CN113677081B - Reversed polarity plasma spraying gun for ultra-low pressure plasma spraying - Google Patents
Reversed polarity plasma spraying gun for ultra-low pressure plasma spraying Download PDFInfo
- Publication number
- CN113677081B CN113677081B CN202110930409.3A CN202110930409A CN113677081B CN 113677081 B CN113677081 B CN 113677081B CN 202110930409 A CN202110930409 A CN 202110930409A CN 113677081 B CN113677081 B CN 113677081B
- Authority
- CN
- China
- Prior art keywords
- nozzle
- cathode
- cooling
- low pressure
- plasma spraying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007750 plasma spraying Methods 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 58
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 40
- 239000010439 graphite Substances 0.000 claims abstract description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 39
- 238000001816 cooling Methods 0.000 claims abstract description 32
- 239000007921 spray Substances 0.000 claims abstract description 29
- 230000002441 reversible effect Effects 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 37
- 239000000112 cooling gas Substances 0.000 claims description 12
- 239000000498 cooling water Substances 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 239000010937 tungsten Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 2
- 229910052802 copper Inorganic materials 0.000 claims 2
- 239000010949 copper Substances 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 12
- 238000002679 ablation Methods 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 7
- 238000000576 coating method Methods 0.000 abstract description 7
- 230000008021 deposition Effects 0.000 abstract description 4
- 238000002844 melting Methods 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000012720 thermal barrier coating Substances 0.000 description 2
- 229910002080 8 mol% Y2O3 fully stabilized ZrO2 Inorganic materials 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 102220043159 rs587780996 Human genes 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nozzles (AREA)
- Coating By Spraying Or Casting (AREA)
- Plasma Technology (AREA)
Abstract
本发明公开了一种用于超低压等离子喷涂的反极性等离子喷涂枪,包括枪体部分和外部喷管部分;枪体部分采用前置中心通孔阴极和后置杯状阳极的反极性电极结构设计,使喷枪在较低电流条件下实现更大的功率,降低了电极的烧蚀和涂层的污染;外部喷管部分采用带有直筒状通孔的石墨喷管,通过压缩射流提高了低压下的射流温度,并大幅延长了粉末在高温射流区域的停留时间,使粉末可以在低压环境和较小喷枪功率条件下也能充分的熔融和气化;采用气体冷却来定量地冷却石墨喷管,使喷管内壁处于较高的温度,结合较大的等离子气体流量,有效解决了粉末在管壁内壁沉积堵塞的问题。
The invention discloses a reverse polarity plasma spraying gun for ultra-low pressure plasma spraying, comprising a gun body part and an external nozzle part; the gun body part adopts a reverse polarity with a front central through hole cathode and a rear cup-shaped anode. The electrode structure design enables the spray gun to achieve greater power under lower current conditions, reducing the ablation of the electrode and the pollution of the coating; the external nozzle part adopts a graphite nozzle with a straight cylindrical through hole, which is improved by compressing the jet. It increases the jet temperature under low pressure, and greatly prolongs the residence time of the powder in the high temperature jet area, so that the powder can be fully melted and gasified under the condition of low pressure environment and small spray gun power; gas cooling is used to quantitatively cool the graphite spray. The inner wall of the nozzle is at a higher temperature, combined with a larger plasma gas flow, which effectively solves the problem of powder deposition and blockage on the inner wall of the tube wall.
Description
技术领域technical field
本发明涉及等离子喷涂领域,特别涉及一种用于超低压等离子喷涂的反极性等离子喷涂枪。The invention relates to the field of plasma spraying, in particular to a reverse polarity plasma spraying gun used for ultra-low pressure plasma spraying.
背景技术Background technique
超低压等离子喷涂因其可以制备类似电子束气相沉积的柱状结构热障涂层,与传统大气喷涂涂层相比,该种涂层具有更好地耐受性和抗热震性能,因此被广泛应用在对涂层性能要求较高的航空发动机关键热端部件。在超低压(50-200 Pa)环境下,从喷枪出口处喷出的等离子射流可以扩展到2 m长,直径可增加到200-400 mm,但由于出口外部等离子射流的密度显著降低,因此也大幅降低了外部等离子射流对粉末的加热能力,想要实现高熔点陶瓷粉末的部分或完全气化面临着巨大的挑战。Ultra-low pressure plasma spraying is widely used because it can prepare columnar thermal barrier coatings similar to electron beam vapor deposition, which have better resistance and thermal shock resistance than traditional atmospheric spray coatings. It is used in the key hot-end components of aero-engines that require high coating performance. In an ultra-low pressure (50-200 Pa) environment, the plasma jet ejected from the outlet of the gun can expand to 2 m in length and the diameter can be increased to 200-400 mm, but because the density of the plasma jet outside the outlet is significantly reduced, it is also The ability of the external plasma jet to heat the powder is greatly reduced, and it is a huge challenge to achieve partial or complete gasification of high-melting ceramic powders.
目前的解决方案主要包括两种,一种是通过使用超高的电弧电流(2500-3000 A)将喷枪的功率大幅提升至120-180 Kw,并将粉末送入阳极内部距离出口约10-20 mm处,例如Oerlikon Metco公司生产的03CP型喷枪和Medicoat公司生产的MC100型喷枪;另一种是在中等功率大气喷涂枪的出口处加一段延长的水冷喇叭状喷管,通过将粉末送入较长的水冷喷管来延长粉末在射流高温区的停留时间,例如授权公告号为CN 101954324 B的一种低压等离子喷涂用喷涂枪。以上两种方案存在以下缺陷:1)以上两种喷枪电极均为棒状阴极和直筒状阳极,并且与电源采用传统的正接方法,这种结构具有较低的电弧电压(30-50V),想要实现较大的功率和射流焓值只能通过增大电流,但电流的增大会导致电极的迅速烧蚀,进而降低电极的使用寿命并污染涂层,限制喷枪的进一步推广和应用;2)喷管外部均使用冷却水冷却,这将迅速带走喷管的热量,使喷管内壁处于较低的温度状态,当温度较高的熔融、气化粉末与冷的喷管内壁碰撞时,熔融、气化的粉末将迅速冷却、凝固、粘结,从而堵塞喷管,使喷枪无法长时间正常工作;3)逐渐扩张的喇叭状喷管设计会一定程度降低喷管对射流的压缩作用,从而降低射流对粉末的加热作用,使粉末很难实现充分的熔融和气化。The current solutions mainly include two, one is to greatly increase the power of the spray gun to 120-180 Kw by using an ultra-high arc current (2500-3000 A), and send the powder into the inside of the anode about 10-20 from the outlet mm, such as the 03CP spray gun produced by Oerlikon Metco and the MC100 spray gun produced by Medicoat; the other is to add an extended water-cooled horn-shaped nozzle at the outlet of the medium-power atmospheric spray gun, by feeding the powder into a relatively A long water-cooled nozzle is used to prolong the residence time of the powder in the high temperature area of the jet, for example, a spray gun for low-pressure plasma spraying with the authorization announcement number of CN 101954324 B. The above two schemes have the following defects: 1) The above two spray gun electrodes are rod-shaped cathodes and straight cylindrical anodes, and the traditional positive connection method is used with the power supply. Larger power and jet enthalpy can only be achieved by increasing the current, but the increase in current will lead to rapid ablation of the electrode, thereby reducing the service life of the electrode and contaminating the coating, limiting the further promotion and application of the spray gun; 2) Spray The outside of the tube is cooled by cooling water, which will quickly take away the heat of the nozzle, so that the inner wall of the nozzle is in a lower temperature state. The vaporized powder will rapidly cool, solidify and bond, which will block the nozzle and make the spray gun unable to work normally for a long time; 3) The gradually expanding flared nozzle design will reduce the compression effect of the nozzle on the jet to a certain extent, thereby reducing the The heating effect of the jet on the powder makes it difficult to achieve sufficient melting and vaporization of the powder.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术的不足之处,本发明提供了一种用于超低压等离子喷涂的反极性等离子喷涂枪,该喷枪采用反转电极布置和外加延长的气冷直筒状喷管设计,可以在较低的输入电弧电流条件下实现更高的电弧电压和喷枪功率,并大幅提高粉末在射流核心高温区的停留时间,同时通过控制等离子气体的流量和石墨喷管的内壁温度来抑制粉末的沉积和堵塞,最大程度地实现粉末在超低压环境下的充分熔融和气化。In view of the deficiencies of the above-mentioned prior art, the present invention provides a reverse polarity plasma spray gun for ultra-low pressure plasma spraying. Achieve higher arc voltage and gun power under lower input arc current conditions, and greatly increase the residence time of powder in the high temperature zone of the jet core, while suppressing the powder's turbidity by controlling the plasma gas flow and the inner wall temperature of the graphite nozzle Sedimentation and clogging, to maximize the full melting and gasification of powders in ultra-low pressure environments.
为实现上述目的,本发明的技术方案如下。In order to achieve the above objects, the technical solutions of the present invention are as follows.
本发明公开了一种用于超低压等离子喷涂的反极性等离子喷涂枪,包括枪体1和外部喷管10;所述枪体1包括前置中心通孔阴极2、后置杯状阳极3、绝缘主体4、主气进气管5、主气配气环6、冷却水进水管7和冷却水出水管8;所述外部喷管10包括陶瓷垫片11、石墨喷管12、钨衬套13、气冷套筒14、冷却气进气管15、冷却气出气管16、送粉管17和热电偶18;所述枪体1和外部喷管10通过气冷套筒14上的螺栓压紧密封连接。The invention discloses a reverse polarity plasma spraying gun for ultra-low pressure plasma spraying, comprising a gun body 1 and an
所述石墨喷管12、阴极2、阳极3从前往后依次同轴心布置,阴极2和阳极3之间通过聚四氟主气配气环6实现隔离和绝缘,石墨喷管12和阴极2之间通过氮化硼陶瓷垫片11隔离和绝缘,防止阴极弧根转移到石墨喷管上,进而烧蚀喷管和污染涂层。The
所述阴极2和阳极3外部开有水冷槽,冷却水从进水管7进入,依次流经阳极3和阴极2外部的水冷槽后从出水管8流出,实现对阴极2和阳极3的强制冷却。The
所述阴极2和阳极3之间设有主气配气环6,等离子形成气体从主气进气管5进入,流经带有旋转配气孔的主气配气环6后进入电弧室通道,通过带有旋向的气流将阴阳极之间的初始电弧9拉伸延长,并保持动态稳定状态。A main
所述石墨喷管12内部镶嵌有钨衬套13,钨衬套具有较高的熔点和良好的机械性能,可以有效降低粉末对喷管的冲刷和磨损;喷管后端靠近阴极出口处设有送粉孔19,并与送粉管17相连通,粉末通过载气并沿着送粉孔19送入喷管中的中心射流高温区域。The
所述石墨喷管12外部开有冷却槽,通过质量流量计控制的一定流量的惰性冷却气体从冷却气进气管15进入,流经冷却槽后从冷却气出气管16流出,从而实现对石墨喷管的定量冷却和保护。There is a cooling groove outside the
所述石墨喷管12的外部两端分别开有沉孔,沉孔底部距离石墨喷管通道1-2mm,且热电偶测温端与沉孔底部接触测温,根据喷枪功率和喷管尺寸调整喷管外部冷却气体的流量,通过热电偶的实时测温,将喷管内壁温度控制在2000-2500°C范围内;因此,通过减小喷管内壁与熔化、气化粉末之间的温度差,并使用较大的等离子气体流量,可以有效抑制熔融、气化粉末在喷管热壁上的沉积和堵塞。The outer two ends of the
所述前置中心通孔阴极2与电源负极连接,所述后置杯状阳极3与电源正极连接,通过这种反转电极结构的设计,可以在两极枪结构上最大程度地拉伸电弧,使阴极弧根很容易拉伸并固定在阴极出口处,实现较大的电弧电压,进而可以在小电流下实现更大的喷枪功率;因此,该种设计可以在增大射流温度和焓值的同时减小电极烧蚀,进而延长电极和喷枪的使用寿命。The front central through-
所述阴极2材质为铜内嵌钨衬套,所述阳极3材质为铜内嵌钼衬套,这样设计可以进一步地减小电极的烧蚀和对涂层的污染。The
所述主气配气环6上均匀分布有8个直径为1-2mm的气孔,且气孔径向旋转角度为45°C,通过旋转进气,可以有效稳定电弧并使弧根周期转动,防止弧根在电极某一点处持续烧蚀。The main
所述送粉孔19的孔径为1-2mm,送粉孔出口距离阴极出口为2-5mm,这样可以将粉末送入靠近喷枪阴极出口处的中心高温区域;送粉孔出口距离石墨喷管出口为60-120 mm,这样可以大幅延长粉末在喷管高温射流中的加热时间,提高射流能量利用率,使粉末充分熔融和气化。The diameter of the powder feeding hole 19 is 1-2 mm, and the distance between the outlet of the powder feeding hole and the cathode outlet is 2-5 mm, so that the powder can be fed into the central high temperature area near the cathode outlet of the spray gun; the outlet of the powder feeding hole is far from the outlet of the graphite nozzle. It is 60-120 mm, which can greatly prolong the heating time of the powder in the high-temperature jet of the nozzle, improve the utilization rate of the jet energy, and make the powder fully melt and gasify.
所述石墨喷管12的中心通孔为直筒状,内径为4-10mm,直径相对较小的圆筒状流道设计可以有效压缩射流,提高射流温度,并使粉末从进入到离开喷管过程中始终处于高温射流区域。The central through hole of the
所述石墨喷管12的外部冷却槽采用氮气、氩气等惰性气体冷却,使用惰性气体冷却可以防止石墨在高温下的氧化和消耗,大幅延长石墨喷管的使用寿命。The external cooling tank of the
本发明的一种用于超低压等离子喷涂的反极性等离子喷涂枪具有以下优势:1)在较低电弧电流(500 A)条件下,喷枪功率可以达到60 Kw,因此可以大幅降低大电流对电极的烧蚀作用,延长喷枪使用寿命;2)外部小口径直筒状喷管的设计大幅提升了粉末在射流高温区域的停留时间,提高了喷枪能量的利用率,使喷枪在超低压环境下,以相对较低的功率也可以实现陶瓷粉末的充分熔融和气化;3)使用气体冷却的外加喷管设计,可以准确控制喷管的内壁温度,较高的内壁温度结合较快的等离子射流速度有效解决了熔融、气化粉末在喷管内部的沉积和堵塞问题。A reverse polarity plasma spraying gun for ultra-low pressure plasma spraying of the present invention has the following advantages: 1) Under the condition of lower arc current (500 A), the power of the spraying gun can reach 60 Kw, so it can greatly reduce the impact of high current on The ablation effect of the electrode prolongs the service life of the spray gun; 2) The design of the external small diameter straight cylindrical nozzle greatly improves the residence time of the powder in the high temperature area of the jet, improves the utilization rate of the energy of the spray gun, and makes the spray gun in the ultra-low pressure environment. The ceramic powder can also be fully melted and gasified with relatively low power; 3) The design of the external nozzle using gas cooling can accurately control the inner wall temperature of the nozzle, and the higher inner wall temperature combined with the faster plasma jet velocity is effective Solved the deposition and blockage of molten and vaporized powder inside the nozzle.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative labor.
图1为本发明的结构示意图。FIG. 1 is a schematic structural diagram of the present invention.
附图标记:1-枪体;2-前置中心通孔阴极;3-后置杯状阳极;4-绝缘主体;5-主气进气管;6-主气配气环;7-冷却水进水管;8-冷却水出水管;9-电弧;10-外部喷管;11-陶瓷垫片;12-石墨喷管;13-钨衬套;14-气冷套筒;15-冷却气进气管;16-冷却气出气管;17-送粉管;18-热电偶;19-送粉孔。Reference symbols: 1-gun body; 2-front center through hole cathode; 3-rear cup anode; 4-insulation body; 5-main gas intake pipe; 6-main gas distribution ring; 7-cooling water Water inlet pipe; 8-cooling water outlet pipe; 9-electric arc; 10-external nozzle; 11-ceramic gasket; 12-graphite nozzle; 13-tungsten bushing; 14-air cooling sleeve; 15-cooling air inlet Air pipe; 16-cooling air outlet pipe; 17-powder feeding pipe; 18-thermocouple; 19-powder feeding hole.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work, any modifications, equivalent replacements, improvements, etc., should be included in the protection scope of the present invention. Inside.
如图1所示,本发明的一种用于超低压等离子喷涂的反极性等离子喷涂枪,包括枪体1和外部喷管10;所述枪体1包括前置中心通孔阴极2、后置杯状阳极3、绝缘主体4、主气进气管5、主气配气环6、冷却水进水管7和冷却水出水管8;所述外部喷管10包括陶瓷垫片11、石墨喷管12、钨衬套13、气冷套筒14、冷却气进气管15、冷却气出气管16、送粉管17和热电偶18;所述枪体1和外部喷管10通过气冷套筒14上的螺栓压紧密封连接。As shown in FIG. 1, a reverse polarity plasma spray gun for ultra-low pressure plasma spraying of the present invention includes a gun body 1 and an
所述石墨喷管12、阴极2、阳极3从前往后依次同轴心布置,阴极2和阳极3之间通过聚四氟主气配气环6实现隔离和绝缘,石墨喷管12和阴极2之间通过氮化硼陶瓷垫片11隔离和绝缘,防止阴极弧根转移到石墨喷管上,进而烧蚀喷管和污染涂层。The
所述阴极2和阳极3外部开有水冷槽,冷却水从进水管7进入,依次流经阳极3和阴极2外部的水冷槽后从出水管8流出,实现对阴极2和阳极3的强制冷却。The
所述阴极2和阳极3之间设有主气配气环6,等离子形成气体从主气进气管5进入,流经带有旋转配气孔的主气配气环6后进入电弧室通道,通过带有旋向的气流将阴阳极之间的初始电弧9拉伸延长,并保持动态稳定状态。A main
所述石墨喷管12内部镶嵌有钨衬套13,钨衬套具有较高的熔点和良好的机械性能,可以有效降低粉末对喷管的冲刷和磨损;喷管后端靠近阴极出口处设有送粉孔19,并与送粉管17相连通,粉末通过载气并沿着送粉孔19送入喷管中的中心射流高温区域。The
所述石墨喷管12外部开有冷却槽,通过质量流量计控制的一定流量的惰性冷却气体从冷却气进气管15进入,流经冷却槽后从冷却气出气管16流出,从而实现对石墨喷管的定量冷却和保护。There is a cooling groove outside the
所述石墨喷管12的外部两端分别开有沉孔,沉孔底部距离石墨喷管通道1-2mm,且热电偶测温端与沉孔底部接触测温,根据喷枪功率和喷管尺寸调整喷管外部冷却气体的流量,通过热电偶的实时测温,将喷管内壁温度控制在2000-2500°C范围内;因此,通过减小喷管内壁与熔化、气化粉末之间的温度差,并使用较大的等离子气体流量,可以有效抑制熔融、气化粉末在喷管热壁上的沉积和堵塞。The outer two ends of the
所述前置中心通孔阴极2与电源负极连接,所述后置杯状阳极3与电源正极连接,通过这种反转电极结构的设计,可以在两极枪结构上最大程度地拉伸电弧,使阴极弧根很容易拉伸并固定在阴极出口处,实现较大的电弧电压,进而可以在小电流下实现更大的喷枪功率;因此,该种设计可以在增大射流温度和焓值的同时减小电极烧蚀,进而延长电极和喷枪的使用寿命。The front central through-
所述阴极2材质为铜内嵌钨衬套,所述阳极3材质为铜内嵌钼衬套,这样设计可以进一步地减小电极的烧蚀和对涂层的污染。The
所述主气配气环6上均匀分布有8个直径为1-2mm的气孔,且气孔径向旋转角度为45°C,通过旋转进气,可以有效稳定电弧并使弧根周期转动,防止弧根在电极某一点处持续烧蚀。The main
所述送粉孔19的孔径为1-2mm,送粉孔出口距离阴极出口为2-5mm,这样可以将粉末送入靠近喷枪阴极出口处的中心高温区域;送粉孔出口距离石墨喷管出口为60-120 mm,这样可以大幅延长粉末在喷管高温射流中的加热时间,提高射流能量利用率,使粉末充分熔融和气化。The diameter of the powder feeding hole 19 is 1-2 mm, and the distance between the outlet of the powder feeding hole and the cathode outlet is 2-5 mm, so that the powder can be fed into the central high temperature area near the cathode outlet of the spray gun; the outlet of the powder feeding hole is far from the outlet of the graphite nozzle. It is 60-120 mm, which can greatly prolong the heating time of the powder in the high-temperature jet of the nozzle, improve the utilization rate of the jet energy, and make the powder fully melt and gasify.
所述石墨喷管12的中心通孔为直筒状,内径为4-10mm,直径相对较小的圆筒状流道设计可以有效压缩射流,提高射流温度,并使粉末从进入到离开喷管过程中始终处于高温射流区域。The central through hole of the
所述石墨喷管12的外部冷却槽采用氮气、氩气等惰性气体冷却,使用惰性气体冷却可以防止石墨在高温下的氧化和消耗,大幅延长石墨喷管的使用寿命。The external cooling tank of the
利用本实施例在超低压环境下制备厚度为150-200 um的气相含量较高的类柱状结构热障涂层,所选粉末为D50=12 um的8YSZ(Y2O3含量为7-8%的ZrO2粉末)纳米团聚粉末,基体为耐高温的316L不锈钢,具体喷涂工作参数如下:This example is used to prepare a columnar-like thermal barrier coating with a high gas phase content of 150-200 um in an ultra-low pressure environment, and the selected powder is 8YSZ with D50=12 um (the Y 2 O 3 content is 7-8 % ZrO 2 powder) nano-agglomerated powder, the matrix is 316L stainless steel with high temperature resistance, and the specific spraying parameters are as follows:
喷枪电流:400 A;Gun current: 400 A;
喷枪电压:125 V;Gun voltage: 125 V;
喷枪功率:50 Kw;Spray gun power: 50 Kw;
喷管长度/口径:80/6 mm;Nozzle length/diameter: 80/6 mm;
喷管内壁温度:2000 °C;Nozzle inner wall temperature: 2000 °C;
等离子气体流量(氩-氢):45/15 L/min;Plasma gas flow (argon-hydrogen): 45/15 L/min;
冷却气体流量(氮气):30 L/min;Cooling gas flow (nitrogen): 30 L/min;
送粉量:5 g/min;Powder feeding amount: 5 g/min;
喷涂距离:1100 mm;Spraying distance: 1100 mm;
基体温度:900-1000 °C;Substrate temperature: 900-1000 °C;
环境压力:100 Pa。Ambient pressure: 100 Pa.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110930409.3A CN113677081B (en) | 2021-08-13 | 2021-08-13 | Reversed polarity plasma spraying gun for ultra-low pressure plasma spraying |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110930409.3A CN113677081B (en) | 2021-08-13 | 2021-08-13 | Reversed polarity plasma spraying gun for ultra-low pressure plasma spraying |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113677081A CN113677081A (en) | 2021-11-19 |
CN113677081B true CN113677081B (en) | 2022-06-03 |
Family
ID=78542688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110930409.3A Active CN113677081B (en) | 2021-08-13 | 2021-08-13 | Reversed polarity plasma spraying gun for ultra-low pressure plasma spraying |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113677081B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114799411B (en) * | 2022-05-13 | 2023-01-03 | 扬州欧拉工业设计有限公司 | Thermal cutting device for automobile disassembly |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004888A (en) * | 1989-12-21 | 1991-04-02 | Westinghouse Electric Corp. | Plasma torch with extended life electrodes |
CN1403210A (en) * | 2001-09-05 | 2003-03-19 | 中国科学院金属研究所 | Cold air driven spray painter |
CN1404925A (en) * | 2002-10-31 | 2003-03-26 | 上海交通大学 | Plasma spraying gun |
CN104902666A (en) * | 2015-05-21 | 2015-09-09 | 广东省工业技术研究院(广州有色金属研究院) | Double airflow supersonic plasma spray gun |
CN105027684A (en) * | 2013-01-31 | 2015-11-04 | 欧瑞康美科(美国)公司 | Optimized thermal nozzle and method of using same |
CN205320363U (en) * | 2015-09-07 | 2016-06-15 | 徐州科融环境资源股份有限公司 | Air cooling plasma electrode |
CN109041396A (en) * | 2018-10-30 | 2018-12-18 | 广东省新材料研究所 | A kind of twin cathode axial direction feeding plasma gun |
CN110302909A (en) * | 2019-05-31 | 2019-10-08 | 中国航天空气动力技术研究院 | A High Power Hot Cathode Supersonic Plasma Spray Gun |
CN110834099A (en) * | 2019-11-25 | 2020-02-25 | 沈阳工业大学 | A kind of plasma intermediate wire feeding gas atomization pulverizing nozzle and using method thereof |
KR102217152B1 (en) * | 2020-03-13 | 2021-02-17 | 전북대학교산학협력단 | A hollow electrode plasma torch with reverse polarity discharge |
CN112695268A (en) * | 2021-01-14 | 2021-04-23 | 四川大学 | Annular powder feeding and gas focusing device for supersonic plasma spraying |
-
2021
- 2021-08-13 CN CN202110930409.3A patent/CN113677081B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004888A (en) * | 1989-12-21 | 1991-04-02 | Westinghouse Electric Corp. | Plasma torch with extended life electrodes |
CN1403210A (en) * | 2001-09-05 | 2003-03-19 | 中国科学院金属研究所 | Cold air driven spray painter |
CN1404925A (en) * | 2002-10-31 | 2003-03-26 | 上海交通大学 | Plasma spraying gun |
CN105027684A (en) * | 2013-01-31 | 2015-11-04 | 欧瑞康美科(美国)公司 | Optimized thermal nozzle and method of using same |
CN104902666A (en) * | 2015-05-21 | 2015-09-09 | 广东省工业技术研究院(广州有色金属研究院) | Double airflow supersonic plasma spray gun |
CN205320363U (en) * | 2015-09-07 | 2016-06-15 | 徐州科融环境资源股份有限公司 | Air cooling plasma electrode |
CN109041396A (en) * | 2018-10-30 | 2018-12-18 | 广东省新材料研究所 | A kind of twin cathode axial direction feeding plasma gun |
CN110302909A (en) * | 2019-05-31 | 2019-10-08 | 中国航天空气动力技术研究院 | A High Power Hot Cathode Supersonic Plasma Spray Gun |
CN110834099A (en) * | 2019-11-25 | 2020-02-25 | 沈阳工业大学 | A kind of plasma intermediate wire feeding gas atomization pulverizing nozzle and using method thereof |
KR102217152B1 (en) * | 2020-03-13 | 2021-02-17 | 전북대학교산학협력단 | A hollow electrode plasma torch with reverse polarity discharge |
CN112695268A (en) * | 2021-01-14 | 2021-04-23 | 四川大学 | Annular powder feeding and gas focusing device for supersonic plasma spraying |
Non-Patent Citations (1)
Title |
---|
Numerical investigation on the flow characteristics of a reverse-polarity plasma torch by two-temperature thermal non-equilibrium modelling;Zhengxin YIN et al.;《Plasma Sci. Technol.》;20210730;第23卷;095402 * |
Also Published As
Publication number | Publication date |
---|---|
CN113677081A (en) | 2021-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104902666B (en) | A dual-flow supersonic plasma spray gun | |
US5733662A (en) | Method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method | |
MX2011009388A (en) | Plasma torch with a lateral injector. | |
CN104244557A (en) | Atmosphere protection coaxial powder feeding plasma gun | |
CN101954324B (en) | Plasma spray gun for low-pressure plasma spraying | |
CN110919017B (en) | Method and device for preparing spherical metal powder by hot wire assisted plasma arc | |
CN111286693A (en) | Microporous anode for cluster plasma spray gun and cluster plasma spraying method | |
CN113677081B (en) | Reversed polarity plasma spraying gun for ultra-low pressure plasma spraying | |
CN110834099A (en) | A kind of plasma intermediate wire feeding gas atomization pulverizing nozzle and using method thereof | |
CN105430863A (en) | Plasma generator based on glide arc discharge principle | |
CN101660144B (en) | Plasma torch for chemical vapor deposition | |
CN102271451A (en) | Cathode structure of laminar flow electric arc plasma generator | |
CN1589088A (en) | Double anode heat plasma generator | |
CN104284503A (en) | A laminar flow plasma gun body used for the treatment of the inner wall of the tunnel | |
CN204244556U (en) | A laminar flow plasma gun body used for the treatment of the inner wall of the tunnel | |
CN112911780B (en) | Cascaded plasma generator | |
CN211128363U (en) | A cascaded plasma generator | |
CN1448223A (en) | Hollow cathode central axial powder-feeding plasma spraying gun | |
CN206894987U (en) | A kind of more negative electrode laminar flow plasma powder spheroidization devices | |
CN110035596A (en) | Transferred arc plasma torch is used in a kind of production of metal nano powder | |
CN114059024B (en) | A kind of spray gun for plasma physical vapor deposition and preparation method of thermal barrier coating | |
CN205856587U (en) | A kind of direct current argon arc plasma powder spray gun | |
CN210676946U (en) | A plasma arc spheroidizing powder device | |
CN112647037A (en) | Four-cathode plasma spraying spray gun device | |
CN105722295B (en) | A kind of three cathode plasma spray guns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |