[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111534125B - 一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用 - Google Patents

一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用 Download PDF

Info

Publication number
CN111534125B
CN111534125B CN202010368404.1A CN202010368404A CN111534125B CN 111534125 B CN111534125 B CN 111534125B CN 202010368404 A CN202010368404 A CN 202010368404A CN 111534125 B CN111534125 B CN 111534125B
Authority
CN
China
Prior art keywords
dye
triphenyldihydroacridine
compound
sensitized solar
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010368404.1A
Other languages
English (en)
Other versions
CN111534125A (zh
Inventor
曹德榕
蔡珂
吴瀚伦
唐浩
汪凌云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010368404.1A priority Critical patent/CN111534125B/zh
Publication of CN111534125A publication Critical patent/CN111534125A/zh
Application granted granted Critical
Publication of CN111534125B publication Critical patent/CN111534125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B15/00Acridine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用。本发明以9,9′,10‑三苯基二氢吖啶为电子给体,低聚噻吩为π桥,喹喔啉为额外受体,氰基乙酸为电子受体和锚固基团,并在喹喔啉基团上引入烷基链,合成了一系列的基于二氢吖啶为供体的纯有机染料。该类型的染料由于供体三苯基二氢吖啶特殊的垂直构型,具有较大空间位阻,构建的染料分子吸附在二氧化钛半导体膜上不容易聚集,具有良好的抑制暗电流和电子复合的能力;同时,低聚噻吩的引入,可以扩大染料分子的共轭程度以及捕光范围;将其组装成器件后,染料敏化太阳电池的光电转换效率高。

Description

一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电 池中的应用
技术领域
本发明涉及有机染料技术领域和精细化工中的光电转化材料应用领域,具体涉及一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用。
背景技术
1991年染料敏化太阳能电池(DSSCs)的光电转换效率创造性的达到具有可实际开发并大规模应用的价值,而后,人们对染料敏化太阳能电池进行了长远的研究与探索极,推动了染料敏化太阳能电池工业技术的飞速发展。研究者所追求的目标一直都是高效且能长期稳定的纯有机敏化染料。敏化染料作为DSSCs中必不可少的关键部组分,主要作用是产生和传递光生电子。金属配合物染料和纯有机染料是敏化染料的主要分支。其中纯有机染料结构便于设计调控、消光系数高、原料廉价易于获得等优点,受到研究者的青睐。纯有机染料一般具有D-π-A型的结构,为了进一步促进分子内部电子转移,拓宽光谱响应范围,研究者们又开发出D-A-π-A型的敏化染料,额外辅助受体的引入使得分子内部电子推拉能力增强,光电流得到极大提升。但是同时发现辅助受体的引入会使分子共轭性增强进而染料分子间容易发生π-π堆积,影响DSSCs器件的性能(1.Han,L.;Liu,J.;Liu,Y.;Cui,Y.,NovelD-A-π-A type benzocarbazole sensitizers for dye sensitized solarcells.Journal of Molecular Structure 2019,1180,651-658;2.Xie,Y.;Zhou,H.;Zhang,S.;Ge,C.;Cheng,S.,Influence of the auxiliary acceptor andπ-bridge intriarylamine dyes on dye-sensitized solar cells.Photochemical&PhotobiologicalSciences 2019,18(8),2042-2051)。而减少分子间的聚集,可以通过在染料骨架中引入一些烷基链或者大位阻的基团。关于烷基链的引入已经有很多报道,而对大位阻的基团的研究比较少。
二氢吖啶此前被广泛的应用在有机发光二极管(OLED)中,展现了优秀的供电子能力以及空穴传输能力。而三苯基二氢吖啶在二氢吖啶的基础上引入了额外的苯基。当其作为供体时,苯基的引入有利于增强染料分子的供电性,并且当把两个苯基取代到吖啶上的时候,由于空间位阻效应,整个结构具有相互垂直的特征。这种垂直的空间结构能有效地抑制分子间的聚集,并减少暗电流,提高开路电压。其次,喹喔啉作为一个优异的吸电子基团,将其引入染料中,能拓宽分子的光吸收范围,且自身优异的光化学稳定性,使其成为辅助受体的优异选择。在π桥上,低聚噻吩的引入,可以扩大染料分子平面共轭,增强捕光捕光性能,对染料的效率产生积极影响。
发明内容
为了克服现有技术存在的上述不足,本发明的目的是提供一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用。
本发明公开了三苯基二氢吖啶为电子给体的染料及其在染料敏化太阳电池中的应用。本发明合成一类新型的不含金属纯有机光敏染料,这类染料以9,9′,10-三苯基二氢吖啶为电子给体,喹喔啉为额外受体,低聚噻吩为π桥,氰基乙酸为电子受体和锚固基团的纯有机染料并在喹喔啉基团上引入烷基链。这类染料在染料敏化太阳电池上具有良好的应用性能。
本发明的三苯基二氢吖啶有机染料易于合成,原料价廉易得,可以进行规模化生产。
本发明的目的在于提供所述的一种三苯基二氢吖啶染料在染料敏化电池中的应用。该三苯基二氢吖啶染料作为敏化剂应用于染料敏化太阳电池中,使得染料敏化太阳电池具有良好的光电性能。
本发明提供的一种三苯基二氢吖啶纯有机染料是一种在π桥中引入低聚噻吩基团的9,9′,10-三苯基二氢吖啶纯有机染料。
该类型的染料由于供体三苯基二氢吖啶特殊的垂直构型,具有较大空间位阻,构建的染料分子吸附在二氧化钛半导体膜上不容易聚集,具有良好的抑制暗电流和电子复合的能力;同时,低聚噻吩的引入,可以扩大染料分子的共轭程度以及捕光范围;将其组装成器件后,染料敏化太阳电池的光电转换效率高。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的三苯基二氢吖啶纯有机染料,具有以下结构通式:
Figure BDA0002477294850000031
其中,n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;氰基乙酸基团作为电子受体和锚固基团。
本发明提供的三苯基二氢吖啶纯有机染料能够应用在制备染料敏化太阳电池中。
本发明提供的三苯基二氢吖啶纯有机染料在制备染料敏化太阳电池中的应用,包括如下步骤:
将附着在导电玻璃基底上的半导体光阳极浸泡在所述三苯基二氢吖啶纯有机染料的染浴溶液中,得到染料敏化太阳电池的工作电极,然后将所述染料敏化太阳电池的工作电极、对电极及电解质溶液组装成所述染料敏化太阳电池。
本发明提供的三苯基二氢吖啶纯有机染料在制备染料敏化太阳电池中的应用,是通过浸泡处理,使得三苯基二氢吖啶纯有机染料通过分子本身具有的锚固基团吸附在光阳极表面,制备成染料敏化太阳电池的工作电极,最后组装成电池器件。
所述染料敏化太阳电池包括:导电玻璃、半导体光阳极、敏化剂、对电极和电解质溶液。
进一步地,所述三苯基二氢吖啶纯有机染料的染浴溶液的溶剂为二氯甲烷。
进一步地,所述三苯基二氢吖啶纯有机染料的染浴溶液的浓度为1-5×10-4mol·L-1
进一步地,所述浸泡的条件为阴暗避光的环境。
进一步地,所述浸泡的时间为8-36小时。
进一步地,所述半导体光阳极的材质为二氧化钛。
本发明提供的三苯基二氢吖啶纯有机染料的制备方法,包括如下步骤:
(1)在惰性气体保护下,将化合物10-(4-溴苯基)-9,9-二苯基-9,10-二氢吖啶、联二硼酸酯、醋酸钾和二苯基膦二茂铁二氯化钯溶于1,4-二氧六环溶剂中,混匀得到混合液,在加热的状态下进行搅拌处理,得到9,9-二苯基-10-(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)-9,10-二氢吖啶;
(2)在惰性气氛和钯催化剂的作用下,将步骤(1)所述9,9-二苯基-10-(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)-9,10-二氢吖啶、化合物5加入到碳酸钠水溶液/甲苯溶剂体系中,在加热状态下进行搅拌处理,得到化合物3;
(3)在惰性气氛和钯催化剂的作用下,将化合物3、氰基乙酸叔丁酯、醋酸铵、醋酸、水加入到甲苯溶剂中,在加热状态下进行搅拌处理,反应结束后降至室温,得到化合物4;
(4)将化合物4和三氟乙酸混合,搅拌处理,得到反应液;然后将所述反应液倒入去离子水中,析出固体,过滤取沉淀收集固体,用水反复洗涤直至洗涤产生的液体的pH为中性,干燥,得到所述三苯基二氢吖啶纯有机染料。
进一步地,步骤(1)所述化合物10-(4-溴苯基)-9,9-二苯基-9,10-二氢吖啶、联二硼酸酯、醋酸钾和二苯基膦二茂铁二氯化钯的摩尔比为1:(2-4):(0.025-0.1);所述搅拌处理的温度为100-120℃,搅拌处理的时间为10-12小时。
进一步地,步骤(2)所述碳酸钠水溶液/甲苯溶剂体系是由碳酸钠水溶液和甲苯溶剂混合均匀得到的,所述碳酸钠水溶液和甲苯溶剂的体积比为1:(8-12);所述碳酸钠水溶液的浓度为2M;所述搅拌处理的温度为100-120℃,搅拌处理的时间为6-12小时;所述化合物5的结构式如下所示:
Figure BDA0002477294850000051
n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;所述9,9-二苯基-10-(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)-9,10-二氢吖啶、化合物5及钯催化剂的摩尔比为1:(1-1.2):(0.025-0.1)。
优选地,步骤(2)所述钯催化剂为Pd(PPh3)4
进一步地,步骤(3)所述化合物3、氰基乙酸叔丁酯及钯催化剂的摩尔比为1:(1-1.2):(0.025-0.1);所述氰基乙酸叔丁酯与醋酸的摩尔体积比为1:(10-18)mol/mL;所述醋酸、水与甲苯溶剂的体积比为1:1:(8-12);所述搅拌处理的温度为100-120℃,搅拌处理的时间为20-24小时;所述化合物3的结构式如下所示:
Figure BDA0002477294850000052
n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基。
进一步地,步骤(4)所述化合物4的结构式如下所示:
Figure BDA0002477294850000061
n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;
所述化合物4与三氟乙酸的质量体积比为1:(50-100)mg/mL;所述搅拌处理的时间为2-5h。
优选地,步骤(4)所述搅拌处理的温度为10-35℃。
本发明以9,9′,10-三苯基二氢吖啶为电子给体,低聚噻吩为π桥,喹喔啉为额外受体,氰基乙酸为电子受体和锚固基团,并在喹喔啉基团上引入烷基链,合成了一系列的基于二氢吖啶为供体的纯有机染料。
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的三苯基二氢吖啶纯有机染料,是以三苯基二氢吖啶作为供体,具有较大空间位阻以及垂直构型,可以有效抑制染料分子间的聚集以及减少暗电流,提高开路电压;低聚噻吩作为π桥,有效扩大染料分子的平面共轭,拓宽吸收光谱,提高摩尔消光系数,具有较好的捕光性能;本发明提供的三苯基二氢吖啶纯有机染料作为染料敏化剂应用于染料敏化太阳电池中,能够提高染料敏化太阳电池的光电转换效率。
附图说明
图1为实施例1中合成的三苯基二氢吖啶纯有机染料DDQL在二氯甲烷的紫外/可见吸收光谱图;
图2为实施例1中合成的三苯基二氢吖啶纯有机染料DDQL作为敏化剂制作的染料敏化太阳电池的J-V曲线图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
实施例1
三苯基二氢吖啶染料DDQL(当n为1时,R为直链C6H13时)的合成,合成路线如下所示:
Figure BDA0002477294850000071
具体合成步骤如下:
(1)化合物2的合成
Figure BDA0002477294850000072
在50mL两口反应瓶中分别加入化合物1(765mg,1.57mmol),联二硼酸酯(810mg,1.57mmol),醋酸钾(473mg,4.71mmol)和二苯基膦二茂铁二氯化钯(57mg,0.08mmol),用真空泵抽出装置中的空气,并充入Ar。将油浴升温到100℃搅拌12小时。反应结束后降至室温,用3×50mL二氯甲烷萃取,合并有机相并用饱和食盐水洗涤后用无水硫酸钠干燥,旋蒸除去二氯甲烷,残余物以中间体石油醚(bp 60–90℃)和乙酸乙酯(v/v=30:1)为洗脱剂经硅胶柱层析色谱分离纯化,真空干燥后得白色固体2(570mg,1.06mmol),产率为68%,熔点为107.3–109℃。1H NMR(400MHz,Chloroform-d)δ7.97(d,J=7.5Hz,2H),7.24(d,J=6.5Hz,7H),7.09(d,J=7.6Hz,2H),7.00(d,J=6.9Hz,6H),6.91–6.82(m,4H),6.39(d,J=8.1Hz,2H),1.37(s,12H).
化学位移δ=1.37处,有一个12个氢的单峰为有硼酸酯的峰,综合各种出峰信号符合化合物的结构特征,即证明2被合成。
(2)化合物3的合成
Figure BDA0002477294850000081
在50mL两口反应瓶中分别加入上述2化合物(250mg,0.47mmol),5化合物(222mg,0.40mmol),Pd(PPh3)4(23mg,0.02mmol),2M的Na2CO3水溶液(2.20mL)和重蒸的30mL的甲苯,用真空泵抽出装置中的空气,并充入Ar。将油浴升温到110℃反应24小时。反应结束后降至室温,反应液倒入水中,用3×50mL二氯甲烷萃取,合并有机相并用饱和食盐水洗涤后用无水硫酸钠干燥,旋蒸除去二氯甲烷,残余物以石油醚(bp 60–90℃)和乙酸乙酯(v/v=20:1)为洗脱剂经硅胶柱层析色谱分离纯化,真空干燥后得橙红色固体3(256mg,0.28mmol),产率为73%,熔点为146.5–148.3℃。1H NMR(400MHz,Chloroform-d)δ9.99(s,1H),8.15(m,2H),7.92–7.85(m,4H),7.85–7.79(m,1H),7.47–7.42(m,1H),7.30–7.26(m,6H),7.12(d,J=8.0Hz,2H),7.10–7.05(m,2H),7.01(d,J=4.0Hz,4H),6.94–6.88(m,4H),6.54(d,J=8.0Hz,2H),3.21–3.10(m,4H),2.18–1.98(m,5H),1.48–1.32(m,10H),1.26(s,4H),0.89(dt,J=23.8,7.1Hz,9H).
化学位移δ=9.99处,有一个积分面积为1个氢的单峰,说明为有醛基的峰,同时之前化学面积为12的单峰消失,说明硼酸酯参与了反应,综合各种出峰信号符合化合物的结构特征,即证明3被合成。
(3)化合物4的合成
Figure BDA0002477294850000091
在50mL两口反应瓶中分别加入中间体3(237mg,0.26mmol),氰基乙酸叔丁酯(187mg,1.32mmol),醋酸铵(102mg,1.32mmol),2mL醋酸和25mL的甲苯,用真空泵抽出装置中的空气,并充入Ar。将油浴升温反应液回流反应3小时。反应结束后降至室温,将反应液倒入水中,用3×50mL二氯甲烷萃取,合并有机相并用饱和食盐水洗涤后用无水硫酸钠干燥,旋蒸除去二氯甲烷,残余物以石油醚(bp 60–90℃)和乙酸乙酯(v/v=15:1)为洗脱剂经硅胶柱层析色谱分离纯化,真空干燥后得红色固体5(226mg,0.22mmol),产率为84%,熔点为112.3–113.7℃。1H NMR(400MHz,Chloroform-d)δ8.27(s,1H),8.20–8.11(m,2H),7.95–7.85(m,5H),7.45(d,J=3.9Hz,1H),7.26–7.21(m,6H),7.12(d,J=7.9Hz,2H),7.10–7.04(m,2H),7.01(d,J=7.1Hz,4H),6.90(d,J=6.2Hz,4H),6.54(d,J=8.2Hz,2H),3.16(t,J=7.7Hz,4H),2.21–2.09(m,2H),2.08–1.96(m,2H),1.60(s,9H),1.54–1.47(m,4H),1.46–1.32(m,8H),0.95–0.83(m,7H).
醛基位于化学位移δ=9.99处的峰消失,位于δ=1.60处有峰面积为9的单峰,说明有酯基生成,综合各种出峰信号符合化合物的结构特征,证明4被合成。
(4)化合物DDQL的合成
Figure BDA0002477294850000101
在25mL的单口瓶中加入中间体4(150mg,0.15mmol)和三氟乙酸(8mL)于常温下搅拌2h。反应结束后,将反应液倒入100mL的去离子水中。待固体析出,过滤收集固体,并用去离子水反复洗涤直至洗涤产生的液体的pH为中性。将固体干燥得红色固体染料三苯基二氢吖啶纯有机染料,将实施例1制得的三苯基二氢吖啶纯有机染料标记为DDQL(131.00mg,0.14mmol),产率为91%,熔点为200.4-202.8℃。1H NMR(500MHz,THF-d8)δ8.34(s,1H),8.24(d,J=10.0Hz,1H),8.18(d,J=10.0Hz,1H),7.97–7.91(m,4H),7.87–7.83(m,1H),7.53–7.50(m,1H),7.24–7.17(m,6H),7.12–7.08(m,2H),7.04–6.99(m,2H),6.99–6.94(m,4H),6.87–6.79(m,4H),6.55–6.49(m,2H),3.12(d,J=7.5Hz,4H),2.24–2.09(m,4H),2.07–1.93(m,4H),1.55–1.49(m,4H),1.38–1.28(m,8H),0.90–0.86(m,4H),0.84–0.80(m,3H).
酯基位于化学位移δ=1.60处峰面积为9的单峰消失,其余出峰数与4相同,综合各种出峰信号符合化合物的结构特征,证明DDQL被合成。
实施例2
对实施例1制备的染料DDQL进行紫外-可见吸收光测试(2×10-5M二氯甲烷溶液,室温),测得的紫外-可见吸收光谱如图1所示,数据汇总于表1中。
表1 DDQL染料的紫外-可见吸收光谱数据
Figure BDA0002477294850000111
从图1和表1可以看出,在二氯甲烷溶液中,染料DDQL表现出了两个显著的吸收峰,350nm~410nm处为染料分子电子π-π*电子跃迁产生的吸收峰,410~600nm处为染料分子内电荷转移引起的,410~600nm处峰最大吸收波长为462nm,对应的摩尔消光系数为24313M- 1cm-1,这表明染料DDQL具有很好的捕光能力。
实施例3
染料敏化太阳电池的制备
将实施例1制备的染料DDQL作为敏化剂用于染料敏化太阳电池中,制备基于染料DDQL敏化剂的染料敏化太阳电池。
染料敏化太阳电池主要组成和构造:导电玻璃基质(FTO)、光阳极、敏化剂、电解质和对电极(一般为渡铂的导电玻璃)五大组成部分;其中,光阳极的基板工作区域一侧的导电玻璃上面有纳米多孔TiO2薄膜覆盖,用来吸附染料;对电极,也就是光阴极,基板上面镀有Pt催化剂;光阳极和光阴极呈相对间隔设置,纳米TiO2薄膜周边通过密封材料密封进而形成密闭的腔体,腔体内填充的是电解质和敏化剂(即三苯基二氢吖啶有机染料)。
染料敏化太阳电池的具体制备过程包括如下步骤:
(1)导电玻璃(FTO)的预处理:将FTO裁剪完成后,用去离子水超声清洗5次,将其置于KOH的饱和乙醇溶液中16h,再依次用去乙醇,丙酮和去离子水超声清洗,待其烘干后备用;
(2)光阳极的制备:室温下,先将20mLTi(OBu)2和25mLEtOH的混合,搅拌60min,再加入70mL乙酸和60mL去离子水,然后继续搅拌40min,上述搅拌完成后,将混合溶液转移入高压釜并在250℃处理20h后,待其自然冷却至室温,得到悬浊液并过滤,依次用去离子水和乙醇对固体清洗3次,烘箱温度设置60℃下,烘7h后,即得到TiO2纳晶颗粒;在上述制备得到的TiO2纳晶颗粒中依次加入8g松油醇0.6mL乙酸、24ml乙醇和1.5g乙基纤维素,待完全混合后,需研磨2h,得到泥浆物质,超声60min,获得白色粘性TiO2纳晶浆料;
将上述处理好的导电玻璃的导电面以正面面朝上方向放置,且使其同时保持在丝网板正下方的方位,保持1cm的网距,便可将制备好的TiO2纳晶浆料置于丝网上进行印刷,精细调控TiO2膜厚度使其为17μm(面积为4×4mm),得到负载纳米二氧化钛的光阳极;
进一步,将制备的负载纳米二氧化钛的光阳极放入烘箱,于125℃干燥10min。再放于马弗炉中进行程序升温,具体造作是:在325℃烘焙5min,再于375℃烘焙5min,再于450℃烘焙15min,最后于500℃烘焙15min,这种操作的目的是充分除去二氧化钛光阳极上可能附着的有机物质。之后将其浸泡于0.2M的TiCl4水溶液中处理半小时,待处理结束后,用去离子水和乙醇冲洗多次,直至干净。而后将马弗炉控温至500℃,再次烘焙光阳极30min,最后,取出光阳极冷却,待温度降低到50~80℃后,放到干燥器中备用;
(3)染料溶液的配制:将上述制备的三苯基二氢吖啶染料DDQL溶于二氯甲烷溶剂中,配制成3×10-4mol·L-1染料溶液;
(4)电解质溶液的配制:0.6M 1-甲基-3-丙基碘化咪唑鎓(PMII)、0.05M硫氰酸胍、0.05M LiI、0.05MI2和0.25M叔丁基吡啶(TBP)的乙腈溶液;
(5)光阳极的敏化:将步骤(2)制备的二氧化钛光阳极浸泡于步骤(3)配制的染料溶液中,在阴暗避光环境中染浴36小时后,取出,并用乙醇小心冲洗其表面,直至除去残留或物理吸附于膜表面的染料,吹干后,封装,并保存在干燥避光环境备用;
(6)绝缘塑料膜打完孔后,使其内孔恰好覆盖在制备好的光阳极上,在光阳极膜滴上0.1ml的制备完成的电解液,并在光阳极上紧密盖上制备的铂对电用夹子将极两边固定,得到开放性敏化染料太阳电池。
电池器件的光电性能测试(测试方法的标准见中华人民共和国国家标准GB11009-89):
将步骤(6)制备的开放性敏化染料太阳电池与电池性能测试装置–太阳光模拟器(Pecell-L15,Japan)联通,电池的工作面积为0.16cm2,模拟太阳光,将光强度调节至100mW/cm2,然后测试电池的J-V曲线。
所测得的染料敏化太阳电池的J-V曲线图如图2所示,数据汇总于表2。
表2染料DDQL用于染料敏化太阳电池性能数据
Figure BDA0002477294850000131
aAFL9分子引用参考文献(Photochemical&Photobiological Sciences 2019,18(8),2042-2051)。
Figure BDA0002477294850000132
从图2和表2的数据可以看出,参考染料AFL9的供体是三苯胺的衍生物,辅助受体是苯并噻二唑,也具有D-A-π-A的结构,从上述表格可以看出,AFL9具有较低的短路电流,这是由于分子具有大共轭的平面,会导致染料发生严重的聚集,使得光生电子淬灭,降低电子注入速率。而染料DDQL由于引入了大位阻的供体三苯基二氢吖啶,可以有效地抑制分子间的聚集,减少暗电流,因此获得了更高的短路电流,DDQL敏化的染料敏化太阳电池表现出色的光电转换效率。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (9)

1.一种三苯基二氢吖啶纯有机染料,其特征在于,具有以下结构通式:
Figure FDA0003207673060000011
其中,n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;氰基乙酸基团作为电子受体和锚固基团。
2.权利要求1所述的三苯基二氢吖啶纯有机染料在制备染料敏化太阳电池中的应用。
3.根据权利要求2所述的三苯基二氢吖啶纯有机染料在制备染料敏化太阳电池中的应用,其特征在于,包括如下步骤:
将附着在导电玻璃基底上的半导体光阳极浸泡在所述三苯基二氢吖啶纯有机染料的染浴溶液中,得到染料敏化太阳电池的工作电极,然后将所述染料敏化太阳电池的工作电极、对电极及电解质溶液组装成所述染料敏化太阳电池。
4.根据权利要求3所述的三苯基二氢吖啶纯有机染料在制备染料敏化太阳电池中的应用,其特征在于,所述三苯基二氢吖啶纯有机染料的染浴溶液的溶剂为二氯甲烷;所述三苯基二氢吖啶纯有机染料的染浴溶液的浓度为1×10-4-5×10-4mol·L-1
5.根据权利要求3所述的三苯基二氢吖啶纯有机染料在制备染料敏化太阳电池中的应用,其特征在于,所述浸泡的条件为阴暗避光的环境;所述浸泡的时间为8-36小时,所述半导体光阳极的材质为二氧化钛。
6.一种制备权利要求1所述的三苯基二氢吖啶纯有机染料的方法,其特征在于,包括如下步骤:
(1)在惰性气体保护下,将化合物10-(4-溴苯基)-9,9-二苯基-9,10-二氢吖啶、联二硼酸酯、醋酸钾和二苯基膦二茂铁二氯化钯溶于1,4-二氧六环溶剂中,混匀得到混合液,在加热的状态下进行搅拌处理,得到9,9-二苯基-10-(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)-9,10-二氢吖啶;
(2)在惰性气氛和钯催化剂的作用下,将步骤(1)所述9,9-二苯基-10-(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)-9,10-二氢吖啶、化合物5加入到碳酸钠水溶液/甲苯溶剂体系中,加热进行搅拌处理,得到化合物3;所述化合物3的结构式如下所示:
Figure FDA0003207673060000021
其中n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;
所述化合物5的结构式如下所示:
Figure FDA0003207673060000022
其中n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;
(3)在惰性气氛和钯催化剂的作用下,将化合物3、氰基乙酸叔丁酯、醋酸铵、醋酸、水加入到甲苯溶剂中,加热进行搅拌处理,得到化合物4;所述化合物4的结构式如下所示:
Figure FDA0003207673060000031
其中n为1-5的噻吩数目;R独立选自C1-C20的直链烷基或支化烷基;
(4)将化合物4和三氟乙酸混合,搅拌处理,得到反应液;然后将所述反应液倒入水中,析出固体,过滤取沉淀,洗涤,干燥,得到所述三苯基二氢吖啶纯有机染料。
7.根据权利要求6所述的三苯基二氢吖啶纯有机染料的制备方法,其特征在于,步骤(2)所述碳酸钠水溶液/甲苯溶剂体系是由碳酸钠水溶液和甲苯溶剂混合均匀得到的,所述碳酸钠水溶液和甲苯溶剂的体积比为1:(8-12);所述碳酸钠水溶液的浓度为2M;所述搅拌处理的温度为100-120℃,搅拌处理的时间为6-12小时;
所述9,9-二苯基-10-(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)-9,10-二氢吖啶、化合物5及钯催化剂的摩尔比为1:(1-1.2):(0.025-0.1)。
8.根据权利要求6所述的三苯基二氢吖啶纯有机染料的制备方法,其特征在于,步骤(3)所述化合物3、氰基乙酸叔丁酯及钯催化剂的摩尔比为1:(1-1.2):(0.025-0.1);所述氰基乙酸叔丁酯与醋酸的摩尔体积比为1:(10-18)mol/mL;所述醋酸、水与甲苯溶剂的体积比为1:1:(8-12);所述搅拌处理的温度为100-120℃,搅拌处理的时间为20-24小时。
9.根据权利要求6所述的三苯基二氢吖啶纯有机染料的制备方法,其特征在于,步骤(4)所述化合物4与三氟乙酸的质量体积比为1:(50-100)mg/mL;所述搅拌处理的时间为2-5h。
CN202010368404.1A 2020-04-30 2020-04-30 一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用 Active CN111534125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010368404.1A CN111534125B (zh) 2020-04-30 2020-04-30 一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010368404.1A CN111534125B (zh) 2020-04-30 2020-04-30 一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用

Publications (2)

Publication Number Publication Date
CN111534125A CN111534125A (zh) 2020-08-14
CN111534125B true CN111534125B (zh) 2021-10-26

Family

ID=71971490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010368404.1A Active CN111534125B (zh) 2020-04-30 2020-04-30 一种三苯基二氢吖啶染料及其制备方法与在染料敏化太阳电池中的应用

Country Status (1)

Country Link
CN (1) CN111534125B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532932A (zh) * 2012-01-12 2012-07-04 复旦大学 一类含有吡嗪环的有机染料及其制备方法和应用
KR20120122847A (ko) * 2011-04-29 2012-11-07 (주)씨에스엘쏠라 신규한 염료 감응 태양 전지용 염료 및 이로부터 제조된 염료 감응 태양 전지
CN102838881A (zh) * 2012-10-07 2012-12-26 复旦大学 基于噻唑衍生物的纯有机染料及其制备方法与应用
CN103503187A (zh) * 2011-05-05 2014-01-08 默克专利有限公司 用于电子器件的化合物
CN110240695A (zh) * 2019-06-18 2019-09-17 中国科学院长春应用化学研究所 功能亚苯基共聚的共轭tadf聚合物及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122847A (ko) * 2011-04-29 2012-11-07 (주)씨에스엘쏠라 신규한 염료 감응 태양 전지용 염료 및 이로부터 제조된 염료 감응 태양 전지
CN103503187A (zh) * 2011-05-05 2014-01-08 默克专利有限公司 用于电子器件的化合物
CN102532932A (zh) * 2012-01-12 2012-07-04 复旦大学 一类含有吡嗪环的有机染料及其制备方法和应用
CN102838881A (zh) * 2012-10-07 2012-12-26 复旦大学 基于噻唑衍生物的纯有机染料及其制备方法与应用
CN110240695A (zh) * 2019-06-18 2019-09-17 中国科学院长春应用化学研究所 功能亚苯基共聚的共轭tadf聚合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D-π-A-π-A featured dyes containing different electron-withdrawing auxiliary acceptors: The impact on photovoltaic performances;Cheng, Jia-Xiang等;《Dyes and Pigments》;20160402(第131期);131, 134-144 *
Impact of p-conjugation configurations on the photovoltaic performance of the quinoxaline-based organic dyes;Liang-Wei Ma等;《Dyes and Pigments》;20170530(第145期);126-135 *
The Effect of Donor Group Rigidification on the Electronic and Optical Properties of Arylamine-Based Metal-Free Dyes for Dye-Sensitized Solar Cells: A Computational Study;Liezel L. Estrella等;《J. Phys. Chem. A》;20160707;第120卷(第29期);5917-5927 *

Also Published As

Publication number Publication date
CN111534125A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Hagberg et al. Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells
Seo et al. Novel D-π-A system based on zinc porphyrin dyes for dye-sensitized solar cells: synthesis, electrochemical, and photovoltaic properties
Baheti et al. Organic dyes containing fluoren-9-ylidene chromophores for efficient dye-sensitized solar cells
Lai et al. Multi-carbazole derivatives: new dyes for highly efficient dye-sensitized solar cells
WO2017016177A1 (zh) 异吡咯并吡咯二酮染料及其应用
Guo et al. A novel asymmetric phthalocyanine-based hole transporting material for perovskite solar cells with an open-circuit voltage above 1.0 V
Li et al. Organic dyes incorporating N-functionalized pyrrole as conjugated bridge for dye-sensitized solar cells: convenient synthesis, additional withdrawing group on the π-bridge and the suppressed aggregation
Qian et al. Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells
Yu et al. Influence of different electron acceptors in organic sensitizers on the performance of dye-sensitized solar cells
Cai et al. Molecular engineering of the fused azacycle donors in the DA-π-A metal-free organic dyes for efficient dye-sensitized solar cells
CH698762B1 (it) Composto colorante.
Wu et al. Novel 4, 4′-bis (alkylphenyl/alkyloxyphenyl)-2, 2′-bithiophene bridged cyclic thiourea functionalized triphenylamine sensitizers for efficient dye-sensitized solar cells
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
Massin et al. Molecular engineering of carbazole-fluorene sensitizers for high open-circuit voltage DSSCs: Synthesis and performance comparison with iodine and cobalt electrolytes
Liang et al. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells
CN108164546B (zh) 吲哚啉-二噻吩并喹喔啉-二苯并[a,c]吩嗪染料及其在染料敏化太阳电池中的应用
Karjule et al. Heterotriangulene-based unsymmetrical squaraine dyes: synergistic effects of donor moieties and out-of-plane branched alkyl chains on dye cell performance
Ma et al. Impact of π-conjugation configurations on the photovoltaic performance of the quinoxaline-based organic dyes
Wu et al. Regulation of dithiafulvene-based molecular shape and aggregation on TiO 2 for high efficiency dye-sensitized solar cells
Wang et al. Dithienopyrrolobenzothiadiazole-based metal-free organic dyes with double anchors and thiophene spacers for efficient dye-sensitized solar cells
Ooyama et al. Photovoltaic performance of dye-sensitized solar cells based on a series of new-type donor–acceptor π-conjugated sensitizer, benzofuro [2, 3-c] oxazolo [4, 5-a] carbazole fluorescent dyes
CN110143976B (zh) 基于支化卟啉-苝二酰亚胺小分子受体的合成方法及应用
Jia et al. New D–π–A dyes incorporating dithieno [3, 2-b: 2′, 3′-d] pyrrole (DTP)-based π-spacers for efficient dye-sensitized solar cells
Devulapally et al. Effect of auxiliary acceptor on D-π-A based porphyrin sensitizers for dye sensitized solar cells
Vats et al. Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant