CN111933752B - Solar cell and preparation method thereof - Google Patents
Solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN111933752B CN111933752B CN202010813062.XA CN202010813062A CN111933752B CN 111933752 B CN111933752 B CN 111933752B CN 202010813062 A CN202010813062 A CN 202010813062A CN 111933752 B CN111933752 B CN 111933752B
- Authority
- CN
- China
- Prior art keywords
- layer
- phosphorus
- oxide layer
- polysilicon layer
- doped polysilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本申请涉及光伏领域,提供一种太阳能电池及其制备方法,其中,方法包括以下步骤:对制绒后的N型半导体衬底进行硼扩散,形成硼扩散层;对半导体衬底进行背面刻蚀后氧化,形成第一氧化层,并在第一氧化层表面沉积多晶硅层;对多晶硅层进行磷扩散,形成掺磷多晶硅层;在掺磷多晶硅层表面形成第二氧化层,并在第二氧化层表面形成背面钝化层;在硼扩散层的表面形成正面钝化层;以及在正面钝化层和/或所述背面钝化层上形成电极。本申请的太阳能电池及其制备方法,减少掺杂多晶硅层和钝化层之间的未饱和缺陷,能够有效改善钝化效果,提升电池转换效率。
The present application relates to the photovoltaic field, and provides a solar cell and a method for preparing the same, wherein the method comprises the following steps: performing boron diffusion on a textured N-type semiconductor substrate to form a boron diffusion layer; performing back etching and oxidation on the semiconductor substrate to form a first oxide layer, and depositing a polysilicon layer on the surface of the first oxide layer; performing phosphorus diffusion on the polysilicon layer to form a phosphorus-doped polysilicon layer; forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer, and forming a back passivation layer on the surface of the second oxide layer; forming a front passivation layer on the surface of the boron diffusion layer; and forming an electrode on the front passivation layer and/or the back passivation layer. The solar cell and the method for preparing the same of the present application can reduce the unsaturated defects between the doped polysilicon layer and the passivation layer, and can effectively improve the passivation effect and enhance the cell conversion efficiency.
Description
技术领域Technical Field
本申请涉及光伏电池技术领域,具体地讲,涉及一种太阳能电池及其制备方法。The present application relates to the technical field of photovoltaic cells, and in particular, to a solar cell and a method for preparing the same.
背景技术Background Art
Topcon电池依靠“隧穿效应”实现背面钝化,现有的Topcon电池背面结构从内向外依次为衬底,隧穿氧化层,掺杂多晶硅层,背面钝化层。由于掺杂多晶硅层与背面钝化层分别在两个不同的设备中沉积形成,掺杂多晶硅层与背面钝化层之间不可避免的会引入一些未饱和缺陷,容易造成载流子复合和电性能损失,钝化效果不理想。因此,有必要研究提升背钝化效果的方法,进一步提高电池转换效率。Topcon cells rely on the "tunneling effect" to achieve back passivation. The existing back structure of Topcon cells is substrate, tunneling oxide layer, doped polysilicon layer, and back passivation layer from the inside to the outside. Since the doped polysilicon layer and the back passivation layer are deposited in two different devices, some unsaturated defects will inevitably be introduced between the doped polysilicon layer and the back passivation layer, which can easily cause carrier recombination and electrical performance loss, and the passivation effect is not ideal. Therefore, it is necessary to study methods to improve the back passivation effect and further improve the battery conversion efficiency.
发明内容Summary of the invention
鉴于此,本申请提出一种太阳能电池及其制备方法,减少掺杂多晶硅层和钝化层(比如氮化硅层)之间的未饱和缺陷,能够有效改善钝化效果,提升电池转换效率。In view of this, the present application proposes a solar cell and a method for preparing the same, which can reduce the unsaturated defects between the doped polysilicon layer and the passivation layer (such as a silicon nitride layer), effectively improve the passivation effect, and enhance the cell conversion efficiency.
本申请提供一种太阳能电池制备方法,包括以下步骤:The present application provides a method for preparing a solar cell, comprising the following steps:
对制绒后的N型半导体衬底进行硼扩散,形成硼扩散层;Diffusion of boron is performed on the textured N-type semiconductor substrate to form a boron diffusion layer;
对所述半导体衬底进行背面刻蚀后氧化,形成第一氧化层,并在所述第一氧化层表面沉积多晶硅层;Performing back etching and oxidation on the semiconductor substrate to form a first oxide layer, and depositing a polysilicon layer on the surface of the first oxide layer;
对所述多晶硅层进行磷扩散,形成掺磷多晶硅层;Diffusion of phosphorus into the polysilicon layer to form a phosphorus-doped polysilicon layer;
在所述掺磷多晶硅层表面形成第二氧化层,并在所述第二氧化层表面形成背面钝化层;forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer, and forming a back passivation layer on the surface of the second oxide layer;
在所述硼扩散层的表面形成正面钝化层;以及forming a front passivation layer on a surface of the boron diffusion layer; and
在所述正面钝化层和/或背面钝化层上形成电极。An electrode is formed on the front passivation layer and/or the back passivation layer.
在一种可行的实施方式中,所述第二氧化层的厚度为0.5nm~5nm;和/或,所述第二氧化层包括氧化硅、氧化铝、氧化钛中的至少一种。In a feasible implementation manner, the thickness of the second oxide layer is 0.5 nm to 5 nm; and/or the second oxide layer includes at least one of silicon oxide, aluminum oxide, and titanium oxide.
在一种可行的实施方式中,在对所述多晶硅层进行磷扩散,形成掺磷多晶硅层之后,并在所述掺磷多晶硅层表面形成第二氧化层之前,所述方法还包括:去除在所述磷扩散过程中形成的磷硅玻璃层。In a feasible implementation, after phosphorus is diffused into the polysilicon layer to form a phosphorus-doped polysilicon layer and before a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer, the method further includes: removing the phosphorus-silicate glass layer formed during the phosphorus diffusion process.
在一种可行的实施方式中,在所述掺磷多晶硅层表面形成第二氧化层之后,并在所述第二氧化层表面形成背面钝化层之前,所述方法还包括:去除所述N型半导体衬底正面绕镀的多晶硅层;去除在所述硼扩散过程中形成的硼硅玻璃层。In a feasible embodiment, after forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer and before forming a back passivation layer on the surface of the second oxide layer, the method further includes: removing the polysilicon layer plated on the front side of the N-type semiconductor substrate; and removing the borosilicate glass layer formed during the boron diffusion process.
