CN111198430B - 光学镜头及成像设备 - Google Patents
光学镜头及成像设备 Download PDFInfo
- Publication number
- CN111198430B CN111198430B CN201811373609.8A CN201811373609A CN111198430B CN 111198430 B CN111198430 B CN 111198430B CN 201811373609 A CN201811373609 A CN 201811373609A CN 111198430 B CN111198430 B CN 111198430B
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- image
- convex
- optical lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/006—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种光学镜头和一种成像设备。光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜具有负光焦度,其物侧面和像侧面均为凹面;第四透镜具有正光焦度,其物侧面和像侧面均为凸面;第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;第六透镜具有正光焦度,其物侧面和像侧面均为凸面;以及第七透镜可具有正光焦度。根据本申请的光学镜头,可实现小型化、CRA小、大光圈、后焦长、低成本、温度性能好、远距离成像等有益效果中的至少一个。
Description
技术领域
本申请涉及光学镜头及成像设备,更具体地,涉及一种包括七片透镜的光学镜头及成像设备。
背景技术
随着科学技术的发展及高新技术的广泛应用,汽车辅助驾驶技术也逐渐发展和成熟起来,光学镜头在汽车上得到越来越广泛的应用。同时越来越多公司开始研究自动驾驶镜头,通常车载应用的光学镜头性能要求非常高,而应用于自动驾驶的光学镜头性能要求则是更加严格。
自动驾驶镜头对镜头的远距离成像要求越来越高,远距离成像需要镜头的焦距较长,但焦距较长又会造成镜头的总长比较长,不利于镜头的小型化。特别是车载镜头这种安装空间受限的光学镜头;同时这类光学镜头需要更大的光圈,以实现弱光环境的清晰识别。通常这类光学镜头对杂光的要求较高,需要更小的主光线角(CRA),以避免光线后端出射时打到镜筒上产生杂光。尤其越来越多的领域需要用镜头来进行视野扩展,特别是恶劣环境下,更加需要使用镜头来代替人眼进行图像的采集和分析,因此,镜头在不同温度下能够保持稳定的性能显得尤为重要。
因此,目前市场正需要一款长焦兼顾小型化、低成本等特点且可以在弱光及恶劣环境下使用的光学镜头。
发明内容
本申请提供了可适用于车载安装的、可至少克服或部分克服现有技术中的上述至少一个缺陷的光学镜头。
本申请的一个方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜可具有负光焦度,其物侧面和像侧面均为凹面;第四透镜可具有正光焦度,其物侧面和像侧面均为凸面;第五透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第六透镜可具有正光焦度,其物侧面和像侧面均为凸面;以及第七透镜可具有正光焦。
在一个实施方式中,第七透镜的物侧面可为凸面,像侧面可为凹面。
在另一实施方式中,第七透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第三透镜和第四透镜可互相胶合形成第一胶合透镜。
在一个实施方式中,第五透镜和第六透镜可互相胶合形成第二胶合透镜。
在一个实施方式中,第一透镜至第七透镜均可为玻璃镜片。
在一个实施方式中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤4.5。
在一个实施方式中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间可满足:BFL/TL≥0.2。
在一个实施方式中,光学镜头的整组焦距值F与第一透镜的焦距值F1之间可满足:F/F1≥0.15。
在一个实施方式中,第七透镜的材料折射率随温度变化的变化量dn/dt可为负值。
本申请的另一方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜、第四透镜、第六透镜和第七透镜均可具有正光焦度;第二透镜、第三透镜和第五透镜均可具有负光焦度;第三透镜和第四透镜可互相胶合形成第一胶合透镜;第五透镜和第六透镜可互相胶合形成第二胶合透镜;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤4.5。
在一个实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第三透镜的物侧面和像侧面均可为凹面。
在一个实施方式中,第四透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第五透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第六透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第七透镜的物侧面可为凸面,像侧面可为凹面。
在另一实施方式中,第七透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第一透镜至第七透镜均可为玻璃镜片。
在一个实施方式中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间可满足:BFL/TL≥0.2。
在一个实施方式中,光学镜头的整组焦距值F与第一透镜的焦距值F1之间可满足:F/F1≥0.15。
在一个实施方式中,第七透镜的材料折射率随温度变化的变化量dn/dt(7)可为负值。
本申请的又一方面提供了一种成像设备,该成像设备可包括根据上述实施方式的光学镜头及用于将光学镜头形成的光学图像转换为电信号的成像元件。
本申请采用了例如七片透镜,通过优化设置镜片的形状,合理分配各镜片的光焦度以及形成胶合透镜等,实现光学镜头的小型化、CRA小、大光圈、后焦长、低成本、温度性能好、远距离成像等有益效果中的至少一个。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;
图3为示出根据本申请实施例3的光学镜头的结构示意图;以及
图4为示出根据本申请实施例4的光学镜头的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜,第一胶合透镜也可被称作第二胶合透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学镜头包括例如六个具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七个透镜沿着光轴从物侧至像侧依序排列。
根据本申请示例性实施方式的光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。第一透镜设置为凸面朝向物侧的弯月形状能够尽可能地收集大视场光线,使光线进入后方光学系统,增加通光量。在实际应用中,考虑到镜头室外安装使用环境,会处于雨雪等恶劣天气,这样的凸面朝向物侧的弯月形状设计,更加适用雨雪等环境,有利于水滴的滑落,不易积水、积尘、从而减小外界环境对成像的影响。
第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第二透镜可对通过前方第一透镜的光线进行发散,可调整光线,减小像差。
第三透镜可具有负光焦度,其物侧面和像侧面均可为凹面。第三透镜可将前方第二透镜发散的光线进一步发散后再过渡到后方光学系统,增大后方光学系统的进光量。
第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第四透镜可将由前方第三透镜发散的光线快速汇聚后再过渡到后方光学系统,更有利于减小后方光线光程,以实现短TTL。
第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
第六透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
第七透镜可具有正光焦度,其物侧面可为凸面,像侧面可选地可为凸面或凹面。第七透镜可将第六透镜收集的光线进行进一步汇聚,调整光线,使光线走势平稳到达成像面,进一步减小CRA。第七透镜设置为具有正光焦度,并且第七透镜的材料折射率随温度变化的变化量dn/dt(7)为负值,以有助于透镜组在一定温度范围内仍保持较完美的成像清晰度。
在示例性实施方式中,可在例如第二透镜与第三透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。当将光阑设置于第二透镜与第三透镜之间时,可有效收束进入光学系统的光线,减小光学系统镜片的口径。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置,例如,可将光阑设置在第四透镜与第五透镜之间。
在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第七透镜与成像面之间的滤光片,以对具有不同波长的光线进行过滤;以及还可包括设置在滤光片与成像面之间的保护玻璃,以防止光学镜头的内部元件(例如,芯片)被损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,可通过将第三透镜的像侧面与第四透镜的物侧面胶合,而将第三透镜和第四透镜组合成第一胶合透镜。第一胶合透镜的采用,有效减小了系统色差,因若离散的镜片位于光线转折处,容易因加工/组立误差造成敏感,故第一胶合透镜有效降低了敏感度。
在示例性实施方式中,可通过将第五透镜的像侧面与第六透镜的物侧面胶合,而将第五透镜和第六透镜组合成第二胶合透镜。在第二胶合透镜中,靠近物侧的第五透镜具有负光焦度,靠近像侧的第六透镜具有正光焦度,通过负片在前,正片在后的排布,可以将前方光线发散后经快速汇聚后再过渡到后方,更有利于减小后方光线光程,实现短TTL。第二胶合透镜的采用,可有效减小系统色差,且使得光学系统整体结构紧凑,满足小型化要求,同时降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。
在示例性实施方式中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤4.5,更理想地,可进一步满足TTL/F≤3。满足条件式TTL/F≤4,可保证系统的小型化特性。
在示例性实施方式中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间可满足:BFL/TL≥0.2,更理想地,可进一步满足BFL/TL≥0.25。通过满足条件式BFL/TL≥0.2,可在实现小型化的基础上,满足后焦长的特性,有利于光学镜头的组装。
在示例性实施方式中,光学镜头的整组焦距值F与第一透镜的焦距值F1之间可满足:F/F1≥0.15,更理想地,可进一步满足F/F1≥0.2。满足条件式F/F1≥0.15,可实现光学镜头的长焦特性。
在示例性实施方式中,光学镜头的入瞳直径ENPD可满足ENPD≥9.0,以实现大光圈特性。
在示例性实施方式中,光学镜头的主光线角CRA可满足CRA≤5.5°,以避免光线后端出射时打到镜筒上产生杂光。
在示例性实施方式中,光学镜头所采用的镜片可以是非球面镜片或球面镜片。非球面镜片的特点是:从镜片中心到周边曲率是连续变化的。与从镜片中心到周边有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。在重点关注镜头解像质量的情况下,第一透镜至第七透镜均可采用非球面镜片。
在示例性实施方式中,光学镜头所采用的镜片可以是塑料材质的镜片,还可以是玻璃材质的镜片。塑料材质的镜片热膨胀系数较大,当镜头所使用的环境温度变化较大时,塑料材质的透镜会引起镜头的光学后焦变化量较大。采用玻璃材质的镜片,可减小温度对镜头光学后焦的影响,但是成本较高。在重点关注镜头温度性能的情况下,第一透镜至第七透镜均可采用玻璃镜片,以保证在不同温度下镜头光学性能的稳定性。
根据本申请的上述实施方式的光学镜头通过合理的镜片形状的设置及光焦度的设置,实现长焦距的同时保证系统总长较短;该光学镜头具有较小的CRA,可避免光线后端出射时打到镜筒上产生杂光,又能很好的匹配芯片,不会产生偏色和暗角现象;该光学镜头拥有大光圈,成像效果佳,像质可达到高清级别,即使在弱光环境或夜晚时,也能保证图像的清晰;该光学镜头能够保证在一定温度范围内仍保持较完美的成像清晰度。因此,根据本申请的上述实施方式的光学镜头能够具有小型化、CRA小、大光圈、后焦长、低成本、温度性能好、远距离成像等有益效果中的至少一个,可更好地符合例如车载应用的光学镜头的要求。
本领域技术人员应当理解,上文中使用的光学镜头的光学总长度TTL是指从第一透镜物侧面的中心至成像面中心的轴上距离;光学镜头的光学后焦BFL是指从最后一个透镜第七透镜像侧面的中心至成像面中心的轴上距离;以及光学镜头的透镜组长度TL是指从第一透镜物侧面的中心至最后一个透镜第七透镜像侧面中心的轴上距离。
本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学镜头不限于包括七个透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。
第三透镜L3为具有负光焦度的双凹透镜,其物侧面S6和像侧面S7均为凹面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面。其中,第三透镜L3和第四透镜L4互相胶合形成第一胶合透镜。
第五透镜L5为具有负光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10和像侧面S11均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成第二胶合透镜。
第七透镜L7为具有正光焦度的弯月透镜,其物侧面S12为凸面,像侧面S13为凹面。
可选地,该光学镜头还可包括具有物侧面S14和像侧面S15的滤光片L8和具有物侧面S16和像侧面S17的保护透镜L9。滤光片L8可用于校正色彩偏差。保护透镜L9可用于保护位于成像面S18的图像传感芯片。来自物体的光依序穿过各表面S1至S17并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第二透镜L2与第三透镜L3之间设置光阑STO以提高成像质量。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表1
面号 | 曲率半径R | 厚度T | 折射率Nd | 阿贝数Vd |
1 | 15.5000 | 4.0000 | 1.77 | 49.59 |
2 | 25.0953 | 0.2500 | ||
3 | 14.0000 | 2.3000 | 1.52 | 64.21 |
4 | 6.3461 | 6.0000 | ||
STO | 无穷 | 1.5000 | ||
6 | -8.0000 | 0.7000 | 1.81 | 33.28 |
7 | 11.0000 | 6.0000 | 1.77 | 49.59 |
8 | -11.0000 | 0.2000 | ||
9 | 34.0699 | 1.9000 | 1.85 | 23.79 |
10 | 11.0000 | 6.5000 | 1.77 | 49.59 |
11 | -23.3889 | 0.2000 | ||
12 | 13.5888 | 5.0000 | 1.50 | 81.55 |
13 | 50.0000 | 0.5000 | ||
14 | 无穷 | 0.5500 | 1.52 | 64.21 |
15 | 无穷 | 8.5000 | ||
16 | 无穷 | 0.4000 | ||
17 | 无穷 | 0.6111 | ||
IMA | 无穷 | / |
本实施例采用了七片透镜作为示例,通过合理分配各个透镜的光焦度与面型,各透镜的中心厚度以及各透镜间的空气间隔,可使镜头具有小型化、CRA小、大光圈、后焦长、低成本、温度性能好、远距离成像等有益效果中的至少一个。
下表2给出了实施例1的光学镜头的整组焦距值F、第一透镜L1的焦距值F1、光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面IMA的轴上距离)、光学镜头的透镜组长度TL(即,从第一透镜L1的物侧面S1中心至最后一个透镜第七透镜L7的像侧面S13中心的轴上距离)、光学镜头的光学后焦BFL(即,最后一个透镜第七透镜L7的像侧面S13的中心至成像面IMA的轴上距离)、光学镜头的入瞳直径ENPD以及光学镜头的主光线角CRA。
表2
F(mm) | 11.9085 | BFL(mm) | 10.5611 |
F1(mm) | 45.2890 | ENPD(mm) | 9.9238 |
TTL(mm) | 45.1111 | CRA(°) | 3.4 |
TL(mm) | 34.5500 |
在本实施例中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=3.7881;光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间满足BFL/TL=0.3057;光学镜头的整组焦距值F与第一透镜L1的焦距值F1之间满足F/F1=0.2629;以及第七透镜L7的材料折射率随温度变化的变化量dn/dt(7)=-1.9100E-05。
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。
第三透镜L3为具有负光焦度的双凹透镜,其物侧面S5和像侧面S6均为凹面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S6和像侧面S7均为凸面。其中,第三透镜L3和第四透镜L4互相胶合形成第一胶合透镜。
第五透镜L5为具有负光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10和像侧面S11均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成第二胶合透镜。
第七透镜L7为具有正光焦度的弯月透镜,其物侧面S12为凸面,像侧面S13为凹面。
可选地,该光学镜头还可包括具有物侧面S14和像侧面S15的滤光片L8和具有物侧面S16和像侧面S17的保护透镜L9。滤光片L8可用于校正色彩偏差。保护透镜L9可用于保护位于成像面S18的图像传感芯片。来自物体的光依序穿过各表面S1至S17并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第四透镜L4与第五透镜L5之间(即,在第一胶合透镜与第二胶合透镜之间)设置光阑STO以提高成像质量。
下表3示出了实施例2的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表4示出了实施例2的光学镜头的整组焦距值F、第一透镜L1的焦距值F1、光学镜头的光学总长度TTL、光学镜头的透镜组长度TL、光学镜头的光学后焦BFL、光学镜头的入瞳直径ENPD以及光学镜头的主光线角CRA。
表3
面号 | 曲率半径R | 厚度T | 折射率Nd | 阿贝数Vd |
1 | 15.0000 | 4.0000 | 1.77 | 49.59 |
2 | 25.1082 | 0.2500 | ||
3 | 14.4523 | 2.3000 | 1.52 | 64.21 |
4 | 6.4069 | 6.5000 | ||
5 | -7.5000 | 0.7000 | 1.81 | 33.28 |
6 | 10.5000 | 6.0000 | 1.77 | 49.59 |
7 | -10.5000 | -1.0000 | ||
STO | 无穷 | 1.2000 | ||
9 | 35.0000 | 1.9000 | 1.85 | 23.79 |
10 | 12.0000 | 6.5000 | 1.77 | 49.59 |
11 | -25.0000 | 0.2000 | ||
12 | 12.7401 | 5.0000 | 1.50 | 81.55 |
13 | 50.0000 | 0.5000 | ||
14 | 无穷 | 0.5500 | 1.52 | 64.21 |
15 | 无穷 | 8.5000 | ||
16 | 无穷 | 0.4000 | ||
17 | 无穷 | 0.6625 | ||
IMA | 无穷 | / |
表4
F(mm) | 11.9654 | BFL(mm) | 10.6125 |
F1(mm) | 41.9501 | ENPD(mm) | 9.9711 |
TTL(mm) | 44.1625 | CRA(°) | 3.8 |
TL(mm) | 33.5500 |
在本实施例中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=3.6909;光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间满足BFL/TL=0.3163;光学镜头的整组焦距值F与第一透镜L1的焦距值F1之间满足F/F1=0.2852;以及第七透镜L7的材料折射率随温度变化的变化量dn/dt(7)=-1.9100E-05。
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。
第三透镜L3为具有负光焦度的双凹透镜,其物侧面S6和像侧面S7均为凹面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面。其中,第三透镜L3和第四透镜L4互相胶合形成第一胶合透镜。
第五透镜L5为具有负光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10和像侧面S11均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成第二胶合透镜。
第七透镜L7为具有正光焦度的双凸透镜,其物侧面S12和像侧面S13均为凹面。
可选地,该光学镜头还可包括具有物侧面S14和像侧面S15的滤光片L8和具有物侧面S16和像侧面S17的保护透镜L9。滤光片L8可用于校正色彩偏差。保护透镜L9可用于保护位于成像面S18的图像传感芯片。来自物体的光依序穿过各表面S1至S17并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第二透镜L2与第三透镜L3之间设置光阑STO以提高成像质量。
下表5示出了实施例3的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表6示出了实施例3的光学镜头的整组焦距值F、第一透镜L1的焦距值F1、光学镜头的光学总长度TTL、光学镜头的透镜组长度TL、光学镜头的光学后焦BFL、光学镜头的入瞳直径ENPD以及光学镜头的主光线角CRA。
表5
面号 | 曲率半径R | 厚度T | 折射率Nd | 阿贝数Vd |
1 | 14.0000 | 4.0000 | 1.77 | 49.59 |
2 | 24.8769 | 0.2500 | ||
3 | 12.0000 | 2.3000 | 1.52 | 64.21 |
4 | 5.5925 | 6.0000 | ||
STO | 无穷 | 1.5000 | ||
6 | -7.1100 | 0.7000 | 1.81 | 33.28 |
7 | 10.5000 | 6.0000 | 1.77 | 49.59 |
8 | -10.5000 | 0.2000 | ||
9 | 36.7397 | 1.9000 | 1.85 | 23.79 |
10 | 9.0000 | 6.5000 | 1.77 | 49.59 |
11 | -25.7265 | 0.2000 | ||
12 | 14.1217 | 5.0000 | 1.50 | 81.55 |
13 | -100.0000 | 0.5000 | ||
14 | 无穷 | 0.5500 | 1.52 | 64.21 |
15 | 无穷 | 8.5000 | ||
16 | 无穷 | 0.4000 | ||
17 | 无穷 | 0.8565 | ||
IMA | 无穷 | / |
表6
F(mm) | 11.8324 | BFL(mm) | 10.8065 |
F1(mm) | 36.4265 | ENPD(mm) | 9.8603 |
TTL(mm) | 45.3565 | CRA(°) | 2.2 |
TL(mm) | 34.5500 |
在本实施例中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=3.8332;光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间满足BFL/TL=0.3128;光学镜头的整组焦距值F与第一透镜L1的焦距值F1之间满足F/F1=0.3248;以及第七透镜L7的材料折射率随温度变化的变化量dn/dt(7)=-1.9100E-05。
实施例4
以下参照图4描述了根据本申请实施例4的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图4示出了根据本申请实施例4的光学镜头的结构示意图。
如图4所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。
第三透镜L3为具有负光焦度的双凹透镜,其物侧面S5和像侧面S6均为凹面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S6和像侧面S7均为凸面。其中,第三透镜L3和第四透镜L4互相胶合形成第一胶合透镜。
第五透镜L5为具有负光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10和像侧面S11均为凸面。其中,第五透镜L5和第六透镜L6互相胶合形成第二胶合透镜。
第七透镜L7为具有正光焦度的双凸透镜,其物侧面S12和像侧面S13均为凹面。
可选地,该光学镜头还可包括具有物侧面S14和像侧面S15的滤光片L8和具有物侧面S16和像侧面S17的保护透镜L9。滤光片L8可用于校正色彩偏差。保护透镜L9可用于保护位于成像面S18的图像传感芯片。来自物体的光依序穿过各表面S1至S17并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第四透镜L4与第五透镜L5之间(即,在第一胶合透镜与第二胶合透镜之间)设置光阑STO以提高成像质量。
下表7示出了实施例4的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表8示出了实施例4的光学镜头的整组焦距值F、第一透镜L1的焦距值F1、光学镜头的光学总长度TTL、光学镜头的透镜组长度TL、光学镜头的光学后焦BFL、光学镜头的入瞳直径ENPD以及光学镜头的主光线角CRA。
表7
表8
F(mm) | 11.9135 | BFL(mm) | 10.5180 |
F1(mm) | 36.5931 | ENPD(mm) | 9.9280 |
TTL(mm) | 43.5680 | CRA(°) | 3.5 |
TL(mm) | 33.0500 |
在本实施例中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=3.6570;光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间满足BFL/TL=0.3182;光学镜头的整组焦距值F与第一透镜L1的焦距值F1之间满足F/F1=0.3256;以及第七透镜L7的材料折射率随温度变化的变化量dn/dt(7)=-1.9100E-05。
综上,实施例1至实施例4分别满足以下表9所示的关系。
表9
条件式/实施例 | 1 | 2 | 3 | 4 |
TTL/F | 3.7881 | 3.6909 | 3.8332 | 3.6570 |
BFL/TL | 0.3057 | 0.3163 | 0.3128 | 0.3182 |
F/F1 | 0.2629 | 0.2852 | 0.3248 | 0.3256 |
dn/dt(7) | -1.9100E-05 | -1.9100E-05 | -1.9100E-05 | -1.9100E-05 |
本申请还提供了一种成像设备,该成像设备可包括根据本申请上述实施方式的光学镜头和用于将光学镜头形成的光学图像转换为电信号的成像元件。该成像元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。该成像设备可以是诸如探测距离相机的独立成像设备,也可以是集成在诸如探测距离设备上的成像模块。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (22)
1.光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,
其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
所述第三透镜具有负光焦度,其物侧面和像侧面均为凹面;
所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;
所述第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
所述第六透镜具有正光焦度,其物侧面和像侧面均为凸面;以及
所述第七透镜具有正光焦度;
所述光学镜头中具有光焦度的透镜的片数是七片;以及
所述光学镜头的光学后焦BFL与所述光学镜头的透镜组长度TL之间满足:0.2≤BFL/TL≤0.3182。
2.根据权利要求1所述的光学镜头,其特征在于,所述第七透镜的物侧面为凸面,像侧面为凹面。
3.根据权利要求1所述的光学镜头,其特征在于,所述第七透镜的物侧面和像侧面均为凸面。
4.根据权利要求1所述的光学镜头,其特征在于,所述第三透镜和所述第四透镜互相胶合形成第一胶合透镜。
5.根据权利要求1所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜互相胶合形成第二胶合透镜。
6.根据权利要求1所述的光学镜头,其特征在于,所述第一透镜至所述第七透镜均为玻璃镜片。
7.根据权利要求1-6中任一项所述的光学镜头,其特征在于,所述光学镜头的光学总长度TTL与所述光学镜头的整组焦距值F之间满足:TTL/F≤4.5。
8.根据权利要求1-6中任一项所述的光学镜头,其特征在于,所述光学镜头的整组焦距值F与所述第一透镜的焦距值F1之间满足:F/F1≥0.15。
9.根据权利要求1-6中任一项所述的光学镜头,其特征在于,所述第七透镜的材料折射率随温度变化的变化量dn/dt为负值。
10.光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,
其特征在于,
所述第一透镜、所述第四透镜、所述第六透镜和所述第七透镜均具有正光焦度;
所述第二透镜、所述第三透镜和所述第五透镜均具有负光焦度;
所述第三透镜和所述第四透镜互相胶合形成第一胶合透镜;
所述第五透镜和所述第六透镜互相胶合形成第二胶合透镜;
所述第三透镜的物侧面为凹面;
所述光学镜头中具有光焦度的透镜的片数是七片;
所述光学镜头的光学后焦BFL与所述光学镜头的透镜组长度TL之间满足:0.2≤BFL/TL≤0.3182;以及
所述光学镜头的光学总长度TTL与所述光学镜头的整组焦距值F之间满足:TTL/F≤4.5。
11.根据权利要求10所述的光学镜头,其特征在于,所述第一透镜的物侧面为凸面,像侧面为凹面。
12.根据权利要求10所述的光学镜头,其特征在于,所述第二透镜的物侧面为凸面,像侧面为凹面。
13.根据权利要求10所述的光学镜头,其特征在于,所述第三透镜的像侧面为凹面。
14.根据权利要求10所述的光学镜头,其特征在于,所述第四透镜的物侧面和像侧面均为凸面。
15.根据权利要求10所述的光学镜头,其特征在于,所述第五透镜的物侧面为凸面,像侧面为凹面。
16.根据权利要求10所述的光学镜头,其特征在于,所述第六透镜的物侧面和像侧面均为凸面。
17.根据权利要求10所述的光学镜头,其特征在于,所述第七透镜的物侧面为凸面,像侧面为凹面。
18.根据权利要求10所述的光学镜头,其特征在于,所述第七透镜的物侧面和像侧面均为凸面。
19.根据权利要求10-18中任一项所述的光学镜头,其特征在于,所述第一透镜至所述第七透镜均为玻璃镜片。
20.根据权利要求10-18中任一项所述的光学镜头,其特征在于,所述光学镜头的整组焦距值F与所述第一透镜的焦距值F1之间满足:F/F1≥0.15。
21.根据权利要求10-18中任一项所述的光学镜头,其特征在于,所述第七透镜的材料折射率随温度变化的变化量dn/dt为负值。
22.一种成像设备,其特征在于,包括权利要求1或10所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811373609.8A CN111198430B (zh) | 2018-11-19 | 2018-11-19 | 光学镜头及成像设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811373609.8A CN111198430B (zh) | 2018-11-19 | 2018-11-19 | 光学镜头及成像设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111198430A CN111198430A (zh) | 2020-05-26 |
CN111198430B true CN111198430B (zh) | 2022-02-08 |
Family
ID=70744020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811373609.8A Active CN111198430B (zh) | 2018-11-19 | 2018-11-19 | 光学镜头及成像设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111198430B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210030007A (ko) | 2019-09-09 | 2021-03-17 | 삼성전기주식회사 | 촬상 광학계 |
CN114384668B (zh) * | 2020-10-22 | 2024-08-27 | 华为技术有限公司 | 光学系统及终端设备 |
CN113109926B (zh) * | 2021-04-22 | 2024-07-02 | 湖南长步道光学科技有限公司 | 一种低畸变光学系统及镜头 |
CN113467060B (zh) * | 2021-09-03 | 2022-02-11 | 江西联创电子有限公司 | 光学镜头及成像设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9671591B2 (en) * | 2015-04-16 | 2017-06-06 | Largan Precision Co., Ltd. | Optical lens assembly, image capturing apparatus and electronic device |
JP2017125978A (ja) * | 2016-01-14 | 2017-07-20 | 株式会社リコー | 撮像光学系およびその撮像光学系を有する装置 |
CN107608059A (zh) * | 2017-11-08 | 2018-01-19 | 湖南戴斯光电有限公司 | 一种微畸变高分辨大视场光学镜头 |
CN207516623U (zh) * | 2017-11-08 | 2018-06-19 | 湖南戴斯光电有限公司 | 一种微畸变高分辨大视场光学镜头 |
-
2018
- 2018-11-19 CN CN201811373609.8A patent/CN111198430B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9671591B2 (en) * | 2015-04-16 | 2017-06-06 | Largan Precision Co., Ltd. | Optical lens assembly, image capturing apparatus and electronic device |
JP2017125978A (ja) * | 2016-01-14 | 2017-07-20 | 株式会社リコー | 撮像光学系およびその撮像光学系を有する装置 |
CN107608059A (zh) * | 2017-11-08 | 2018-01-19 | 湖南戴斯光电有限公司 | 一种微畸变高分辨大视场光学镜头 |
CN207516623U (zh) * | 2017-11-08 | 2018-06-19 | 湖南戴斯光电有限公司 | 一种微畸变高分辨大视场光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN111198430A (zh) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112180538B (zh) | 光学镜头及成像设备 | |
CN110794552A (zh) | 光学镜头 | |
CN111239961B (zh) | 光学镜头及成像设备 | |
CN110412721B (zh) | 光学镜头 | |
CN111474673B (zh) | 光学镜头及成像设备 | |
CN109581620B (zh) | 光学镜头 | |
CN109557644B (zh) | 光学镜头及成像设备 | |
CN111198430B (zh) | 光学镜头及成像设备 | |
CN112068291B (zh) | 光学镜头及成像设备 | |
CN111830672B (zh) | 光学镜头及成像设备 | |
CN111367058B (zh) | 光学镜头及成像设备 | |
CN111781701B (zh) | 光学镜头及成像设备 | |
CN112014946B (zh) | 光学镜头及成像设备 | |
CN111999863B (zh) | 光学镜头及成像设备 | |
CN111999850A (zh) | 光学镜头及成像设备 | |
CN111983779B (zh) | 光学镜头及成像设备 | |
CN109491056B (zh) | 光学镜头及成像设备 | |
CN111239962B (zh) | 光学镜头及成像设备 | |
CN111103672B (zh) | 光学镜头 | |
CN111352214A (zh) | 光学镜头及成像设备 | |
CN111796403B (zh) | 光学镜头及成像设备 | |
CN111830668B (zh) | 光学镜头及成像设备 | |
CN110967806B (zh) | 光学镜头 | |
CN111198429B (zh) | 光学镜头及成像设备 | |
CN114384665A (zh) | 光学镜头及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |