CN111340173A - Method and system for training generation countermeasure network for high-dimensional data and electronic equipment - Google Patents
Method and system for training generation countermeasure network for high-dimensional data and electronic equipment Download PDFInfo
- Publication number
- CN111340173A CN111340173A CN201911343340.3A CN201911343340A CN111340173A CN 111340173 A CN111340173 A CN 111340173A CN 201911343340 A CN201911343340 A CN 201911343340A CN 111340173 A CN111340173 A CN 111340173A
- Authority
- CN
- China
- Prior art keywords
- tensor
- train
- dimensional data
- generative adversarial
- adversarial network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012549 training Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 104
- 239000011159 matrix material Substances 0.000 claims description 79
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
本申请涉及一种针对高维数据的生成对抗网络训练方法、系统及电子设备。包括:步骤a:搭建生成对抗网络骨干结构;步骤b:使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;步骤c:使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;步骤d:将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。本申请使生成对抗网络具备直接生成高维数据的能力,同时减少网络的参数量,使网络的训练更加稳定,并提高生成数据的质量和多样性。
The present application relates to a generative adversarial network training method, system and electronic device for high-dimensional data. Including: step a: building a generative adversarial network backbone structure; step b: using tensor train decomposition algorithm to perform tensor train decomposition on the generative adversarial network backbone structure; step c: using real high-dimensional data to train a tensor train decomposition based The tensor auto-encoder of , outputs the spatial structure features of the real high-dimensional data through the tensor auto-encoder; Step d: Combine the output of the tensor auto-encoder and the last layer feature generated by the discriminator as The input of the last layer to train the generative adversarial network. The present application enables the generative adversarial network to directly generate high-dimensional data, while reducing the amount of parameters of the network, making the training of the network more stable, and improving the quality and diversity of the generated data.
Description
技术领域technical field
本申请属于生成对抗网络训练技术领域,特别涉及一种针对高维数据的生成对抗网络训练方法、系统及电子设备。The present application belongs to the technical field of generative adversarial network training, and in particular relates to a generative adversarial network training method, system and electronic device for high-dimensional data.
背景技术Background technique
生成对抗网络的主要作用是用一个假的分布通过不断地学习去拟合真实分布,随着深度学习的发展,生成对抗网络可以用于生成类似于真实世界的东西,例如:图片、音乐、文章等。目前,生成对抗网络广泛应用于数据集增强、生成人脸照片、医学图像转换、超分辨率等领域,它的发展潜力十分巨大。The main role of the generative adversarial network is to use a fake distribution to fit the real distribution through continuous learning. With the development of deep learning, the generative adversarial network can be used to generate things similar to the real world, such as: pictures, music, articles Wait. At present, generative adversarial networks are widely used in data set enhancement, face photo generation, medical image conversion, super-resolution and other fields, and its development potential is huge.
申请号“201910287274.6”的发明专利中提供了一种生成对抗网络的稳定训练方法,包括:将训练图像输入自编码器中进行处理,得到第一生成图像;基于训练图像与第一生成图像之间的损失值,训练得到预训练的生成器;基于训练图像和经预训练的生成器生成的第二生成图像,对预训练的生成器和判别器进行训练,并基于训练结束时对应的生成器和判别器,得到生成对抗网络。The invention patent with the application number "201910287274.6" provides a stable training method for a generative adversarial network, including: inputting a training image into a self-encoder for processing to obtain a first generated image; based on the difference between the training image and the first generated image The loss value of the pre-trained generator is obtained by training; based on the training image and the second generated image generated by the pre-trained generator, the pre-trained generator and the discriminator are trained, and based on the corresponding generator at the end of the training and the discriminator to get a generative adversarial network.
另一申请号“201811461559.9”的发明专利中提供了一种生成式对抗网络装置及其训练方法。该生成式对抗网络装置包括生成网络和判别网络。生成网络配置为根据输入数据生成第一样本;判别网络与生成网络耦接,且配置为接收第一样本,并基于第一样本进行训练;生成网络包括第一忆阻器阵列作为第一权重值阵列。该生成式对抗网络装置可以省略对生成网络生成的假样本添加噪声的过程,从而节省训练时间,降低资源消耗,提高生成式对抗网络的训练速度。Another invention patent with the application number "201811461559.9" provides a generative confrontation network device and a training method thereof. The generative adversarial network device includes a generative network and a discriminant network. The generation network is configured to generate a first sample according to the input data; the discriminant network is coupled to the generation network and is configured to receive the first sample and perform training based on the first sample; the generation network includes a first memristor array as the first sample. An array of weight values. The generative confrontation network device can omit the process of adding noise to the fake samples generated by the generation network, thereby saving training time, reducing resource consumption and improving the training speed of the generative confrontation network.
综上所述,现有的生成对抗网络仍存在以下缺陷:To sum up, the existing generative adversarial networks still have the following defects:
1、难以训练、很不稳定。生成器和判别器之间很难达到一个良好的相互促进的状态,实际训练中,判别器很容易收敛,但生成器很难训练。1. Difficult to train and very unstable. It is difficult to achieve a good mutual promotion state between the generator and the discriminator. In actual training, the discriminator is easy to converge, but the generator is difficult to train.
2、模式崩塌。生成对抗网络在学习中很容易陷入模式崩塌的状态,即生成器总是生成类似的样本,无法继续学习。2. The mode collapses. Generative adversarial networks are prone to fall into the state of mode collapse during learning, that is, the generator always generates similar samples and cannot continue learning.
3、目前的生成对抗网络难以直接生成复杂的高维数据。目前的生成对抗网络较多的是应用于生成图片等维度较低的数据,但应用于生成复杂的高维数据时,以医学影像数据为例,由于医学影像数据转换算法在使用生成对抗网络时往往是以单张切片生成的方式,这样的方式会损失原始数据的结构信息,使生成的数据完整性大打折扣。3. The current generative adversarial network is difficult to directly generate complex high-dimensional data. The current generative adversarial network is mostly applied to generate low-dimensional data such as pictures, but when it is used to generate complex high-dimensional data, taking medical image data as an example, because the medical image data conversion algorithm uses the generative adversarial network when It is often generated by a single slice, which will lose the structural information of the original data and greatly reduce the integrity of the generated data.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种针对高维数据的生成对抗网络训练方法、系统及电子设备,旨在至少在一定程度上解决现有技术中的上述技术问题之一。The present application provides a generative adversarial network training method, system and electronic device for high-dimensional data, aiming to solve one of the above technical problems in the prior art at least to a certain extent.
为了解决上述问题,本申请提供了如下技术方案:In order to solve the above problems, the application provides the following technical solutions:
一种针对高维数据的生成对抗网络训练方法,包括以下步骤:A generative adversarial network training method for high-dimensional data, comprising the following steps:
步骤a:搭建生成对抗网络骨干结构;Step a: Build the backbone structure of the generative adversarial network;
步骤b:使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;Step b: use the tensor train decomposition algorithm to perform tensor train decomposition on the backbone structure of the generative adversarial network;
步骤c:使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;Step c: use real high-dimensional data to train a tensor autoencoder based on tensor train decomposition, and output spatial structure features of real high-dimensional data through the tensor autoencoder;
步骤d:将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。Step d: The output of the tensor autoencoder and the features of the last layer generated by the discriminator are combined as the input of the last layer to train the generative adversarial network.
本申请实施例采取的技术方案还包括:在所述步骤a中,所述生成对抗网络骨干结构为基于3D卷积和3D反卷积的生成对抗网络骨干结构。The technical solutions adopted in the embodiments of the present application further include: in the step a, the GAN backbone structure is a GAN backbone structure based on 3D convolution and 3D deconvolution.
本申请实施例采取的技术方案还包括:在所述步骤b中,所述使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解具体为:将张量火车分解算法引入所述生成对抗网络骨干结构中所有的3D卷积和3D反卷积层,对所述3D卷积和3D反卷积层进行张量火车分解,得到3D-TT-Conv 层、3D-TT-deConv层。The technical solutions adopted in the embodiments of the present application further include: in the step b, the use of the tensor train decomposition algorithm to perform tensor train decomposition on the GAN backbone structure is specifically: introducing the tensor train decomposition algorithm into the All 3D convolution and 3D deconvolution layers in the backbone structure of the generative adversarial network are decomposed by tensor train to obtain 3D-TT-Conv layer, 3D-TT-deConv layer Floor.
本申请实施例采取的技术方案还包括:所述对3D卷积进行张量火车分解具体包括:The technical solution adopted in the embodiment of the present application further includes: the tensor train decomposition of the 3D convolution specifically includes:
假设输入三维数据维度为W×H×D,通道数为C,即输入张量:卷积核为:卷积后输出张量: Assuming that the input three-dimensional data dimension is W×H×D and the number of channels is C, that is, the input tensor: The convolution kernel is: Output tensor after convolution:
将输出张量的每个元素写为:3D卷积的公式为:Write each element of the output tensor as: The formula for 3D convolution is:
将输出张量每个通道的维度表示为:Represent the dimension of each channel of the output tensor as:
H′=H-l+1H'=H-l+1
w′=W-l+1w'=W-l+1
D′=D-l+1D'=D-l+1
将输入张量转化为W′H′D′×l3C大小的矩阵,对应元素变换为:the input tensor Converted to a matrix of size W′H′D′×l 3 C, and the corresponding elements are transformed into:
将卷积核张量转换为大小为l3C×S的矩阵,对应元素变换为:convolution kernel tensor Converted to a matrix of size l 3 C×S, the corresponding elements are transformed as:
将输入矩阵X和卷积核矩阵K进行矩阵乘法,得到大小为W′H′D′×S 的输出矩阵Y,将输出矩阵Y还原为输出张量 Perform matrix multiplication on the input matrix X and the convolution kernel matrix K to obtain an output matrix Y of size W'H'D'×S, and restore the output matrix Y to an output tensor
将张量火车分解应用到卷积核矩阵K:将输入输出维度进行分解:将矩阵K张量化为张量对其进行张量火车分解:Apply the tensor train decomposition to the convolution kernel matrix K: decompose the input and output dimensions: Tensor the matrix K into a tensor Tensor train decomposition of it:
上述公式中: In the above formula:
将输入张量转化为大小为W×H×D×C1×...×Cd的张量将该张量与卷积核的Tensor-Train矩阵进行运算,得到大小为 (W-l+1)×(H-l+1)×S1...×Sd输出张量:the input tensor Converted to a tensor of size W×H×D×C 1 ×...×C d the tensor Operate with the Tensor-Train matrix of the convolution kernel to obtain an output tensor of size (W-l+1)×(H-l+1)×S 1 ...×S d :
本申请实施例采取的技术方案还包括:在所述步骤c中,所述使用真实高维数据训练一个基于张量火车分解的张量自编码器具体为:将张量运算中的n-mode product运算引入自编码器中,使用张量运算中的n-mode product运算代替全连接层中输入向量和参数矩阵的matrix multiplication,直接对张量数据的维度进行放大和缩小,提取真实高维数据的空间结构特征。The technical solutions adopted in the embodiments of the present application further include: in the step c, the use of real high-dimensional data to train a tensor autoencoder based on tensor train decomposition is specifically: The product operation is introduced into the autoencoder, and the n-mode product operation in the tensor operation is used to replace the matrix multiplication of the input vector and parameter matrix in the fully connected layer, and the dimension of the tensor data is directly enlarged and reduced to extract the real high-dimensional data. the spatial structure characteristics.
本申请实施例采取的另一技术方案为:一种针对高维数据的生成对抗网络训练系统,包括:Another technical solution adopted by the embodiments of the present application is: a generative adversarial network training system for high-dimensional data, including:
网络骨干搭建模块:用于搭建生成对抗网络骨干结构;Network backbone building module: used to build the backbone structure of generative adversarial network;
张量火车分解模块:用于使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;Tensor train decomposition module: used to perform tensor train decomposition on the backbone structure of the generative adversarial network using the tensor train decomposition algorithm;
张量自编码器训练模块:用于使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;Tensor autoencoder training module: used to train a tensor autoencoder based on tensor train decomposition using real high-dimensional data, and output the spatial structure features of real high-dimensional data through the tensor autoencoder;
网络训练模块:用于将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。Network training module: used to combine the output of the tensor autoencoder and the features of the last layer generated by the discriminator as the input of the last layer to train the generative adversarial network.
本申请实施例采取的技术方案还包括:所述生成对抗网络骨干结构为基于3D卷积和3D反卷积的生成对抗网络骨干结构。The technical solutions adopted in the embodiments of the present application further include: the backbone structure of the generative confrontation network is a backbone structure of the generative confrontation network based on 3D convolution and 3D deconvolution.
本申请实施例采取的技术方案还包括:所述张量火车分解模块使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解具体为:将张量火车分解算法引入所述生成对抗网络骨干结构中所有的3D卷积和3D反卷积层,对所述3D卷积和3D反卷积层进行张量火车分解,得到3D-TT-Conv 层、3D-TT-deConv层。The technical solutions adopted in the embodiments of the present application further include: the tensor train decomposition module uses a tensor train decomposition algorithm to perform tensor train decomposition on the backbone structure of the generative adversarial network. Specifically, the tensor train decomposition algorithm is introduced into the generation All 3D convolution and 3D deconvolution layers in the backbone structure of the adversarial network are decomposed by tensor train to obtain 3D-TT-Conv layers and 3D-TT-deConv layers.
本申请实施例采取的技术方案还包括:所述对3D卷积进行张量火车分解具体包括:The technical solution adopted in the embodiment of the present application further includes: the tensor train decomposition of the 3D convolution specifically includes:
假设输入三维数据维度为W×H×D,通道数为C,即输入张量:卷积核为:卷积后输出张量: Assuming that the input three-dimensional data dimension is W×H×D and the number of channels is C, that is, the input tensor: The convolution kernel is: Output tensor after convolution:
将输出张量的每个元素写为:3D卷积的公式为:Write each element of the output tensor as: The formula for 3D convolution is:
将输出张量每个通道的维度表示为:Represent the dimension of each channel of the output tensor as:
H′=H-l+1H'=H-l+1
W′=W-l+1W'=W-l+1
D′=D-l+1D'=D-l+1
将输入张量转化为W′H′D′×l3C大小的矩阵,对应元素变换为:the input tensor Converted to a matrix of size W′H′D′×l 3 C, and the corresponding elements are transformed into:
将卷积核张量转换为大小为l3C×S的矩阵,对应元素变换为:convolution kernel tensor Converted to a matrix of size l 3 C×S, the corresponding elements are transformed as:
将输入矩阵X和卷积核矩阵K进行矩阵乘法,得到大小为W′H′D′×S 的输出矩阵Y,将输出矩阵Y还原为输出张量 Perform matrix multiplication on the input matrix X and the convolution kernel matrix K to obtain an output matrix Y of size W'H'D'×S, and restore the output matrix Y to an output tensor
将张量火车分解应用到卷积核矩阵K:将输入输出维度进行分解:将矩阵K张量化为张量对其进行张量火车分解:Apply the tensor train decomposition to the convolution kernel matrix K: decompose the input and output dimensions: Tensor the matrix K into a tensor Tensor train decomposition of it:
上述公式中: In the above formula:
将输入张量转化为大小为W×H×D×C1×...×Cd的张量将该张量与卷积核的Tensor-Train矩阵进行运算,得到大小为 (W-l+1)×(H-l+1)×S1...×Sd输出张量:the input tensor Converted to a tensor of size W×H×D×C 1 ×...×C d the tensor Operate with the Tensor-Train matrix of the convolution kernel to obtain an output tensor of size (W-l+1)×(H-l+1)×S 1 ...×S d :
本申请实施例采取的技术方案还包括:所述张量自编码器训练模块使用真实高维数据训练一个基于张量火车分解的张量自编码器具体为:将张量运算中的n-mode product运算引入自编码器中,使用张量运算中的n-mode product运算代替全连接层中输入向量和参数矩阵的matrix multiplication,直接对张量数据的维度进行放大和缩小,提取真实高维数据的空间结构特征。The technical solutions adopted in the embodiments of the present application further include: the tensor autoencoder training module uses real high-dimensional data to train a tensor train decomposition-based tensor autoencoder. Specifically: The product operation is introduced into the autoencoder, and the n-mode product operation in the tensor operation is used to replace the matrix multiplication of the input vector and parameter matrix in the fully connected layer, and the dimension of the tensor data is directly enlarged and reduced to extract the real high-dimensional data. the spatial structure characteristics.
本申请实施例采取的又一技术方案为:一种电子设备,包括:Another technical solution adopted in the embodiment of the present application is: an electronic device, comprising:
至少一个处理器;以及at least one processor; and
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的针对高维数据的生成对抗网络训练方法的以下操作:The memory stores instructions executable by the one processor, the instructions are executed by the at least one processor, so that the at least one processor can perform the above-mentioned generative adversarial network training method for high-dimensional data the following operations:
步骤a:搭建生成对抗网络骨干结构;Step a: Build the backbone structure of the generative adversarial network;
步骤b:使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;Step b: use the tensor train decomposition algorithm to perform tensor train decomposition on the backbone structure of the generative adversarial network;
步骤c:使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;Step c: use real high-dimensional data to train a tensor autoencoder based on tensor train decomposition, and output spatial structure features of real high-dimensional data through the tensor autoencoder;
步骤d:将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。Step d: The output of the tensor autoencoder and the features of the last layer generated by the discriminator are combined as the input of the last layer to train the generative adversarial network.
相对于现有技术,本申请实施例产生的有益效果在于:本申请实施例的针对高维数据的生成对抗网络训练方法、系统及电子设备通过使用张量火车分解将生成对抗网络中的3D卷积进行张量化,使生成对抗网络具备直接生成高维数据的能力,同时减少网络的参数量,使网络的训练更加稳定。同时,通过将张量运算引入自编码器的训练过程中,得到张量化的编码器,通过张量化的编码器输出真实高维数据的空间结构特征,并将真实高维数据的空间结构特征引入生成对抗网络的训练中,使得生成器生成更加真实和多样化的数据,提高生成数据的质量和多样性。Compared with the prior art, the beneficial effects of the embodiments of the present application are: the GAN training method, system and electronic device for high-dimensional data in the embodiments of the present application decompose the 3D volumes in the GAN by using tensor train decomposition. The product is tensorized, so that the generative adversarial network has the ability to directly generate high-dimensional data, and at the same time reduces the amount of parameters of the network, making the training of the network more stable. At the same time, by introducing tensor operations into the training process of the self-encoder, a tensorized encoder is obtained, the spatial structure features of the real high-dimensional data are output through the tensorized encoder, and the spatial structure features of the real high-dimensional data are introduced. In the training of generative adversarial network, the generator generates more realistic and diverse data, and improves the quality and diversity of the generated data.
附图说明Description of drawings
图1是本申请实施例的针对高维数据的生成对抗网络训练方法的流程图;1 is a flowchart of a generative adversarial network training method for high-dimensional data according to an embodiment of the present application;
图2为本申请实施例的基于张量自编码器和张量火车分解的生成对抗网络结构图;2 is a structural diagram of a generative adversarial network based on tensor autoencoder and tensor train decomposition according to an embodiment of the present application;
图3是本申请实施例的针对高维数据的生成对抗网络训练系统的结构示意图;3 is a schematic structural diagram of a generative adversarial network training system for high-dimensional data according to an embodiment of the present application;
图4是本申请实施例提供的针对高维数据的生成对抗网络训练方法的硬件设备结构示意图。FIG. 4 is a schematic structural diagram of a hardware device of a generative adversarial network training method for high-dimensional data provided by an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
为了解决现有技术的不足,本申请实施例的针对高维数据的生成对抗网络训练方法使用张量火车分解技术和张量自编码器来改进原始的生成对抗网络。通过将张量运算引入生成对抗网络的网络结构中,将3D卷积进行张量化分解,利用张量对输入信息结构信息的保留来增加生成对抗网络训练的稳定性。通过使用张量自编码器,将真实分布的信息引入生成对抗网络,并可以同时从正向、反向同时优化真实分布和生成分布之间的KL距离,从而提高生成对抗网络直接生成高维数据的能力,并且增加生成数据的多样性。In order to solve the insufficiency of the prior art, the generative adversarial network training method for high-dimensional data in the embodiments of the present application uses tensor train decomposition technology and tensor autoencoder to improve the original generative adversarial network. By introducing the tensor operation into the network structure of the generative adversarial network, the 3D convolution is tensorized and decomposed, and the tensor is used to preserve the structural information of the input information to increase the stability of the generative adversarial network training. By using the tensor autoencoder, the information of the true distribution is introduced into the generative adversarial network, and the KL distance between the true distribution and the generative distribution can be simultaneously optimized from the forward and reverse directions, thereby improving the generative adversarial network to directly generate high-dimensional data capabilities, and increase the variety of generated data.
具体的,请参阅图1,是本申请实施例的针对高维数据的生成对抗网络训练方法的流程图。本申请实施例的针对高维数据的生成对抗网络训练方法包括以下步骤:Specifically, please refer to FIG. 1 , which is a flowchart of a generative adversarial network training method for high-dimensional data according to an embodiment of the present application. The generative adversarial network training method for high-dimensional data according to the embodiment of the present application includes the following steps:
步骤100:搭建基于3D卷积和3D反卷积的生成对抗网络骨干结构;Step 100: Build a generative adversarial network backbone structure based on 3D convolution and 3D deconvolution;
步骤200:将张量火车分解算法引入生成对抗网络骨干结构中所有的3D 卷积和3D反卷积层,使用张量火车分解算法对生成对抗网络中的3D卷积和 3D反卷积层进行张量火车分解;Step 200: Introduce the tensor train decomposition algorithm into all 3D convolution and 3D deconvolution layers in the backbone structure of the generative adversarial network, and use the tensor train decomposition algorithm to perform the 3D convolution and 3D deconvolution layers in the generative adversarial network. tensor train decomposition;
步骤200中,张量火车分解算法的原理是将一个高维张量中的每一个元素用若干个矩阵连乘的形式来表达。即:In
A(i1,i2,...,id)=G1(i1)G2(i2)...Gd(id) (1)A(i 1 ,i 2 ,...,id )=G 1 (i 1 )G 2 (i 2 )...G d ( id ) (1)
公式(1)中,Gk(ik)是一个rk-1×rk大小的矩阵,rk表示张量火车分解的秩 (TT-ranks),为了确保最终结果是一个标量,r0=rk=1。In formula (1), G k (i k ) is a matrix of size r k-1 ×r k , and r k represents the rank (TT-ranks) of the tensor train decomposition. To ensure that the final result is a scalar, r 0 =r k =1.
本发明使用张量火车分解算法对生成对抗网络中的3D-Conv(3D卷积)、 3D-deConv(3D反卷积)进行张量火车分解,得到3D-TT-Conv层、3D-TT- deConv层。以下实施例中,以3D-TT-Conv层为例从公式和实例方面上对张量火车分解的应用进行具体描述。The present invention uses the tensor train decomposition algorithm to perform tensor train decomposition on 3D-Conv (3D convolution) and 3D-deConv (3D deconvolution) in the generative adversarial network, and obtains 3D-TT-Conv layer, 3D-TT- deConv layer. In the following embodiments, the 3D-TT-Conv layer is taken as an example to describe the application of tensor train decomposition in terms of formulas and examples.
3D-TT-Conv层的张量火车分解运算公式:The tensor train decomposition formula of the 3D-TT-Conv layer:
1、首先对传统的3D卷积公式进行分析:1. First, analyze the traditional 3D convolution formula:
输入三维数据维度为W×H×D,通道数为C,即输入张量:卷积核为:那么卷积后输出张量: The input three-dimensional data dimension is W×H×D, and the number of channels is C, that is, the input tensor: The convolution kernel is: Then the output tensor after convolution:
为了方便公式表示将输出张量的每个元素写为:3D卷积的公式可写为:To facilitate the formulation, write each element of the output tensor as: The formula for 3D convolution can be written as:
2、卷积操作矩阵化:2. The convolution operation is matrixed:
为了将3D卷积张量化,首先需要将3D卷积操作矩阵化,然后对卷积核矩阵进行张量火车分解。具体步骤包括:In order to tensor the 3D convolution, the 3D convolution operation needs to be matrixed first, and then the tensor train decomposition of the convolution kernel matrix is performed. Specific steps include:
(1)将输出张量每个通道的维度表示为:(1) Express the dimension of each channel of the output tensor as:
H′=H-l+1H'=H-l+1
w′=W-l+lw'=W-l+l
D′=D-l+1 (3)D′=D-1+1 (3)
将输入张量转化为W′H′D′×l3C大小的矩阵,对应元素变换为:the input tensor Converted to a matrix of size W′H′D′×l 3 C, and the corresponding elements are transformed into:
(2)将卷积核张量转换为大小为l3C×S的矩阵,对应元素变换为:(2) The convolution kernel tensor Converted to a matrix of size l 3 C×S, the corresponding elements are transformed as:
(3)将输入矩阵X和卷积核矩阵K进行矩阵乘法,得到大小为 W′H′D′×S的输出矩阵Y,将输出矩阵Y还原为输出张量 (3) Perform matrix multiplication on the input matrix X and the convolution kernel matrix K to obtain an output matrix Y of size W'H'D'×S, and restore the output matrix Y to an output tensor
(4)将张量火车分解应用到卷积核矩阵K:将输入输出维度进行分解:将矩阵K张量化为张量对其进行张量火车分解,则卷积核矩阵K的TT分解过程为:(4) Apply the tensor train decomposition to the convolution kernel matrix K: decompose the input and output dimensions: Tensor the matrix K into a tensor Perform tensor train decomposition on it, then the TT decomposition process of the convolution kernel matrix K is:
公式(7)中: In formula (7):
(5)为了匹配TT分解后的卷积核,将输入张量转化为大小为W×H×D×C1×...×Cd的张量将该张量与卷积核的Tensor- Train矩阵进行运算,得到大小为(W-l+1)×(H-l+1)×S1...×Sd输出张量:(5) In order to match the convolution kernel after TT decomposition, the input tensor Converted to a tensor of size W×H×D×C 1 ×...×C d the tensor Operates with the Tensor-Train matrix of the convolution kernel to obtain an output tensor of size (W-l+1)×(H-l+1)×S 1 ...×S d :
上式即为最终的3D-TT-Conv层张量火车分解运算公式。The above formula is the final 3D-TT-Conv layer tensor train decomposition operation formula.
3D-TT-deConv层的张量火车分解运算公式推导过程与3D-TT-Conv层相同,此处将不再赘述。The derivation process of the tensor train decomposition operation formula of the 3D-TT-deConv layer is the same as that of the 3D-TT-Conv layer, and will not be repeated here.
步骤300:使用真实高维数据训练一个基于张量火车分解的张量自编码器(TT-Encoder),通过张量自编码器输出真实高维数据的空间结构特征;Step 300: use real high-dimensional data to train a tensor autoencoder (TT-Encoder) based on tensor train decomposition, and output the spatial structure features of real high-dimensional data through the tensor autoencoder;
步骤300中,本发明将张量运算中的n-mode product运算引入自编码器中,使用张量运算中的n-mode product运算来代替全连接层中输入向量和参数矩阵的matrixmultiplication,可以直接对张量数据的维度进行放大和缩小,即自编码器中的升维和降维操作,可以将高维的真实高维数据编码至低维度数据。由于张量运算不存在将高维数据向量化的操作,可以提取高维数据的空间结构特征。In
例如: E.g:
步骤400:将张量自编码器的输出和判别器生成的最后一层特征结合起来作为最后一层的输入,对生成对抗网络进行训练,得到基于张量自编码器和张量火车分解的生成对抗网络;Step 400: Combine the output of the tensor autoencoder and the features of the last layer generated by the discriminator as the input of the last layer, train the generative adversarial network, and obtain the generation based on the tensor autoencoder and the tensor train decomposition. adversarial network;
步骤400中,本发明通过将编码后得到的真实高维数据的空间结构特征和判别器最后一层特征相结合,可以将真实高维数据的分布引入生成对抗网络的训练过程中,实现同时从正向、反向同时优化真实分布和生成分布之间的KL距离(Kullback-LeiblerDivergence,相对熵),从而指导生成器生成更加真实和多样化的数据,提高生成数据的质量和多样性。生成对抗网络的训练过程和原始生成对抗网络的训练方式一致,此处将不再赘述。In
基于张量自编码器和张量火车分解的生成对抗网络结构如图2所示,图中z为随机噪声,TG为张量火车分解的3D生成器,TD为张量火车分解的3D 判别器,TE为Tensor-Encoder(张量自编码器),用于直接提取真实高维数据的空间结构特征f,h为判别器最后一层特征。The structure of generative adversarial network based on tensor autoencoder and tensor train decomposition is shown in Figure 2. In the figure, z is random noise, TG is the 3D generator of tensor train decomposition, and TD is the 3D discriminator of tensor train decomposition. , TE is Tensor-Encoder (tensor self-encoder), which is used to directly extract the spatial structure feature f of real high-dimensional data, and h is the last layer feature of the discriminator.
请参阅图3,是本申请实施例的针对高维数据的生成对抗网络训练系统的结构示意图。本申请实施例的针对高维数据的生成对抗网络训练系统包括网络骨干搭建模块、张量火车分解模块、张量自编码器训练模块、网络训练模块。Please refer to FIG. 3 , which is a schematic structural diagram of a generative adversarial network training system for high-dimensional data according to an embodiment of the present application. The generative adversarial network training system for high-dimensional data in the embodiment of the present application includes a network backbone building module, a tensor train decomposition module, a tensor autoencoder training module, and a network training module.
网络骨干搭建模块:用于搭建基于3D卷积和3D反卷积的生成对抗网络骨干结构;Network backbone building module: used to build the backbone structure of generative adversarial network based on 3D convolution and 3D deconvolution;
张量火车分解模块:用于将张量火车分解算法引入生成对抗网络骨干结构中所有的3D卷积和3D反卷积层,使用张量火车分解算法对生成对抗网络中的3D卷积和3D反卷积层进行张量火车分解;其中,张量火车分解算法的原理是将一个高维张量中的每一个元素用若干个矩阵连乘的形式来表达。Tensor train decomposition module: used to introduce the tensor train decomposition algorithm into all 3D convolution and 3D deconvolution layers in the backbone structure of the generative adversarial network, and use the tensor train decomposition algorithm to analyze the 3D convolution and 3D The deconvolution layer performs tensor train decomposition; the principle of the tensor train decomposition algorithm is to express each element in a high-dimensional tensor in the form of several matrices.
即:which is:
A(i1,i2,...,id)=G1(i1)G2(i2)...Gd(id) (1)A(i 1 ,i 2 ,...,id )=G 1 (i 1 )G 2 (i 2 )...G d ( id ) (1)
公式(1)中,Gk(ik)是一个rk-1×rk大小的矩阵,rk表示张量火车分解的秩 (TT-ranks),为了确保最终结果是一个标量,r0=rk=1。In formula (1), G k (i k ) is a matrix of size r k-1 ×r k , and r k represents the rank (TT-ranks) of the tensor train decomposition. To ensure that the final result is a scalar, r 0 =r k =1.
本发明使用张量火车分解算法对生成对抗网络中的3D-Conv(3D卷积)、3D-deConv(3D反卷积)进行张量火车分解,得到3D-TT-Conv层、3D-TT- deConv层。以下实施例中,以3D-TT-Conv层为例从公式和实例方面上对张量火车分解的应用进行具体描述。The invention uses the tensor train decomposition algorithm to decompose the tensor train of 3D-Conv (3D convolution) and 3D-deConv (3D deconvolution) in the generative confrontation network, and obtains 3D-TT-Conv layer, 3D-TT- deConv layer. In the following embodiments, the 3D-TT-Conv layer is taken as an example to describe the application of tensor train decomposition in terms of formulas and examples.
3D-TT-Conv层的张量火车分解运算公式:The tensor train decomposition formula of the 3D-TT-Conv layer:
1、首先对传统的3D卷积公式进行分析:1. First, analyze the traditional 3D convolution formula:
输入三维数据维度为W×H×D,通道数为C,即输入张量:卷积核为:那么卷积后输出张量: The input three-dimensional data dimension is W×H×D, and the number of channels is C, that is, the input tensor: The convolution kernel is: Then the output tensor after convolution:
为了方便公式表示将输出张量的每个元素写为:3D卷积的公式可写为:To facilitate the formulation, write each element of the output tensor as: The formula for 3D convolution can be written as:
2、卷积操作矩阵化:2. The convolution operation is matrixed:
为了将3D卷积张量化,首先需要将3D卷积操作矩阵化,然后对卷积核矩阵进行张量火车分解。具体步骤包括:In order to tensor the 3D convolution, the 3D convolution operation needs to be matrixed first, and then the tensor train decomposition of the convolution kernel matrix is performed. Specific steps include:
(1)将输出张量每个通道的维度表示为:(1) Express the dimension of each channel of the output tensor as:
H′=H-l+1H'=H-l+1
w′=W-l+1w'=W-l+1
D′=D-l+1 (3)D′=D-1+1 (3)
将输入张量转化为W′H′D′×l3C大小的矩阵,对应元素变换为:the input tensor Converted to a matrix of size W′H′D′×l 3 C, and the corresponding elements are transformed into:
(2)将卷积核张量转换为大小为l3C×S的矩阵,对应元素变换为:(2) The convolution kernel tensor Converted to a matrix of size l 3 C×S, the corresponding elements are transformed as:
(3)将输入矩阵X和卷积核矩阵K进行矩阵乘法,得到大小为 W′H′D′×S的输出矩阵Y,将输出矩阵Y还原为输出张量 (3) Perform matrix multiplication on the input matrix X and the convolution kernel matrix K to obtain an output matrix Y of size W'H'D'×S, and restore the output matrix Y to an output tensor
(4)将张量火车分解应用到卷积核矩阵K:(4) Apply the tensor train decomposition to the convolution kernel matrix K:
将输入输出维度进行分解:将矩阵K张量化为张量对其进行张量火车分解,则卷积核矩阵K的TT分解过程为:Decompose the input and output dimensions: Tensor the matrix K into a tensor Perform tensor train decomposition on it, then the TT decomposition process of the convolution kernel matrix K is:
公式(7)中: In formula (7):
(5)为了匹配TT分解后的卷积核,将输入张量转化为大小为W×H×D×C1×...×Cd的张量将该张量与卷积核的Tensor- Train矩阵进行运算,得到大小为(W-l+1)×(H-l+1)×S1...×Sd输出张量:(5) In order to match the convolution kernel after TT decomposition, the input tensor Converted to a tensor of size W×H×D×C 1 ×...×C d the tensor Operates with the Tensor-Train matrix of the convolution kernel to obtain an output tensor of size (W-l+1)×(H-l+1)×S 1 ...×S d :
上式即为最终的3D-TT-Conv层张量火车分解运算公式。The above formula is the final 3D-TT-Conv layer tensor train decomposition operation formula.
张量自编码器训练模块:用于使用真实高维数据训练一个基于张量火车分解的张量自编码器(TT-Encoder),通过张量自编码器输出真实高维数据的空间结构特征;本发明将张量运算中的n-mode product运算引入自编码器中,使用张量运算中的n-mode product运算来代替全连接层中输入向量和参数矩阵的matrix multiplication,可以直接对张量数据的维度进行放大和缩小,即自编码器中的升维和降维操作,可以将高维的真实高维数据编码至低维度数据。由于张量运算不存在将高维数据向量化的操作,可以提取高维数据的空间结构特征。Tensor autoencoder training module: used to train a tensor autoencoder (TT-Encoder) based on tensor train decomposition using real high-dimensional data, and output the spatial structure features of real high-dimensional data through the tensor autoencoder; The invention introduces the n-mode product operation in the tensor operation into the self-encoder, uses the n-mode product operation in the tensor operation to replace the matrix multiplication of the input vector and the parameter matrix in the full connection layer, and can directly perform the tensor operation. The dimension of the data is enlarged and reduced, that is, the dimension-raising and dimension-reducing operations in the autoencoder can encode high-dimensional real high-dimensional data to low-dimensional data. Since there is no operation to vectorize high-dimensional data in tensor operations, the spatial structure features of high-dimensional data can be extracted.
网络训练模块:用于将张量自编码器的输出和判别器生成的最后一层特征结合起来作为最后一层的输入,对生成对抗网络进行训练,得到基于张量自编码器和张量火车分解的生成对抗网络;其中,本发明通过将编码后得到的真实高维数据的空间结构特征和判别器最后一层特征相结合,可以将真实高维数据的分布引入生成对抗网络的训练过程中,实现同时从正向、反向同时优化真实分布和生成分布之间的KL距离(Kullback-LeiblerDivergence,相对熵),从而指导生成器生成更加真实和多样化的数据,提高生成数据的质量和多样性。Network training module: It is used to combine the output of the tensor auto-encoder and the last layer of features generated by the discriminator as the input of the last layer to train the generative adversarial network to obtain a tensor based auto-encoder and tensor train. Decomposed generative adversarial network; wherein, the present invention can introduce the distribution of real high-dimensional data into the training process of the generative adversarial network by combining the spatial structure features of the real high-dimensional data obtained after encoding with the features of the last layer of the discriminator , to simultaneously optimize the KL distance (Kullback-Leibler Divergence, relative entropy) between the real distribution and the generated distribution from the forward and reverse directions, thereby guiding the generator to generate more realistic and diverse data, and improving the quality and diversity of the generated data sex.
图4是本申请实施例提供的针对高维数据的生成对抗网络训练方法的硬件设备结构示意图。如图4所示,该设备包括一个或多个处理器以及存储器。以一个处理器为例,该设备还可以包括:输入系统和输出系统。FIG. 4 is a schematic structural diagram of a hardware device of a generative adversarial network training method for high-dimensional data provided by an embodiment of the present application. As shown in Figure 4, the device includes one or more processors and memory. Taking a processor as an example, the device may further include: an input system and an output system.
处理器、存储器、输入系统和输出系统可以通过总线或者其他方式连接,图4中以通过总线连接为例。The processor, the memory, the input system, and the output system may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 4 .
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块。处理器通过运行存储在存储器中的非暂态软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述方法实施例的处理方法。As a non-transitory computer-readable storage medium, the memory can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules. The processor executes various functional applications and data processing of the electronic device by running the non-transitory software programs, instructions and modules stored in the memory, that is, the processing method of the above method embodiment is implemented.
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理系统。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory may include a stored program area and a stored data area, wherein the stored program area can store an operating system and an application program required by at least one function; the stored data area can store data and the like. Additionally, the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. In some embodiments, the memory may optionally include memory located remotely from the processor, which may be connected to the processing system via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
输入系统可接收输入的数字或字符信息,以及产生信号输入。输出系统可包括显示屏等显示设备。The input system can receive input numerical or character information and generate signal input. The output system may include a display device such as a display screen.
所述一个或者多个模块存储在所述存储器中,当被所述一个或者多个处理器执行时,执行上述任一方法实施例的以下操作:The one or more modules are stored in the memory, and when executed by the one or more processors, perform the following operations of any of the foregoing method embodiments:
步骤a:搭建生成对抗网络骨干结构;Step a: Build the backbone structure of the generative adversarial network;
步骤b:使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;Step b: use the tensor train decomposition algorithm to perform tensor train decomposition on the backbone structure of the generative adversarial network;
步骤c:使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;Step c: use real high-dimensional data to train a tensor autoencoder based on tensor train decomposition, and output spatial structure features of real high-dimensional data through the tensor autoencoder;
步骤d:将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。Step d: The output of the tensor autoencoder and the features of the last layer generated by the discriminator are combined as the input of the last layer to train the generative adversarial network.
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例提供的方法。The above product can execute the method provided by the embodiments of the present application, and has functional modules and beneficial effects corresponding to the execution method. For technical details not described in detail in this embodiment, reference may be made to the method provided in this embodiment of the present application.
本申请实施例提供了一种非暂态(非易失性)计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行以下操作:An embodiment of the present application provides a non-transitory (non-volatile) computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions can perform the following operations:
步骤a:搭建生成对抗网络骨干结构;Step a: Build the backbone structure of the generative adversarial network;
步骤b:使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;Step b: use the tensor train decomposition algorithm to perform tensor train decomposition on the backbone structure of the generative adversarial network;
步骤c:使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;Step c: use real high-dimensional data to train a tensor autoencoder based on tensor train decomposition, and output spatial structure features of real high-dimensional data through the tensor autoencoder;
步骤d:将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。Step d: The output of the tensor autoencoder and the features of the last layer generated by the discriminator are combined as the input of the last layer to train the generative adversarial network.
本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行以下操作:An embodiment of the present application provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer , which causes the computer to do the following:
步骤a:搭建生成对抗网络骨干结构;Step a: Build the backbone structure of the generative adversarial network;
步骤b:使用张量火车分解算法对所述生成对抗网络骨干结构进行张量火车分解;Step b: use the tensor train decomposition algorithm to perform tensor train decomposition on the backbone structure of the generative adversarial network;
步骤c:使用真实高维数据训练一个基于张量火车分解的张量自编码器,通过所述张量自编码器输出真实高维数据的空间结构特征;Step c: use real high-dimensional data to train a tensor autoencoder based on tensor train decomposition, and output spatial structure features of real high-dimensional data through the tensor autoencoder;
步骤d:将所述张量自编码器的输出和判别器生成的最后一层特征相结合作为最后一层的输入,对生成对抗网络进行训练。Step d: The output of the tensor autoencoder and the features of the last layer generated by the discriminator are combined as the input of the last layer to train the generative adversarial network.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本申请中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本申请所示的这些实施例,而是要符合与本申请所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined in this application may be implemented in other embodiments without departing from the spirit or scope of this application. Therefore, this application is not to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911343340.3A CN111340173A (en) | 2019-12-24 | 2019-12-24 | Method and system for training generation countermeasure network for high-dimensional data and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911343340.3A CN111340173A (en) | 2019-12-24 | 2019-12-24 | Method and system for training generation countermeasure network for high-dimensional data and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111340173A true CN111340173A (en) | 2020-06-26 |
Family
ID=71183320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911343340.3A Pending CN111340173A (en) | 2019-12-24 | 2019-12-24 | Method and system for training generation countermeasure network for high-dimensional data and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111340173A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112992304A (en) * | 2020-08-24 | 2021-06-18 | 湖南数定智能科技有限公司 | High-resolution pinkeye case data generation method, equipment and storage medium |
CN114302150A (en) * | 2021-12-30 | 2022-04-08 | 北京超维景生物科技有限公司 | Video encoding method and device, video decoding method and device, and electronic equipment |
CN116186575A (en) * | 2022-09-09 | 2023-05-30 | 武汉中数医疗科技有限公司 | Mammary gland sampling data processing method based on machine learning |
CN119204266A (en) * | 2024-11-22 | 2024-12-27 | 中科南京人工智能创新研究院 | Dataset construction method and system for training large models in professional fields |
-
2019
- 2019-12-24 CN CN201911343340.3A patent/CN111340173A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112992304A (en) * | 2020-08-24 | 2021-06-18 | 湖南数定智能科技有限公司 | High-resolution pinkeye case data generation method, equipment and storage medium |
CN112992304B (en) * | 2020-08-24 | 2023-10-13 | 湖南数定智能科技有限公司 | High-resolution red eye case data generation method, device and storage medium |
CN114302150A (en) * | 2021-12-30 | 2022-04-08 | 北京超维景生物科技有限公司 | Video encoding method and device, video decoding method and device, and electronic equipment |
CN114302150B (en) * | 2021-12-30 | 2024-02-27 | 北京超维景生物科技有限公司 | Video encoding method and device, video decoding method and device and electronic equipment |
CN116186575A (en) * | 2022-09-09 | 2023-05-30 | 武汉中数医疗科技有限公司 | Mammary gland sampling data processing method based on machine learning |
CN116186575B (en) * | 2022-09-09 | 2024-02-02 | 武汉中数医疗科技有限公司 | A method for processing breast sampling data based on machine learning |
CN119204266A (en) * | 2024-11-22 | 2024-12-27 | 中科南京人工智能创新研究院 | Dataset construction method and system for training large models in professional fields |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7373554B2 (en) | Cross-domain image transformation | |
CN111340173A (en) | Method and system for training generation countermeasure network for high-dimensional data and electronic equipment | |
CN109522902B (en) | Extraction of space-time feature representations | |
WO2020118608A1 (en) | Deconvolutional neural network hardware acceleration method, apparatus, and electronic device | |
CN110060286B (en) | Monocular depth estimation method | |
US12249048B2 (en) | Score-based generative modeling in latent space | |
CN114863219A (en) | Training large-scale visual Transformer neural network | |
CN114120413A (en) | Model training method, image synthesis method, apparatus, equipment and program product | |
CN116740605A (en) | An event identification method, system, equipment and medium | |
CN113344213A (en) | Knowledge distillation method, knowledge distillation device, electronic equipment and computer readable storage medium | |
CN114708374A (en) | Virtual image generation method, device, electronic device and storage medium | |
CN117351299A (en) | Image generation and model training methods, devices, equipment and storage media | |
CN114119869A (en) | Three-dimensional reconstruction method, system, machine device, and computer-readable storage medium | |
CN117808659A (en) | Method, system, apparatus and medium for performing multidimensional convolution operations | |
US20220405583A1 (en) | Score-based generative modeling in latent space | |
DE102021124428A1 (en) | TRAIN ENERGY-BASED VARIATIONAL AUTOENCODERS | |
CN113327194A (en) | Image style migration method, device, equipment and storage medium | |
CN112330535A (en) | Picture style migration method | |
CN117218031A (en) | Image reconstruction method, device and medium based on DeqNLNet algorithm | |
CN117196959A (en) | Self-attention-based infrared image super-resolution method, device and readable medium | |
CN117671371A (en) | A visual task processing method and system based on agent attention | |
CN113240780B (en) | Method and device for generating animation | |
CN116188251A (en) | Model construction method, virtual image generation method, device, equipment and medium | |
CN116503549A (en) | A high-fidelity 3D content generation method and system | |
CN115906987A (en) | Deep learning model training method, virtual image driving method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200626 |