在一种可行的实施方式中,在对所述多晶硅层进行磷扩散,形成掺磷多晶硅层之后,并在所述掺磷多晶硅层表面形成第二氧化层之前,所述方法还包括:去除所述N型半导体衬底正面绕镀的多晶硅层;去除在所述磷扩散过程中形成的磷硅玻璃层及在所述硼扩散过程中形成的硼硅玻璃层。In a feasible embodiment, after phosphorus is diffused into the polysilicon layer to form a phosphorus-doped polysilicon layer, and before a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer, the method further includes: removing the polysilicon layer plated on the front side of the N-type semiconductor substrate; removing the phosphosilicate glass layer formed during the phosphorus diffusion process and the borosilicate glass layer formed during the boron diffusion process.
在一种可行的实施方式中,在所述掺磷多晶硅层表面形成第二氧化层,包括:采用湿化学氧化法和/或热氧化法在所述掺磷多晶硅层表面形成第二氧化层;或,采用物理气相沉积法、化学气相沉积法、等离子体增强化学气相沉积法、原子层沉积法中的任意一种方法在所述掺磷多晶硅层表面沉积形成第二氧化层。In a feasible embodiment, a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer, including: forming the second oxide layer on the surface of the phosphorus-doped polysilicon layer by wet chemical oxidation and/or thermal oxidation; or, depositing the second oxide layer on the surface of the phosphorus-doped polysilicon layer by any one of physical vapor deposition, chemical vapor deposition, plasma enhanced chemical vapor deposition, and atomic layer deposition.
在一种可行的实施方式中,在所述掺磷多晶硅层表面形成第二氧化层,包括:采用热氧化法在所述掺磷多晶硅层表面形成第二氧化层,热氧化温度为500℃~600℃,热氧化时间为150s~300s。In a feasible implementation, forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer includes: forming the second oxide layer on the surface of the phosphorus-doped polysilicon layer by thermal oxidation, the thermal oxidation temperature is 500°C to 600°C, and the thermal oxidation time is 150s to 300s.
在一种可行的实施方式中,在所述掺磷多晶硅层表面形成第二氧化层,包括:将所述N型半导体衬底背面的所述掺磷多晶硅层浸泡于氧化性溶液中进行湿化学氧化处理,所述氧化性溶液包括盐酸溶液及臭氧,所述盐酸溶液的质量浓度为0.1%~0.5%,所述臭氧浓度为20ppm~30ppm,浸泡时间为30s~60s。In a feasible embodiment, a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer, comprising: immersing the phosphorus-doped polysilicon layer on the back side of the N-type semiconductor substrate in an oxidizing solution for wet chemical oxidation treatment, the oxidizing solution comprising a hydrochloric acid solution and ozone, the mass concentration of the hydrochloric acid solution is 0.1% to 0.5%, the ozone concentration is 20ppm to 30ppm, and the immersion time is 30s to 60s.
在一种可行的实施方式中,所述去除在所述磷扩散过程中形成的磷硅玻璃层,包括:In a feasible implementation manner, removing the phosphosilicate glass layer formed during the phosphorus diffusion process includes:
用配制好的混合酸酸洗所述N型半导体衬底背面的磷硅玻璃层30s~60s,所述混合酸包括质量浓度为2%~10%的氢氟酸溶液与质量浓度为2%~10%的盐酸溶液;将酸洗后的N型半导体衬底背面进行水洗、烘干处理。The phosphosilicate glass layer on the back of the N-type semiconductor substrate is pickled for 30s to 60s with a prepared mixed acid, wherein the mixed acid includes a hydrofluoric acid solution with a mass concentration of 2% to 10% and a hydrochloric acid solution with a mass concentration of 2% to 10%; the back of the N-type semiconductor substrate after pickling is washed with water and dried.
本申请实施例还提供一种太阳能电池,所述太阳能电池由上述的太阳能电池制备方法得到,所述太阳能电池包括由上至下依次排布的第一电极、第一钝化层、硼扩散层、半导体衬底、第一氧化层、掺磷多晶硅层、第二氧化层、第二钝化层、第二电极。An embodiment of the present application also provides a solar cell, which is obtained by the above-mentioned solar cell preparation method, and includes a first electrode, a first passivation layer, a boron diffusion layer, a semiconductor substrate, a first oxide layer, a phosphorus-doped polysilicon layer, a second oxide layer, a second passivation layer, and a second electrode arranged in sequence from top to bottom.
本申请的技术方案至少具有以下有益的效果:The technical solution of this application has at least the following beneficial effects:
通过形成第一氧化层、掺杂多晶硅层、第二氧化层和背面钝化层的多层结构,第二氧化层的形成可以有效钝化掺杂多晶硅层与背面钝化层之间的未饱和缺陷,实验结果表明,根据本申请制备方法制得的太阳能电池,丝网印刷前监控电池片少子寿命和拟开路电压(implied-Voc)均有1%~2%的提升,说明钝化效果得到了增强。电池效率绝对值有0.1%~0.2%的提升,说明多层钝化结构能够有效提升电池转换效率。By forming a multilayer structure of a first oxide layer, a doped polysilicon layer, a second oxide layer and a back passivation layer, the formation of the second oxide layer can effectively passivate the unsaturated defects between the doped polysilicon layer and the back passivation layer. The experimental results show that the solar cell prepared according to the preparation method of the present application has a 1% to 2% improvement in the monitored cell minority carrier lifetime and the implied-Voc before screen printing, indicating that the passivation effect has been enhanced. The absolute value of the cell efficiency has increased by 0.1% to 0.2%, indicating that the multilayer passivation structure can effectively improve the cell conversion efficiency.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions of the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative work.
图1为本申请实施例提供的一种太阳能电池制备方法的流程图;FIG1 is a flow chart of a method for preparing a solar cell provided in an embodiment of the present application;
图2为本申请实施例提供的一种太阳能电池制备方法的另一流程图;FIG. 2 is another flow chart of a method for preparing a solar cell provided in an embodiment of the present application;
图3为本申请实施例提供的一种太阳能电池的结构示意图。FIG. 3 is a schematic diagram of the structure of a solar cell provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。In order to better understand the technical solution of the present application, the embodiments of the present application are described in detail below with reference to the accompanying drawings.
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。It should be clear that the described embodiments are only part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present application.
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。The terms used in the embodiments of the present application are only for the purpose of describing specific embodiments, and are not intended to limit the present application. The singular forms "a", "said" and "the" used in the embodiments of the present application and the appended claims are also intended to include plural forms, unless the context clearly indicates other meanings.
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It should be understood that the term "and/or" used in this article is only a description of the association relationship of associated objects, indicating that there can be three relationships. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
Topcon电池依靠“隧穿效应”实现背面钝化,现有的Topcon电池背面结构从内向外依次为衬底,隧穿氧化层,掺杂多晶硅层,背面钝化层。由于掺杂多晶硅层与背面钝化层分别在两个不同的设备中沉积形成,掺杂多晶硅层与背面钝化层之间不可避免的会引入一些未饱和缺陷,容易造成载流子复合和电性能损失,钝化效果不理想。Topcon cells rely on the "tunneling effect" to achieve back passivation. The existing Topcon cell back structure is substrate, tunneling oxide layer, doped polysilicon layer, and back passivation layer from the inside out. Since the doped polysilicon layer and the back passivation layer are deposited in two different devices, some unsaturated defects will inevitably be introduced between the doped polysilicon layer and the back passivation layer, which can easily cause carrier recombination and electrical performance loss, and the passivation effect is not ideal.
因而,为克服现有技术的不完善,本发明实施例的技术方案提供一种太阳能电池及其制备方法,在电池背面的掺杂多晶硅层和钝化层之间制备一层氧化层,钝化掺杂多晶硅层与背面钝化层之间的缺陷,提高电池背面钝化效果,提升电池的转换效率。Therefore, in order to overcome the imperfections of the prior art, the technical solution of the embodiment of the present invention provides a solar cell and a method for preparing the same, in which an oxide layer is prepared between the doped polysilicon layer and the passivation layer on the back of the cell to passivate the defects between the doped polysilicon layer and the back passivation layer, thereby improving the passivation effect on the back of the cell and enhancing the conversion efficiency of the cell.
第一方面,本申请的实施例提供一种太阳能电池的制备方法,包括以下步骤:In a first aspect, an embodiment of the present application provides a method for preparing a solar cell, comprising the following steps:
对制绒后的N型半导体衬底进行硼扩散,形成硼扩散层;Diffusion of boron is performed on the textured N-type semiconductor substrate to form a boron diffusion layer;
对所述半导体衬底进行背面刻蚀后氧化,形成第一氧化层,并在所述第一氧化层表面沉积多晶硅层;Performing back etching and oxidation on the semiconductor substrate to form a first oxide layer, and depositing a polysilicon layer on the surface of the first oxide layer;
对所述多晶硅层进行磷扩散,形成掺磷多晶硅层;Diffusion of phosphorus into the polysilicon layer to form a phosphorus-doped polysilicon layer;
在所述掺磷多晶硅层表面形成第二氧化层,并在所述第二氧化层表面形成背面钝化层;forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer, and forming a back passivation layer on the surface of the second oxide layer;
在所述硼扩散层的表面形成正面钝化层;以及forming a front passivation layer on a surface of the boron diffusion layer; and
在所述正面钝化层和/或背面钝化层上形成电极。An electrode is formed on the front passivation layer and/or the back passivation layer.
在本方案中,在电池背面设置第一氧化层、掺磷多晶硅层、第二氧化层及背面钝化层,可有效改善掺杂多晶硅层与背面钝化层之间的未饱和缺陷,提高电池背面钝化效果,提升电池的转换效率。In this solution, a first oxide layer, a phosphorus-doped polysilicon layer, a second oxide layer and a back passivation layer are arranged on the back of the battery, which can effectively improve the unsaturated defects between the doped polysilicon layer and the back passivation layer, improve the back passivation effect of the battery, and improve the conversion efficiency of the battery.
下面,将结合本发明实施例中的附图,对N型Topcon电池的制备方法进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例1及实施例2,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Below, the preparation method of the N-type Topcon battery will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. The described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on Embodiment 1 and Embodiment 2 of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
图1为本实施例提供的一种太阳能电池制备方法的流程图,如图1所示,本申请实施例1提供一种太阳能电池制备方法,包括以下步骤:FIG. 1 is a flow chart of a method for preparing a solar cell provided in this embodiment. As shown in FIG. 1 , Embodiment 1 of the present application provides a method for preparing a solar cell, comprising the following steps:
步骤S10,对制绒后的N型半导体衬底进行硼扩散,形成硼扩散层。Step S10, performing boron diffusion on the textured N-type semiconductor substrate to form a boron diffusion layer.
具体地,在进行硼扩散之前,可以对N型半导体衬底的正面和背面进行制绒处理,以形成绒面或表面纹理结构(例如金字塔结构)。制绒处理的方式可以是化学刻蚀、激光刻蚀、机械法、等离子刻蚀等等,在此不做限定。示例性地,可以使用NaOH溶液对硅片的正面、背面进行制绒处理,由于NaOH溶液的腐蚀具有各向异性,从而可以制备得到金字塔结构绒面。Specifically, before boron diffusion, the front and back sides of the N-type semiconductor substrate may be subjected to a texturing treatment to form a velvet surface or a surface texture structure (e.g., a pyramid structure). The texturing treatment may be performed by chemical etching, laser etching, mechanical method, plasma etching, etc., which are not limited here. Exemplarily, a NaOH solution may be used to perform a texturing treatment on the front and back sides of a silicon wafer. Since the corrosion of the NaOH solution is anisotropic, a pyramid structure velvet surface may be prepared.
本实施例中,通过制绒使硅衬底的表面具有绒面结构,产生陷光效果,增加太阳能电池对光线的吸收数量,从而提高太阳能电池的转换效率。In this embodiment, the surface of the silicon substrate is provided with a velvet structure by texturing, thereby generating a light trapping effect, increasing the amount of light absorbed by the solar cell, and thus improving the conversion efficiency of the solar cell.
在一些实施例中,N型半导体衬底的正面为面向太阳的表面,背面即为背对太阳的表面。还需说明的是,半导体衬底可以为晶体硅衬底(硅衬底),例如为多晶硅衬底、单晶硅衬底或类单晶硅衬底,本发明实施例对于半导体衬底的具体类型不作限定。In some embodiments, the front side of the N-type semiconductor substrate is the surface facing the sun, and the back side is the surface facing away from the sun. It should also be noted that the semiconductor substrate may be a crystalline silicon substrate (silicon substrate), such as a polycrystalline silicon substrate, a single crystal silicon substrate, or a quasi-single crystal silicon substrate. The embodiments of the present invention do not limit the specific type of the semiconductor substrate.
在步骤S10中,可以采用高温扩散、浆料掺杂或者离子注入中的任意一种或多种方法,在N型半导体衬底的表面形成硼扩散层。In step S10 , a boron diffusion layer may be formed on the surface of the N-type semiconductor substrate by using any one or more methods of high temperature diffusion, slurry doping or ion implantation.
在具体实施例中,N型半导体衬底为N型晶体硅,硼扩散处理,是通过硼源来扩散硼原子形成硼扩散层。硼源例如可以采用三溴化硼扩散处理后,晶体硅的微晶硅相转变为多晶硅相。由于半导体衬底表面具有较高浓度的硼,通常会形成硼硅玻璃层(BSG),这层硼硅玻璃层具有金属吸杂作用,会影响太阳能电池的正常工作,需要后续去除。In a specific embodiment, the N-type semiconductor substrate is N-type crystalline silicon, and the boron diffusion treatment is to diffuse boron atoms through a boron source to form a boron diffusion layer. The boron source can be, for example, treated with boron tribromide diffusion, and the microcrystalline silicon phase of the crystalline silicon is transformed into a polycrystalline silicon phase. Since the surface of the semiconductor substrate has a high concentration of boron, a borosilicate glass layer (BSG) is usually formed. This borosilicate glass layer has a metal gettering effect, which will affect the normal operation of the solar cell and needs to be removed later.
可选地,在制绒处理之前,还可以包括对半导体衬底进行清洗的步骤,以去除表面的金属和有机污染物。Optionally, before the texturing process, a step of cleaning the semiconductor substrate may be included to remove metal and organic pollutants on the surface.
步骤S20,对所述半导体衬底进行背面刻蚀后氧化,形成第一氧化层,并在所述第一氧化层表面沉积多晶硅层。Step S20, performing back etching and oxidation on the semiconductor substrate to form a first oxide layer, and depositing a polysilicon layer on the surface of the first oxide layer.
需要指出的是,本发明实施例对于形成第一氧化层的具体操作方式的不作限定。具体地,可以采用臭氧氧化法、高温热氧化法、硝酸氧化法对半导体衬底进行背面刻蚀之后进行氧化,形成第一氧化层。例如,采用热氧化法在半导体衬底的背面进行氧化,形成第一氧化层。所述第一氧化层可以为薄氧化层或者隧穿氧化层。It should be noted that the embodiment of the present invention does not limit the specific operation method for forming the first oxide layer. Specifically, the semiconductor substrate can be etched from the back by ozone oxidation, high temperature thermal oxidation, or nitric acid oxidation, and then oxidized to form the first oxide layer. For example, the back of the semiconductor substrate is oxidized by thermal oxidation to form the first oxide layer. The first oxide layer can be a thin oxide layer or a tunneling oxide layer.
在具体实施方式中,可以采用低压化学气相沉积法、等离子体增强化学气相沉积法、常压化学气相淀积中的任意一种方法在第一氧化层的表面沉积多晶硅层。In a specific implementation, the polysilicon layer can be deposited on the surface of the first oxide layer by using any one of low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, and normal pressure chemical vapor deposition.
可以理解地,在半导体衬底的第一氧化层表面沉积多晶硅过程中,多晶硅沿半导体衬底背面绕镀至正面,因此,在后续的工艺中需要对绕镀至半导体衬底正面的多晶硅进行去绕镀。It can be understood that during the process of depositing polysilicon on the surface of the first oxide layer of the semiconductor substrate, the polysilicon is plated along the back side of the semiconductor substrate to the front side. Therefore, in the subsequent process, the polysilicon plated to the front side of the semiconductor substrate needs to be de-plated.
步骤S30,对所述多晶硅层进行磷扩散,形成掺磷多晶硅层。Step S30, diffusing phosphorus into the polysilicon layer to form a phosphorus-doped polysilicon layer.
磷扩散处理,是指在900℃左右,通过扩散五价的磷原子形成掺杂多晶硅层,扩散处理后,晶体硅的微晶硅相转变为多晶硅相,磷沉积在半导体衬底表面形成磷硅玻璃(PSG)。Phosphorus diffusion treatment refers to the process of forming a doped polysilicon layer by diffusing pentavalent phosphorus atoms at about 900°C. After the diffusion treatment, the microcrystalline silicon phase of the crystalline silicon is transformed into a polycrystalline silicon phase, and phosphorus is deposited on the surface of the semiconductor substrate to form phosphosilicate glass (PSG).
扩散时可以采用两步热处理方法,即先将磷源在1000℃左右分解,沉积在半导体衬底表面,然后在800℃~900℃区间进行热处理,使得表面的磷原子扩散到多晶硅层内,形成掺磷多晶硅层。当然,也可以采用一步沉积法,即在第一氧化层的表面沉积形成多晶硅层并同时进行原位掺杂处理以形成掺磷多晶硅层。磷扩散工艺也可以采用高温扩散、浆料掺杂或者离子注入中的任意一种或多种方法,在此不做限定。A two-step heat treatment method can be used for diffusion, that is, the phosphorus source is first decomposed at about 1000°C and deposited on the surface of the semiconductor substrate, and then heat treated in the range of 800°C to 900°C, so that the phosphorus atoms on the surface diffuse into the polysilicon layer to form a phosphorus-doped polysilicon layer. Of course, a one-step deposition method can also be used, that is, a polysilicon layer is deposited on the surface of the first oxide layer and an in-situ doping treatment is performed at the same time to form a phosphorus-doped polysilicon layer. The phosphorus diffusion process can also use any one or more methods of high-temperature diffusion, slurry doping or ion implantation, which are not limited here.
在一种实施方式中,在步骤S30之后,所述方法还包括:In one embodiment, after step S30, the method further includes:
步骤S31,去除在所述磷扩散过程中形成的磷硅玻璃层(PSG)。Step S31 , removing the phosphosilicate glass (PSG) layer formed during the phosphorus diffusion process.
可以理解地,在磷扩散时,由于半导体衬底表面具有较高浓度的磷,通常会形成磷硅玻璃层(PSG),这层磷硅玻璃层具有金属吸杂作用,会影响太阳能电池的正常工作,需要去除。Understandably, when phosphorus diffuses, a phosphosilicate glass layer (PSG) is usually formed due to the high concentration of phosphorus on the surface of the semiconductor substrate. This phosphosilicate glass layer has a metal gettering effect, which will affect the normal operation of the solar cell and needs to be removed.
在具体实施例中,可以将半导体衬底背面朝下置于链式酸洗设备(链式设备带速为1.0m/min~2.0m/min,半导体衬底进入酸槽,刻蚀掉背面磷扩散形成的磷硅玻璃层(PSG)。酸槽内设有配制好的混合酸,所述混合酸包括质量浓度为2%~10%的氢氟酸溶液与质量浓度为2%~10%的盐酸溶液,酸洗温度为15℃~25℃,酸洗时间约为30s~60s,半导体衬底正面有水膜覆盖,且半导体衬底正面的硼硅玻璃层(BSG)也可以作为保护层,在去磷硅玻璃层(PSG)过程中,避免半导体衬底正面与混合酸反应。In a specific embodiment, the semiconductor substrate can be placed on a chain pickling device with its back side facing downward (the belt speed of the chain pickling device is 1.0 m/min to 2.0 m/min, and the semiconductor substrate enters an acid tank to etch off the phosphosilicate glass layer (PSG) formed by the back phosphorus diffusion. A prepared mixed acid is provided in the acid tank, wherein the mixed acid comprises a hydrofluoric acid solution having a mass concentration of 2% to 10% and a hydrochloric acid solution having a mass concentration of 2% to 10%, the pickling temperature is 15° C. to 25° C., the pickling time is about 30s to 60s, the semiconductor substrate front side is covered with a water film, and the borosilicate glass layer (BSG) on the semiconductor substrate front side can also be used as a protective layer, and in the process of removing the phosphosilicate glass layer (PSG), the semiconductor substrate front side is prevented from reacting with the mixed acid.
需要说明的是,酸洗后需要进行水洗,水洗时间为10~20s,水洗温度可以为15℃~25℃;当然,水洗之后还可以对半导体衬底进行烘干处理。It should be noted that water washing is required after acid washing, the water washing time is 10 to 20 seconds, and the water washing temperature can be 15° C. to 25° C.; of course, the semiconductor substrate can also be dried after water washing.
步骤S40,在所述掺磷多晶硅层表面形成第二氧化层,并在所述第二氧化层表面形成背面钝化层。Step S40, forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer, and forming a back passivation layer on the surface of the second oxide layer.
第二氧化层的厚度为0.5nm~5nm,例如可以是0.5nm、1.0nm、1.5nm、2.0nm、2.5nm、3.0nm、3.5nm、4nm、4.5nm或5nm。第二氧化层不仅对半导体衬底表面起到钝化作用,还需要使载流子隧穿通过,当第二氧化层的厚度过小时,无法起到钝化作用,当第二氧化层的厚度过大时,载流子无法有效穿过。The thickness of the second oxide layer is 0.5 nm to 5 nm, for example, 0.5 nm, 1.0 nm, 1.5 nm, 2.0 nm, 2.5 nm, 3.0 nm, 3.5 nm, 4 nm, 4.5 nm or 5 nm. The second oxide layer not only plays a passivation role on the surface of the semiconductor substrate, but also needs to allow carriers to tunnel through. When the thickness of the second oxide layer is too small, it cannot play a passivation role. When the thickness of the second oxide layer is too large, carriers cannot effectively pass through.
可选地,所述第二氧化层的材质包括氧化硅、氧化铝、氧化钛、碳化硅、氢化非晶硅中的至少一种。例如,所述第二氧化层包括氧化硅层或者氧化钛层。Optionally, the material of the second oxide layer includes at least one of silicon oxide, aluminum oxide, titanium oxide, silicon carbide, and hydrogenated amorphous silicon. For example, the second oxide layer includes a silicon oxide layer or a titanium oxide layer.
具体地,步骤S40包括:Specifically, step S40 includes:
步骤S41,在所述掺磷多晶硅层表面形成第二氧化层;Step S41, forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer;
步骤S42,去除所述N型半导体衬底正面绕镀的多晶硅层;Step S42, removing the polysilicon layer plated on the front side of the N-type semiconductor substrate;
步骤S43,去除在所述硼扩散过程中形成的硼硅玻璃层(BSG);Step S43, removing the borosilicate glass layer (BSG) formed during the boron diffusion process;
步骤S44,在所述第二氧化层表面形成背面钝化层。Step S44, forming a back passivation layer on the surface of the second oxide layer.
可选地,在步骤S41中,可以采用湿化学氧化法和/或热氧化法在所述掺磷多晶硅层表面形成第二氧化层,所述第二氧化层例如为氧化硅。或者,还可以采用物理气相沉积法、化学气相沉积法、等离子体增强化学气相沉积法、原子层沉积法中的任意一种方法在所述掺磷多晶硅层表面沉积形成第二氧化层,第二氧化层例如为碳化硅、氧化钛等。Optionally, in step S41, a second oxide layer may be formed on the surface of the phosphorus-doped polysilicon layer by wet chemical oxidation and/or thermal oxidation, and the second oxide layer may be, for example, silicon oxide. Alternatively, any one of physical vapor deposition, chemical vapor deposition, plasma enhanced chemical vapor deposition, and atomic layer deposition may be used to deposit and form the second oxide layer on the surface of the phosphorus-doped polysilicon layer, and the second oxide layer may be, for example, silicon carbide, titanium oxide, etc.
示例性地,采用热氧化法在所述掺磷多晶硅层表面形成第二氧化层,步骤包括:将两片半导体衬底正面相对设置并插入管式加热设备中,热氧化温度为500℃~600℃,热氧化时间为150s~300s。需要说明的是,在采用热氧化法形成第二氧化层时,半导体衬底的正面在热氧化处理过程中,也可能会形成氧化层。Exemplarily, a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer by a thermal oxidation method, and the steps include: arranging the front sides of two semiconductor substrates opposite to each other and inserting them into a tubular heating device, the thermal oxidation temperature is 500° C. to 600° C., and the thermal oxidation time is 150s to 300s. It should be noted that when the second oxide layer is formed by a thermal oxidation method, an oxide layer may also be formed on the front side of the semiconductor substrate during the thermal oxidation process.
示例性地,采用湿化学氧化法在所述掺磷多晶硅层表面形成第二氧化层,步骤包括:将所述N型半导体衬底背面的所述掺磷多晶硅层浸泡于氧化性溶液中进行湿化学氧化处理,所述氧化性溶液包括盐酸溶液及臭氧,所述盐酸溶液的质量浓度为0.1%~0.5%,所述臭氧浓度为20ppm~30ppm,浸泡时间为30s~60s。浸泡时控制温度为15℃~25℃,半导体衬底正面有水膜覆盖,且半导体衬底正面的硼硅玻璃层(BSG)也可以作为保护层,在去形成第二氧化层时,避免半导体衬底正面与氧化性溶液反应。Exemplarily, a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer by a wet chemical oxidation method, and the steps include: immersing the phosphorus-doped polysilicon layer on the back of the N-type semiconductor substrate in an oxidizing solution for wet chemical oxidation treatment, the oxidizing solution includes a hydrochloric acid solution and ozone, the mass concentration of the hydrochloric acid solution is 0.1% to 0.5%, the ozone concentration is 20ppm to 30ppm, and the immersion time is 30s to 60s. During immersion, the temperature is controlled to be 15°C to 25°C, the front of the semiconductor substrate is covered with a water film, and the borosilicate glass layer (BSG) on the front of the semiconductor substrate can also be used as a protective layer to prevent the front of the semiconductor substrate from reacting with the oxidizing solution when the second oxide layer is formed.
需要说明的是,采用湿化学氧化法形成第二氧化层之后,可以对半导体衬底进行水洗、烘干处理。It should be noted that after the second oxide layer is formed by the wet chemical oxidation method, the semiconductor substrate may be washed with water and dried.
具体地,在步骤S42中,可以采用配制好的药液清洗半导体衬底正面绕镀的多晶硅层100~120秒,示例性地,去绕镀的药液例如可以取10ml浓度为36%的氢氟酸、50ml浓度为70%的浓硝酸、10ml浓度为98%的浓硫酸及30ml的水混合制备得到,该配制方式仅用于举例说明,在此不做限定。Specifically, in step S42, the prepared solution can be used to clean the polysilicon layer plated on the front side of the semiconductor substrate for 100 to 120 seconds. By way of example, the de-plating solution can be prepared by mixing 10 ml of 36% hydrofluoric acid, 50 ml of 70% concentrated nitric acid, 10 ml of 98% concentrated sulfuric acid and 30 ml of water. This preparation method is only for illustration and is not limited here.
进一步地,在步骤S43中,去除硼扩散过程中形成的硼硅玻璃层(BSG),同样可以采用药液刻蚀、激光刻蚀等工艺,在此不做限定。Furthermore, in step S43, the borosilicate glass layer (BSG) formed during the boron diffusion process is removed, and liquid etching, laser etching and other processes may also be used, which are not limited here.
在本实施方式中,将去绕镀工序、去BSG工序位于形成第二氧化层工序后,半导体衬底正面的硼硅玻璃层可以有效避免半导体衬底正面与湿化学氧化工艺中的氧化性溶液反应,使得硼硅玻璃层对半导体衬底正面进行保护。并且,将去绕镀工序、去BSG工序位于形成第二氧化层工序后,还可以通过去BSG工序同步去除热氧化工艺中半导体衬底正面形成的氧化层。在本实施例中,在电池背面设置第一氧化层、掺磷多晶硅层、第二氧化层及背面钝化层的多层结构,可有效改善掺杂多晶硅层与背面钝化层之间引入的未饱和缺陷,有效提高钝化效果。In this embodiment, the de-plating process and the BSG removal process are located after the process of forming the second oxide layer, and the borosilicate glass layer on the front side of the semiconductor substrate can effectively prevent the front side of the semiconductor substrate from reacting with the oxidizing solution in the wet chemical oxidation process, so that the borosilicate glass layer protects the front side of the semiconductor substrate. In addition, the de-plating process and the BSG removal process are located after the process of forming the second oxide layer, and the oxide layer formed on the front side of the semiconductor substrate in the thermal oxidation process can also be removed synchronously by the BSG removal process. In this embodiment, a multilayer structure of a first oxide layer, a phosphorus-doped polysilicon layer, a second oxide layer, and a back passivation layer is provided on the back side of the battery, which can effectively improve the unsaturated defects introduced between the doped polysilicon layer and the back passivation layer, and effectively improve the passivation effect.
步骤S44,在所述第二氧化层表面形成背面钝化层。背面钝化层可以包括但不限于氮化硅、氮氧化硅、氧化铝等单层或叠层结构。Step S44, forming a back passivation layer on the surface of the second oxide layer. The back passivation layer may include but is not limited to a single layer or a stacked layer structure of silicon nitride, silicon oxynitride, aluminum oxide, etc.
例如,所述背面钝化层由氮化硅组成。氮化硅薄膜层可以起到减反射膜的作用,且该氮化硅薄膜具有良好的绝缘性、致密性、稳定性和对杂质离子的掩蔽能力,氮化硅薄膜层能够对硅片产生钝化作用,明显改善太阳能电池的光电转换效率。For example, the back passivation layer is composed of silicon nitride. The silicon nitride film layer can play the role of an anti-reflection film, and the silicon nitride film has good insulation, compactness, stability and shielding ability for impurity ions. The silicon nitride film layer can passivate the silicon wafer and significantly improve the photoelectric conversion efficiency of the solar cell.
步骤S50,在所述硼扩散层的表面形成正面钝化层。Step S50, forming a front passivation layer on the surface of the boron diffusion layer.
在一些实施例中,所述正面钝化层可以包括但不限于氮化硅、氮氧化硅、氧化铝等单层或叠层结构。当然,正面钝化层还可以采用其他类型的钝化层,本发明对于正面钝化层的具体材质不作限定,例如,在其他实施例中,正面钝化层还可以为二氧化硅和氮化硅的叠层等。上述正面钝化层能够对半导体衬底产生良好的钝化效果,有助于提高电池的转换效率。In some embodiments, the front passivation layer may include but is not limited to a single layer or a stacked structure of silicon nitride, silicon oxynitride, aluminum oxide, etc. Of course, the front passivation layer may also use other types of passivation layers, and the present invention does not limit the specific material of the front passivation layer. For example, in other embodiments, the front passivation layer may also be a stack of silicon dioxide and silicon nitride. The above-mentioned front passivation layer can produce a good passivation effect on the semiconductor substrate, which helps to improve the conversion efficiency of the battery.
步骤S60,在所述正面钝化层和/或背面钝化层上形成电极。Step S60, forming an electrode on the front passivation layer and/or the back passivation layer.
在一些实施方式中,可以在半导体衬底背面使用银浆印刷背面主栅和背面副栅,并进行烘干,在半导体正面使用掺铝银浆印刷正面主栅和正面副栅,并进行烘干,最后进行烧结,制得太阳能电池。In some embodiments, a back main grid and a back sub-grid can be printed on the back of a semiconductor substrate using silver paste and dried, and a front main grid and a front sub-grid can be printed on the front of the semiconductor using aluminum-doped silver paste and dried, and finally sintered to produce a solar cell.
需要说明的是,正面电极穿过正面钝化层与硼扩散层形成欧姆接触;背面电极穿过背面钝化层、第二氧化层,再与掺磷多晶硅层形成欧姆接触,掺磷多晶硅层与第一氧化层组成TopCon结构。It should be noted that the front electrode passes through the front passivation layer to form an ohmic contact with the boron diffusion layer; the back electrode passes through the back passivation layer and the second oxide layer, and then forms an ohmic contact with the phosphorus-doped polysilicon layer. The phosphorus-doped polysilicon layer and the first oxide layer form a TopCon structure.
图2为本申请实施例提供的太阳能电池的制备方法的另一流程图,如图2所示,本申请实施例2提供一种太阳能电池的制备方法,包括以下步骤:FIG. 2 is another flow chart of a method for preparing a solar cell provided in an embodiment of the present application. As shown in FIG. 2 , Embodiment 2 of the present application provides a method for preparing a solar cell, comprising the following steps:
步骤S10,对制绒后的N型半导体衬底进行硼扩散,形成硼扩散层;Step S10, performing boron diffusion on the textured N-type semiconductor substrate to form a boron diffusion layer;
步骤S20,对所述半导体衬底进行背面刻蚀后氧化,形成第一氧化层,并在所述第一氧化层表面沉积多晶硅层;Step S20, performing back etching and oxidation on the semiconductor substrate to form a first oxide layer, and depositing a polysilicon layer on the surface of the first oxide layer;
步骤S30,对所述多晶硅层进行磷扩散,形成掺磷多晶硅层;Step S30, diffusing phosphorus into the polysilicon layer to form a phosphorus-doped polysilicon layer;
步骤S40,在所述掺磷多晶硅层表面形成第二氧化层,并在所述第二氧化层表面形成背面钝化层;Step S40, forming a second oxide layer on the surface of the phosphorus-doped polysilicon layer, and forming a back passivation layer on the surface of the second oxide layer;
步骤S50,在所述硼扩散层的表面形成正面钝化层;以及Step S50, forming a front passivation layer on the surface of the boron diffusion layer; and
步骤S60,在所述正面钝化层和/或背面钝化层上形成电极。Step S60, forming an electrode on the front passivation layer and/or the back passivation layer.
与实施例1不同的是,在步骤S30之后,并在步骤S40之前,所述方法还包括:Different from the first embodiment, after step S30 and before step S40, the method further includes:
步骤S310,去除所述N型半导体衬底正面绕镀的多晶硅层;Step S310, removing the polysilicon layer plated on the front side of the N-type semiconductor substrate;
步骤S320,去除在所述磷扩散过程中形成的磷硅玻璃层及在所述硼扩散过程中形成的硼硅玻璃层。Step S320 , removing the phosphosilicate glass layer formed during the phosphorus diffusion process and the borosilicate glass layer formed during the boron diffusion process.
在本实施例中,在去绕镀工序、去PSG及BSG工序之后,在所述掺磷多晶硅层表面形成第二氧化层,相较于现有的Topcon电池制备工艺,仅增加一道第二氧化层形成工序,即可有效改善掺杂多晶硅层与背面钝化层之间引入的未饱和缺陷,有效提高钝化效果,并且对原有的生成工序改动小,提升电池量产良率,降低生产成本。In this embodiment, after the de-plating process, the PSG and BSG removal process, a second oxide layer is formed on the surface of the phosphorus-doped polysilicon layer. Compared with the existing Topcon battery preparation process, only one second oxide layer formation process is added, which can effectively improve the unsaturated defects introduced between the doped polysilicon layer and the back passivation layer, effectively improve the passivation effect, and only slightly change the original generation process, thereby improving the battery mass production yield and reducing production costs.
在一些实施例中,太阳能电池可以为具有Topcon结构的太阳能电池,如图3所示,太阳能电池包括由上至下依次层叠的第一电极13、第一钝化层12、硼扩散层11、半导体衬底10、第一氧化层14、掺磷多晶硅层15、第二氧化层16、第二钝化层17、第二电极18。需要说明的是,第一电极13穿过第一钝化层12与硼扩散层11形成欧姆接触,第二电极18穿过第二钝化层17、第二氧化层16与掺磷多晶硅层15形成欧姆接触,掺磷多晶硅层15与第一氧化层14组成TopCon结构。In some embodiments, the solar cell may be a solar cell with a Topcon structure, as shown in FIG3 , the solar cell includes a first electrode 13, a first passivation layer 12, a boron diffusion layer 11, a semiconductor substrate 10, a first oxide layer 14, a phosphorus-doped polysilicon layer 15, a second oxide layer 16, a second passivation layer 17, and a second electrode 18 stacked sequentially from top to bottom. It should be noted that the first electrode 13 forms an ohmic contact with the boron diffusion layer 11 through the first passivation layer 12, the second electrode 18 forms an ohmic contact with the phosphorus-doped polysilicon layer 15 through the second passivation layer 17 and the second oxide layer 16, and the phosphorus-doped polysilicon layer 15 and the first oxide layer 14 form a TopCon structure.
可选地,所述第一氧化层14为隧穿氧化层,例如超薄氧化硅层。Optionally, the first oxide layer 14 is a tunneling oxide layer, such as an ultra-thin silicon oxide layer.
可选地,所述第二氧化层16为类似于第一氧化层14的超薄氧化层,例如,所述第二氧化层16为氧化硅层。又例如,所述第二氧化层16为氧化钛层。所述第二氧化层16的厚度在0.5nm~5nm范围内。Optionally, the second oxide layer 16 is an ultra-thin oxide layer similar to the first oxide layer 14. For example, the second oxide layer 16 is a silicon oxide layer. For another example, the second oxide layer 16 is a titanium oxide layer. The thickness of the second oxide layer 16 is in the range of 0.5 nm to 5 nm.
对于该太阳能电池的具体结构,如各层的具体类型等可参照前述太阳能电池制备方法方面的相关描述,在此不再一一详细描述。For the specific structure of the solar cell, such as the specific type of each layer, etc., reference may be made to the related description of the aforementioned solar cell preparation method, and will not be described in detail here.
本发明实施例中不限定第一电极13和第二电极18的具体材质。例如,第一电极13为银电极或银/铝电极,第二电极18为银电极。The embodiment of the present invention does not limit the specific materials of the first electrode 13 and the second electrode 18. For example, the first electrode 13 is a silver electrode or a silver/aluminum electrode, and the second electrode 18 is a silver electrode.
本发明实施例中不限定第一钝化层12、第二钝化层17的具体类型,例如可以为氮化硅层、氮氧化硅层、氧化铝/氮化硅叠层结构等。The specific types of the first passivation layer 12 and the second passivation layer 17 are not limited in the embodiment of the present invention, and they may be, for example, a silicon nitride layer, a silicon oxynitride layer, an aluminum oxide/silicon nitride stacked structure, and the like.
还需说明的是,本发明实施例对于上述太阳能电池中各层结构的厚度不作限定,可由本领域技术人员根据实际情况而调控。It should also be noted that the embodiment of the present invention does not limit the thickness of each layer structure in the above solar cell, which can be adjusted by those skilled in the art according to actual conditions.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above description is only the preferred embodiment of the present application and is not intended to limit the present application. For those skilled in the art, the present application may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included in the protection scope of the present application.
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。Although the present application is disclosed as above with preferred embodiments, it is not intended to limit the claims. Any technical personnel in this field may make several possible changes and modifications without departing from the concept of the present application. Therefore, the scope of protection of the present application shall be based on the scope defined by the claims of the present application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010813062.XA CN111933752B (en) | 2020-08-13 | 2020-08-13 | Solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010813062.XA CN111933752B (en) | 2020-08-13 | 2020-08-13 | Solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111933752A CN111933752A (en) | 2020-11-13 |
CN111933752B true CN111933752B (en) | 2024-09-03 |
Family
ID=73311693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010813062.XA Active CN111933752B (en) | 2020-08-13 | 2020-08-13 | Solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111933752B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114975667A (en) * | 2021-02-25 | 2022-08-30 | 一道新能源科技(衢州)有限公司 | IBC solar cell and manufacturing method thereof |
CN115224152B (en) * | 2021-03-31 | 2024-04-16 | 浙江爱旭太阳能科技有限公司 | Solar cell and manufacturing method thereof |
CN113611756B (en) * | 2021-08-10 | 2022-07-26 | 东方日升(常州)新能源有限公司 | N-type TOPCon battery and preparation method thereof |
CN116525689A (en) | 2021-08-26 | 2023-08-01 | 上海晶科绿能企业管理有限公司 | Solar cell, manufacturing method thereof and photovoltaic module |
CN113964212B (en) * | 2021-09-16 | 2022-03-18 | 晶科能源(海宁)有限公司 | A kind of solar cell and its preparation method, photovoltaic module |
CN114122193A (en) * | 2021-11-17 | 2022-03-01 | 晶澳(扬州)太阳能科技有限公司 | Manufacturing method of solar cell and solar cell |
DE102021133039A1 (en) | 2021-12-14 | 2023-06-15 | "International Solar Energy Research Center Konstanz", ISC e.V. | Solar cell with passivated contacts and method for producing a solar cell with passivated contacts |
CN114613881B (en) * | 2022-02-24 | 2023-07-04 | 浙江晶科能源有限公司 | Solar cell, preparation method thereof and photovoltaic module |
CN114784142A (en) * | 2022-04-20 | 2022-07-22 | 通威太阳能(眉山)有限公司 | P-type back contact solar cell and preparation method thereof |
CN115172518B (en) * | 2022-07-08 | 2024-07-30 | 酒泉正泰新能源科技有限公司 | Multiple oxidation diffusion method and preparation method of solar cell |
CN116845137A (en) * | 2023-07-17 | 2023-10-03 | 天合光能股份有限公司 | Solar cell and preparation method thereof |
CN117038748B (en) * | 2023-10-08 | 2024-02-06 | 晶科能源(海宁)有限公司 | Solar cells and preparation methods thereof, photovoltaic modules |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110416324A (en) * | 2019-08-22 | 2019-11-05 | 浙江正泰太阳能科技有限公司 | A kind of solar cell and preparation method thereof |
CN110739367A (en) * | 2019-10-23 | 2020-01-31 | 泰州中来光电科技有限公司 | A kind of preparation method of N-type TOPCon solar cell |
CN111081810A (en) * | 2018-10-18 | 2020-04-28 | 中国科学院宁波材料技术与工程研究所 | Method for improving passivation performance of tunneling oxygen/polycrystalline silicon passivation contact structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4092757A1 (en) * | 2013-04-03 | 2022-11-23 | Lg Electronics Inc. | Method for fabricating a solar cell |
CN107464855A (en) * | 2016-06-02 | 2017-12-12 | 上海神舟新能源发展有限公司 | Silica-based solar cell N-type surface tunnel oxide passivation contact for producing method |
US20200243697A1 (en) * | 2019-01-28 | 2020-07-30 | Dupont Electronics, Inc. | Solar cell |
CN110277471A (en) * | 2019-05-17 | 2019-09-24 | 上海神舟新能源发展有限公司 | Fabrication method of N-type poly emitter junction solar cell based on crystalline silicon |
CN111029438B (en) * | 2019-12-04 | 2021-09-07 | 江苏杰太光电技术有限公司 | A kind of preparation method of N-type passivation contact solar cell |
CN111192930A (en) * | 2020-01-09 | 2020-05-22 | 浙江晶科能源有限公司 | A kind of passivated contact solar cell and its manufacturing method |
-
2020
- 2020-08-13 CN CN202010813062.XA patent/CN111933752B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111081810A (en) * | 2018-10-18 | 2020-04-28 | 中国科学院宁波材料技术与工程研究所 | Method for improving passivation performance of tunneling oxygen/polycrystalline silicon passivation contact structure |
CN110416324A (en) * | 2019-08-22 | 2019-11-05 | 浙江正泰太阳能科技有限公司 | A kind of solar cell and preparation method thereof |
CN110739367A (en) * | 2019-10-23 | 2020-01-31 | 泰州中来光电科技有限公司 | A kind of preparation method of N-type TOPCon solar cell |
Also Published As
Publication number | Publication date |
---|---|
CN111933752A (en) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111933752B (en) | Solar cell and preparation method thereof | |
CN111564503B (en) | A back-junction back-contact solar cell structure and preparation method thereof | |
CN111029438A (en) | Preparation method of N-type passivated contact solar cell | |
CN114843368B (en) | Solar cells and preparation methods and applications thereof | |
CN111668345A (en) | A kind of solar cell and preparation method thereof | |
CN109192809B (en) | An all-back electrode battery and its high-efficiency light trapping and selective doping manufacturing method | |
CN110265497A (en) | N-type crystalline silicon solar cell with selective emitter and preparation method thereof | |
CN114784140B (en) | Topcon battery preparation method, Topcon battery and de-winding plating tank cleaning machine | |
WO2023216628A1 (en) | Heterojunction solar cell, preparation method therefor and power generation device | |
CN105161553B (en) | Preparation method of all back electrode crystalline silicon solar cell | |
CN111341880A (en) | Method for manufacturing solar cell | |
CN110212057B (en) | A kind of preparation method of P-type passivation contact crystalline silicon solar cell | |
CN116741877A (en) | A kind of TBC battery preparation method and TBC battery | |
WO2024045945A1 (en) | Solar cell and manufacturing method therefor | |
CN115411150B (en) | Solar cell and preparation method thereof | |
CN116387409A (en) | N-type TBC solar cell and preparation method thereof | |
CN114335237A (en) | Preparation method of crystalline silicon solar cell and crystalline silicon solar cell | |
CN103928573A (en) | A silicon wafer phosphorus-aluminum combined temperature-variable gettering method for preparing solar cells | |
CN117673207B (en) | A method for preparing a solar cell, a solar cell and a photovoltaic module | |
CN118888643A (en) | A method for preparing a solar cell and a solar cell | |
CN103746006A (en) | Passivating layer of crystalline silicon solar cell and passivating process thereof | |
CN113921649A (en) | Preparation method of silicon-based heterojunction solar cell | |
CN110785856B (en) | Method for manufacturing high-efficiency solar cell | |
CN117199192A (en) | TOPCON battery tunneling oxide layer preparation method | |
CN115939265A (en) | Preparation method of silicon-based heterojunction solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 314416 west of lumansi bridge, Yuanxi Road, Yuanhua Town, Haining City, Jiaxing City, Zhejiang Province Applicant after: ZHEJIANG JINKO SOLAR Co.,Ltd. Applicant after: Jinko Solar Co., Ltd. Address before: 314416 west of lumansi bridge, Yuanxi Road, Yuanhua Town, Haining City, Jiaxing City, Zhejiang Province Applicant before: ZHEJIANG JINKO SOLAR Co.,Ltd. Country or region before: China Applicant before: JINKO SOLAR Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240704 Address after: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province 334100 Applicant after: Jingke energy (Shangrao) Co.,Ltd. Country or region after: China Applicant after: ZHEJIANG JINKO SOLAR Co.,Ltd. Address before: 314416 west of lumansi bridge, Yuanxi Road, Yuanhua Town, Haining City, Jiaxing City, Zhejiang Province Applicant before: ZHEJIANG JINKO SOLAR Co.,Ltd. Country or region before: China Applicant before: Jinko Solar Co., Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |