CN111739934A - A Gallium Nitride High Electron Mobility Transistor with Junction Field Plate - Google Patents
A Gallium Nitride High Electron Mobility Transistor with Junction Field Plate Download PDFInfo
- Publication number
- CN111739934A CN111739934A CN202010756366.7A CN202010756366A CN111739934A CN 111739934 A CN111739934 A CN 111739934A CN 202010756366 A CN202010756366 A CN 202010756366A CN 111739934 A CN111739934 A CN 111739934A
- Authority
- CN
- China
- Prior art keywords
- type doped
- doped semiconductor
- gan
- drain
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 72
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 230000004888 barrier function Effects 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000004065 semiconductor Substances 0.000 claims description 96
- 229910002704 AlGaN Inorganic materials 0.000 claims description 39
- 238000002161 passivation Methods 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910017083 AlN Inorganic materials 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 229910003465 moissanite Inorganic materials 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 26
- 230000005684 electric field Effects 0.000 abstract description 20
- 230000005533 two-dimensional electron gas Effects 0.000 abstract description 5
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 230000003071 parasitic effect Effects 0.000 abstract description 2
- 230000000779 depleting effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/112—Field plates comprising multiple field plate segments
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明属于微电子器件技术领域,具体是指一种具有PN结型场板的氮化镓基高电子迁移率晶体管,其可以有效的提高器件的击穿电压。The invention belongs to the technical field of microelectronic devices, in particular to a gallium nitride-based high electron mobility transistor with a PN junction field plate, which can effectively improve the breakdown voltage of the device.
背景技术Background technique
GaN基异质结场效应晶体管(GaN HEMT)利用在AlGaN/GaN异质结沟道中形成的高浓度和高电子迁移率2DEG工作。GaN材料具有禁带宽度大、临界击穿电场高(临界击穿电场高达3.4MV/cm,是Si材料的10倍),导热性以及抗辐射性好等优良的物理化学性质。氮化镓基异质结场效应晶体管在高耐压、大功率的应用中能保持高的可靠性,同时因其电子饱和速度快,以及较高的载流子迁移率,高速开关领域也有广阔的应用空间。GaN-based heterojunction field-effect transistors (GaN HEMTs) operate with high concentration and high electron mobility 2DEG formed in the AlGaN/GaN heterojunction channel. GaN material has excellent physical and chemical properties such as large band gap, high critical breakdown electric field (critical breakdown electric field is as high as 3.4MV/cm, 10 times that of Si material), thermal conductivity and radiation resistance. GaN-based heterojunction field effect transistors can maintain high reliability in high-voltage and high-power applications. At the same time, because of their fast electron saturation speed and high carrier mobility, high-speed switching fields also have a broad field. application space.
目前常见的GaN HEMT为横向器件,其结构示意图如图1所示,主要包括自下而上依次生长的衬底210、GaN缓冲层201、氮化镓沟道层202、铝镓氮势垒层203以及分别设置在铝镓氮势垒层上表面的源极204、栅极205、漏极206,所述源极204和漏极206均与铝镓氮势垒层203形成欧姆接触;所述栅极205与铝镓氮势垒层203形成肖特基接触;所述源极204与所述漏极206之间的铝镓氮势垒层表面生长有钝化层209。At present, the common GaN HEMT is a lateral device, and its schematic diagram is shown in FIG. 1, which mainly includes a
对于普通GaN HEMT而言,当在漏极施加电压时,在栅极和漏极之间的沟道2DEG不能完全耗尽,使得在栅极边缘靠近漏极端存在电场集中的现象。电场集中会使得在施加较低的漏极电压时器件出现提前击穿并产生漏电沟道,造成缓冲层泄漏,这样就不能充分发挥出GaN材料的优势,使得氮化镓基异质结高电子迁移率晶体管在高压方面的应用受到限制。For common GaN HEMTs, when a voltage is applied to the drain, the channel 2DEG between the gate and the drain cannot be fully depleted, so that there is an electric field concentration near the drain terminal at the gate edge. The electric field concentration will cause the device to break down prematurely and generate a leakage channel when a lower drain voltage is applied, resulting in leakage of the buffer layer, so that the advantages of the GaN material cannot be fully utilized, making the GaN-based heterojunction high electron The application of mobility transistors to high voltages is limited.
为了充分发挥GaN材料的高临界击穿电场特性,科研人员提出了诸多提升器件耐压能力的技术措施,其中具有代表性的措施主要包括:场板技术(如栅极场板、源极场板、漏极场板)、衬底转移技术、离子注入、缓冲层掺杂、超晶格缓冲层和背势垒技术等。In order to give full play to the high critical breakdown electric field characteristics of GaN materials, researchers have proposed many technical measures to improve the voltage withstand capability of the device, among which the representative measures mainly include: field plate technology (such as gate field plate, source field plate , drain field plate), substrate transfer technology, ion implantation, buffer layer doping, superlattice buffer layer and back barrier technology, etc.
2001年,Li J等人在文献(Li J,Cai S J,Pan G Z,et al.High breakdownvoltage GaN HFET with field plate[J].Electronics Letters,2001,37(3):196-197.)中首次公开采用与栅极短接的场板,栅极场板的引入可以有效降低栅极边缘处的电场尖峰,扩展栅极和漏极之间的沟道2DEG耗尽区域,使栅漏之间的电场分布更加均匀,从而提高耐压。但是场板和沟道间形成了附加电容,会使得器件的频率特性和开关特性退化。In 2001, Li J et al. in the literature (Li J, Cai S J, Pan G Z, et al. High breakdown voltage GaN HFET with field plate [J]. Electronics Letters, 2001, 37(3): 196-197.) for the first time It is disclosed that a field plate shorted to the gate is adopted. The introduction of the gate field plate can effectively reduce the electric field peak at the edge of the gate, expand the 2DEG depletion region of the channel between the gate and the drain, and make the gap between the gate and the drain. The electric field distribution is more uniform, thereby improving the withstand voltage. However, additional capacitance is formed between the field plate and the channel, which degrades the frequency and switching characteristics of the device.
衬底转移技术的提出对GaN器件的击穿电压的提高提供更多的可能。传统的Si衬底器件由于衬底的禁带宽度较窄,其耐压明显不能满足日益增长的需求,而衬底转移技术可以有效的消除Si衬底耐压不足导致的提前击穿。2010年,Bin Liu等人在文献(Bin Lu,Tomás Palacios.High Breakdown(>1500V)AlGaN/GaN HEMTs by Substrate-TransferTechnology[J].IEEE Electron Device Letters,2010,31(9):951-953)中关于衬底转移技术的报道实现了击穿电压大于1500V(栅漏间距为20μm),而导通电阻仅为5.3mΩ·cm2。但是衬底转移技术的工艺还没有完全成熟,同时其成本相对于Si衬底而言大大增加。The introduction of substrate transfer technology provides more possibilities to improve the breakdown voltage of GaN devices. Due to the narrow forbidden band width of the substrate, the conventional Si substrate device obviously cannot meet the growing demand for its withstand voltage, and the substrate transfer technology can effectively eliminate the premature breakdown caused by the insufficient withstand voltage of the Si substrate. In 2010, Bin Liu et al. in the literature (Bin Lu, Tomás Palacios. High Breakdown (>1500V) AlGaN/GaN HEMTs by Substrate-TransferTechnology [J]. IEEE Electron Device Letters, 2010, 31(9): 951-953) The report on the substrate transfer technology in China achieves a breakdown voltage greater than 1500V (gate-drain spacing is 20μm), while the on-resistance is only 5.3mΩ·cm 2 . However, the process of substrate transfer technology is not yet fully mature, and its cost is greatly increased compared to Si substrates.
缓冲层掺杂技术也是减小泄漏电流增加耐压能力的方法的之一,缓冲层掺杂C、Fe等杂质构成深能级陷阱使泄漏至缓冲层内的电子被俘获,使得缓冲层泄漏电流的值明显减小,从而提升器件的击穿电压。但是缓冲层掺C、Fe等深能级受主杂质会引发电流崩塌,使器件的直流特性退化。The buffer layer doping technology is also one of the methods to reduce the leakage current and increase the withstand voltage. Doping the buffer layer with impurities such as C and Fe constitutes a deep level trap, so that the electrons leaking into the buffer layer are trapped, causing the buffer layer to leak current. The value of is significantly reduced, thereby increasing the breakdown voltage of the device. However, doping C, Fe and other deep-level acceptor impurities in the buffer layer will cause current collapse and degrade the DC characteristics of the device.
采用AlGaN背势垒缓冲层结构可以增加沟道二维电子气到缓冲层的势垒高度,限制了沟道二维电子气泄漏到缓冲层,减小泄漏电流,提高击穿电压。但是该方法提升击穿电压有限,一方面,AlGaN背势垒会在缓冲层和沟道层之间因为晶格失配的问题而引入陷阱;另一方面,AlGaN势垒层和AlGaN背势垒具有相反的极化效应,从而降低沟道的二维电子气浓度,使得导通电阻增大。The use of the AlGaN back-barrier buffer layer structure can increase the height of the barrier from the channel two-dimensional electron gas to the buffer layer, which limits the leakage of the channel two-dimensional electron gas to the buffer layer, reduces the leakage current, and increases the breakdown voltage. However, this method is limited in improving the breakdown voltage. On the one hand, the AlGaN back barrier will introduce traps between the buffer layer and the channel layer due to lattice mismatch; on the other hand, the AlGaN barrier layer and the AlGaN back barrier It has the opposite polarization effect, thereby reducing the two-dimensional electron gas concentration of the channel, which increases the on-resistance.
综上所述,这些技术措施在提高耐压的同时会引入各种问题,如何在提升耐压的同时而不影响器件的其它性能成为现在氮化镓基高电子迁移率晶体管亟待解决的问题。To sum up, these technical measures will introduce various problems while increasing the withstand voltage. How to improve the withstand voltage without affecting other performances of the device has become an urgent problem to be solved in GaN-based high electron mobility transistors.
发明内容SUMMARY OF THE INVENTION
本发明的目的是通过引入结型场板结构,降低栅极边缘的电场尖峰,调制沟道电场使其分布更加均匀,同时降低缓冲层的泄漏电流,提高击穿电压。本发明提出了一种具有结型场板的氮化镓基异质结场效应晶体管。The purpose of the present invention is to reduce the electric field peak at the gate edge by introducing the junction field plate structure, modulate the channel electric field to make its distribution more uniform, reduce the leakage current of the buffer layer, and improve the breakdown voltage. The invention provides a gallium nitride-based heterojunction field effect transistor with a junction field plate.
为了解决其技术问题,本发明采用如下技术方案:In order to solve its technical problem, the present invention adopts following technical scheme:
一种具有结型场板的氮化镓基高电子迁移率晶体管,其结构自下而上依次包括:衬底210、GaN缓冲层201、氮化镓沟道层202、铝镓氮势垒层203、以及分别设在铝镓氮势垒层203上方的源极204、钝化层209、栅极205、P型掺杂氮化镓半导体207、N型掺杂氮化镓半导体208和漏极206;所述源极204和所述漏极206均与铝镓氮势垒层203形成欧姆接触;所述栅极205与铝镓氮势垒层203形成肖特基接触;栅极205和漏极206之间的铝镓氮势垒层203表面生长有N型半导体层208,N型半导体层208表面生长有P型半导体层207,所述P型半导体207和N型半导体208形成PN结型场板;源极204与漏极206之间的铝镓氮势垒层203表面生长有钝化层209。A GaN-based high electron mobility transistor with a junction field plate, the structure of which includes, from bottom to top, a
作为优选方式,N型掺杂半导体208位于栅极和漏极之间的铝镓氮势垒层203上方,P型掺杂半导体207位于栅极和漏极之间的N型掺杂半导体208上方;N型掺杂半导体208的长度不超过栅极和漏极之间的间距,P型掺杂半导体207长度不超过N型掺杂半导体208的长度;所述P型掺杂半导体207与所述N型掺杂半导体208的掺杂浓度之差的差值为10~104。Preferably, the N-type doped
作为优选方式,P型掺杂半导体207和N型掺杂半导体208组成的PN结型场板在栅极金属205和漏极金属206之间重复生长多个,多个PN结型场板的长度总和不超过栅极和漏极之间的间距。As a preferred way, a PN junction field plate composed of a P-type doped
作为优选方式,P型掺杂半导体207的形状为斜坡状,斜坡状一端的厚度大于另一端的厚度;P型掺杂半导体207的长度不超过N型掺杂半导体208的长度,且两者均不超过栅极和漏极之间的间距,在P型掺杂半导体207上方生长有钝化层209。As a preferred way, the shape of the P-type doped
作为优选方式,P型掺杂半导体207的的中部设有凸起,所述凸起部分的厚度和长度小于N型掺杂半导体208的厚度和长度,在P型掺杂半导体207上方生长有钝化层209。As a preferred way, a protrusion is provided in the middle of the P-type doped
作为优选方式,P型掺杂半导体207在xoz平面上的宽度从栅极205到漏极206依次减小,N型掺杂半导体208在xoz平面上的宽度不变。As a preferred manner, the width of the P-type doped
作为优选方式,P型掺杂半导体207在xoz平面上的宽度从栅极205到漏极206依次增大,N型掺杂半导体208在xoz平面上的宽度不变。As a preferred manner, the width of the P-type doped
作为优选方式,所述N型掺杂半导体208材料选自GaN、Si、GaAs、GaN、SiC、AlN、AlGaN和InGaN中任意一种或几种的组合;所述P型掺杂半导体207的材料选自GaN、Si、GaAs、GaN、SiC、AlN、AlGaN和InGaN中任意一种或几种的组合;所述钝化层209的材料选自SiO2、HfO2、Al2O3、Si3N4和La2O3中任意一种或几种形成的复合材料;所述衬底210的材料选自蓝宝石、Si和SiC的任意一种。As a preferred manner, the material of the N-type doped
本发明的有益效果为:本发明的目的是克服氮化镓基高电子迁移率晶体管(GaNHEMT)耐压能力不足、无法充分发挥GaN材料高临界击穿电场和高电子饱和迁移率的问题,提出一种具有PN结型场板的氮化镓基高电子迁移率晶体管,本发明的技术方案是在栅极和漏极之间的铝镓氮势垒层上方形成纵向的PN结作为耐压结构调制器件的表面电场,优化横向的电场分布,达到了提升击穿电压的目的。一方面,在栅极处于阻断状态时纵向的PN结二极管会辅助耗尽器件沟道的二维电子气,承受一部分漏极电压,减小栅极边缘漏极侧所承受的电压,减小该处峰值电场。在正向导通状态时,PN结耗尽区可以避免栅极产生过大的泄漏电流,保证器件的正向导通电流能力。同时,与常规金属场板相比本发明的场板不会引入附加的寄生电容,保证了器件的工作频率和开关速度,在提升击穿电压的同时提高了器件的可靠性。The beneficial effects of the present invention are as follows: the purpose of the present invention is to overcome the problems that the gallium nitride-based high electron mobility transistor (GaNHEMT) has insufficient withstand voltage and cannot give full play to the high critical breakdown electric field and high electron saturation mobility of GaN materials. A gallium nitride-based high electron mobility transistor with a PN junction field plate, the technical solution of the present invention is to form a vertical PN junction above the aluminum gallium nitride barrier layer between the gate and the drain as a withstand voltage structure The surface electric field of the device is modulated, the lateral electric field distribution is optimized, and the purpose of increasing the breakdown voltage is achieved. On the one hand, when the gate is in the blocking state, the vertical PN junction diode will assist to deplete the two-dimensional electron gas of the device channel, bear part of the drain voltage, reduce the voltage on the drain side of the gate edge, reduce The peak electric field here. In the forward conduction state, the PN junction depletion region can prevent the gate from generating excessive leakage current and ensure the forward conduction current capability of the device. Meanwhile, compared with the conventional metal field plate, the field plate of the present invention does not introduce additional parasitic capacitance, which ensures the operating frequency and switching speed of the device, and improves the reliability of the device while increasing the breakdown voltage.
附图说明Description of drawings
图1是普通氮化镓高电子迁移率晶体管(GaN HEMT)结构示意图。FIG. 1 is a schematic structural diagram of a common gallium nitride high electron mobility transistor (GaN HEMT).
图2是本发明实施案例1提供的具有PN结型场板的GaN HEMT一种结构示意图。FIG. 2 is a schematic structural diagram of a GaN HEMT with a PN junction field plate provided by
图3是本发明实施案例2提供的具有PN结型场板的GaN HEMT一种结构示意图。FIG. 3 is a schematic structural diagram of a GaN HEMT with a PN junction field plate provided by
图4是本发明实施案例3提供的具有PN结型场板的GaN HEMT一种结构示意图。FIG. 4 is a schematic structural diagram of a GaN HEMT with a PN junction field plate provided by
图5是本发明实施案例4提供的具有PN结型场板的GaN HEMT一种结构示意图。FIG. 5 is a schematic structural diagram of a GaN HEMT with a PN junction field plate provided by
图6是本发明实施案例5提供的具有PN结型场板的GaN HEMT一种结构示意图。FIG. 6 is a schematic structural diagram of a GaN HEMT with a PN junction field plate provided by
图7是本发明实施案例1与普通GaN HEMT的击穿特性对比。FIG. 7 is a comparison of the breakdown characteristics of Example 1 of the present invention and a common GaN HEMT.
图8是本发明实施案例1与普通GaN HEMT的沟道电场对比。FIG. 8 is a comparison of the channel electric field of Example 1 of the present invention and a common GaN HEMT.
210为衬底、201为GaN缓冲层、202为氮化镓沟道层、203为铝镓氮势垒层、204为源极、205为栅极、206为漏极、207为P型半导体层、208为N型半导体层、209为钝化层。210 is the substrate, 201 is the GaN buffer layer, 202 is the GaN channel layer, 203 is the AlGaN barrier layer, 204 is the source, 205 is the gate, 206 is the drain, and 207 is the P-type semiconductor layer , 208 is an N-type semiconductor layer, and 209 is a passivation layer.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步详细说明,但本发明的实施方式不限于此实施例。The present invention will be described in further detail below with reference to specific examples, but the embodiments of the present invention are not limited to these examples.
图1是普通氮化镓高电子迁移率晶体管(GaN HEMT)结构示意图,该器件自下而上依次包括:衬底210、GaN缓冲层201、氮化镓沟道层202、铝镓氮势垒层203以及铝镓氮势垒层上方形成的源极204、栅极205、漏极206和钝化层209,其中源极204与漏极206分别与铝镓氮势垒层203形成欧姆接触,栅极205与铝镓氮势垒层203形成肖特基接触。FIG. 1 is a schematic structural diagram of a common gallium nitride high electron mobility transistor (GaN HEMT), which includes, from bottom to top, a
实施例1Example 1
本实施例提供一种氮化镓基高电子迁移率晶体管,如图2所示,其结构自下而上依次包括:衬底210、GaN缓冲层201、氮化镓沟道层202、铝镓氮势垒层203、以及分别设在铝镓氮势垒层203上方的源极204、钝化层209、栅极205、P型掺杂氮化镓半导体207、N型掺杂氮化镓半导体208和漏极206;所述源极204和所述漏极206均与铝镓氮势垒层203形成欧姆接触;所述栅极205与铝镓氮势垒层203形成肖特基接触;栅极205和漏极206之间的铝镓氮势垒层203表面生长有N型半导体层208,N型半导体层208表面生长有P型半导体层207,所述P型半导体207和N型半导体208形成PN结型场板;源极204与漏极206之间的铝镓氮势垒层203表面生长有钝化层209。This embodiment provides a GaN-based high electron mobility transistor. As shown in FIG. 2 , the structure of the transistor includes, from bottom to top, a
N型掺杂半导体208位于栅极和漏极之间的铝镓氮势垒层203上方,P型掺杂半导体207位于栅极和漏极之间的N型掺杂半导体208上方;N型掺杂半导体208的长度不超过栅极和漏极之间的间距,P型掺杂半导体207长度不超过N型掺杂半导体208的长度;所述P型掺杂半导体207与所述N型掺杂半导体208的掺杂浓度之差的差值为10~104。The N-type doped
表1为普通HEMT和本发明实施例1的仿真结构参数:Table 1 is the simulation structure parameters of common HEMT and
表1器件仿真参数和结果对比Table 1 Comparison of device simulation parameters and results
图7和图8为本实施例1和普通HEMT的仿真结果对比,该结果充分体现本发明提升击穿电压的优点。从仿真结果图7可以看出,普通HEMT器件的击穿电压为425V(击穿电流判据为1μA/mm),而本发明实施例1的击穿电压为760V(击穿电流判据为1μA/mm)。图8为沟道电场强度分布对比图,从图8可以明显的看出实施例1可以显著的降低栅极边缘的电场峰值,使沟道电场分布更加均匀,由此提高器件的击穿电压。FIG. 7 and FIG. 8 compare the simulation results of
实施例2Example 2
如图3所示,本实施例与实施例1的区别在于:在栅极金属205和漏极金属206之间有3个P型掺杂半导体207和N型掺杂半导体208组成的PN结型场板,在PN结型场板之间存在钝化层209。多个PN结型场板的长度总和不超过栅极和漏极之间的间距。As shown in FIG. 3 , the difference between this embodiment and
实施例3Example 3
如图4所示,本实施例与实施例1的区别在于,P型掺杂半导体207的形状为斜坡状,斜坡状一端的厚度大于另一端的厚度;P型掺杂半导体207的长度不超过N型掺杂半导体208的长度,且两者均不超过栅极和漏极之间的间距,在P型掺杂半导体207上方生长有钝化层209。As shown in FIG. 4 , the difference between this embodiment and
实施例4Example 4
如图5所示,本实施例与实施例1的区别在于,P型掺杂半导体207的的中部设有凸起,所述凸起部分的厚度和长度小于N型掺杂半导体208的厚度和长度,在P型掺杂半导体207上方生长有钝化层209。As shown in FIG. 5 , the difference between this embodiment and
实施例5Example 5
如图6所示,本实施例与实施例1的区别在于,P型掺杂半导体207在xoz平面上的宽度从栅极205到漏极206依次减小,N型掺杂半导体208在xoz平面上的宽度不变。As shown in FIG. 6 , the difference between this embodiment and
实施例6Example 6
本实施例与实施例1的区别在于,P型掺杂半导体207在xoz平面上的宽度从栅极205到漏极206依次增大,N型掺杂半导体208在xoz平面上的宽度不变。The difference between this embodiment and
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单的修改、等同变化,均落入本发明的保护范围之内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any form. Any simple modifications and equivalent changes made to the above embodiments according to the technical essence of the present invention all fall into the present invention. within the scope of protection.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010756366.7A CN111739934B (en) | 2020-07-31 | 2020-07-31 | Gallium nitride high electron mobility transistor with junction field plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010756366.7A CN111739934B (en) | 2020-07-31 | 2020-07-31 | Gallium nitride high electron mobility transistor with junction field plate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111739934A true CN111739934A (en) | 2020-10-02 |
CN111739934B CN111739934B (en) | 2022-03-08 |
Family
ID=72656689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010756366.7A Active CN111739934B (en) | 2020-07-31 | 2020-07-31 | Gallium nitride high electron mobility transistor with junction field plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111739934B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078204A (en) * | 2021-03-25 | 2021-07-06 | 电子科技大学 | Gallium nitride 3D-RESURF field effect transistor and manufacturing method thereof |
CN113380877A (en) * | 2021-06-10 | 2021-09-10 | 四川美阔电子科技有限公司 | Power device of double-junction field plate |
CN113540230A (en) * | 2021-06-11 | 2021-10-22 | 中兴通讯股份有限公司 | Semiconductor device and method for manufacturing the same |
CN114784088A (en) * | 2022-04-13 | 2022-07-22 | 华南理工大学 | Junction-strip gallium nitride-based high-electron-mobility transistor |
CN116666236A (en) * | 2023-08-02 | 2023-08-29 | 深圳市鲁光电子科技有限公司 | Surface passivation method of semiconductor material |
WO2024040600A1 (en) * | 2022-08-26 | 2024-02-29 | Innoscience (Zhuhai) Technology Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN117727756A (en) * | 2024-02-08 | 2024-03-19 | 深圳天狼芯半导体有限公司 | High-voltage-resistant GaN HEMT suitable for high-frequency application and preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104377241A (en) * | 2014-09-30 | 2015-02-25 | 苏州捷芯威半导体有限公司 | Power semiconductor device and manufacturing method thereof |
CN105097911A (en) * | 2015-07-29 | 2015-11-25 | 电子科技大学 | HEMT device with junction type semiconductor layer |
US20160064600A1 (en) * | 2013-05-16 | 2016-03-03 | Panasonic Intellectual Property Management Co., Ltd. | Nitride semiconductor device |
-
2020
- 2020-07-31 CN CN202010756366.7A patent/CN111739934B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160064600A1 (en) * | 2013-05-16 | 2016-03-03 | Panasonic Intellectual Property Management Co., Ltd. | Nitride semiconductor device |
CN104377241A (en) * | 2014-09-30 | 2015-02-25 | 苏州捷芯威半导体有限公司 | Power semiconductor device and manufacturing method thereof |
CN105097911A (en) * | 2015-07-29 | 2015-11-25 | 电子科技大学 | HEMT device with junction type semiconductor layer |
Non-Patent Citations (1)
Title |
---|
CHUNWEI ZHANG ET AL: "Super Field Plate Technique That Can Provide Charge Balance Effect for Lateral Power Devices Without Occupying Drift Region", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078204A (en) * | 2021-03-25 | 2021-07-06 | 电子科技大学 | Gallium nitride 3D-RESURF field effect transistor and manufacturing method thereof |
CN113078204B (en) * | 2021-03-25 | 2022-05-17 | 电子科技大学 | Gallium nitride 3D-RESURF field effect transistor and manufacturing method thereof |
CN113380877A (en) * | 2021-06-10 | 2021-09-10 | 四川美阔电子科技有限公司 | Power device of double-junction field plate |
CN113540230A (en) * | 2021-06-11 | 2021-10-22 | 中兴通讯股份有限公司 | Semiconductor device and method for manufacturing the same |
CN114784088A (en) * | 2022-04-13 | 2022-07-22 | 华南理工大学 | Junction-strip gallium nitride-based high-electron-mobility transistor |
WO2024040600A1 (en) * | 2022-08-26 | 2024-02-29 | Innoscience (Zhuhai) Technology Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN116666236A (en) * | 2023-08-02 | 2023-08-29 | 深圳市鲁光电子科技有限公司 | Surface passivation method of semiconductor material |
CN116666236B (en) * | 2023-08-02 | 2023-11-21 | 深圳市鲁光电子科技有限公司 | Surface passivation method of semiconductor material |
CN117727756A (en) * | 2024-02-08 | 2024-03-19 | 深圳天狼芯半导体有限公司 | High-voltage-resistant GaN HEMT suitable for high-frequency application and preparation method |
CN117727756B (en) * | 2024-02-08 | 2024-05-28 | 深圳天狼芯半导体有限公司 | High-voltage-resistant GaN HEMT suitable for high-frequency application and preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN111739934B (en) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111739934B (en) | Gallium nitride high electron mobility transistor with junction field plate | |
CN107482059B (en) | A GaN heterojunction longitudinal reverse conduction field effect transistor | |
CN104201202B (en) | Gallium-nitride-based heterostructure field effect transistor with composite barrier layers | |
CN108878524B (en) | A Gallium Nitride-Based High Electron Mobility Transistor | |
CN104409496B (en) | A kind of nitridation gallio power hetero-junction field-effect transistor with local back potential barrier | |
CN111969047B (en) | Gallium nitride heterojunction field effect transistor with composite back barrier layer | |
CN114447102A (en) | Gallium Nitride Heterojunction Field Effect Transistor with Compound Semiconductor Layer on Substrate | |
CN108598163A (en) | A kind of GaN hetero-junctions longitudinal direction power device | |
CN102945859A (en) | GaN heterojunction HEMT (High Electron Mobility Transistor) device | |
Lee et al. | Characterizations of enhancement-mode double heterostructure GaN HEMTs with gate field plates | |
CN103227199B (en) | Semi-conductor electronic device | |
CN108649070A (en) | A kind of GaN hetero-junctions conductance modulation field-effect tube | |
CN110310981A (en) | Nitrogen-enhanced GaN-based Heterojunction Field-Effect Transistor with Composite Barrier Layer | |
CN107623032A (en) | A Novel GaN Heterojunction Field Effect Transistor | |
CN114530492A (en) | Lateral gallium nitride schottky diode structure with hybrid high-k dielectric field plate | |
CN116913951A (en) | A dual-channel enhancement-mode GaN HEMT device with a P-type buried layer | |
Bai et al. | A novel trench-gated vertical GaN transistor with dual-current-aperture by electric-field engineering for high breakdown voltage | |
CN113675270B (en) | GaN RC-HEMT with reverse conduction capability | |
CN107393954B (en) | A kind of GaN hetero-junctions vertical field effect pipe | |
CN118315429A (en) | A fin-type gate wide bandgap and ultra-wide bandgap MOSFET device with integrated heterojunction diode | |
CN118315430A (en) | Wide forbidden band and ultra-wide forbidden band groove grid MOSFET device | |
CN110880534A (en) | A Gallium Nitride Heterojunction Field Effect Transistor with Composite Buffer Layer | |
CN116110942A (en) | Semiconductor heterojunction field effect transistor with P-type doping structure | |
CN111682067B (en) | High electron mobility transistor with lateral depletion region | |
CN115513293A (en) | Enhanced gallium nitride heterojunction field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241107 Address after: 264006 Room 243, Building 3, No. 32, the Pearl River Road, Yantai Development Zone, Yantai District, China (Shandong) Pilot Free Trade Zone, Yantai City, Shandong Province Patentee after: Yantai Zhuoyuan Electronic Technology Co.,Ltd. Country or region after: China Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan) Patentee before: University of Electronic Science and Technology of China Country or region before: China |
|
TR01 | Transfer of patent right |