CN112661500B - Bioceramic scaffold with micro/nano structure on the surface and its preparation method and application - Google Patents
Bioceramic scaffold with micro/nano structure on the surface and its preparation method and application Download PDFInfo
- Publication number
- CN112661500B CN112661500B CN202110017383.3A CN202110017383A CN112661500B CN 112661500 B CN112661500 B CN 112661500B CN 202110017383 A CN202110017383 A CN 202110017383A CN 112661500 B CN112661500 B CN 112661500B
- Authority
- CN
- China
- Prior art keywords
- scaffold
- micro
- flower
- akermanite
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 9
- 239000003462 bioceramic Substances 0.000 title claims description 28
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 17
- 208000018084 Bone neoplasm Diseases 0.000 claims abstract description 8
- 239000011148 porous material Substances 0.000 claims abstract description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract 17
- 229910001720 Åkermanite Inorganic materials 0.000 claims abstract 13
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 29
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 239000004201 L-cysteine Substances 0.000 claims description 14
- 235000013878 L-cysteine Nutrition 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 238000010146 3D printing Methods 0.000 claims description 11
- 230000008439 repair process Effects 0.000 claims description 11
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 230000035484 reaction time Effects 0.000 claims description 7
- 230000000975 bioactive effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 235000010413 sodium alginate Nutrition 0.000 claims description 3
- 239000000661 sodium alginate Substances 0.000 claims description 3
- 229940005550 sodium alginate Drugs 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims 2
- 241000482268 Zea mays subsp. mays Species 0.000 claims 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims 1
- 229920001983 poloxamer Polymers 0.000 claims 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 69
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 46
- 239000010433 feldspar Substances 0.000 description 44
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical group [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 34
- 239000000395 magnesium oxide Substances 0.000 description 33
- 244000005706 microflora Species 0.000 description 27
- 206010028980 Neoplasm Diseases 0.000 description 24
- 229910052742 iron Inorganic materials 0.000 description 20
- 239000001095 magnesium carbonate Substances 0.000 description 18
- 235000014380 magnesium carbonate Nutrition 0.000 description 18
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 18
- 210000000988 bone and bone Anatomy 0.000 description 16
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 14
- 210000001185 bone marrow Anatomy 0.000 description 14
- 238000010335 hydrothermal treatment Methods 0.000 description 14
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 14
- 239000003642 reactive oxygen metabolite Substances 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 9
- 210000004881 tumor cell Anatomy 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 8
- 230000009818 osteogenic differentiation Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 230000000259 anti-tumor effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KAEAMHPPLLJBKF-UHFFFAOYSA-N iron(3+) sulfide Chemical compound [S-2].[S-2].[S-2].[Fe+3].[Fe+3] KAEAMHPPLLJBKF-UHFFFAOYSA-N 0.000 description 6
- 230000011164 ossification Effects 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000011580 nude mouse model Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000002271 resection Methods 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 108090000573 Osteocalcin Proteins 0.000 description 3
- 102000004264 Osteopontin Human genes 0.000 description 3
- 108010081689 Osteopontin Proteins 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000002188 osteogenic effect Effects 0.000 description 3
- 201000008968 osteosarcoma Diseases 0.000 description 3
- 230000002980 postoperative effect Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 2
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 2
- 108010024682 Core Binding Factor Alpha 1 Subunit Proteins 0.000 description 2
- 102000015775 Core Binding Factor Alpha 1 Subunit Human genes 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 101100324822 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fes-4 gene Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000005917 in vivo anti-tumor Effects 0.000 description 2
- 238000011587 new zealand white rabbit Methods 0.000 description 2
- 229920001992 poloxamer 407 Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 229910005390 FeSO4-7H2O Inorganic materials 0.000 description 1
- 229910005444 FeSO4—7H2O Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108010042918 Integrin alpha5beta1 Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000004067 Osteocalcin Human genes 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001659 chemokinetic effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- CBMPTFJVXNIWHP-UHFFFAOYSA-L disodium;hydrogen phosphate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].[Na+].OP([O-])([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O CBMPTFJVXNIWHP-UHFFFAOYSA-L 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000005918 in vitro anti-tumor Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000010603 microCT Methods 0.000 description 1
- 230000006676 mitochondrial damage Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及表面具有微纳米结构的生物陶瓷支架及其制备方法和应用,其具体涉及一种四硫化三铁微米花修饰的生物陶瓷支架及其制备方法和用途,属生物材料领域。The invention relates to a bioceramic scaffold with a micro-nano structure on the surface and a preparation method and application thereof, in particular to a bioceramic scaffold modified with iron tetrasulfide microflora, a preparation method and application thereof, and belongs to the field of biological materials.
背景技术Background technique
恶性骨肿瘤的治疗一直是临床上的巨大难题。目前,治疗恶性骨肿瘤的手段很多,比如手术切除、化学疗法、放射疗法等。手术切除后会在切除部位留下较大的缺损,必须通过植入物对其进行修复,并且手术切除不能彻底清除肿瘤细胞。放疗和化疗会对肿瘤周围正常的组织产生较大的伤害,也会使肿瘤细胞对药物产生一定的抵抗力。因此,开发兼具肿瘤清除能力和骨修复能力的生物材料仍然具有很大的挑战。化学动力学疗法利用亚铁离子高效歧化肿瘤微环境中累积的过氧化氢,产生强氧化性的活性氧,进而引起肿瘤细胞的蛋白变性、DNA断裂、线粒体破坏等一系列氧化损伤,进而引起肿瘤细胞的凋亡。此外,利用磁热疗法可以辅助促进化学动力学疗法中羟基自由基的产生效率,实现磁热调控化学动力学疗法治疗肿瘤。磁热疗法不受深度的影响,效率高,且副作用小,因此可以用来治疗骨肿瘤这一类的深层次的肿瘤。三维支架表面的微结构可以促进骨髓间充质干细胞的成骨分化。The treatment of malignant bone tumors has always been a huge clinical problem. At present, there are many methods for the treatment of malignant bone tumors, such as surgical resection, chemotherapy, radiotherapy and so on. Surgical resection leaves a large defect at the resection site, which must be repaired with an implant, and surgical resection cannot completely remove tumor cells. Radiotherapy and chemotherapy will cause greater damage to the normal tissue around the tumor, and will also make tumor cells resistant to drugs. Therefore, the development of biomaterials with both tumor clearance and bone repair capabilities remains a great challenge. Chemodynamic therapy utilizes ferrous ions to efficiently disproportionate hydrogen peroxide accumulated in the tumor microenvironment to generate highly oxidative reactive oxygen species, which in turn cause a series of oxidative damages such as protein degeneration, DNA fragmentation, and mitochondrial damage in tumor cells, thereby causing tumors apoptosis of cells. In addition, the use of magnetothermal therapy can assist in promoting the generation efficiency of hydroxyl radicals in chemodynamic therapy, and realize magnetothermal regulation of chemodynamic therapy for the treatment of tumors. Magnetothermal therapy is not affected by depth, has high efficiency, and has few side effects, so it can be used to treat deep tumors such as bone tumors. The microstructure on the surface of the three-dimensional scaffold can promote the osteogenic differentiation of bone marrow mesenchymal stem cells.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明的目的在于提供一种兼具肿瘤清除和骨修复能力的生物陶瓷支架。In view of the problems existing in the prior art, the purpose of the present invention is to provide a bioceramic scaffold with both tumor removal and bone repair capabilities.
