CN111571368A - A central liquid supply planetary polishing device and method - Google Patents
A central liquid supply planetary polishing device and method Download PDFInfo
- Publication number
- CN111571368A CN111571368A CN202010438339.5A CN202010438339A CN111571368A CN 111571368 A CN111571368 A CN 111571368A CN 202010438339 A CN202010438339 A CN 202010438339A CN 111571368 A CN111571368 A CN 111571368A
- Authority
- CN
- China
- Prior art keywords
- polishing
- hollow
- shaft
- revolution
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 153
- 239000007788 liquid Substances 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims description 11
- 230000005540 biological transmission Effects 0.000 claims abstract description 30
- 230000007246 mechanism Effects 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000010432 diamond Substances 0.000 claims description 12
- 229910003460 diamond Inorganic materials 0.000 claims description 12
- 238000003754 machining Methods 0.000 claims description 8
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 4
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 4
- 238000007517 polishing process Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000002113 nanodiamond Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 22
- 230000033001 locomotion Effects 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B13/00—Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
- B24B41/04—Headstocks; Working-spindles; Features relating thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B47/00—Drives or gearings; Equipment therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B47/00—Drives or gearings; Equipment therefor
- B24B47/10—Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
- B24B47/12—Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光学制造领域的行星抛光装置,尤其涉及一种中心供液的行星抛光装置及方法。The invention relates to a planetary polishing device in the field of optical manufacturing, in particular to a planetary polishing device and method for central liquid supply.
背景技术Background technique
随着现代光学系统的迅猛发展,大口径非球面光学元件相对于普通球面镜片由于其精度高、质量轻、可靠性好和成本低等诸多优良特性被广泛应用于激光核聚变装置、大型天文望远镜、红外热成像、医疗影像设备等国防和民用尖端技术领域,其加工技术也在朝着高精度、高效率及高质量方向发展。With the rapid development of modern optical systems, large-aperture aspheric optical elements are widely used in laser nuclear fusion devices, large astronomical telescopes due to their high precision, light weight, good reliability and low cost compared with ordinary spherical lenses. , infrared thermal imaging, medical imaging equipment and other national defense and civil advanced technology fields, the processing technology is also developing in the direction of high precision, high efficiency and high quality.
现阶段,非球面光学元件的抛光技术主要是计算机控制光学表面成型(ComputerControlled Optics Surfacing,CCOS)。国外大量研究表明,去除函数形状是影响抛光质量和效率重要因素,直接决定着最终面型误差能否收敛以及收敛的程度。传统自转动磨头抛光因磨头中心线速度为零,根据Preston假设会造成去除函数中心为零,获得中心为零的环形去除函数,导致面型误差收敛有限或不能收敛。然而行星抛光能够克服上述缺陷,获得较好的类Gauss型去除函数,使得工件表面面型误差快速收敛,提高加工精度与加工效率,因而被广泛应用于CCOS技术中。但是现有的行星抛光装置存在结构过于复杂、不可中心供液、转动惯量大和动力学性能差等缺点。例如,申请号为201710546844.X的专利文献中披露了《一种含双平行四边形机构的行星抛光装置》,该装置的自转与公转分别采用两个伺服电机驱动,公转传动采用双平行四边形机构实现,自转电机固定在基座上,采用二级带传动将运动传递给抛光盘。虽然,该技术方案能实现中心供液;是机构过于复杂,且运动不平稳。再如,申请号为201910266143.X的专利文献中公开了《一种行星抛光装置》,该装置的行星运动由行星轮系来实现,其结构紧凑,仅用一个电机可实现抛光盘的公转与自转,惯性力小;但不可中心供液,调节偏心距和公自转速比要更换不同齿数的齿轮和带轮,操作麻烦且调节范围小。At this stage, the polishing technology of aspheric optical components is mainly Computer Controlled Optics Surfacing (CCOS). A large number of foreign studies have shown that the shape of the removal function is an important factor affecting the polishing quality and efficiency, and directly determines whether the final surface error can converge and the degree of convergence. In traditional self-rotating grinding head polishing, the center linear velocity of the grinding head is zero. According to the Preston assumption, the center of the removal function is zero, and a ring-shaped removal function with zero center is obtained, resulting in limited or no convergence of the surface error. However, planetary polishing can overcome the above defects and obtain a better Gauss-like removal function, which can make the surface error of the workpiece converge rapidly and improve the machining accuracy and machining efficiency, so it is widely used in CCOS technology. However, the existing planetary polishing device has disadvantages such as overly complex structure, inability to centrally supply liquid, large moment of inertia and poor dynamic performance. For example, the patent document with the application number 201710546844.X discloses "A Planetary Polishing Device Containing Double Parallelogram Mechanisms". The rotation and revolution of the device are driven by two servo motors respectively, and the revolution transmission is realized by double parallelogram mechanisms. , the rotation motor is fixed on the base, and the motion is transmitted to the polishing disc by a secondary belt drive. Although this technical solution can realize central liquid supply, the mechanism is too complicated and the movement is not stable. For another example, the patent document with the application number of 201910266143.X discloses "A Planetary Polishing Device", the planetary motion of the device is realized by a planetary gear train, and its structure is compact, and only one motor can realize the revolution of the polishing disc and Self-rotation, small inertia force; but no central supply of liquid, adjustment of eccentric distance and male-to-self speed ratio requires replacing gears and pulleys with different numbers of teeth, which is troublesome to operate and has a small adjustment range.
发明内容SUMMARY OF THE INVENTION
针对现代大口径非球面光学元件超精密加工难度大,加工成本高,加工效率低等问题,本发明提出一种中心供液的行星抛光装置,实现了将抛光液从工具中心进行供给,供液更加充分;公自转速度和偏心距可实现无极变化调节(在允许的范围内),且调节方便;自转电机不参与公转,降低了转动惯量。Aiming at the problems of high difficulty, high processing cost and low processing efficiency in ultra-precision machining of modern large-diameter aspherical optical elements, the present invention proposes a planetary polishing device with central liquid supply, which realizes the supply of polishing liquid from the center of the tool and the liquid supply. It is more sufficient; the revolution speed and eccentricity can be adjusted infinitely (within the allowable range), and the adjustment is convenient; the autorotation motor does not participate in the revolution, which reduces the moment of inertia.
为了解决上述技术问题,本发明提出的一种中心供液行星抛光装置,包括基座板、公转单元、自转单元、供液供气单元、加载单元和抛光轴组件;所述公转单元包括公转电机和中空公转轴,所述公转电机固定在基座板上,所述公转电机的输出端通过一级带传动副将动力传递给所述中空公转轴,所述中空公转轴的两端分别由固定在所述基座板上的两个带座轴承支承;所述中空公转轴的一端设有连接法兰,所述连接法兰设有偏心调节机构;所述自转单元包括自转电机、传动软轴和抛光盘;所述自转电机固定在所述基座板上,所述传动软轴的一端与所述自转电机的输出端连接;所述供液供气单元包括空心气路旋转接头、空心水路旋转接头、空心转轴、供气管和供液管;所述空心转轴与所述中空公转轴的另一端连接,所述空心气路旋转接头的转子部分和所述空心水路旋转接头的转子部分均串联在所述空心转轴上,所述空心气路旋转接头的定子部分和所述空心水路旋转接头的定子部分与所述基座板固定;所述供气管的一端与空心气路旋转接头相连;所述供液管的一端与所述空心水路旋转接头相连;所述加载单元包括与所述偏心调节机构固定的支承座,所述支承座上设有薄壁气缸和L型连接件,所述L型连接件与所述支承座之间通过直线导轨副滑动连接;所述薄壁气缸与所述供液供气单元的供气管的另一端连通;所述抛光轴组件包括传动轴、对开合腔体和空心抛光轴,所述传动轴的输入端与所述传动软轴的另一端连接,所述对开合腔体设置在所述L型连接件上,所述空心抛光轴由所述对开合腔体支承,所述空心抛光轴的一端与供液供气单元中的供液管的另一端连通;所述空心抛光轴的另一端与自转单元中的抛光盘连接;所述公转电机通过所述一级带传动副带动所述偏心调节机构绕轴线O1公转;所述自转电机依次通过所述传动软轴、所述抛光轴组件中的传动轴和齿轮副带动所述抛光盘绕其轴线O2自转;所述抛光盘自转与公转的速度比范围为(0-500]。In order to solve the above technical problems, a central liquid supply planetary polishing device proposed by the present invention includes a base plate, a revolution unit, a rotation unit, a liquid supply and air supply unit, a loading unit and a polishing shaft assembly; the revolution unit includes a revolution motor and a hollow revolving shaft, the revolving motor is fixed on the base plate, the output end of the revolving motor transmits power to the hollow revolving shaft through a first-stage belt transmission pair, and the two ends of the hollow revolving shaft are respectively fixed by The base plate is supported by two bearings with seats; one end of the hollow revolving shaft is provided with a connection flange, and the connection flange is provided with an eccentric adjustment mechanism; the autorotation unit includes an autorotation motor, a transmission flexible shaft and a polishing disc; the autorotation motor is fixed on the base plate, and one end of the flexible transmission shaft is connected with the output end of the autorotation motor; the liquid supply and air supply unit includes a hollow air circuit rotary joint, a hollow water circuit rotation joint A joint, a hollow rotating shaft, an air supply pipe and a liquid supply pipe; the hollow rotating shaft is connected with the other end of the hollow revolving shaft, and the rotor part of the hollow air path rotary joint and the rotor part of the hollow water path rotary joint are connected in series On the hollow rotating shaft, the stator part of the hollow air path rotary joint and the stator part of the hollow water path rotary joint are fixed to the base plate; one end of the air supply pipe is connected to the hollow air path rotary joint; the One end of the liquid supply pipe is connected with the hollow waterway rotary joint; the loading unit includes a support seat fixed with the eccentric adjustment mechanism, the support seat is provided with a thin-walled cylinder and an L-shaped connecting piece, the L-shaped The connecting piece and the supporting seat are slidably connected through a pair of linear guide rails; the thin-walled cylinder is communicated with the other end of the gas supply pipe of the liquid and gas supply unit; the polishing shaft assembly includes a transmission shaft, a split cavity body and a hollow polishing shaft, the input end of the transmission shaft is connected with the other end of the flexible transmission shaft, the half opening and closing cavity is arranged on the L-shaped connecting piece, and the hollow polishing shaft is formed by the pair of The opening and closing cavity is supported, and one end of the hollow polishing shaft is communicated with the other end of the liquid supply pipe in the liquid and gas supply unit; the other end of the hollow polishing shaft is connected with the polishing disc in the rotation unit; the revolution motor The eccentric adjustment mechanism is driven to revolve around the axis O 1 by the first-stage belt drive pair; the autorotation motor sequentially drives the polishing disc to revolve around its The axis O 2 rotates; the speed ratio between the rotation and revolution of the polishing disc is in the range of (0-500].
进一步讲,本发明所述的中心供液行星抛光装置,其中,所述偏心调节机构包括滑座、滑块、调节螺杆和锁紧螺钉,所述滑座与所述连接法兰固定,所述滑块与所述滑座之间采用燕尾槽-燕尾块滑动配合;所述偏心调节机构绕轴线O1公转的半径为e,e为0-32mm。所述偏心调节机构达到设定的偏心距时,用所述锁紧螺钉进行锁紧。Further, in the central liquid supply planetary polishing device of the present invention, the eccentric adjustment mechanism includes a sliding seat, a sliding block, an adjusting screw and a locking screw, the sliding seat is fixed with the connecting flange, and the A dovetail groove-dovetail block sliding fit is used between the sliding block and the sliding seat ; the radius of the eccentric adjusting mechanism revolving around the axis O1 is e, and e is 0-32mm. When the eccentric adjustment mechanism reaches the set eccentric distance, the locking screw is used for locking.
所述加载单元进行加载时,将压缩空气从所述空心气路旋转接头定子部分压入,依次经过所述供气管传递给所述薄壁气缸实现加载;所述薄壁气缸活塞杆移动行程为气缸最大行程。所述薄壁气缸通过所述直线导轨副带动固定于所述L型连接件上的抛光轴组件上下移动,从而实现在抛光过程中所述抛光盘对工件的横压加载,加载范围为0-100N。When the loading unit is loading, the compressed air is pressed in from the stator part of the rotary joint of the hollow air path, and is sequentially transmitted to the thin-walled cylinder through the air supply pipe to realize loading; the movement stroke of the piston rod of the thin-walled cylinder is: The maximum stroke of the cylinder. The thin-walled cylinder drives the polishing shaft assembly fixed on the L-shaped connector to move up and down through the linear guide pair, so as to realize the lateral pressure loading of the polishing disc on the workpiece during the polishing process, and the loading range is 0- 100N.
所述空心抛光轴与所述抛光盘之间的连接采用单膜片式柔性联轴器连接。所述空心抛光轴与所述供液管之间的连接采用快插旋转接头连接。The connection between the hollow polishing shaft and the polishing disc is connected by a single-diaphragm flexible coupling. The connection between the hollow polishing shaft and the liquid supply pipe is connected by a quick-plug rotary joint.
利用本发明所述的中心供液行星抛光装置进行加工的方法是,所述抛光盘设有中心通孔,加工时,抛光液从所述空心气路旋转接头的定子部分注入,并依次经过所述供液管、所述快插旋转接头和所述空心抛光轴,最后从所述抛光盘的中心通孔流向加工区域,实现中心供液。The processing method using the central liquid supply planetary polishing device of the present invention is that the polishing disc is provided with a central through hole, and during processing, the polishing liquid is injected from the stator part of the hollow air path rotary joint, and passes through all the The liquid supply pipe, the quick-plug rotary joint and the hollow polishing shaft finally flow from the central through hole of the polishing disc to the processing area to realize central liquid supply.
所述抛光液是去离子水、氧化铈抛光液、氧化铝抛光液、氧化硅抛光液、碳化硅抛光液和金刚石抛光液中的任何一种。所述金刚石抛光液是多晶金刚石抛光液、单晶金刚石抛光液和纳米金刚石抛光液中的任何一种。The polishing liquid is any one of deionized water, cerium oxide polishing liquid, alumina polishing liquid, silicon oxide polishing liquid, silicon carbide polishing liquid and diamond polishing liquid. The diamond polishing liquid is any one of polycrystalline diamond polishing liquid, single crystal diamond polishing liquid and nano-diamond polishing liquid.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1)抛光液从抛光盘中心供给,防止抛光盘转速过大而被甩出,磨粒分布更加均匀,加工过程更加稳定。1) The polishing liquid is supplied from the center of the polishing disc to prevent the polishing disc from being thrown out due to excessive rotation speed, and the abrasive particle distribution is more uniform and the processing process is more stable.
2)自转电机不参与公转运动,降低了转动惯量,动力学特性更好。2) The rotation motor does not participate in the revolving motion, which reduces the moment of inertia and has better dynamic characteristics.
3)通过调节偏心机构可获得不同的公转半径,适应于不同的工艺需要,也更容易获得理想的类Gauss型去除函数,使表面面型误差快速收敛,提高表面加工质量与加工效率。3) Different revolution radii can be obtained by adjusting the eccentric mechanism, which is suitable for different process needs, and it is easier to obtain an ideal Gauss-like removal function, so that the surface surface error can be quickly converged, and the surface processing quality and processing efficiency can be improved.
4)适应性强。可随意安装在常见的数控机床或机器人末端或自行搭建的试验台上,无需专用的设备。4) Strong adaptability. It can be freely installed on the end of common CNC machine tools or robots or on self-built test benches without special equipment.
附图说明Description of drawings
图1是本发明中心供液行星抛光装置的主视图;Fig. 1 is the front view of the center liquid supply planetary polishing device of the present invention;
图2是图1所示中心供液行星抛光装置的侧视图;Fig. 2 is a side view of the central liquid-supply planetary polishing device shown in Fig. 1;
图3是图1中所示抛光轴组件的结构示意图。FIG. 3 is a schematic structural diagram of the polishing shaft assembly shown in FIG. 1 .
图中:In the picture:
101-公转电机 102-中空公转轴 103-偏心调节机构101-revolution motor 102-hollow revolving shaft 103-eccentric adjustment mechanism
104-一级带传动副 105-带座轴承 106-连接法兰104-One-stage belt drive pair 105-Pillow bearing 106-Connecting flange
201-自转电机 202-传动软轴 203-抛光盘201-Rotation motor 202-Transmission flexible shaft 203-Polishing disc
301-空心气路旋转接头 302-空心水路旋转接头 303-空心转轴301-Hollow air path rotary joint 302-Hollow water path rotary joint 303-Hollow shaft
304-供气管 305-供液管 401-薄壁气缸304-Air supply pipe 305-Liquid supply pipe 401-Thin-wall cylinder
402-L型连接件 403-直线导轨副 404-支承座402-L-type connector 403-Linear guide pair 404-Support seat
501-空心抛光轴 502-齿轮副 503-对开合腔体501-Hollow polished shaft 502-Gear pair 503-Split cavity
504-快插旋转接头 505-传动轴 1031-调节螺杆504-Quick plug rotary joint 505-Transmission shaft 1031-Adjusting screw
1032-锁紧螺钉 600-基座板1032-Lock screw 600-Base plate
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明做进一步的说明,但下述实施例绝非对本发明有任何限制。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, but the following embodiments do not limit the present invention by any means.
本发明提出的一种中心供液行星抛光装置,包括基座板600、公转单元、自转单元、供液供气单元、加载单元和抛光轴组件。A central liquid supply planetary polishing device proposed by the present invention includes a
如图1和图2所示,所述公转单元包括公转电机101和中空公转轴102,所述公转电机101固定在基座板600上,所述公转电机101的输出端通过一级带传动副104将动力传递给所述中空公转轴102,所述中空公转轴102的两端分别由固定在所述基座板600上的两个带座轴承05支承;所述中空公转轴102的一端设有连接法兰106,所述连接法兰106设有偏心调节机构103;所述偏心调节机构103包括滑座、滑块、调节螺杆1031和锁紧螺钉1032,所述滑座与所述连接法兰106固定,所述滑块与所述滑座之间采用燕尾槽-燕尾块滑动配合;所述偏心调节机构103绕轴线O1公转的半径为e,e为0-32mm,可根据不同的工艺需求选取不同的公转半径或寻求最优的类Gauss型去除函数,以提高工件表面加工质量及加工效率。所述偏心调节机构103达到设定的偏心距时,用所述锁紧螺钉1032进行锁紧。As shown in FIG. 1 and FIG. 2 , the revolving unit includes a revolving
如图1和图2所示,所述自转单元包括自转电机201、传动软轴202和抛光盘203;所述自转电机201固定在所述基座板600上,所述传动软轴202的一端与所述自转电机201的输出端连接。As shown in FIG. 1 and FIG. 2 , the rotation unit includes a
如图1和图2所示,所述供液供气单元包括空心气路旋转接头301、空心水路旋转接头302、空心转轴303、供气管304和供液管305;所述空心转轴303与所述中空公转轴102的另一端连接,所述空心气路旋转接头301的转子部分和所述空心水路旋转接头302的转子部分均串联在所述空心转轴303上,所述空心气路旋转接头301的定子部分和所述空心水路旋转接头302的定子部分与所述基座板600固定;所述供气管304的一端与空心气路旋转接头301相连;所述供液管305的一端与所述空心水路旋转接头302相连。As shown in FIG. 1 and FIG. 2 , the liquid and air supply unit includes a hollow gas path
如图1和图2所示,所述加载单元包括与所述偏心调节机构103固定的支承座404,所述支承座404上设有薄壁气缸401和L型连接件402,所述L型连接件402与所述支承座404之间通过直线导轨副403滑动连接;所述薄壁气缸401与所述供液供气单元的供气管304的另一端连通。As shown in FIG. 1 and FIG. 2 , the loading unit includes a
如图1、图2和图3所示,所述抛光轴组件包括传动轴505、对开合腔体503和空心抛光轴501,所述传动轴505的输入端与所述传动软轴202的另一端连接,所述对开合腔体503设置在所述L型连接件402上,所述空心抛光轴501由所述对开合腔体503支承,所述空心抛光轴501的一端与供液供气单元中的供液管305的另一端连通,所述空心抛光轴501与所述供液管305之间的连接采用快插旋转接头504连接;所述空心抛光轴501的另一端与自转单元中的抛光盘203连接,所述空心抛光轴501与所述抛光盘203之间的连接采用单膜片式柔性联轴器连接,以补偿工件或抛光盘的装夹与安装误差。As shown in FIG. 1 , FIG. 2 and FIG. 3 , the polishing shaft assembly includes a
如图1和图3所示,本发明中,所述公转电机101通过所述一级带传动副104带动所述偏心调节机构103绕轴线O1公转;本发明采用圆弧齿同步带将公转电机101的运动传递给中空公转轴102,进而带动抛光盘203实现公转运动。As shown in FIG. 1 and FIG. 3 , in the present invention, the
所述自转电机201依次通过所述传动软轴202、所述抛光轴组件中的传动轴505和齿轮副502(一级齿轮传动)将传动软轴202的运动传递给空心抛光轴501,进而带动所述抛光盘203绕其轴线O2实现自转;本发明采用传动软轴202将自转电机201的运动灵活传递给在任意位置停留的抛光盘203,自转电机201本身不参与公转,减小了转动惯量,使抛光过程更加平稳。本发明中,所述抛光盘203自转与公转的速度比范围为(0-500]。The
本发明中,所述加载单元进行加载时,将压缩空气从所述空心气路旋转接头301定子部分压入,依次经过所述供气管304传递给所述薄壁气缸401实现加载;所述薄壁气缸401活塞杆移动行程为气缸最大行程。所述薄壁气缸401通过所述直线导轨副403带动固定于所述L型连接件402上的抛光轴组件上下移动,从而实现在抛光过程中所述抛光盘203对工件的横压加载,加载范围为0-100N。In the present invention, when the loading unit is loading, the compressed air is pressed into the stator part of the hollow air path
本发明中,所述抛光盘203设有中心通孔,利用本发明装置进行加工时,将预先混合好的抛光液以一定的压力从空心气路旋转接头302的定子部分的进水孔注入,并依次经过所述供液管305、所述快插旋转接头504和所述空心抛光轴501,最后从所述抛光盘203的中心通孔流向加工区域,实现中心供液。所述抛光液可以是去离子水、氧化铈抛光液、氧化铝抛光液、氧化硅抛光液、碳化硅抛光液和金刚石抛光液中的任何一种。所述金刚石抛光液可以是多晶金刚石抛光液、单晶金刚石抛光液和纳米金刚石抛光液中的任何一种。In the present invention, the
使用本发明所述的中心供液行星抛光装置时,通过基座板600将该装置安装在普通数控机床的移动轴上或工业机器人末端或自行搭建的试验台上,通过控制抛光液供给压力、加载压力、公自转速度、加工点的驻留时间等参数控制加工区域材料去除量和加工精度,实现大口径非球面光学元件的超精密加工。When using the center liquid supply planetary polishing device of the present invention, the device is installed on the moving axis of a common CNC machine tool or the end of an industrial robot or a self-built test bench through the
实施例1:Example 1:
如图1、图2和图3所示,在本实例中,需要将本发明的中心供液行星抛光装置垂直安装在数控机床工作台上方的移动轴上,将装置用管路连接至抛光液循环系统和气泵,将工件固定在机床工作台上。将抛光盘203移动至工件表面合适的位置,利用压力泵将抛光液增压至工作压力,从空心水路旋转接头302进水孔注入,最后从抛光盘203中心流出,流向工件表面加工区域。利用气泵将压缩空气以设定的压力从空心气路旋转接头301进气孔注入,流向加载的薄壁气缸401,实现加工中抛光盘203对工件表面的加载。在加工过程中,首先设置公转速度80rmp/min,自转速度500rmp/min,偏心距e为10mm,气压载荷0.1MPa,供液压力0.5MPa,选用粒径为5μm的氧化铈抛光液,单次研磨时间5min,走行星运动轨迹,根据工件的初始面型误差计算驻留时间生成数控加工程序,将加工程序导入机床并对工件表面进行确定性抛光。As shown in Fig. 1, Fig. 2 and Fig. 3, in this example, it is necessary to vertically install the center liquid supply planetary polishing device of the present invention on the moving shaft above the CNC machine tool table, and connect the device to the polishing liquid with pipelines Circulation system and air pump to fix the workpiece on the machine table. Move the
实施例2:Example 2:
如图1、图2和图3所示,在本实例中,将本发明的中心供液行星抛光装置安装于工业机器人的末端,通过控制工业机器人末端的位姿来改变抛光盘相对于工件表面的位姿,以适应自由曲面元件的加工。As shown in Fig. 1, Fig. 2 and Fig. 3, in this example, the central liquid supply planetary polishing device of the present invention is installed at the end of the industrial robot, and the position of the end of the industrial robot is controlled to change the polishing disc relative to the workpiece surface pose to suit the machining of free-form surface components.
本发明装置既可安装在普通数控机床的移动轴上,也可安装在工业机器人的末端,甚至可安装在自行搭建的简易试验台上,通用性强;通过调节偏心距e大小可获得理想的类Gauss型去除函数,使得表面面型误差快速收敛,提高加工精度和效率;抛光液通过空心抛光轴从抛光盘中心供给,防止抛光中因转速过高而被甩出,供液更加充分;自转电机固定于基座板上不参与公转运动,降低了转动惯量。本发明加工过程中抛光盘的公自转速度通过调节公转电机和自转电机转速来控制,通过控制偏心距、供液压力、加载力和加工点的驻留时间等参数控制加工区域材料去除量和加工精度,实现大口径非球面光学元件的超精密加工。The device of the invention can not only be installed on the moving shaft of an ordinary numerical control machine tool, but also can be installed on the end of an industrial robot, or even on a simple test bench built by itself, and has strong versatility; by adjusting the size of the eccentricity e, the ideal The Gauss-like removal function makes the surface surface error converge quickly, and improves the machining accuracy and efficiency; the polishing liquid is supplied from the center of the polishing disc through the hollow polishing shaft to prevent the polishing from being thrown out due to excessive rotation speed, and the liquid supply is more sufficient; The motor is fixed on the base plate and does not participate in the revolving motion, which reduces the moment of inertia. In the process of the present invention, the revolution and rotation speed of the polishing disc is controlled by adjusting the revolution speed of the revolution motor and the revolution motor, and the material removal amount and processing in the processing area are controlled by controlling parameters such as eccentricity, hydraulic supply pressure, loading force and residence time of the processing point. High precision, realizing ultra-precision machining of large-diameter aspherical optical components.
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。Although the present invention has been described above in conjunction with the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention, which all belong to the protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438339.5A CN111571368B (en) | 2020-05-21 | 2020-05-21 | Central liquid supply planetary polishing device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438339.5A CN111571368B (en) | 2020-05-21 | 2020-05-21 | Central liquid supply planetary polishing device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111571368A true CN111571368A (en) | 2020-08-25 |
CN111571368B CN111571368B (en) | 2024-08-27 |
Family
ID=72123308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010438339.5A Active CN111571368B (en) | 2020-05-21 | 2020-05-21 | Central liquid supply planetary polishing device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111571368B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112792714A (en) * | 2021-01-12 | 2021-05-14 | 山东大学 | A grinding and polishing head, golden camera and method for realizing polishing liquid dripping from rotating shaft |
CN113245956A (en) * | 2021-06-11 | 2021-08-13 | 中国科学院长春光学精密机械与物理研究所 | Active jet polishing method with revolution and rotation |
CN113263419A (en) * | 2021-06-10 | 2021-08-17 | 湖南宇环精密制造有限公司 | Eccentric polishing mechanism |
CN115201255A (en) * | 2022-07-19 | 2022-10-18 | 重庆大学 | Experimental System for Characterizing Heat Transfer Performance of Heat Pipes |
CN116922203A (en) * | 2022-04-11 | 2023-10-24 | 中国科学院上海光学精密机械研究所 | Center injection optical polishing head |
CN117260516A (en) * | 2023-11-22 | 2023-12-22 | 北京特思迪半导体设备有限公司 | Eccentric driving mechanism and polishing machine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009000783A (en) * | 2007-06-22 | 2009-01-08 | Tectoria:Kk | Polishing and grinding device |
CN101712133A (en) * | 2009-08-05 | 2010-05-26 | 陈耀龙 | Polishing device |
CN201760814U (en) * | 2010-04-21 | 2011-03-16 | 中国人民解放军国防科学技术大学 | Planetary-wheel numerically-controlled grinding and polishing removal-function generating device |
CN102962764A (en) * | 2012-12-17 | 2013-03-13 | 北京理工大学 | Rigid eccentric-gearing revolution and rotation pneumatic-force-application numerically-controlled polishing device |
CN109483388A (en) * | 2018-12-30 | 2019-03-19 | 苏州富强科技有限公司 | A kind of planet turnover type 3D bend glass polishing machine |
CN212470876U (en) * | 2020-05-21 | 2021-02-05 | 天津大学 | A central liquid supply planetary polishing device |
-
2020
- 2020-05-21 CN CN202010438339.5A patent/CN111571368B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009000783A (en) * | 2007-06-22 | 2009-01-08 | Tectoria:Kk | Polishing and grinding device |
CN101712133A (en) * | 2009-08-05 | 2010-05-26 | 陈耀龙 | Polishing device |
CN201760814U (en) * | 2010-04-21 | 2011-03-16 | 中国人民解放军国防科学技术大学 | Planetary-wheel numerically-controlled grinding and polishing removal-function generating device |
CN102962764A (en) * | 2012-12-17 | 2013-03-13 | 北京理工大学 | Rigid eccentric-gearing revolution and rotation pneumatic-force-application numerically-controlled polishing device |
CN109483388A (en) * | 2018-12-30 | 2019-03-19 | 苏州富强科技有限公司 | A kind of planet turnover type 3D bend glass polishing machine |
CN212470876U (en) * | 2020-05-21 | 2021-02-05 | 天津大学 | A central liquid supply planetary polishing device |
Non-Patent Citations (1)
Title |
---|
王伟;刘伟;迟岩;郑森伟;: "行星式研磨抛光机传动机构改造及试验", 机电技术, no. 02, 30 April 2011 (2011-04-30) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112792714A (en) * | 2021-01-12 | 2021-05-14 | 山东大学 | A grinding and polishing head, golden camera and method for realizing polishing liquid dripping from rotating shaft |
CN113263419A (en) * | 2021-06-10 | 2021-08-17 | 湖南宇环精密制造有限公司 | Eccentric polishing mechanism |
CN113245956A (en) * | 2021-06-11 | 2021-08-13 | 中国科学院长春光学精密机械与物理研究所 | Active jet polishing method with revolution and rotation |
CN113245956B (en) * | 2021-06-11 | 2022-08-02 | 中国科学院长春光学精密机械与物理研究所 | An active jet polishing method with orbital rotation |
WO2022257964A1 (en) * | 2021-06-11 | 2022-12-15 | 中国科学院长春光学精密机械与物理研究所 | Active fluid jet polishing method having revolution and rotation functions |
CN116922203A (en) * | 2022-04-11 | 2023-10-24 | 中国科学院上海光学精密机械研究所 | Center injection optical polishing head |
CN115201255A (en) * | 2022-07-19 | 2022-10-18 | 重庆大学 | Experimental System for Characterizing Heat Transfer Performance of Heat Pipes |
CN117260516A (en) * | 2023-11-22 | 2023-12-22 | 北京特思迪半导体设备有限公司 | Eccentric driving mechanism and polishing machine |
CN117260516B (en) * | 2023-11-22 | 2024-03-08 | 北京特思迪半导体设备有限公司 | Eccentric driving mechanism and polishing machine |
Also Published As
Publication number | Publication date |
---|---|
CN111571368B (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111571368A (en) | A central liquid supply planetary polishing device and method | |
CN100400225C (en) | Composite processing and testing machine tools for aspheric optical parts | |
CN102922389B (en) | Polishing device and polishing method of aspheric optical element | |
CN101386150B (en) | Numerical control polishing machine for optical elements | |
CN104493662B (en) | Machining device for curvature radius-adjustable aspheric concave lens | |
US5245792A (en) | Machining center for grinding workpieces with complex shaped surfaces | |
CN112536674B (en) | Airbag polishing system for large-diameter special-shaped off-axis aspherical mirror and its working method | |
CN110919519B (en) | A self-tilting airbag polishing device | |
CN107116418A (en) | Public runner type grinding and polishing grinding head | |
CN108481168A (en) | Polishing mechanism and burnishing device | |
CN100537140C (en) | Grinding attachment suitable for freely curved face | |
CN100519072C (en) | Off-axis aspheric surface optical cold machining tool | |
CN103056744B (en) | Double pendulum axle burnishing device for highly steep asphere optical element | |
CN101323098A (en) | Magnetorheological polishing device for high-steep optical parts | |
CN204366662U (en) | Radius of curvature adjustable aspheric surface concavees lens processing unit (plant) | |
KR19980080910A (en) | Grinding machine and grinding method | |
CN110000682B (en) | A single-drive planetary polishing device | |
CN212470876U (en) | A central liquid supply planetary polishing device | |
CN108188864A (en) | A kind of aspherical optical element automation polishing system and method | |
CN110238758A (en) | Composite polishing lathe and its processing method | |
CN101642888B (en) | Grinding method and grinder of spherical surface of columnar workpiece | |
CN201124329Y (en) | An off-axis aspheric optical cold processing machine tool | |
CN117984192A (en) | Grinding and polishing device for parts | |
CN110497287B (en) | A single-motor double-degree-of-freedom variable-speed wheel-type airbag polishing device | |
CN110405622B (en) | Circular arc swing plane grinding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |