性能的罐。传热管64可以制成另外的形状,它能抽真空并显示出极好的传热特性。如上所述配置的蒸发罐60可以这样整个地倾斜安放,即把用于冷凝后的传热介质或冷凝液的出口68设置在用于传热介质蒸汽或水蒸汽的入口67的下方,以便传热管64中的冷凝液能很容易排出,不过这种安排在图中未示出。
通过如上所述将整个蒸发罐60倾斜安放,使传热管64中的冷凝液毫无阻碍地从出口68排出。在传热介质以液相使用的情况下,可以这样安排,即在下面位置处设置高温传热介质液体入口67′,而在上面位置处设置低温传热介质液体出口68′。
将从热交换器10出来的热的传热介质输出通过入口67或高温传热介质液体入口67′引入到传热管64中。经受过热辐射作用的传热介质从出口68或低温传热介质液体出口68′中排出并返回热交换器10。在多效蒸发罐60的情况下,如图3和4所示,在前一级蒸发罐60中产生的水蒸汽63从入口67引入传热管64中,而蒸馏水从后一级蒸发罐60的出口68中排出。
图6是示出蒸发罐60第二种基本结构实例的示意图。图5和6相同的组成元件都用相同的标号表示。传热管64安放在罐身61中,以便倾斜地延伸到蒸发罐60的水平方向或底表面。蒸汽出口68位于蒸汽入口67的下面。在传热介质以液相使用的情况下,也可以这样配置蒸发罐60,以使高温传热介质液体入口67′设置在下面位置处,而低温传热介质液体出口68′设置在上面位置处。
通过如上所述将传热管64倾斜安放,传热管64中的冷凝液毫无阻碍地通过出口68排出。如果将传热管64安放在罐身61的直径D下面一半内,并将原水62的液面近似设定在罐身61的中央处,则蒸发面积可以达到最大,并且可以得到优质蒸馏水而不夹带水雾。
图7A和7B是示出蒸发罐60的第三种基本结构实例的示意图。图5、6和7相同组成元件用相同的标号表示。蒸发罐60具有至少一组传热管64,它们安放在水平安放的罐身61中。在罐身61的中央处设置一个室69,以便集体安装各传热管64,并且在蒸发罐60的两侧处,设置室65和66,用于集体安装传热管64。位于中央的室69有一用于传热介质蒸汽或水蒸汽的入口69′。两侧处的室65和66都具有相应的用于冷凝的传热介质或冷凝液的出口68。
根据图7中蒸发罐60的安排,尽管在蒸发罐60的罐身61长,并因而传热管64变长的情况下,冷凝部分中的压力损失将不增加,并且传热介质或蒸馏水能很容易排放。
图8是蒸发罐60的第四种基本结构实例的示意图。图5-8相同的组成元件用相同的标号表示。蒸发罐60具有传热管64,该传热管64相对于水平方向倾斜地安放在罐身61中。出口68设置在室69的下面,该室69与中央入口69a连通。如图8所示,蒸发罐60的安排使传热管64中的冷凝液能毫无阻碍地排出。此外,可以将原水62的液面近似设定在罐身61的中央处,并因此可以使蒸发面积达到最大。因此,可以得到优质蒸馏水而不夹带水雾。
尽管上面只说明了第一级蒸发罐60的构造,但在第二级或后面各级蒸发罐60′、60″……中可以采用相同或类似的构造。
另外,应该注意,加到蒸发罐60和原水箱72中的原水是盐水(比如,海水)或硬水,而浓缩的原水可以随时或定期地通过排放装置(未示出)经过控制阀V2、V7从蒸发罐60和原水箱72中排出,控制阀V2、V7连接到蒸发罐60和原水箱的下部,而同时,可以随时或定期地通过原水供给装置,比如泵S(只示出一个)经过另外的控制阀V3、V8供给原水,控制阀V3、V8与其连接,以便在蒸发罐60和原水箱72内保持一预定的液面。
在蒸发罐60和原水箱72中的浓缩原水62、71,可以从蒸发罐60和原水箱72的下部,经过与其连接的控制阀V2、V7,通过向下自然流动、随时或定期地排出一预定的量,而同时,可以通过原水供给装置S(只示出一个),经过另一控制阀V3、V8,将原水在外部加入蒸发罐60和原水槽72中(此处温度是低的),以便原水62、71的水面保持处于恒定的水平。在这种情况下,浓缩原水排放装置可以由控制阀V2、V7构成,该控制阀V2、V7连接到蒸发罐60或原水箱72的下部。
此外,可以通过打开连接到蒸发罐60下部的控制阀V3,并通过真空泵VP使蒸发罐的内部减压,将原水加入蒸发罐60中。也就是说,在蒸发操作之前的准备阶段,原水供给可以与蒸发罐的抽真空同时进行。在这种情况下,原水供给装置由控制阀V1、V3、V10和真空泵VP构成。真空泵VP的操作及这些控制阀V1-V10的开和关由控制器C控制。
应该注意,如此设置系统,以便将蒸馏水76存贮在蒸馏水箱T中,并且在设备操作结束和设备内部打开通向大气之后,通过打开阀V9将蒸馏水供给到每个需要蒸馏水的地方,上述蒸馏水76是通过冷凝蒸发罐60的罐身61中产生的水蒸汽63得到的。
在上述脱盐设备中所用的低温废热源是一种具有热能的热源,该热能要求一定量外部供给的能量,以便得到用于驱动汽轮机的蒸汽。低温废热源包括从核电站或热电厂中发电用汽轮机出来的废蒸汽。低温废热源最好不是从发电厂周期的中间点中抽取的热量(从发电周期的中间点抽取热量造成发电效率降低),而是,脱盐设备最好应使用未用过的低温废热源,该未用过的低温废热源从冷凝器中排出并且用别的方法处置,因此对发电效率没有影响。
作为一种低温废热源,通常可以得到范围从50℃至60℃的废热。然而,正如将要参照后面实施例所说明的,如果设备中所用的废热具有约30℃的温度,则本发明的脱盐设备就提供足够的性能。
如上所述配置的脱盐设备可以一天24小时连续工作。然而,脱盐设备也可以例如如下所述工作。首先,通过操纵原水供给装置,将一预定量的原水加入到蒸发罐60中,并通过打开阀V1、V10和通过操纵真空泵VP将蒸发罐60抽真空。在蒸发罐60中产生了一预定的真空度之后,关闭阀V1和V10,停止真空泵VP的操作,并开始供给低温废热源11。结果,蒸发蒸馏立即开始。如上所述,通过操纵真空泵VP和控制阀V1、V3、V10,可以同时开始蒸发罐60的抽真空和将原水62加入到蒸发罐中。在分批操作情况下,在脱盐设备操作期间,适当地,或随时使该系统进行抽气,因为在抽真空的早期阶段,原水62中的不冷凝气体不能适当地抽出,该不冷凝的气体将在蒸发和冷凝期间妨碍热传递。
在蒸发蒸馏进行到了一预定的浓度之后,排出浓缩的原水62,以防盐的沉积。这可以在打开阀V1和V6使设备与大气相通后,通过打开连接到蒸发罐下部的阀V2,并让浓缩的原水由其自然向下流动来做到。然后,在关闭阀V6之后,再如上所述通过操纵真空泵VP和控制阀V1、V3、V10,将新的原水加入到蒸发罐中,并通过真空泵进一步将蒸发罐抽真空,可以继续进行蒸发蒸馏。在这种情况下,脱盐设备中所需的动力主要是抽真空所要求的动力,并且真空泵VP只是在操作的开始部分运行一预定的时间,以便形成一预定的真空度。因此,一旦将预定量的原水62加入到蒸发罐60中,并进行抽真空达到一预定的真空度,就可以进行蒸发蒸馏。因此,能够进行一种分批操作,并且与连续操作不同,该操作可以在减少电力的情况下进行。
为了使系统中不冷凝的气体比如空气能有效地排出该系统,通过打开控制阀V1和V10和开动真空泵VP,来定期地从系统中抽出气体,该不冷凝的气体在蒸发和冷凝期间阻碍热传递。通过实验业已证明,通过每2小时抽出气体60秒钟,可以得到可靠的蒸发蒸馏效果。然而,也发现,实际上,基本上没有必要进行抽气操作,并且能使抽气时真空泵的操作时间减至最少。
作为例子,如图9所示,当通过打开蒸发罐60通向大气补充原水时,转动转换阀V4和V5,以便让传热介质13流到与蒸发罐60并联连接的蒸发罐60′中,并打开控制阀V1和通向大气的阀V6。这时,控制阀V1′仍然关闭,并且使蒸发罐60′的内部保持在一预定的真空度下。在原水62已排出蒸发罐60之后,关闭通向大气的阀V6和抽气阀V1,并通过操纵真空泵VP和打开控制阀V1、V3、V10来使蒸发罐60的内部减压,以便将原水引入蒸发罐60中。这样,就更新了原水62。当已将原水62引入蒸发罐60达到预定水平时,关闭控制阀V3。在蒸发罐中的压力达到一预定的真空度后,关闭控制阀V1、V10,停止真空泵VP的工作,并打开用于蒸发罐60的转换阀V4和V5,因而开始了正常工作。控制器C控制真空泵VP的工作及这些控制阀V1-V10的开和关。也可以通过进行类似操作来对蒸发罐60′更换原水。这样,就能够连续地利用低温废热源进行规定的连续操作。
应该注意,图9中并联的蒸发罐60′数目不一定限于一个,而是可以用两个或多个蒸发罐60′。此外,可以将许多排如图4所示成多级结构配置的蒸发罐并联连接。这样,就能如上述情况所述,连续利用低温废热源来进行规定的连续操作。还能随着废热源的改变进行操作,例如,一种其中通过改变操纵的蒸发罐数目来改变被处理的水量。
如上所述,由于本发明的脱盐设备所用的电力主要是如真空泵所要求的电力,所以总的电力消耗减至最少。如果进行分批操作,因为只是在操作开始时操纵真空泵,以便在蒸发罐中形成一预定的真空度,所以特别有效地使电力消耗减至最少。
顺便说说,不一定总是必需单独提供真空泵。事实上,能够利用发电厂或其它类似设施中所设置的真空泵。也可以如后面所述,设置太阳能光生伏打发电设施,而不需要任何的外部电源。这样,就能够利用应用自然界能量的发电设备,比如太阳能光生伏打发电或风能发电设备来作为电力源。
图10A是示出一种系统结构实例的示意图,其中如上所述配置的脱盐设备并联连接到发电厂中用于发电的汽轮机(比如,一种冷凝式汽轮机)冷凝器上。从锅炉100排出的蒸汽通过一储汽筒101供给到冷凝式汽轮机102上,以便驱动发电机103。从冷凝式汽轮机102中排出的蒸汽在一低压蒸汽冷凝器104中冷凝,存贮在冷凝液箱105中,并通过一汽水分离器106返回锅炉100。
按照本发明的脱盐设备200并联连接到低压蒸汽冷凝器104上。通过用从冷凝式汽轮机102出来的蒸汽供给脱盐设备200来进行脱盐,上述从冷凝式汽轮机102出来的蒸汽具有压力为0.03-0.05kg/cm2,和温度为24-34℃,用它作为低温热源,而用温度为15-25℃的海水作为原水和冷却水。结果,证明该脱盐设备能够有效的脱盐。尽管在本例中脱盐设备与低压蒸汽冷凝器104并联结合,但应该注意,脱盐设备200可以如图10B所示串联结合到低压蒸汽冷凝器104上或者可以如图10C所示用脱盐设备代替低压蒸汽冷凝器104。在后一种情况下,可以这样安排,即不安装低压蒸汽冷凝器104,而是将从冷凝式汽轮机102中排出的全部低压蒸汽都引入脱盐设备200中。
还应注意,上述从冷凝式汽轮机中排出的蒸汽压力和温度及海水的温度仅仅是例子,而低温废热源的压力和温度及原水的温度随低温废热源的种类、系统安装的区域等而变。
图11是示出一种脱盐系统安排的示意图,该系统设置有一个太阳能光生伏打发电设施,其中脱盐设备也包括太阳能光生伏打发电设施,因此脱盐设备利用由太阳能光生伏打发电设施供给的电力作为驱动电力。
更准确地说,如图所示,太阳能光生伏打发电设施300设置许多个太阳能电池301,并由此通过发电控制板302将发出的电力存贮在蓄电池303中。此外,根据需要将驱动电力供给到真空泵304上,该真空泵304连接到脱盐设备200的真空系统上。
图12-15示出利用按照本发明的脱盐设备的构成实例,其中将脱盐设备的各元件装配在一个机架中作为一个组合件。图1-4、9和12-15中相同的标号表示相同的元件。
图12示出一个实例,其中单罐式脱盐设备的各设备元件都装配在一个机架F中。也就是说,图2所示的蒸发罐60,热交换器92、冷凝器20、蒸馏水箱T和真空泵VP都装配在一个机架F中作为一个组合件U。如果希望的话,可以将热交换器10装配在该组合件U中。
图13示出一个实例,其中多效罐式(2级串联连接)脱盐设备的各设备元件都装配在一个机架F中。也就是说,图4所示的蒸发罐60、60′,热交换器92、92′,冷凝器20、蒸馏水箱T和真空泵VP都装配在一个机架F中作为一个组合件U′。如果希望的话,可以将热交换器10装配在该组合件U′中,并且可以增加级的数目。
图14示出一个实例,其中多效罐式(2级并联连接)脱盐设备的各元件装配在一个机架F中。也就是说,图9所示的蒸发罐60、60′、热交换器92、92′、冷凝器20、20′、蒸馏水箱T和真空泵VP装配在一个机架F中作为组合件U′,并且可以增加级的数目。还有,如果希望的话,可以用一个冷凝器20代替两个冷凝器20,20。
图15示出一种结构实例,其中许多个如上所述的组合式脱盐设备进一步装配在一个组合件U中。在此实施例中,两个图13所示的多效罐式脱盐设备组合件U′以上下配置的方式配装。尽管没有示出,但图14所示的多效罐式脱盐设备(其中多个级并联连接)的组合件U″可以装配在一个组合件中,并且可以进一步增加其中级的数目。
通过将各设备元件组合成一个组合件或是通过将组合式的设备进一步装配成一个如上所述的组合件,则可以很容易进行设备的运输、装入、安装等等。顺便说说,在上述实例中,根据真空泵的性能和设备的能力,可以采用一个真空泵VP代替许多个真空泵。
图16示出各组合件安排的实例,其中将两个以上并联连接的组合件装配在一个组合件中。在图16中,标号22是原水,23是浓缩的原水,T′是传热介质箱,P′是传热介质泵,24是淡水,及P是淡水泵。在传热介质以液相使用的情况下,传热介质箱T′和传热介质泵P′都不需要。
(实例)
图17示出一个实例,其中利用成三效结构配置(串联配置)的蒸发罐,将本发明应用到真空蒸发式脱盐设备上。与上述实施中相同的标号代表相同的组成元件。
本例中的操作条件如下:
1)操作方式
分批操作:
每批5小时,一天重复4次,各批操作之间的转换时间是1小时。操作周期总计是24小时。
2)温度条件
所用热源:废蒸汽 温度为34℃
冷却水:海水 温度为15℃
3)真空泵
涡旋式(Scroll)真空泵 1.5kW
真空泵在每5小时分批操作开始时操作约30分钟。
4)蒸发罐尺寸1.2m3/罐
在设备的各部分处的温度和流速如图中所示。
在本例中,由设备最后所得到的蒸馏水量是2.4吨/天。设备中所消耗的电力,包括冷却水泵在内是26.37千瓦时/天(kwh/day),而不包括冷却水泵在内(亦即仅是真空泵的电力)是3.5kwh/day。
结果,生产水的功率是:包括冷却水泵在内是10.99千瓦时/吨(kwh/Ton),而不包括冷却水泵在内是1.45kwh/Ton。不包括冷却水泵所耗电力的生产水的功率,要比采用与实例中相同温度的废热水和冷却水的闪蒸式脱盐设备的功率多40余倍。
工业应用
如上所述,本发明提供下列优越效果:
(1)本发明的脱盐设备采用迄今为止未用过的低温废热源作为热源,例如从热电厂或核电站出来的低温废热。因此,可以有效地利用这种热,而这种热迄今为止都排放掉了。
(2)通过利用从热电厂或核电站排出的低温废热作为脱盐设备的热源,及还利用海水作为最后一级冷凝器的冷却源,利用热电厂或核电站的布局条件,能够保证极稳定的热源和冷却源的供给,并能进行稳定的脱盐,考虑到发电燃料的运输及保证废热排放的地方(亦即,热辐射源),热电厂或核电站设置在海边。另外,作为一种低温废热,可以利用共同产生的废热和隔离区域(比如一个帐篷等)中发电机出来的废热。作为冷却源,可以利用从冷却塔出来的水,或者级联使用由其出来的水是可能的。
(3)低温废热源的级联使用,使它能排除使用化石燃料,并使产生的总暖气量减至最少,上述低温废热源迄今为止未用过。这样,通过对环境有益的脱盐作用,可以提供一种回收资源的技术。
(4)在本发明中,原水存贮在蒸发罐中,并且用真空泵使罐的内部减压。而且,原水用低温废热加热,因而能促进在低温下蒸发。因此,能够利用从发电厂等出来的低温废热进行脱盐。
(5)此外,由于能够进行低温操作,所以即使在所用的热源和冷却水之间的温差很小,通过应用多效蒸发罐系统和重复使用热量,可以改善蒸发效率。
(6)而且,由于存贮在蒸发罐中的原水被蒸发,所以可以进行间歇或分批的操作。因此,动力消耗能够显著减少。尤其是,如果这样以分批方式操纵设备,即在操作开始时,将设备的内部抽真空,并在操作结束时,使设备的内部敞开通向大气,则能够将原水加入到设备中,并且能够排出设备中的浓缩水。此外,真空泵基本上只是在分批操作的开始部分工作一预定的时间,以便在蒸发罐中形成一预定的真空度。因此,动力消耗能够进一步减少。
(7)而且,通过操纵许多个并联的分批设备,将它们从一个设备转到另一个设备,也可以进行连续操作。
(8)因为设备可以高效率和低动力操纵,所以可以将整个设备组合成一个紧凑的组合件。因此,很容易运输、装入和安装该设备。
Claims (21)
1.一种用于以分批操作模式进行原水脱盐的脱盐方法,包括以下步骤:
(1)将原水(62)加入一限定空间的装置(60,60′,60″)中;
(2)将上述限定空间的装置抽真空并使其内部减压;
(3)将低温废热(11)加入到上述限定空间的装置中,以便上述低温废热(11)和限定空间的装置中原水(62)经受热交换,并在上述限定空间的装置中产生水蒸汽(63);和
(4)冷却上述水蒸汽,以便得到蒸馏水(76),其特征在于:上述抽真空步骤在将低温废热加入到上述限定空间中之前进行。
2.如权利要求1所述的脱盐方法,其特征在于:上述限定空间的装置(60,60′,60″)包括一个蒸发罐。
3.如权利要求1所述的脱盐方法,其特征在于:上述限定空间的装置包括许多个蒸发罐(60,60′,60″),它们串联连接;上述低温废热加入到第一蒸发罐(60)中;和在每对相邻的蒸发罐(60,60′,60″)中,下游侧罐接收来自上游侧蒸发罐的水蒸汽(63),用下游侧蒸发罐中的原水(62)冷却水蒸汽并因而产生蒸馏水(76),而且还加热下游侧蒸发罐中的原水(62′)并产生水蒸汽(63′)。
4.如权利要求1所述的脱盐方法,其特征在于:上述限定空间的装置(60,60′,60″)包括许多个蒸发罐,它们并排连接;将上述步骤(1)-(4)从一个蒸发罐转换到另一个蒸发罐,以便因而能进行连续脱盐操作。
5.如权利要求1所述的脱盐方法,其特征在于:上述抽真空步骤在开始脱盐操作时进行一预定的时间。
6.如权利要求1-5其中之一所述的脱盐方法,其特征在于:上述将原水(62,62′)加入到限定空间的装置中的步骤,通过将上述限定空间的装置(60,60′,60″)抽真空,同时打开限定空间的装置通向原水源来进行。
7.如权利要求1所述的脱盐方法,还包括排出上述限定空间的装置(60,60′,60″)中浓缩原水的步骤,上述排放步骤是在打开限定空间的装置通向大气后,通过打开该限定空间的装置,并让浓缩原水从该装置向下流动来进行。
8.一种以分批操作模式操作的脱盐设备,包括:一个热交换器(92,92′),它与一个蒸发罐(60,60′,60″)协同操作,以便使低温废热(11)和蒸发罐中的原水(62,62′)经受热交换,并在该蒸发罐中产生水蒸汽(63,63′);一个冷凝器(98),它与一个原水箱(72)协同操作,以便接收来自上述蒸发罐的水蒸汽,通过使水蒸汽与原水箱中的原水经受热交换,来冷却水蒸汽,并得到蒸馏水(76);一个蒸馏水箱(T),它用于存贮上述蒸馏水;真空装置(VP),它用于在脱盐操作开始时,将上述蒸发罐抽真空并使其内部减压一预定的时间,以便促进在上述蒸发罐中产生水蒸汽;和原水供给装置(V3),它用于将原水供给到上述蒸发罐中;以及用于在将低温废热加入到所述蒸发罐中之前操作所述真空装置的装置。
9.一种以分批操作模式操作的脱盐设备,包括:一个热交换器(92,92′),它与一个蒸发罐(60,60′,60″)协同操作,以便使低温废热(11)和蒸发罐中的原水(62)经受热交换,并在该蒸发罐中产生水蒸汽(63);一个冷凝器(20),用它来接收来自上述蒸发罐的水蒸汽,通过使水蒸汽和冷却水(21)经受热交换来冷却水蒸汽,并得到蒸馏水(76);一个蒸馏水箱(T),它用于存贮上述蒸馏水;真空装置(VP),它用于在脱盐操作开始时,将上述蒸发罐抽真空并使其内部减压一预定的时间,以便促进在上述蒸发罐中产生水蒸汽;原水供给装置(V3),它用于将原水供给到上述蒸发罐中;以及用于在将低温废热加入到所述蒸发罐中之前操作所述真空装置的装置。
10.按照权利要求8或9所述的脱盐设备,其特征在于:上述低温废热(11)是工厂里用于发电的汽轮机(102)中废蒸汽的潜热。
11.按照权利要求10所述的脱盐设备,其特征在于:上述脱盐设备串联和/或并联结合到上述发电用汽轮机(102)的冷凝器(104)上,或是代替该冷凝器用。
12.按照权利要求8或9所述的脱盐设备,其特征在于:设置许多个蒸发罐(60,60′,60″),上述热交换器(92)配置成与第一蒸发罐协同操作;并且上述冷凝器(92′)这样配置,以便在每对相邻的蒸发罐中,下游侧蒸发罐接收来自上游侧蒸发罐的水蒸汽(63,63′),用下游侧蒸发罐中的原水冷却水蒸汽并因而产生蒸馏水(76),而且还加热了下游侧蒸发罐中的原水并产生水蒸汽。
13.按照权利要求8-12其中之一所述的脱盐设备,其特征在于:上述脱盐设备还包括控制装置(C),用于控制上述真空装置的工作,并且开和关连接到上述蒸发罐上的控制阀(V2、V3)。
14.按照权利要求13所述的脱盐设备,其特征在于:上述控制装置(C)控制真空装置(VP)和控制阀(V2,V3),以便间歇式重复对蒸发罐抽真空的操作和打开蒸发罐通向大气的操作。
15.按照权利要求13或14所述的脱盐设备,其特征在于:并排设置许多个蒸发罐(60,60′),其中每一排都包括至少一个蒸发罐,上述控制装置(C)控制真空装置(VP)和控制阀(V2、V2′,V3、V3′),以使所有排中的各蒸发罐都不是同时敞开通向大气,因而能够连续操作。
16.按照权利要求13-15其中之一所述的脱盐设备,其特征在于:上述原水供给装置由真空装置(VP)和控制阀(V3)构成,该控制阀连接到蒸发罐的下部,它通过控制装置(C)打开或关闭。
17.按照权利要求13-16其中之一所述的脱盐设备,该脱盐设备还包括浓缩原水排放装置(V2),它用于排出蒸发罐中的浓缩水。
18.按照权利要求17所述的脱盐设备,其特征在于:上述浓缩原水排放装置由控制阀(V2)构成,该控制阀(V2)连接到蒸发罐的下部,它通过控制装置(C)打开或关闭。
19.按照权利要求9-16其中之一所述的脱盐设备,其特征在于:上述蒸发罐(60,60′,60″)、热交换器(92,92′)、冷凝器(20)、蒸馏水箱(T)、真空装置(VP)和原水供给装置(V3)都组合在一个机架中。
20.按照权利要求17或18所述的脱盐设备,其特征在于:上述蒸发罐(60,60′,60″)、热交换器(92,92′)、冷凝器(20)、蒸馏水箱(T)、真空装置(VP)、原水供给装置(V3)和浓缩原水排放装置(V2)都组合在一个机架(F)中。
21.按照权利要求19或20所述的脱盐设备,其特征在于:多个上述组合在一个机架中的脱盐设备进一步装配在一个组合件中( U,U′,U″)。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36718697 | 1997-12-25 | ||
JP367186/1997 | 1997-12-25 | ||
JP8871098 | 1998-04-01 | ||
JP88710/1998 | 1998-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1283167A CN1283167A (zh) | 2001-02-07 |
CN1220633C true CN1220633C (zh) | 2005-09-28 |
Family
ID=26430059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB988126419A Expired - Fee Related CN1220633C (zh) | 1997-12-25 | 1998-12-24 | 脱盐方法和脱盐设备 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6833056B1 (zh) |
EP (1) | EP1049650A1 (zh) |
KR (1) | KR20010033546A (zh) |
CN (1) | CN1220633C (zh) |
AU (1) | AU759283B2 (zh) |
ID (1) | ID26880A (zh) |
IL (1) | IL136958A0 (zh) |
TW (1) | TW482743B (zh) |
WO (1) | WO1999033751A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102001718A (zh) * | 2010-11-29 | 2011-04-06 | 昆明理工大学 | 低压节水高效蒸馏水器 |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010085113A (ko) * | 2001-08-11 | 2001-09-07 | 임하빈 | 증류수 제조장치 |
KR100443827B1 (ko) * | 2001-10-23 | 2004-08-09 | 주식회사 유일산업 | 증류수를 분리해 내는 장치 |
WO2003053557A1 (fr) * | 2001-12-21 | 2003-07-03 | Mitsubishi Chemical Corporation | Dispositif et procede de manipulation de substance facilement polymerisable, dispositif d'extraction de liquide du dispositif sous pression reduite et procede de fabrication de substance facile a polymeriser |
US6946081B2 (en) * | 2001-12-31 | 2005-09-20 | Poseidon Resources Corporation | Desalination system |
US20040045682A1 (en) * | 2002-04-24 | 2004-03-11 | Randal Liprie | Cogeneration wasteheat evaporation system and method for wastewater treatment utilizing wasteheat recovery |
CN1502560B (zh) * | 2002-11-27 | 2010-05-05 | 北京环能海臣科技有限公司 | 热汽体加热热虹吸循环蒸发器表面薄膜多效蒸馏脱盐装置 |
CN1297491C (zh) * | 2002-12-12 | 2007-01-31 | 周政明 | 溶液分离及海水淡化的方法及其设备 |
US7284709B2 (en) * | 2003-11-07 | 2007-10-23 | Climate Energy, Llc | System and method for hydronic space heating with electrical power generation |
JP2006009713A (ja) * | 2004-06-28 | 2006-01-12 | Hitachi Ltd | コージェネレーションシステム及びエネルギー供給システム |
KR100579576B1 (ko) * | 2004-08-17 | 2006-05-15 | 엘지전자 주식회사 | 열병합 발전 시스템 |
KR100600752B1 (ko) * | 2004-08-17 | 2006-07-14 | 엘지전자 주식회사 | 열병합 발전 시스템 |
US7828938B2 (en) * | 2005-10-12 | 2010-11-09 | General Electric Company | Hybrid water and power system |
US20070157922A1 (en) * | 2005-12-29 | 2007-07-12 | United Technologies Corporation | Integrated electrical and thermal energy solar cell system |
US10039996B2 (en) * | 2006-04-24 | 2018-08-07 | Phoenix Callente LLC | Methods and systems for heating and manipulating fluids |
US20130075245A1 (en) | 2009-12-16 | 2013-03-28 | F. Alan Frick | Methods and systems for heating and manipulating fluids |
BRPI0719253A2 (pt) * | 2006-10-10 | 2014-01-28 | Texas A & M Univ Sys | Sistema de dessalinização |
US8080138B2 (en) * | 2007-07-16 | 2011-12-20 | Arrowhead Center, Inc. | Desalination using low-grade thermal energy |
US20090188866A1 (en) * | 2008-01-25 | 2009-07-30 | Benjamin Elias Blumenthal | Desalination with production of brine fuel |
CN101219817B (zh) * | 2008-01-25 | 2010-09-22 | 天津大学 | 单一利用太阳能淡化海水或苦咸水的多效蒸馏装置与方法 |
WO2009114907A1 (en) * | 2008-03-20 | 2009-09-24 | Australian Creative Technologies Pty Ltd | Fluid fractionation process and apparatus |
KR100981295B1 (ko) * | 2008-08-28 | 2010-09-10 | 세종대학교산학협력단 | 오일샌드 회수용 보일러 공급수 생산장치 |
WO2010063789A2 (en) * | 2008-12-04 | 2010-06-10 | Shell Internationale Research Maatschappij B.V. | Method of cooling a hydrocarbon stream and an apparatus therefor |
US8287716B2 (en) * | 2009-03-31 | 2012-10-16 | King Fahd University Of Petroleum And Minerals | Desalination system and method |
US8696908B2 (en) * | 2009-05-13 | 2014-04-15 | Poseidon Resources Ip Llc | Desalination system and method of wastewater treatment |
WO2011050317A2 (en) * | 2009-10-23 | 2011-04-28 | Altela, Inc. | Leverage of waste product to provide clean water |
CN102126767B (zh) * | 2010-01-15 | 2014-04-16 | 北京航空航天大学 | 太阳能/低温热能驱动负压蒸发水溶液蒸馏分离装置和获得蒸馏水的方法 |
WO2012003525A1 (en) * | 2010-07-09 | 2012-01-12 | The University Of Western Australia | A desalination plant |
DE102010044172A1 (de) * | 2010-11-19 | 2012-05-24 | Siemens Aktiengesellschaft | Verfahren zur Wasseraufbereitung in einem industriellen Prozess |
US20120228116A1 (en) * | 2011-03-08 | 2012-09-13 | Environmental Process Solutions Llc | Vacuum Evaporator / Distillation System |
CN102247705B (zh) * | 2011-04-07 | 2014-04-30 | 上海通凌新能源科技发展有限公司 | 蒸馏过程中废热能源再利用的系统及再利用方法 |
CN102432081B (zh) * | 2011-11-09 | 2013-04-03 | 中国矿业大学 | 湿度差驱动下的蒸发冷冻海水淡化方法及装置 |
CN102489028A (zh) * | 2011-12-27 | 2012-06-13 | 赵晨 | 母液蒸发系统 |
WO2013151578A1 (en) * | 2012-04-04 | 2013-10-10 | Brine Water Properties, L.L.C | Methods and means of production water desalination |
US9028653B2 (en) * | 2012-04-13 | 2015-05-12 | Korea Institute Of Energy Research | Evaporative desalination device of multi stage and multi effect using solar heat |
WO2013184820A1 (en) | 2012-06-07 | 2013-12-12 | Deepwater Desal Llc | Systems and methods for data center cooling and water desalination |
CN102745852B (zh) * | 2012-07-18 | 2014-05-07 | 中国科学院新疆理化技术研究所 | 一种水脱盐的方法 |
GB2504503A (en) | 2012-07-31 | 2014-02-05 | Ibm | Desalination system |
US10053374B2 (en) * | 2012-08-16 | 2018-08-21 | University Of South Florida | Systems and methods for water desalination and power generation |
KR101447863B1 (ko) * | 2012-08-23 | 2014-10-07 | 삼성중공업 주식회사 | 연료전지 시스템 |
TWI534091B (zh) * | 2013-02-27 | 2016-05-21 | 國立成功大學 | 連續式廢水純化裝置 |
CN114651781A (zh) | 2013-03-15 | 2022-06-24 | 深水海水淡化有限责任公司 | 热源冷却子系统和水产养殖的共同设置 |
EP2969962A4 (en) * | 2013-03-15 | 2016-10-26 | Deepwater Desal Llc | COOLING OF REFRIGERATION FACILITIES AND WATER DESALINATION |
WO2014178919A1 (en) * | 2013-05-03 | 2014-11-06 | Jayden David Harman | Vacuum condenser |
WO2014196610A1 (ja) | 2013-06-05 | 2014-12-11 | 大川原化工機株式会社 | 海水淡水化装置および海水淡水化方法 |
US9468863B2 (en) | 2013-07-09 | 2016-10-18 | Herbert J. Roth, Jr. | System and method of desalinating seawater |
CN103520943A (zh) * | 2013-10-20 | 2014-01-22 | 丹阳市正大油脂有限公司 | 一种双层循环蒸发器 |
EP2876087A1 (de) * | 2013-11-20 | 2015-05-27 | Wolfgang Zenker | Unterdruck-Latentwärmeverdampfer |
US10118108B2 (en) * | 2014-04-22 | 2018-11-06 | General Electric Company | System and method of distillation process and turbine engine intercooler |
WO2016044102A1 (en) | 2014-09-16 | 2016-03-24 | Deepwater Desal Llc | Underwater systems having co-located data center and water desalination subunits |
WO2016044100A1 (en) | 2014-09-16 | 2016-03-24 | Deepwater Desal Llc | Systems and methods for applying power generation units in water desalination |
WO2016044101A1 (en) | 2014-09-16 | 2016-03-24 | Deepwater Desal Llc | Water cooled facilities and associated methods |
CN104628067A (zh) * | 2014-12-26 | 2015-05-20 | 皇明太阳能股份有限公司 | 太阳能海水淡化装置、灶具联合装置及其使用方法 |
US10024195B2 (en) | 2015-02-19 | 2018-07-17 | General Electric Company | System and method for heating make-up working fluid of a steam system with engine fluid waste heat |
US10487695B2 (en) | 2015-10-23 | 2019-11-26 | General Electric Company | System and method of interfacing intercooled gas turbine engine with distillation process |
CN105540708A (zh) * | 2015-12-17 | 2016-05-04 | 王俊坤 | 制备蒸馏水的装置 |
US11225954B2 (en) * | 2016-06-09 | 2022-01-18 | New Jersey Institute Of Technology | System and method for multi-level vacuum generation and storage |
CN106006807A (zh) * | 2016-08-09 | 2016-10-12 | 陕西和尊能源科技有限公司 | 一种低温蒸馏系统 |
US10661194B2 (en) | 2017-05-31 | 2020-05-26 | New Jersey Institute Of Technology | Vacuum distillation and desalination |
US20200041119A1 (en) * | 2017-08-20 | 2020-02-06 | Lane Asha Zabel | Latent Heat and Crystalline Water Combination Power and Desalination Plant |
CN108261789A (zh) * | 2017-12-22 | 2018-07-10 | 东营方圆有色金属有限公司 | 一种湿法冶金中液体物料蒸发浓缩的方法及装置 |
CN107990320B (zh) * | 2017-12-29 | 2023-11-17 | 长沙中硅环保科技有限公司 | 水泥窑协同处理有机废盐、高盐有机废水的方法及系统 |
US10696566B2 (en) * | 2018-04-05 | 2020-06-30 | Shawn Erick Lange | Power generating and water purifying system |
WO2020123982A2 (en) * | 2018-12-14 | 2020-06-18 | Benz Research And Development Corp. | Refining system |
US20200206651A1 (en) * | 2018-12-31 | 2020-07-02 | Phoenix Caliente, LLC | Methods and systems for heating and manipulating fluids |
CN109942131A (zh) * | 2019-03-04 | 2019-06-28 | 鲁西化工集团股份有限公司氯碱化工分公司 | 一种二甲基甲酰胺生产废水处理及物质回收工艺及装置 |
DE102019008444A1 (de) * | 2019-12-05 | 2021-06-24 | Ch.Batsch Verfahrenstechnik GmbH | Verfahren und Anlage zum Destillieren einer Flüssigkeit |
CN110921744A (zh) * | 2019-12-13 | 2020-03-27 | 成都恩承科技股份有限公司 | 一种高含盐废水处理方法 |
CN110921745A (zh) * | 2019-12-13 | 2020-03-27 | 成都恩承科技股份有限公司 | 一种高含盐废水处理系统 |
CN111943302B (zh) * | 2020-07-24 | 2022-09-16 | 内蒙古工业大学 | 太阳能热膜耦合多效淡化水装置及方法 |
CN112316450B (zh) * | 2020-09-22 | 2022-07-15 | 蓝旺节能科技(浙江)有限公司 | 一种中药加工高效循环蒸发系统 |
CN112933622B (zh) * | 2021-02-02 | 2023-01-31 | 崔秋生 | 一种热回收内浮顶储罐油的装置及方法 |
US11331592B1 (en) * | 2021-08-25 | 2022-05-17 | Olimax Inc | Salt recovery system |
CN114034027B (zh) * | 2021-10-22 | 2024-04-09 | 深圳润德工程有限公司 | 一种光伏协同温排水降温系统及方法 |
CN114804267A (zh) * | 2022-06-14 | 2022-07-29 | 安徽中冷环境技术有限公司 | 一种低温热泵废水蒸发处理设备及其处理方法 |
US20240279079A1 (en) * | 2023-02-21 | 2024-08-22 | Saudi Arabian Oil Company | System and method to sustainable integrated wastewater treatment and air-cooling in a steelmaking plant |
KR102688575B1 (ko) * | 2023-10-17 | 2024-07-25 | 주식회사 에너지컨설팅 | 지중 열교환기를 포함하는 히트 펌프 시스템 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB819025A (en) * | 1957-04-03 | 1959-08-26 | Atlas As | A method of producing fresh water from brackish water |
US3856631A (en) * | 1970-03-16 | 1974-12-24 | Sigworth H | Process and apparatus for separating water from non-volatile solutes |
FR2306941A1 (fr) * | 1975-04-07 | 1976-11-05 | Kestner App Evaporateurs | Procede et installation d'evaporation-distillation permettant l'utili sation de la chaleur perdue a la sortie de turbines a vapeur |
CH593424A5 (zh) * | 1976-05-14 | 1977-11-30 | Bbc Brown Boveri & Cie | |
SE410868B (sv) * | 1978-04-12 | 1979-11-12 | Lumalampan Ab | Sett och anordning for att separera kvicksilver fran fast material genom destillation under vacuum |
US4341601A (en) * | 1980-02-20 | 1982-07-27 | E. I. Du Pont De Nemours And Company | Water evaporation process |
US4401512A (en) * | 1980-12-29 | 1983-08-30 | Phillips Petroleum Company | Batch distillation |
EP0067146A1 (de) * | 1981-06-05 | 1982-12-15 | Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) | Destillieranlage |
JPS5820286A (ja) * | 1981-07-31 | 1983-02-05 | Tomimaru Iida | 太陽熱を利用した海水淡水化装置 |
US4799461A (en) * | 1987-03-05 | 1989-01-24 | Babcock Hitachi Kabushiki Kaisha | Waste heat recovery boiler |
US5853549A (en) * | 1995-03-14 | 1998-12-29 | Sephton; Hugo H. | Desalination of seawater by evaporation in a multi-stack array of vertical tube bundles, with waste heat. |
JPH0952082A (ja) * | 1995-08-16 | 1997-02-25 | Nkk Corp | 海水淡水化装置 |
JPH09108653A (ja) * | 1995-10-16 | 1997-04-28 | Nkk Corp | 海水淡水化装置 |
TW401647B (en) * | 1996-06-19 | 2000-08-11 | Ebara Corp | Desalting apparatus and method for operating such process |
JPH1047015A (ja) | 1996-08-07 | 1998-02-17 | Tokyo Gas Eng Kk | 発電・海水淡水化コンバインド装置 |
-
1998
- 1998-12-24 CN CNB988126419A patent/CN1220633C/zh not_active Expired - Fee Related
- 1998-12-24 TW TW087121679A patent/TW482743B/zh not_active IP Right Cessation
- 1998-12-24 EP EP98961520A patent/EP1049650A1/en not_active Ceased
- 1998-12-24 US US09/581,235 patent/US6833056B1/en not_active Expired - Fee Related
- 1998-12-24 IL IL13695898A patent/IL136958A0/xx unknown
- 1998-12-24 WO PCT/JP1998/005861 patent/WO1999033751A1/en not_active Application Discontinuation
- 1998-12-24 KR KR1020007007055A patent/KR20010033546A/ko not_active Application Discontinuation
- 1998-12-24 ID IDW20001231A patent/ID26880A/id unknown
- 1998-12-24 AU AU16882/99A patent/AU759283B2/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102001718A (zh) * | 2010-11-29 | 2011-04-06 | 昆明理工大学 | 低压节水高效蒸馏水器 |
Also Published As
Publication number | Publication date |
---|---|
US6833056B1 (en) | 2004-12-21 |
WO1999033751A1 (en) | 1999-07-08 |
EP1049650A1 (en) | 2000-11-08 |
CN1283167A (zh) | 2001-02-07 |
KR20010033546A (ko) | 2001-04-25 |
IL136958A0 (en) | 2001-06-14 |
AU1688299A (en) | 1999-07-19 |
TW482743B (en) | 2002-04-11 |
AU759283B2 (en) | 2003-04-10 |
ID26880A (id) | 2001-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1220633C (zh) | 脱盐方法和脱盐设备 | |
CN1160257C (zh) | 脱盐装置及其操作方法 | |
US8080138B2 (en) | Desalination using low-grade thermal energy | |
AU2010349612B2 (en) | Steam generation apparatus and energy supplying system using same | |
Jeevadason et al. | A review on diverse combinations and Energy-Exergy-Economics (3E) of hybrid solar still desalination | |
CN1250426A (zh) | 利用太阳能淡化或净化海水或微咸水的设备 | |
CN1522168A (zh) | 从含有盐的未处理水中生产洁净饮用水和高百分比盐水的蒸发方法 | |
CN102616973A (zh) | 高含盐有机废水的处理方法及其处理装置 | |
CN101708871A (zh) | 一种梯度预热多级蒸发式海水淡化发电系统 | |
CN102336448A (zh) | 盐水处理系统及方法 | |
CN102329035B (zh) | 淡水收集供应系统 | |
US20130186740A1 (en) | Method and Apparatus for Water Distillation | |
JP2001526959A (ja) | 淡水化方法および淡水化装置 | |
US9382132B1 (en) | Solar distillation apparatus | |
CN101985368A (zh) | 发电汽轮机组凝汽器式海水淡化装置 | |
US20090255797A1 (en) | Apparatus for desalinization utilizingtemperature gradient/condensation and method thereof | |
CN201882942U (zh) | 发电汽轮机组凝汽器式海水淡化装置 | |
CN218842358U (zh) | 一种电解制氢及余热利用系统 | |
RU2709665C1 (ru) | Способ опреснения морской воды | |
CN1843948A (zh) | 海水淡化,污水净化及发电的方法及装置 | |
AU2005284554A1 (en) | Seawater desalination plant | |
US10022646B1 (en) | Solar cooling and water salination system | |
JPH05288324A (ja) | エネルギのリサイクル装置 | |
JPH05288012A (ja) | エネルギのリサイクル装置 | |
RU2732606C1 (ru) | Способ опреснения морской воды с попутным извлечением соли |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20050928 Termination date: 20111224 |