一方面,本发明提供一种四硫化三铁微米花修饰的生物陶瓷支架材料,包括镁黄长石支架和生长在镁黄长石支架表面的四硫化三铁层微米花颗粒,所述镁黄长石支架孔道直径在100~400μm;所述四硫化三铁微米花颗粒是微纳米结构,由直径为0.5~3μm的片状颗粒组装成,其直径在5~50μm。In one aspect, the present invention provides a bioceramic scaffold material modified with ferric ferrite microflora, comprising a magnesite scaffold and ferric tetrasulfide layer microflora particles grown on the surface of the magnesite scaffold, wherein the pore diameter of the magnesia feldspar scaffold is in the range of 100-400 μm; the iron tetrasulfide microflora particles are micro-nano structures, assembled from flake particles with a diameter of 0.5-3 μm, and the diameter of which is 5-50 μm.
四硫化三铁微米花修饰的生物陶瓷支架,支架表面生长的四硫化三铁具有铁磁性,可以在交变磁场的感应下由于磁滞效应、弛豫效应等原因迅速升温,并且可以在酸性环境下释放铁离子催化肿瘤微环境中过表达的过氧化氢,通过芬顿或类芬顿反应产生羟基自由基,具体反应过程如下:Fe2+ + H2O2 → Fe3+ + OH- + •OH,磁热可以提高活性氧的产生效率进而达到磁热和化学动力学疗法协同有效杀死肿瘤细胞。同时,微纳米结构可以通过整合素α5β1等介导肌动蛋白F-actin来调控细胞行为,进而促进成骨分化,因此微纳米结构在促进骨修复方面有一定的优势。支架表面的四硫化三铁微米花形成的微纳米结构可以通过整合素介导肌动蛋白F-actin来通过调控细胞的形态进而调控骨髓间充质干细胞的分化能力,起修复骨缺损的作用。此外,镁黄长石具有良好的成骨活性,镁黄长石支架自身可以释放活性离子(如Ca、Mg和Si)促进骨修复,而四硫化三铁微结构可以与活性离子协同进一步镁黄长石支架的成骨性能。因此,本发明的四硫化三铁微米花修饰的生物陶瓷支架具有良好的清除肿瘤能力和修复骨缺损的能力,可以用于骨肿瘤的术后治疗。Ferrous tetrasulfide microflora-modified bioceramic scaffold, the iron tetrasulfide grown on the surface of the scaffold has ferromagnetic properties, which can rapidly heat up under the induction of an alternating magnetic field due to hysteresis effect and relaxation effect, and can be used in an acidic environment. Fe 2+ + H 2 O 2 → Fe 3+ + OH - + Fe 2+ + H 2 O 2 → Fe 3+ + OH - + • OH, magnetocaloric can improve the production efficiency of reactive oxygen species and achieve the synergistic effect of magnetocaloric and chemokinetic therapy to kill tumor cells. At the same time, micro-nano structures can regulate cell behavior by mediating actin F-actin such as integrin α5β1, thereby promoting osteogenic differentiation. Therefore, micro-nano structures have certain advantages in promoting bone repair. The micro-nano structures formed by the iron tetrasulfide microflora on the surface of the scaffolds can regulate the cell shape and then the differentiation ability of bone marrow mesenchymal stem cells through integrin-mediated actin F-actin, and play a role in repairing bone defects. In addition, magnesite has good osteogenic activity, and magnesite scaffold itself can release active ions (such as Ca, Mg and Si) to promote bone repair, while the microstructure of ferric sulfide can synergize with active ions to further the osteogenesis of magnesite scaffold performance. Therefore, the bioceramic scaffold modified with iron tetrasulfide microflora of the present invention has a good ability to remove tumors and repair bone defects, and can be used for postoperative treatment of bone tumors.
较佳地,所述生物陶瓷支架是通过将镁黄长石支架在FeSO4•7H2O和L-半胱氨酸的水溶液中利用水热法在镁黄长石支架表面生长出四硫化三铁微米花颗粒制备到得。所述水热反应温度优选为160~200℃,反应时间为12~24小时。Preferably, the bioceramic scaffold is formed by growing the ferric tetrasulfide microflora particles on the surface of the MgO feldspar scaffold using a hydrothermal method in an aqueous solution of FeSO 4 ·7H 2 O and L-cysteine. prepared. The hydrothermal reaction temperature is preferably 160-200° C., and the reaction time is 12-24 hours.
较佳地,所述水溶液中 FeSO4•7H2O的浓度为-0.01~0.05mol/L,L-半胱氨酸的浓度为0.01~0.05 mol/L。Preferably, the concentration of FeSO 4 •7H 2 O in the aqueous solution is -0.01-0.05 mol/L, and the concentration of L-cysteine is 0.01-0.05 mol/L.
较佳地,所述四硫化三铁微米花原位生长于所述镁黄长石支架表面,所构成的整个层的厚度为1~10μm。Preferably, the ferric tetrasulfide microflora is grown in situ on the surface of the magnesia feldspar support, and the thickness of the entire layer formed is 1-10 μm.
另一方面,本发明提供了一种四硫化三铁微米花修饰的生物陶瓷支架的制备方法,包括镁黄长石陶瓷支架的制备;将镁黄长石陶瓷支架在FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理即得到四硫化三铁微米花修饰的生物陶瓷支架。 In another aspect, the present invention provides a method for preparing a bioceramic scaffold modified with ferric sulfide microflora, including the preparation of a magnesia feldspar ceramic scaffold ; A bioceramic scaffold modified with ferric tetrasulfide microflora is obtained by hydrothermal treatment in an aqueous solution of amino acid.
在一方案中,所述镁黄长石生物活性陶瓷支架的通过如下方法制备:In one embodiment, the bioactive ceramic scaffold of the magnesite feldspar is prepared by the following method:
将镁黄长石粉末:粘结剂以质量比为(1~1.5):1进行混合得到糊状物;Mix the magnesite powder: the binder in a mass ratio of (1-1.5): 1 to obtain a paste;
将所得糊状物置入三维打印机中进行三维打印,得到坯体;The obtained paste is placed in a three-dimensional printer for three-dimensional printing to obtain a green body;
将所得坯体在1300~1400℃烧结3~5小时,制得镁黄长石生物活性陶瓷支架。The obtained green body is sintered at 1300-1400 DEG C for 3-5 hours to prepare a magnesite bioactive ceramic stent.
较佳地,所述粘结剂包括常见的粘结剂海藻酸钠、普兰尼克F127水溶液、和/或聚乙烯醇等。Preferably, the binder includes the common binder sodium alginate, aqueous solution of Pluronic F127, and/or polyvinyl alcohol and the like.
将所得到的镁黄长石支架在FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理过程中,优选四硫化三铁水热前驱体的浓度为0.01~0.05mol/L。In the process of hydrothermal treatment of the obtained magnesite scaffold in an aqueous solution of FeSO 4 •7H 2 O and L-cysteine, the concentration of the hydrothermal precursor of iron tetrasulfide is preferably 0.01-0.05mol/L.
本发明中,通过三维打印技术制备镁黄长石支架,制备方法简单,可制备形状复杂的支架。此外,水热法可以在支架表面修饰四硫化三铁微米花,制备简单且重复性好。In the present invention, the magnesia feldspar bracket is prepared by three-dimensional printing technology, the preparation method is simple, and the bracket with complex shape can be prepared. In addition, the hydrothermal method can decorate the surface of the scaffold with FeS microflora, and the preparation is simple and reproducible.
再一方面,本发明还提供了一种四硫化三铁微米花修饰的生物陶瓷支架在骨肿瘤术后的治疗与修复的材料中的应用。In yet another aspect, the present invention also provides an application of a bioceramic scaffold modified with iron tetrasulfide microflora in the treatment and repair of bone tumors after surgery.
附图说明Description of drawings
图1为纯镁黄长石和四硫化三铁修饰的镁黄长石支架的光学照片(a),纯镁黄长石支架的SEM图(b1-b3),不同水热条件下四硫化三铁修饰的镁黄长石支架(c1-f3),具体对应的反应条件如下:(c1-c3)0.02 mol/L前驱体,反应温度160℃,反应时长12小时,命名为0.02 L-FS-AKT;(d1-d3)0.04 mol/L前驱体,反应温度160℃,反应时长12小时,命名为0.04L-FS-AKT;(e1-e3)0.02 mol/L前驱体,反应温度180℃,反应时长12小时,命名为0.02 F-FS-AKT;(f1-f3)0.04 mol/L前驱体,反应温度180℃,反应时长12小时,命名为0.04F-FS-AKT,其中,从e1-e3可以看出,在这一条件下支架表面形成了尺寸均匀的微米花结构;Figure 1 shows the optical photos of pure magnesite and ferric sulfide modified magnesite scaffolds (a), SEM images of pure magnesite scaffolds (b1-b3), ferric tetrasulfide-modified magnesite under different hydrothermal conditions Scaffold (c1-f3), the specific corresponding reaction conditions are as follows: (c1-c3) 0.02 mol/L precursor, reaction temperature 160 ℃,
图2示出了四硫化三铁修饰的支架的磁热性能;图中曲线从下至上分别为:6A、7A、8A;Figure 2 shows the magnetocaloric properties of the scaffold modified with ferric tetrasulfide; the curves in the figure from bottom to top are: 6A, 7A, and 8A;
图3为四硫化三铁修饰的镁黄长石支架催化过氧化氢产生活性氧的性能;Fig. 3 is the performance of ferric tetrasulfide modified magnesite scaffold to catalyze hydrogen peroxide to generate reactive oxygen species;
图4为骨髓间充质干细胞在支架上培养1、3、7天后的吸光度(a),成骨相关基因骨钙蛋白(OCN)(b)、骨桥素(OPN)(c)和骨细胞特异转录因子(RUNX2)(d)的表达水平;图4的(a)中从左至右分别是AKT、0.02 L-FS-AKT、0.04 L-FS-AKT、0.02 F-FS-AKT、0.04 F-FS-AKT(已在图1中具体说明),图中可以看出0.02 F-FS-AKT有效促进骨髓间充质干细胞的增殖,以及相比于其它组可以显著提高成骨相关基因的表达;Figure 4 shows the absorbance (a), osteogenesis-related genes osteocalcin (OCN) (b), osteopontin (OPN) (c) and osteocytes of bone marrow mesenchymal stem cells cultured on scaffolds for 1, 3, and 7 days The expression level of specific transcription factor (RUNX2) (d); from left to right in Figure 4 (a) are AKT, 0.02 L-FS-AKT, 0.04 L-FS-AKT, 0.02 F-FS-AKT, 0.04 F-FS-AKT (specified in Figure 1), it can be seen from the figure that 0.02 F-FS-AKT can effectively promote the proliferation of bone marrow mesenchymal stem cells, and can significantly increase the expression of osteogenesis-related genes compared with other groups Express;
图5为LM-8骨肉瘤细胞在支架磁热和活性氧协同作用下的存活率;Figure 5 shows the survival rate of LM-8 osteosarcoma cells under the synergistic effect of scaffold magnetocaloric and reactive oxygen species;
图6为裸鼠肿瘤皮下模型中支架的抗肿瘤能力,升温曲线(a),肿瘤体积变化(b),裸鼠在第0和14天的照片(c),肿瘤组织照片(d)和肿瘤组织的H&E染色图(e);图6的(b)中曲线从上至下分别为:空白组、Fe3S4-AKT组、Fe3S4-AKT+交变磁场(AMF)组;Figure 6 shows the anti-tumor ability of the scaffold in the subcutaneous tumor model of nude mice, the heating curve (a), the change in tumor volume (b), the photos of nude mice on
图7为新西兰大白兔骨缺损模型动物实验的CT分析结果。Figure 7 shows the CT analysis results of the New Zealand white rabbit bone defect model animal experiment.
具体实施方式Detailed ways
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below with reference to the accompanying drawings and the following embodiments. It should be understood that the accompanying drawings and the following embodiments are only used to illustrate the present invention, but not to limit the present invention.
本发明中,通过水热反应在镁黄长石支架表面修饰四硫化三铁,一方面,四硫化三铁可以利用磁热和催化过氧化氢产生活性氧,协同杀死肿瘤细胞;另一方面,四硫化三铁微米花可以调控骨髓间充质干细胞的成骨分化,并且镁黄长石本身有利于骨髓间充质干细胞的黏附、增殖和成骨分化。因此本发明的四硫化三铁微米花修饰的镁黄长石支架具有良好的清除肿瘤和骨修复的能力(参见后述的生物活性测试),可以作为骨肿瘤术后治疗的材料,兼具肿瘤治疗与骨组织再生的双功能。In the present invention, the surface of the magnesia feldspar scaffold is modified with ferric tetrasulfide by hydrothermal reaction. On the one hand, the ferric tetrasulfide can use magnetocaloric and catalytic hydrogen peroxide to generate reactive oxygen species and synergistically kill tumor cells; Ferric sulfide microflora can regulate the osteogenic differentiation of bone marrow mesenchymal stem cells, and magnesite itself is beneficial to the adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Therefore, the Fe4S microflora-modified magnesia feldspar scaffold of the present invention has good tumor removal and bone repair capabilities (refer to the biological activity test described later), and can be used as a material for postoperative treatment of bone tumors, which has both tumor treatment and bone repair. Dual function of bone tissue regeneration.
本发明的一个实施方式提供一种四硫化三铁微米花修饰的生物陶瓷支架,其包括镁黄长石支架和生长在镁黄长石支架表面的四硫化三铁微米花层,四硫化三铁是以水热法生长在支架表面,水热法以L-半胱氨酸为硫源(L-半胱氨酸可以溶于水,形成均匀的水溶液,呈酸性,其中的巯基(-SH)性质活泼可以和金属离子反应),以FeSO4·7H2O为铁源,一步法均匀地在支架表面上生长四硫化三铁微米花。图1示出发明一个示例的镁黄长石支架和四硫化三铁修饰的镁黄长石支架的光学照片(a)和SEM图(b1~f3)。从图中可以看出,四硫化三铁均匀地生长在镁黄长石支架表面,微米花的直径可以为5~50μm。One embodiment of the present invention provides a bioceramic scaffold modified with ferric tetrasulfide micro-flowers, which comprises a magnesite scaffold and a ferric tetrasulfide micro-flower layer grown on the surface of the magnesia feldspar scaffold, and the ferric tetrasulfide is a hydrothermal It is grown on the surface of the scaffold by the hydrothermal method, and L-cysteine is used as the sulfur source in the hydrothermal method (L-cysteine can be dissolved in water to form a uniform aqueous solution, which is acidic, and the sulfhydryl (-SH) in it is active and can be Metal ion reaction), using FeSO 4 ·7H 2 O as the iron source, one-step uniform growth of iron tetrasulfide microflora on the surface of the scaffold. FIG. 1 shows the optical photos (a) and SEM images (b1~f3) of a magnesite scaffold and a ferric tetrasulfide-modified magnesite scaffold of an example of the invention. It can be seen from the figure that the iron tetrasulfide grows uniformly on the surface of the magnesia feldspar scaffold, and the diameter of the micro-flowers can be 5-50 μm.
上述四硫化三铁修饰的生物陶瓷支架的制备可以包括:利用3D打印技术制备出镁黄长石支架;将制得的镁黄长石支架在FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,清洗干燥得到四硫化三铁微米花修饰的生物陶瓷支架。The preparation of the above-mentioned ferric tetrasulfide modified bioceramic scaffold may include: preparing a magnesite scaffold by 3D printing technology; performing the prepared magnesite scaffold in an aqueous solution of FeSO 4 •7H 2 O and L-cysteine Hydrothermal treatment, washing and drying to obtain a bioceramic scaffold modified with ferric tetrasulfide microflora.
在利用3D打印技术制备镁黄长石支架的一个示例中,采用镁黄长石粉末为原材料,并将粉末与粘结剂混合均匀,并且调整两者混合的比例,例如镁黄长石粉末与粘结剂的质量比为(1~1.5):1,其中粘结剂可为海藻酸钠、普兰尼克(F127)和/或聚乙烯醇等。然后利用3D打印软件(主要包括设计支架具体参数,调控支架的形状、尺寸等),进行打印。In an example of using 3D printing technology to prepare a magnesite feldspar scaffold, magnesia feldspar powder is used as the raw material, the powder and the binder are mixed uniformly, and the mixing ratio of the two is adjusted, such as the mass ratio of magnesite feldspar powder and the binder. It is (1~1.5):1, wherein the binder can be sodium alginate, Pluronic (F127) and/or polyvinyl alcohol, etc. Then use 3D printing software (mainly including designing the specific parameters of the stent, adjusting the shape and size of the stent, etc.) to print.
将3D打印后的镁黄长石生坯进行烧结,制得镁黄长石陶瓷支架。其中烧结条件可在1300~1400℃烧结3~5小时。The 3D printed magnesia feldspar green body is sintered to obtain a magnesia feldspar ceramic stent. The sintering conditions can be sintered at 1300~1400℃ for 3~5 hours.
利用水热法在镁黄长石支架表面生长出四硫化三铁微米花颗粒。在一个示例中,水热生长的方法是将支架在FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热,之后清洗干燥。其中水热前驱体浓度为0.01~0.05mol/L,FeSO4•7H2O的浓度为0.01~0.05mol/L,L-半胱氨酸的浓度为0.01~0.05mol/L,当前驱体浓度低于0.01mol/L时,支架表面很难形成均匀的微米花层,当浓度高于0.05mol/L时,支架表面的四硫化三铁过多,影响支架的生物活性;水热反应温度为160~200℃,反应时间为12~24小时。Ferric tetrasulfide microflora particles were grown on the surface of magnesia feldspar scaffolds by hydrothermal method. In one example, the method of hydrothermal growth is to hydrothermalize the scaffolds in an aqueous solution of FeSO4-7H2O and L - cysteine, followed by washing and drying. Among them, the concentration of hydrothermal precursor is 0.01~0.05mol/L, the concentration of FeSO 4 •7H 2 O is 0.01~0.05mol/L, and the concentration of L-cysteine is 0.01~0.05mol/L. The current precursor concentration When the concentration is lower than 0.01mol/L, it is difficult to form a uniform micron flower layer on the surface of the stent. When the concentration is higher than 0.05mol/L, there will be too much iron tetrasulfide on the surface of the stent, which will affect the biological activity of the stent. The hydrothermal reaction temperature is 160~200℃, the reaction time is 12~24 hours.
以下,作为示例,说明本发明中四硫化三铁修饰的镁黄长石支架的制备方法。Hereinafter, as an example, the preparation method of the ferric tetrasulfide-modified magnesite scaffold in the present invention will be described.
将镁黄长石粉末和F127水溶液按照质量比(1~1.5):1混合均匀,利用3D打印技术制备出镁黄长石生坯支架。The magnesia feldspar powder and the F127 aqueous solution were mixed uniformly according to the mass ratio (1~1.5): 1, and the magnesite feldspar green scaffold was prepared by 3D printing technology.
将打印好的支架生坯在1300~1400℃烧结3~5小时,得到镁黄长石陶瓷支架。The printed scaffold green body is sintered at 1300-1400° C. for 3-5 hours to obtain a magnesia feldspar ceramic scaffold.
将制得的镁黄长石支架在FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,得到四硫化三铁微米花修饰的生物陶瓷支架。The prepared magnesia feldspar scaffold was subjected to hydrothermal treatment in an aqueous solution of FeSO 4 •7H 2 O and L-cysteine to obtain a bioceramic scaffold modified with ferric sulfide microflora.
通过光学照片和扫描电镜对支架的形貌进行表征。The morphology of the scaffolds was characterized by optical photographs and scanning electron microscopy.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。The following further examples are given to illustrate the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above content of the present invention belong to the present invention. scope of protection. The specific process parameters and the like in the following examples are only an example of a suitable range, that is, those skilled in the art can make selections within the suitable range through the description herein, and are not intended to be limited to the specific numerical values exemplified below.
实施例1Example 1
纯镁黄长石粉体5g,与4gF127均匀混合,利用3D打印技术制备出镁黄长石支架;5g of pure magnesite feldspar powder was evenly mixed with 4g F127, and the magnesia feldspar scaffold was prepared by 3D printing technology;
将镁黄长石支架生坯在1360℃煅烧4小时,即得到纯的镁黄长石支架;The green magnesia feldspar scaffold was calcined at 1360°C for 4 hours to obtain a pure magnesia feldspar scaffold;
将镁黄长石放入0.02 mol/L的FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,温度为180℃,时间为12小时;Put the magnesite into the aqueous solution of 0.02 mol/L FeSO 4 ·7H 2 O and L-cysteine for hydrothermal treatment, the temperature is 180℃, and the time is 12 hours;
水热后,将支架用去离子水和无水乙醇冲洗,在60℃烘箱中烘干,即得到四硫化三铁微米花修饰的生物陶瓷支架。对其进行结构表征,结果如图1所示,从图中可以看出镁黄长石支架孔道直径在100~400μm;四硫化三铁均匀生长在镁黄长石支架表面;微米花颗粒是由直径为0.5~3μm的片状颗粒交错组装成的,微米花直径在5~50μm。然后采用下述方法进行成骨活性和抗肿瘤能力的评价。After the hydrothermal treatment, the scaffold was rinsed with deionized water and absolute ethanol, and dried in an oven at 60°C to obtain a bioceramic scaffold modified with iron tetrasulfide microflora. Its structure is characterized, and the results are shown in Figure 1. It can be seen from the figure that the diameter of the pores of the magnesia feldspar scaffold is 100-400 μm; the iron tetrasulfide grows evenly on the surface of the magnesia feldspar scaffold; the micro-flower particles are composed of 0.5~ It is composed of 3 μm flake particles staggered and assembled, and the diameter of the micro flower is 5 to 50 μm. Then, the following methods were used to evaluate the osteogenic activity and antitumor ability.
支架的磁热性能Magnetocaloric properties of stents
改变磁场的输出电流,在干、湿状态下测试支架的磁热性能:将支架置于交变磁场(磁场参数, 线圈直径:10cm;频率:560kHz;输出电流:6A/7A/8A)中,利用热成像仪以及FLIR R&D软件实时监控支架的温度变化,并输出温度变化曲线,结果参加图2.a和2.b。从图2中可以看出支架具有良好的磁热性能,可以在短时间内迅速升温,达到肿瘤治疗所需要的温度45℃以上。Change the output current of the magnetic field, and test the magneto-caloric properties of the stent in dry and wet states: place the stent in an alternating magnetic field (magnetic field parameters, coil diameter: 10cm; frequency: 560kHz; output current: 6A/7A/8A), The thermal imager and FLIR R&D software were used to monitor the temperature change of the stent in real time, and output the temperature change curve. The results are shown in Figures 2.a and 2.b. It can be seen from Figure 2 that the stent has good magnetocaloric properties and can rapidly heat up in a short period of time, reaching a temperature above 45°C required for tumor treatment.
支架催化过氧化氢产生活性氧的性能Performance of scaffolds to catalyze the generation of reactive oxygen species from hydrogen peroxide
将四硫化三铁微米花修饰的支架置于1mL的磷酸氢二钠-柠檬酸缓冲溶液(pH=6.5,含200Μ H2O2 和25mg/L 亚甲基蓝)中,利用磁场调控支架的温度到42、47、52和57℃,保持10min后,测试溶液在664nm处的吸收光光谱,并与原始溶液进行比较,结果参见图3。图中可以看出随着温度升高,活性氧产生的效率随之提高。The scaffold modified with ferric tetrasulfide microflora was placed in 1 mL of disodium hydrogen phosphate-citric acid buffer solution (pH=6.5, containing 200 M H 2 O 2 and 25 mg/L methylene blue), and the temperature of the scaffold was adjusted to 42 using a magnetic field. , 47, 52, and 57 °C, after holding for 10 min, the absorption spectrum of the test solution at 664 nm was compared with the original solution. The results are shown in Figure 3. It can be seen from the figure that as the temperature increases, the efficiency of reactive oxygen generation increases.
四硫化三铁修饰的陶瓷支架与骨髓间充质干细胞的相互作用Interaction between iron tetrasulfide-modified ceramic scaffolds and bone marrow mesenchymal stem cells
将骨髓间充质干细胞分别种在镁黄长石支架和四硫化三铁修饰的镁黄长石支架上,培养1、3、7天,分别采用CCK8法检测干细胞的增殖能力。利用RT-PCR法测试骨髓间充质干细胞在支架上的成骨分化相关基因的表达,结果参见图4。图4中骨髓间充质干细胞在四硫化三铁微米花修饰的支架上培养1,3,7天后可以保持良好的增殖,3天的成骨相关基因OCN、OPN、RUNX2显著上调,结果表明,四硫化三铁修饰的支架仍能够保持生物活性,可以促进干细胞的增殖,并且可以提高成骨相关基因的表达,说明四硫化三铁微米花修饰的镁黄长石支架可以诱导骨髓间充质干细胞成骨分化。Bone marrow mesenchymal stem cells were seeded on magnesia feldspar scaffolds and ferric tetrasulfide-modified magnesia feldspar scaffolds, respectively, and cultured for 1, 3, and 7 days, and the proliferation ability of stem cells was detected by CCK8 method. The expression of osteogenic differentiation-related genes of bone marrow mesenchymal stem cells on the scaffold was tested by RT-PCR method, and the results are shown in FIG. 4 . In Figure 4, bone marrow mesenchymal stem cells can maintain good proliferation after 1, 3, and 7 days of culture on the iron tetrasulfide microflora-modified scaffold, and the osteogenesis-related genes OCN, OPN, and RUNX2 were significantly up-regulated at 3 days. The results showed that, The scaffolds modified with ferric sulfide can still maintain biological activity, can promote the proliferation of stem cells, and can increase the expression of osteogenesis-related genes, indicating that the ferric sulfide microflora-modified magnesite scaffolds can induce bone marrow mesenchymal stem cells into osteogenesis differentiation.
四硫化三铁修饰的支架的体外抗肿瘤能力In vitro antitumor ability of ferric tetrasulfide-modified scaffolds
将LM-8骨肉瘤细胞种在48孔板中,培养12小时后,一半的孔内培养基换成pH=6.5,200Μ H2O2的培养基,之后分别放入支架,在磁场的调控下,将温度分别升到42、47和52℃,保温10分钟。处理后的细胞继续培养12小时,利用CCK8试剂盒(碧云天生物技术有限公司,产品编号C0038)测细胞的存活率,结果参见图5。图5中经过52℃磁热和活性氧协同作用下,肿瘤存活率仅为1.5%,结果表明支架可以催化过氧化氢产生活性氧和磁热协同高效地杀死肿瘤细胞。The LM-8 osteosarcoma cells were seeded in a 48-well plate, and after culturing for 12 hours, half of the medium in the well was replaced with a medium with pH=6.5, 200M H 2 O 2 , and then put into the scaffolds respectively, under the control of the magnetic field. Then, the temperature was raised to 42, 47 and 52 °C, respectively, and kept for 10 minutes. The treated cells were further cultured for 12 hours, and the cell viability was measured using the CCK8 kit (Biyuntian Biotechnology Co., Ltd., product number C0038). The results are shown in FIG. 5 . In Figure 5, the tumor survival rate was only 1.5% under the synergistic effect of magnetocaloric and reactive oxygen species at 52 °C. The results showed that the scaffold could catalyze the generation of reactive oxygen species by hydrogen peroxide and the magnetocaloric synergy to kill tumor cells efficiently.
四硫化三铁修饰的生物陶瓷支架体内抗肿瘤能力In vivo antitumor ability of FeS-modified bioceramic scaffolds
在裸鼠皮下注入LM-8骨肉瘤细胞,建立皮下肿瘤模型。之后将支架植入肿瘤部位,并在交变磁场下升温,记录升温曲线,温度保持在51℃左右十分钟,连续治疗四天。每两天记录一次肿瘤体积,在14天处死裸鼠,并取出肿瘤组织,进行H&E染色分析,结果见图6。图6为经过3天磁热和活性氧的治疗,肿瘤体积逐渐变小,14天肿瘤消失,H&E染色图中也没有肿瘤细胞存在,结果表明四硫化三铁修饰的支架具有优异的抗肿瘤性能。Nude mice were injected subcutaneously with LM-8 osteosarcoma cells to establish a subcutaneous tumor model. After that, the stent was implanted into the tumor site and heated under an alternating magnetic field, and the heating curve was recorded. The temperature was kept at about 51°C for ten minutes, and the treatment was continued for four days. The tumor volume was recorded every two days, and the nude mice were sacrificed on the 14th day, and the tumor tissue was removed for H&E staining analysis. The results are shown in Figure 6. Figure 6 shows that after 3 days of treatment with magneto-caloric and reactive oxygen species, the tumor volume gradually became smaller, and the tumor disappeared after 14 days, and there were no tumor cells in the H&E staining image. .
四硫化三铁修饰的生物陶瓷支架体内抗肿瘤能力In vivo antitumor ability of FeS-modified bioceramic scaffolds
在新西兰大白兔的股骨处构建直径为6mm的骨缺损模型,植入四硫化三铁微米花修饰的支架,12周后取材并进行CT扫描分析。Micro-CT结果(参见图7)显示植入四硫化三铁微米花修饰的生物陶瓷支架在缺损处形成了较多的新骨。结果表明,四硫化三铁微米花修饰的支架在磁热和活性氧的协同作用下可以高效抑制骨肿瘤,生物活性离子和表面微结构可以共同促进骨修复,具有良好的体内促进骨缺损修复的能力。A bone defect model with a diameter of 6 mm was constructed in the femur of New Zealand white rabbits, and a scaffold modified with triiron tetrasulfide microflora was implanted. After 12 weeks, the material was collected and analyzed by CT scan. The results of Micro-CT (see Figure 7) showed that more new bone was formed in the defect when the bioceramic scaffold modified with FeS4 microflora was implanted. The results show that the scaffold modified with FeS4 microflora can effectively inhibit bone tumor under the synergistic effect of magnetocaloric and reactive oxygen species, and bioactive ions and surface microstructure can jointly promote bone repair, which has a good in vivo promotion of bone defect repair. ability.
实施例2Example 2
纯镁黄长石粉体5g,与4gF127均匀混合,利用3D打印技术制备出镁黄长石支架;5g of pure magnesite feldspar powder was evenly mixed with 4g F127, and the magnesia feldspar scaffold was prepared by 3D printing technology;
将镁黄长石支架生坯在1360℃煅烧4小时,即得到纯的镁黄长石支架;The green magnesia feldspar scaffold was calcined at 1360°C for 4 hours to obtain a pure magnesia feldspar scaffold;
将镁黄长石放入0.04 mol/L的FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,温度为160℃,时间为24小时;Put the magnesite into 0.04 mol/L FeSO 4 ·7H 2 O and L-cysteine aqueous solution for hydrothermal treatment, the temperature is 160 ℃, and the time is 24 hours;
水热后,将支架用去离子水和无水乙醇冲洗,在60℃烘箱中烘干,即得到四硫化三铁微米花修饰的生物陶瓷支架。After the hydrothermal treatment, the scaffold was rinsed with deionized water and absolute ethanol, and dried in an oven at 60°C to obtain a bioceramic scaffold modified with iron tetrasulfide microflora.
实施例3Example 3
纯镁黄长石粉体5g,与5gF127均匀混合,利用3D打印技术制备出镁黄长石支架;Pure magnesia feldspar powder 5g, evenly mixed with 5g F127, using 3D printing technology to prepare magnesia feldspar support;
将镁黄长石支架生坯在1300℃煅烧3小时,即得到纯的镁黄长石支架;The green magnesia feldspar scaffold was calcined at 1300 °C for 3 hours to obtain a pure magnesia feldspar scaffold;
将镁黄长石放入0.02 mol/L的FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,温度为160℃,时间为12小时;Put the magnesite into the aqueous solution of 0.02 mol/L FeSO 4 ·7H 2 O and L-cysteine for hydrothermal treatment, the temperature is 160 ℃, and the time is 12 hours;
水热后,将支架用去离子水和无水乙醇冲洗,在60℃烘箱中烘干,即得到四硫化三铁微米花修饰的生物陶瓷支架。After the hydrothermal treatment, the scaffold was rinsed with deionized water and absolute ethanol, and dried in an oven at 60°C to obtain a bioceramic scaffold modified with iron tetrasulfide microflora.
实施例4Example 4
纯镁黄长石粉体5g,与4.5gF127均匀混合,利用3D打印技术制备出镁黄长石支架;5g of pure magnesite powder, evenly mixed with 4.5g F127, the magnesia feldspar scaffold was prepared by 3D printing technology;
将镁黄长石支架生坯在1350℃煅烧3小时,即得到纯的镁黄长石支架;The green magnesia feldspar scaffold was calcined at 1350°C for 3 hours to obtain a pure magnesia feldspar scaffold;
将镁黄长石放入0.04 mol/L的FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,温度为200℃,时间为24小时;Put magnesite into 0.04 mol/L FeSO 4 ·7H 2 O and L-cysteine aqueous solution for hydrothermal treatment, the temperature is 200 ℃, and the time is 24 hours;
水热后,将支架用去离子水和无水乙醇冲洗,在60℃烘箱中烘干,即得到四硫化三铁微米花修饰的生物陶瓷支架。After the hydrothermal treatment, the scaffold was rinsed with deionized water and absolute ethanol, and dried in an oven at 60°C to obtain a bioceramic scaffold modified with iron tetrasulfide microflora.
实施例5Example 5
纯镁黄长石粉体5g,与4gF127均匀混合,利用3D打印技术制备出镁黄长石支架;5g of pure magnesite feldspar powder was evenly mixed with 4g F127, and the magnesia feldspar scaffold was prepared by 3D printing technology;
将镁黄长石支架生坯在1300℃煅烧5小时,即得到纯的镁黄长石支架;The green magnesia feldspar scaffold was calcined at 1300°C for 5 hours to obtain a pure magnesite scaffold;
将镁黄长石放入0.05 mol/L的FeSO4•7H2O和L-半胱氨酸的水溶液中进行水热处理,温度为180℃,时间为24小时;Put the magnesite into the aqueous solution of 0.05 mol/L FeSO 4 •7H 2 O and L-cysteine for hydrothermal treatment, the temperature is 180 ℃, and the time is 24 hours;
水热后,将支架用去离子水和无水乙醇冲洗,在60℃烘箱中烘干,即得到四硫化三铁微米花修饰的生物陶瓷支架。After the hydrothermal treatment, the scaffold was rinsed with deionized water and absolute ethanol, and dried in an oven at 60°C to obtain a bioceramic scaffold modified with iron tetrasulfide microflora.
然后采用上述实施例1的方法对实施例2-5制造的支架进行成骨活性和抗肿瘤能力的评价,其结果表明,四硫化三铁修饰的支架具有良好的磁热性能;可催化过氧化氢产生活性氧并诱导骨髓间充质干细胞成骨分化,通过催化过氧化氢产生活性氧和磁热协同高效地杀死肿瘤细胞,从而具有优异的体内外抗肿瘤能力。Then, the scaffolds manufactured in Examples 2-5 were evaluated for osteogenic activity and anti-tumor ability by the method of Example 1 above. The results showed that the scaffolds modified with ferric tetrasulfide had good magnetocaloric properties; they could catalyze peroxidation Hydrogen generates reactive oxygen species and induces osteogenic differentiation of bone marrow mesenchymal stem cells, and synergistically kills tumor cells by catalyzing hydrogen peroxide to generate reactive oxygen species and magnetothermally, thus having excellent anti-tumor ability in vitro and in vivo.
本发明提供的四硫化三铁微米花修饰的生物陶瓷支架具有优异的磁热性能,并且能催化肿瘤微环境的过氧化氢产生活性氧,磁热与活性氧可以协同高效地杀死肿瘤细胞。裸鼠皮下肿瘤实验进一步证实,四硫化三铁修饰的支架具有很好的抗肿瘤能力。四硫化三铁修饰的镁黄长石支架,表面微结构可以调控骨髓间充质干细胞的成骨分化,并且支架本身有利于骨髓间充质干细胞的黏附、增殖和成骨分化。因此,四硫化三铁微米花修饰的镁黄长石支架具有优异的抗肿瘤能力和促进骨组织再生的能力,可以作为骨肿瘤术后治疗的骨填充材料。The bioceramic scaffold modified with iron tetrasulfide microflora provided by the invention has excellent magnetocaloric properties, and can catalyze hydrogen peroxide in tumor microenvironment to generate reactive oxygen species, and the magnetocaloric and reactive oxygen species can synergistically kill tumor cells efficiently. Subcutaneous tumor experiments in nude mice further confirmed that the scaffolds modified with ferric sulfide have good anti-tumor ability. The surface microstructure of the Fe4S-modified magnesite feldspar scaffold can regulate the osteogenic differentiation of bone marrow mesenchymal stem cells, and the scaffold itself is beneficial to the adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Therefore, the Fe4S microflora-modified magnesia feldspar scaffold has excellent antitumor ability and ability to promote bone tissue regeneration, and can be used as a bone filling material for postoperative treatment of bone tumors.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110017383.3A CN112661500B (en) | 2021-01-07 | 2021-01-07 | Bioceramic scaffold with micro/nano structure on the surface and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110017383.3A CN112661500B (en) | 2021-01-07 | 2021-01-07 | Bioceramic scaffold with micro/nano structure on the surface and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112661500A CN112661500A (en) | 2021-04-16 |
CN112661500B true CN112661500B (en) | 2022-06-14 |
Family
ID=75413408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110017383.3A Active CN112661500B (en) | 2021-01-07 | 2021-01-07 | Bioceramic scaffold with micro/nano structure on the surface and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112661500B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113679513A (en) * | 2021-08-12 | 2021-11-23 | 诺一迈尔(苏州)生命科技有限公司 | Tissue engineering repair stent and preparation method and application thereof |
CN114085097B (en) * | 2021-11-23 | 2022-12-02 | 华中科技大学 | A magnetoelectric coupling bracket for bone tumor treatment and its preparation method |
CN115624653B (en) * | 2022-09-02 | 2023-11-07 | 浙江大学医学院附属口腔医院 | Dual slow-release bone repair material and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008100534A2 (en) * | 2007-02-12 | 2008-08-21 | Trustees Of Columbia University In The City Of New York | Biomimetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement |
CN102874879A (en) * | 2012-10-12 | 2013-01-16 | 中国科学技术大学 | A kind of preparation method of Fe3S4 nanocrystalline material |
CN106139242A (en) * | 2015-04-27 | 2016-11-23 | 中国科学院上海硅酸盐研究所 | Bioceramic scaffold material of graphene modified and its preparation method and application |
CN108498858A (en) * | 2017-02-24 | 2018-09-07 | 中国科学院上海硅酸盐研究所 | Molybdenum disulfide nano sheet in-situ modification bioceramic scaffold and its preparation method and application |
CN109939264A (en) * | 2019-03-26 | 2019-06-28 | 华南理工大学 | A porous anti-tumor bone repair bifunctional composite scaffold with dopamine-modified nano-powder and embedded organic matter and preparation method thereof |
CN111995388A (en) * | 2020-07-17 | 2020-11-27 | 武汉理工大学 | A 3D printed magnetic bioceramic scaffold and its preparation method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1927400B (en) * | 2006-09-25 | 2010-11-17 | 南京大学 | Biological nanomagnetic targeted anticancer drug and preparation method thereof |
CN106784815B (en) * | 2016-12-23 | 2019-09-10 | 中国科学院宁波材料技术与工程研究所 | A kind of iron-based sulfide electrode material, preparation method and the application in solid state battery |
CN108324987B (en) * | 2018-02-09 | 2020-11-24 | 华南理工大学 | A kind of hollow porous spherical particle artificial bone and its preparation method and application |
CN110357657A (en) * | 2019-08-15 | 2019-10-22 | 河北大洲智造科技有限公司 | A kind of 3D printing bioceramic slurry and preparation method thereof, a kind of bio-ceramic artificial bone and preparation method thereof |
CN111704451B (en) * | 2020-06-16 | 2022-01-11 | 上海交通大学医学院附属第九人民医院 | BCN two-dimensional nanosheet enhanced biological ceramic support and preparation method and application thereof |
-
2021
- 2021-01-07 CN CN202110017383.3A patent/CN112661500B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008100534A2 (en) * | 2007-02-12 | 2008-08-21 | Trustees Of Columbia University In The City Of New York | Biomimetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement |
CN102874879A (en) * | 2012-10-12 | 2013-01-16 | 中国科学技术大学 | A kind of preparation method of Fe3S4 nanocrystalline material |
CN106139242A (en) * | 2015-04-27 | 2016-11-23 | 中国科学院上海硅酸盐研究所 | Bioceramic scaffold material of graphene modified and its preparation method and application |
CN108498858A (en) * | 2017-02-24 | 2018-09-07 | 中国科学院上海硅酸盐研究所 | Molybdenum disulfide nano sheet in-situ modification bioceramic scaffold and its preparation method and application |
CN109939264A (en) * | 2019-03-26 | 2019-06-28 | 华南理工大学 | A porous anti-tumor bone repair bifunctional composite scaffold with dopamine-modified nano-powder and embedded organic matter and preparation method thereof |
CN111995388A (en) * | 2020-07-17 | 2020-11-27 | 武汉理工大学 | A 3D printed magnetic bioceramic scaffold and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN112661500A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112661500B (en) | Bioceramic scaffold with micro/nano structure on the surface and its preparation method and application | |
Dong et al. | Magnetic hyperthermia–synergistic H2O2 self‐sufficient catalytic suppression of osteosarcoma with enhanced bone‐regeneration bioactivity by 3D‐printing composite scaffolds | |
Diao et al. | 3D‐plotted beta‐tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical‐sized calvarial defect rat model | |
Bigham et al. | Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration | |
Bigham et al. | Hierarchical porous Mg2SiO4-CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: surface modification and in vitro studies | |
Wu et al. | A novel calcium phosphate ceramic–magnetic nanoparticle composite as a potential bone substitute | |
Li et al. | Fabrication and evaluation of bone morphogenetic protein-2 microspheres coated black phosphorus nanosheets@ polylactic-glycolic acid copolymers scaffold: A multifunctional antibacterial photothermal scaffold for bone regeneration | |
CN106139242A (en) | Bioceramic scaffold material of graphene modified and its preparation method and application | |
CN108498858B (en) | Molybdenum disulfide nanosheet in-situ modified biological ceramic support and preparation method and application thereof | |
CN103242551B (en) | Method for injecting titanium ions to modify surface of polyether-ether-ketone | |
CN108371668B (en) | Nano-hydroxyapatite particles with anti-tumor effect and preparation method and use | |
CN111888522B (en) | Periodontal regeneration material with immune regulation function and preparation method thereof | |
CN106215238A (en) | A kind of three-dimensional bone tissue engineering scaffold based on decalcification process and preparation method thereof | |
CN110559483A (en) | Design and application of cancellous bone bionic scaffold prepared by 3d printing technology | |
CN102330051A (en) | Surface modifying method for improving antibacterial property and biological activity of medicinal titanium | |
CN108030956A (en) | Treat biological active glass ceramic stent of tumprigenicity bone defect and its preparation method and application | |
CN103225067A (en) | Method for modifying polyetheretherketone surface by implanting calcium ions | |
Ono et al. | Generation of biohybrid implants using a multipotent human periodontal ligament cell line and bioactive core materials | |
CN106267335A (en) | Surface bioceramic scaffold with micro nano structure and its preparation method and application | |
CN110590351B (en) | A kind of black bioactive ceramic powder and its application | |
Cho et al. | Assessments for bone regeneration using the polycaprolactone SLUP (salt‐leaching using powder) scaffold | |
CN115154656A (en) | A kind of black phosphorus/bioactive glass anti-tumor bone repair bifunctional composite scaffold and its preparation method and application | |
CN106913906B (en) | Antioxidant biological coating and preparation method thereof | |
Han et al. | Nitrosothiol-functionalized silicate bioceramic scaffolds with enhanced antibacterial property for bone repair | |
CN113730653A (en) | Bone tissue engineering repair scaffold and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |